
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2019

A Hidden Markov Factor Analysis Framework for
Seizure Detection in Epilepsy Patients
Mahboubeh Madadi
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

Part of the Applied Statistics Commons, Molecular and Cellular Neuroscience Commons, and
the Neurosciences Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu.

Recommended Citation
Madadi, Mahboubeh, "A Hidden Markov Factor Analysis Framework for Seizure Detection in Epilepsy Patients" (2019). Theses and
Dissertations. 3165.
https://scholarworks.uark.edu/etd/3165

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UARK

https://core.ac.uk/display/215464446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarworks.uark.edu%2Fetd%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/60?utm_source=scholarworks.uark.edu%2Fetd%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1010?utm_source=scholarworks.uark.edu%2Fetd%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3165?utm_source=scholarworks.uark.edu%2Fetd%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu


A Hidden Markov Factor Analysis Framework for Seizure Detection in Epilepsy Patients

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Statistics

by

Mahboubeh Madadi
University of Shahid Beheshti

Bachelor of Science in Applied Mathematics, 2005
University of Arkansas

Doctor of Philosophy in Industrial Engineering, 2015

May 2019
University of Arkansas

This thesis is approved for recommendation to the Graduate Council

Giovanni Petris, PhD
Thesis Director

Jyotishka Datta, PhD
Committee member

Avishek Chakraborty, PhD
Committee member



ABSTRACT

Approximately 1% of the world population su↵ers from epilepsy. Continuous long-term 

electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic 

seizures and assisting in the diagnosis and treatment of patients with epilepsy. Detection of 

seizure from the recorded EEG is a laborious, time consuming and expensive task. In this 

study, we propose an automated seizure detection framework to assist electroencephalogra-

phers and physicins with identification of seizures in recorded EEG signals. In addition, an 

automated seizure detection algorithm can be used for treatment through automatic inter-

vention during the seizure activity and on time triggering of the injection of a radiotracer to localize 

the seizure activity. In this study, we developed and tested a hidden Markov factor analysis 

(HMFA) framework for automated seizure detection based on di↵erent features such as total 

e↵ective inflow which is calculated based on connectivity measures between di↵erent sites of 

the brain. The algorithm was tested on long-term (2.4-7.66 days) continuous sEEG recordings 

from three patients and a total of 16 seizures, producing a mean sensitivity of 96.3% across all 

seizures, a mean specificity of 3.47 false positives per hour, and a mean latency of 3.7 seconds 

form the actual seizure onset. The latency was negative for a few of the seizures which implies 

the proposed method detects the seizure prior to its onset. This is an indication that with 

some extension the proposed method is capable of seizure prediction.
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1 Introduction

1.1 Overview

Epilepsy is a disorder characterized by spontaneous and recurrent seizures and af-

flicts nearly 1% (more than 50 million people) of the world’s population [2], making it the

fourth most common neurological disorder after Migraine, Stroke, and Alzheimer’s [3]. The

annual new cases are between 30 and 50 per 100,000 people in the general population [4].

Approximately in 30% of people with epilepsy, the condition is intractable to antiepileptic

drugs [5].

Epileptic seizures are due to a sudden development of pathological, synchronous neu-

ronal firing in the cerebrum and can be recorded by scalp, subdural and intracranial elec-

trodes [6]. Seizures vary in duration (seconds to minutes), morphology and severity (clinical

to subclinical, occurrence rate) within the same patient and across patients. Seizures may

begin locally in portions of the cerebral hemispheres (partial/focal seizures) with a single or

multiple foci, or simultaneously in both cerebral hemispheres (generalized seizures). After

a seizures onset, partial seizures may remain localized and cause relatively mild cognitive,

psychic, sensory, motor, or autonomic symptoms, or may spread (secondarily generalized)

to cause altered consciousness, complex automatic behaviors, or bilateral tonic-clonic con-

vulsions [6].

Previous studies have shown that seizures are not abrupt transitions in and out of an

abnormal seizure state; instead, they follow a dynamical transition that evolves over minutes

to hours [7, 8]. There is emerging evidence that the temporal dynamics of brain activity

can be classified into four states: Interictal (between seizures, or baseline), Preictal (prior

to seizure), Ictal (seizure), and Post-ictal (after seizures). The seizures (ictal states) cause

temporary disturbances of brain functions (e.g., motor control, responsiveness, recall), for

periods ranging from seconds to minutes. Seizures may be followed by a post-ictal period of
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confusion or impaired sensorium that can last for several hours.

The task of seizure prediction and detection is an active area of research and can

be achieved by using the Electroencephalography (EEG) signals to monitor the dynami-

cal changes of the brain over time and intervene therapeutically at the right time. Seizure

detection and especially prediction is di�cult due to the presence of movement and other

recording artifacts in EEG data. Di�culty in predicting seizures is one of the major factors

a↵ecting the quality of life of people with epilepsy. The primary challenge in seizure detec-

tion and prediction is di↵erentiating between the ictal and non-ictal (pre-ictal, post-ictal,

and inter-ictal) states from noise-contaminated data. Accurate seizure detection or predic-

tion algorithms can provide warnings to encourage a patient to move to safety, or activate

interventions such as electrical stimulation or drug delivery to avert seizures.

1.2 Electroencephalography (EEG)

Electroencephalography is the recording of the electrical activity produced by the

firing of neurons within the brain and is the gold-standard for recording epileptic seizures

and assisting in the diagnosis and treatment of patients with epilepsy. Electrical activities

of the neurons are recorded through receptors, called electrodes, that are placed on the head

and each one records the oscillations of brain electric potential on a specific part of the brain.

The number of electrodes and positioning of them in the brain depends on the application.

Typically, electrodes measure synaptic action averaged over tissue masses containing between

roughly 100 million and 1 billion neurons. If the electrodes are placed on the surface of the

scalp the EEG recording is called scalp or extracranial recording and has amplitude 10-100

µV. When measured on the surface or deep in the brain it has amplitude 10-20 mV and

called intracranial EEG (iEEG).

EEG can be described in terms of rhythmic activity in specific frequency bands. The

classification of EEG signals based on activity in specific frequency bands are discussed below:
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Delta (�) rhythm: EEG rhythmic activity below 4 Hz is categorized as delta rhythm. It is

most prominent frontally in adults and posteriorly in children. It consists of high amplitude

waves found during sleep and while performing tasks requiring continuous attention.

Theta (✓) rhythm: EEG activity in the frequency range 4-8 Hz is categorized as theta

rhythm found in young children during sleep. This frequency range of EEG activity has

been associated with reports of relaxed, meditative, and creative states.

Alpha (↵) rhythm: EEG activity in the frequency range 8-13 Hz is categorized as alpha

rhythm. It consists of regular waveforms with sharp peaks which are prominent in posterior

regions of the head while resting. This was the first recorded electrical activity of the brain

(recorded by Hans Berger); hence named as alpha rhythm.

Beta (�) rhythm: EEG activity in the frequency range 13-30 Hz is categorized as beta

rhythm. It has symmetrical distribution on both sides of brain and is most evident frontally.

Low amplitude beta with multiple and varying frequencies is often associated with active,

busy or anxious thinking and active concentration.

Gamma (�) rhythm: Gamma waves have the frequency range from 30 Hz and higher and

are thought to represent binding of di↵erent populations of neurons together into a network

for the purpose of carrying out a certain cognitive or motor function.

Figure 1.1 illustrates some examples of EEG signals of frequency bands Delta through Beta.

1.3 Conectivity Measures

Quantification of the interactions between di↵erent variables in a multicomponent

system is critical for understanding the underlying dynamics of the system. Measures of

connectivity in the frequency domain can provide robust estimates of the interactions be-
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Figure 1.1: Examples of EEG signals of di↵erent frequency bands as indicated on the left
(source http://www.bem.fi/book)

tween individual components of a system at specific frequencies. Connectivity measures, such

as coherence, directed coherence (DC), directed transfer function (DTF), partial directed co-

herence (PDC), and generalized partial directed coherence (GPDC) have been applied to the

study of brain dynamics. In the following the details of these connectivity measures are pro-

vided.

Coherence: Coherence is a statistic that can be used to examine the relation between two

signals or time series [9]. Specifically, it estimates the extent to which two signals x(t) and

y(t) may be predicted from one another by an optimum linear least squares function. The

coherence between two signals x(t) and y(t) is a real-valued function that is defined as

Cxy(f) =
|Gxy(f)|2

Gxx(f)Gyy(f)
, (1.1)

where Gxy(f) is the cross–spectral density between x and y, and Gxx(f) and Gyy(f) are the

auto–spectral density of x and y, respectively.
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Directed Coherence (DC) and Directed Transfer Function (DTF): Let

X(t) =
⇥
X1(t), . . . , Xn(t)

⇤T
represent a set of simultaneously observed time series. Assume

X(t) can be adequately represented by a vector Autoregressive Model of order p (VAR(p));

i.e.,

X(t) =
pX

⌧=1

A(⌧)X(t� ⌧) + ✏(t) (1.2)

where A(⌧) comprise the coe�cients aij(⌧) that relate the ij series at lag ⌧ (describing the

interactions between time series pairs over time) and ✏(t) =
⇥
✏1(t) . . . ✏n(t)

⇤T
is the vector of

model innovations (with zero mean and covariance matrix ⌃✏).

Equation (1.2) can be transformed to describe relations in the frequency domain.

After changing the sign of A and application of Z transform we have:

✏(f) = A(f)X(f)

X(f) = A�1(f)✏(f) = H(f)✏(f)

H(f) =

✓ pX

⌧=1

A(⌧)ei�2⇡⌧f

◆�1

(1.3)

The matrix of filter coe�cientsH(f) is called the transfer matrix of the system. Using

the transfer matrix H(f), directed transfer function (DTF) [10] and directed coherence (DC)

[11] are introduced as follows to describes the causal influence of channel j on channel k at

frequency f :

DTFj!k(f) =
|Hkj(f)|2pPn
`=1 |H`j(f)|2

. (1.4)

DCj!k(f) =
�j|Hkj(f)|2pPn
`=1 �

2
` |H`j(f)|2

. (1.5)

where �2
k denotes the variances of the innovations processes ✏(t). Specifically, these measures
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give the proportion of inflow from channel j to channel k to all the inflows to channel k.

Partial Directed Coherence (PDC) and Generalized Partial Directed Coher-

ence (GPDC): Baccala et al. [12] formulated Partial Directed Coherence (PDC) which is

a linear frequency-domain quantifier of the multivariate relationship between simultaneously

observed time series for application in functional connectivity inference in neuroscience.

Taking the discrete Fourier transform of both sides of (1.2), we obtain

✓
I�

pX

k=1

A(⌧)e�i2⇡f⌧

◆
X(f) = B(f)X(f) = ✏(f) (1.6)

where I is the n ⇥ n identity matrix, X(f), and ✏(f) are the original signal and innovation

vector process in the frequency domain, respectively. PDC is then expressed as

PDCj!k(f) =
Bkj(f)qPn

`=1 B`j(f)B⇤
`j(f)

. (1.7)

Since PDC su↵ers from correlated noise structures (mean and variance) in the in-

novations processes involved and it is not scale-invariant, Baccala et al. [13] formulated

the concept of Generalized Partial Directed Coherence (GPDC) which is scale-invariant and

more computationally e�cient than other frequency-based connectivity measures:

GPDCj!k(f) =
1
�k
Bkj(f)qPn

`=1
1
�2
`
B`j(f)B⇤

`j(f)
(1.8)

where �
2
k denotes the variances of the innovations processes ✏(t).

In general, a zero value in the (k, j)th entry in the matrix B(f) or H(f) indicates no

directed interaction (no causal relation) from j to k.
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1.4 Literature Review

Brain activity balances similarity between channels associated with propagation of

information and dissimilarity associated with high entropy/information content. To this end,

several multichannel methods have been applied to study clinical and experimental seizure

activity using a variety of metrics such as cross correlation, coherence, Granger causality,

transfer functions, and several nonlinear equivalents. Some researchers have focused on

seizure detection from a functional connectivity perspective by exploring the synchronization

abnormalities among neuronal population during the seizure period [14, 15, 16, 17, 18, 19, 20].

In the following we summarize the studies in the literature that use such measure for seizure

detection/prediction.

1.4.1 Seizure Detection

Kerr et al. [21] used singular value decomposition of coherence connectivity matrices

among the electrod sites to determine the dominant characteristics of the SEEG during

the normal, the pre-ictal, and the ictal states. Omidvarnia et al. [22] used Dual extended

Kalman Filter (DEKF) to estimate time varying MVAR parameters to compute time varying

PDC and showed that seizures are detectable in neonatal epileptic patients. Wang et al. [23]

proposed an approach based on the partial directed coherence, as a measure reflecting the

physiological changes of brain activity before and after seizure onsets, to detect the seizure

intervals of epilepsy patients. They calculated outflow information related to certain EEG

channel by summing up the intensity of information flow propagated to other EEG channels

in order to reduce the feature dimensionality. They applied support vector machine (SVM)

classifier to detect ictal periods of data. In another work, Wang et al. [24] combined the

wavelet decomposition and the directed transfer function (DTF) to develop a patient-specific

seizure detection algorithm. Rana et al. [25] propose a seizure detection and analysis scheme

based on the phase-slope index (PSI) which is a metric identifying an increases in the spatio

temporal interactions between channels. They form a global metric of interaction between
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channels and compare this metric to a threshold to detect the presence of seizures.

1.4.2 Seizure Prediction

It has long been observed that the transition from the interictal state (far from

seizures) to the ictal state (seizure) is not sudden and may be preceded from minutes to

hours by clinical, metabolic or electrical changes. Mormann et al. [15] reported an alter-

ation in the degree of synchronisation between interictal and preictal EEG time series by

means of mean phase coherence. Specifically, they characterized the degree of synchroniza-

tion between EEG signals and retrospectively analyzed changes over time using the mean

phase coherence as a measure for phase synchronization and the maximum linear cross cor-

relation as a measure for lag synchronization. Santaniellot et al. [16] developed a hidden

Markov model to find an optimal control-based quickest detection (QD) strategy to estimate

the transition times from non-ictal to ictal states. They used connectivity measures (specif-

ically the cross-power spectral density) as features to minimizes a cost function of detection

delay and false positive probability. Winterhalder et al. [18] used eigenspectra of spacedelay

correlation and covariance matrices from EEG data at multiple delay scales as features and

used SVM to classify the patient’s preictal or interictal states. Chaing et al. [26] developed

an on-line retraining method with simple post-processing scheme based on wavelet coherence

which is a measure of synchronization of the phase between channels. Wavelet coherence

measures are calculated at di↵erent frequency bands and used as features for SVM classi-

fier. To enhance their method they developed a post-processing scheme helps to reduce false

positives rate. Schelter et al. [27] presented a classification method to minimize the false

alarms adopting circadian concepts. The authors used the mean phase coherence as a seizure

predictor, which causes an alarm to be raised if it exceeds a certain threshold.

1.4.3 Hidden Markov Models as a Classifier in Seizure Dtection and Prediction

Hidden Markov models (HMMs) are used for modeling a sequence of observable states

with assumed hidden states. In HMMs the sequences of observable states are assumed to

8



be caused by some hidden states. The hidden states have a probability of emission for

each of the finite set of observable states, and also a probability for changing to any other

hidden states. There are a few studies in the literature of seizure detection/prediction

that use variations of HMM as a classifier. For example, Hafidz et al. [28] developed a

HMM classifier with a three state system including (i) ictal, (ii) preictal, and (iii) interictal

states. They used stationary Wavelet Transform (SWT) to extract features from EEG

signals. Baldassano et al. [29] developed a Bayesian nonparametric Markov switching process

to parse intracranial EEG (iEEG) data into distinct dynamic event states. They modeled

event state as a multidimensional Gaussian distribution. By detecting event states highly

specific for seizure onset zones, their proposed method can identify precise regions of iEEG

data associated with the transition to seizure activity. Extracting wavelet features of brain

EEG, Esmaeili et al. [30] proposed an HMM with a mixture of Gaussian observation model

as an unsupervised learning procedure to predict seizures, where the seizure predictions are

derived from the posterior distributions over the hidden states in the HMM. They used

Variational Bayesian (VB) method instead of the Maximum Likelihood estimation to train

the proposed HMM. Santaniellot et al. [16] developed a hidden Markov model to find an

optimal control-based quickest detection (QD) strategy to estimate the transition times from

non-ictal to ictal states.

9



2 Tools and Methods

Figure 2.1 illustrates the overview of the proposed seizure detection framework. For

each subject, EEG signals are first pre-processed. Pre-processing step includes segmentation

of the signals into non-overlapping epochs and application of di↵erent filters. In the next

step, we select the most informative channels by comparing signals randomly selected from

icta and inter-ictal periods. Di↵erent features are then calculated for all the epochs at

di↵erent frequency bands as well as for the full frequency. The proposed seizure detection

method is then applied on di↵erent combinations of features, channels, and frequency bands.

The combinations with the best performance in the testing procedure are then selected. The

details of these steps are discussed below.

2.1 Signal pre-processing

Pre-processing is an important procedure in biomedical signal processing and analysis

for identifying and removing noise or unwanted signals (e.g., biological signals and movement

artifacts) or selecting a sub-band of frequency signal. EEG signals are first segmented into

non-overlapping windows of length �. Next, to eliminate the noise coming from the power

line an IIR notch filter is applied. We then apply band-pass Butterworth filter for analysis

of data in di↵erent frequency bands.

signal segmentation
signal filtering (IIR 
notch and band‐

pass filters)
channel selection

feature extraction
Seizure detection 
using the HMFA 

framework

signal pre‐
processing for the 
model testing

Figure 2.1: Overview of proposed seizure detection framework
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2.2 Channel Selection

The aim of this step is to select EEG channels that provide the most discriminative

information for identifying seizure onset in a specific patient. Channel selection reduces the

computational time, eliminates irrelevant information, and improves the overall quality of

the extracted features from EEG signals. The channel selection step includes two stages. In

stage 1, for any pair of highly correlated channels, one of the correlated channels is randomly

discarded. Removing correlated channels improves the estimation of the covariance matrix.

In stage 2, the top p channels providing the most valuable information for detecting seizure

are selected. More specifically, the di↵erence in the variance of EEG signals in the ictal

and inter-ictal states are calculated, and the top p channels that correspond to the highest

di↵erence of variance are selected.

2.3 Feature Extraction

We use di↵erent features including signal mean, variance, skewness, kurtosis, as well

as a measure representing information flow between brain sites, namely e↵ective inflow (EI)

in the proposed seizure detection method.

E↵ective Inflow (EI):

E↵ective inflow is a measure of network connectivity proposed by Vlachos et al. [31] based

on GPDC. Let Ḡj!i(f1, f2) be the average GPDC over frequency band [f1 f2], i.e.,

Ḡj!i(f1, f2) = Gj!i(f)f2[f1,f2] (2.1)

Define the total inflow at node i as the sum of all ’flows’ toward i from the rest of the nodes

j = 1, . . . , n, with j 6= i, as:

IGi =
nX

j=1,j 6=i

Ḡj!i(f1, f2). (2.2)
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Note that index IGi in essence relates to the total e↵ect exerted on i from all other sites.

In addition, we used first, second, third and fourth standardized moments, namely

signal mean, variance, skewness, and kurtosis, as shown below, as features in the proposed

seizure detection method. Let Xs
i be a segment of observation Xi, we have:

X̄
s
i =

1

N

NX

h=1

X
s
ih, i = 1, . . . n. (2.3)

V ar(Xs
i ) =

1

N � 1

NX

h=1

(Xs
ih � X̄

s
i )

2
, i = 1, . . . n. (2.4)

�(Xs
i ) =

1
N�1

PN
h=1(X

s
ih � X̄s

i)3
✓

1
N�1

PN
h=1(X

s
ih � X̄

s
i )

2

◆3 , i = 1, . . . n. (2.5)

(Xs
i ) =

1
N�1

PN
h=1(X

s
ih � X̄

s
i )

4

✓
1

N�1

PN
h=1(X

s
ih � X̄

s
i )

2

◆2 , i = 1, . . . n. (2.6)

where N is the sample size in the data segment which is N = �⇥ sf with sf representing

the signal sampling frequency.

2.4 Hidden-Markov Factor Analysis (HMFA)

In Hidden-Markov Factor Analysis (HMFA), a finite set of factor analyzers are used

to model the relationship between the high-dimensional neural space and a low dimensional

latent neural space, Factor analyzers at di↵erent time points are related with each other

through a hidden Markov model (HMM). Please refer to Figure 2.2 [1].

Let X(t) denote the n-dimensional vector of the pre-processed electrode channels

activity at time point t 2 {1, . . . , T}, where n is the number of selected channels. Let z(t)

denote the low-dimensional latent neural state of dimension `  n and follows multivariate

standard normal probability distribution, i.e.,
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𝜔(𝑡 − 1) 𝜔 𝑡 = 𝑠

𝑿(𝑡)

𝒛(𝑡)

Λ 𝑠, 𝜇𝑠

Σ 𝑠

𝜔(𝑡): hidden Markov model state at time t.
𝒛(𝑡): latent neural activity
𝑿(𝑡) : electrode channel activity (observations)
Λ 𝑠: mapping from latent neural space to 
electrode channel space
𝜇𝑠: mean activity for channels
Σ 𝑠: noise variance for channels

Figure 2.2: Hidden-Markov Factor Analysis [1]

z(t) ⇠ N (0, I) (2.7)

Also, assume !(t) 2 {1, . . . , S} be hidden Markov model state at time t. We assume

linear-Gaussian relationship between the electrode activity X(t) and the latent neural state

z(t), that is

X(t) | z(t),!(t) = s ⇠ N (⇤sz(t) + µs,⌃s) (2.8)

where ⇤s is a n ⇥ ` matrix and represents factor loading matrix, and µs, and ⌃s are the

mean vector and covariance matrix. As it is standard in Factor Analysis (FA), we constrain

the covariance matrix ⌃s to be diagonal, where the diagonal elements are the independent

noise variances of each electrode.

The factor analyzers at di↵erent time points are related through an HMM to capture

the idea of neural trajectories moving within as well as between low-dimensional subspaces.

Start and transition probability parameters are learned for the HMM. The number of states

in the HMM (S) must be determined a priori.

⇡s = P (!(t) = s), Ajk = P (!(t+ 1) = k|!(t) = j). (2.9)
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The parameters of the HMFA model ⇥ =
�
⇡, A, (µs,⌃s,⇤s)Ss=1

�
can be estimated

using a variant of expectation maximization (EM) algorithm known as the Alternating Ex-

pectation Conditional Maximization (AECM) algorithm [1]. The algorithm seeks the model

parameters that maximize the probability of the observations.

Assuming that there are m recordings for a specific patient (i.e., i = 1, . . . ,m) rep-

resented by Xi(t) =
⇥
X

i
1(t), . . . , X

i
n(t)

⇤T
, the outline of the AECM training algorithm to

obtain the model parameters, i.e., ⇥ =
�
⇡, A, (µs,⌃s,⇤s)Ss=1

�
, is given below:

First E step: In this step, the factors zi(t) are marginalized out and only the state la-

bels remain as missing data in the expected log-likelihood:

`1(⇥) =
mX

i=1

SX

j=1

P
�
!i(1) = j|Xi

�
log⇡j

+
mX

i=1

TiX

t=1

SX

j=1

SX

k=1

P
�
!i(t) = k|!i(t� 1) = j,Xi

�
logAjk

+
mX

i=1

TiX

t=1

SX

j=1

P
�
!i(t) = j|Xi

�
logP

�
Xi(t)|!i(t) = j

�

(2.10)

where P
�
!i(t) = j|Xi

�
and P

�
!i(t) = k|!i(t � 1) = j,Xi

�
can be calculated using the

forward and backward algorithms for HMMs, and P
�
Xi(t)|!i(t) = j

�
can be determined as

follows:

logP
�
Xi(t)|!i(t) = j

�
/

� 1

2
log|⇤j⇤

0

j + ⌃j|�
1

2

�
Xi(t)� µj

�0
(⇤j⇤

0

j + ⌃j)
�1
�
Xi(t)� µj

� (2.11)

First CM-Step: In this step parameters subset ⇥1 = (⇡, A, µ) can be estimated by maxi-

mizing `1(⇥) with respect to these parameters, i.e.,
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⇡j =

Pm
i=1 P

�
!i(t) = j|Xi

�

m

Ajk =

Pm
i=1

PTi

t=2 P
�
!i(t) = k|!i(t� 1) = j,Xi

�
Pm

i=1

PTi

t=2

PS
k=1 P

�
!i(t) = k|!i(t� 1) = j,Xi

�

µj =

Pm
i=1

PTi

t=1 P
�
!i(t) = j|Xi

�
Xi(t)

Pm
i=1

PTi

t=1 P
�
!i(t) = j|Xi

�

(2.12)

Second E-Step: In this step, both the factors and state labels are taken as missing data

in the expected log-likelihood, i.e.,

`2(⇥) =
mX

i=1

SX

j=1

P
�
!i(1) = j|Xi

�
log⇡j

+
mX

i=1

TiX

t=1

SX

j=1

SX

k=1

P
�
!i(t) = k|!i(t� 1) = j,Xi

�
logAjk

+
mX

i=1

TiX

t=1

SX

j=1

P
�
!i(t) = j|Xi

�
logP

�
Xi(t)|zi(t),!i(t) = j

�

+
mX

i=1

TiX

t=1

SX

j=1

P
�
!i(t) = j|Xi

�
logP

�
zi(t)

�

(2.13)

Second CM-Step: Using the estimates from the first CM-Step, next we have the following

updates for covariance and loading matrices, i.e.,
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⇤j =
mX

i=1

TiX

t=1

P
�
!i(t) = j|X i

��
Xi(t)� µj

�
E
⇥
zi(t)|Xi(t),!i(t) = j

⇤

·
✓ mX

i=1

TiX

t=1

P
�
!i(t) = j|X i

�
· E

�
zi(t)zi(t)

0
|Xi(t),!i(t) = j

�◆�1

,

⌃j =
1

Pm
i=1

PTi

t=1 P
�
!i(t) = j|X i

� · diag
 mX

i=1

TiX

t=1

P
�
!i(t) = j|X i

�

✓�
Xi(t)� µj

��
Xi(t)� µj

�0
� ⇤j E


zi(t)|Xi(t),!i(t) = j

��
Xi(t)� µj

�0
◆�

,

(2.14)

where

�j = ⇤
0

j

✓
⌃j + ⇤j⇤

0

j

◆�1

,

E
⇥
zi(t)|Xi(t),!i(t) = j

⇤
= �j(

�
Xi(t)� µj

�
,

E
⇥
zi(t)zi(t)

0
|Xi(t)

⇤
= I� �j⇤j + �j

�
Xi(t)� µj

��
Xi(t)� µj

�0
�

0.
j

(2.15)

2.5 Testing Procedure

Once the model parameters ⇥ are learned, we need to decode sequence of observations

to sequence of hidden states (i.e., pre-ictal, post-ictal, and inter-ictal the optimal sequence

of hidden states) to test our model. Specifically, given as input an HMFA with parameters

⇥ and a sequence of observations X =
�
X(1), . . .X(T )

�
, we desire to find the most probable

sequence of states
�
!(1),!(2), . . . ,!(T )

�
. The most common decoding algorithms for HMMs

is the Viterbi algorithm. Viterbi algorithm makes uses of a dynamic programming to find the

most likely sequence of hidden states. The details of the Viterbi algorithm is given below.
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Algorithm 1 Viterbi algorithm
1: procedure Viterbi(X,⇥) create a path probability matrix viterbi[S, T ]
2: for each state s from 1 to S . initialization step
3: viterbi[s, 1] ⇡(s) ⇤ P (X(1)|! = s)
4: backpointer[s, 1] 0 do
5: end for
6: for each time step t from 1 to T do . recursion step
7: for each state s from 1 to S do
8: viterbi[s, t]  maxs0 viterbi[s0, t � 1] ⇤ As0s ⇤ P (X(t)|! =

s) backpointer[s,t]  argmaxs0 viterbi[s
0
, t� 1] ⇤ As0s

9:10: end for
11: end for
12: viterbi[s, T ] maxs viterbi[s, t� 1] ⇤ As!(T ) . termination
13: backpointer[s, T ] argmaxs viterbi[s0, t� 1] ⇤ As!(T )

14: return the backtrace path by following backpointer to states back in time from
backpointer [!(T ), T ]

15: end procedure

17



3 Numerical Results

3.1 Data Source

Data analysis was performed using Stereoelectroencephalography (SEEG) data of

three epilepsy patients collected at the University of Alabama (UAB), School of Medicine.

SEEG is a method for invasive study of patients with refractory epilepsy. The study has

approval from the institutional review board to perform analysis and publish de-identified

data. The number of seizures in these three patients are 2, 5 and 9. The number of electrodes

and channels vary across patients from 102 to 168. Patients were monitored in epilepsy

monitoring units (EMU) for several days. The sampling frequency for patients 2 and 3 is at

2048 Hz, while a sampling frequency of 500 is used for the first patient. Characteristics of

EEG data are shown in Table 3.1.

3.2 Data Analysis

A non-overlaping sliding window of length � = 10 second of data (20480 or 5000

samples) are feature calculation. Prior to feature calculation, IIR notch filters with a rejection

band of 60, 120, 180, and 360 Hz are applied to each sliding window to remove the noise

coming from the power line. We then performed a 2nd order band-pass Butterworth filter.

Specifically, we generated 0.1-4 Hz (� band) signal, 4.1-8 Hz (✓ band) signal, 8.1-12 Hz

Table 3.1: Characteristics of EEG data

Patient
No. of
seizures

No. of
channels

Data length
(hr)

Sampling rate

1 2 102 183.82 500
2 9 168 96.35 2048
3 5 150 58.28 2048
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(↵ band) signal, 12.1-30 Hz (� band) signal, 30-80 Hz (low � band), and 80+ Hz (high

� band) signal. The complete spectrum (the whole frequency available for the maximum

sampling rate) is also used. For each patient, we then randomly selected data from ictal

and non-ictal period and randomly removed one channel from each pair of highly correlated

channels. Comparing the variance of ictal and inter-ictal periods for each remaining channel,

p 2 {3, 4, 5} channels with the highest di↵erence in variance are then selected for feature

calculations. Five di↵erent features, as discussed in Section 2.3, are derived for studying the

characteristics and analyzing EEG signals. Features are computed for each sub-frequency

band signals created from the original EEG data as well as for the full frequency.

The performance of the proposed HMFA framework on seizure detection framework

is estimated using one-fold (i.e., leave-one-record-out) cross-validation scheme. More specif-

ically, for each patient, one recording containing an ictal period is left aside for testing, and

the seizure onset detection framework uses the K � 1 remaining seizure records for training.

Next, the sensitivity, latency, and false positives per hour are calculated using the seizure

recording that was withheld from the training set. Sensitivity is the number of correctly de-

tected seizure onsets over all the seizures occurrences. Latency represents the delay between

seizure detection and seizure onset. False detection is the number of false alarms triggered

during the testing process. This process is repeated K times until each of the seizure records

has been tested once.

Training of HMFA model was initially performed setting the number of hidden states

S equal to 4 to be consistent with the commonly used assumption of four states of the brain,

namely inter-ictal, pre-ictal, ictal and post-ictal. The testing results, however, showed that

using S = 2 and 3 yield superior results. This is a result of features showing similar behav-

ior to ictal periods in mainly post-ictal and sometimes in pre-ictal periods. Note that the

maximum dimension of observations is n = p⇥ 5 (which mean n varies between 15 and 25)

since we considered five di↵erent features in our analysis. We also analyzed the impact of

feature elimination since for some patients some of the features are not providing discrimi-

native information. The number of latent factors was varied between 2 and ` = 0.5p⇥5. All
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the analyses were done under di↵erent frequency bands as well as the full frequency. The

analyses are performed in Python 3.7.0 and Matlab 9.4.0.

3.3 Results

For some patients (namely patient 2) the total inflow feature shows a significant

di↵erence in the ictal and inter-ictal period. However, the di↵erence in the ictal and post-

ictal periods do not show a significant di↵erence. Figure 3.1 shows the total e↵ective inflow

measures for patient 2 at full frequency well prior to and after the ictal period for seizures

1, 2, 3, 4, 7, and 8. However, the total e↵ective inflow feature is not significantly di↵erent

in the ictal and non-ictal period for all patients, namely patient 1. For such patients, other

features are picked up by the algorithm for HMFA training. For patient 1, the EEG signal

mean varies significantly in the ictal period when compared to the non-ictal period. Figure

3.2 shows channel 3 standardized mean feature for the two seizures in patient 1 about 30

minutes prior to after seizures at � frequency band.

The corresponding results for all three epileptic patients are given in Table 3.3. The

reported results are the average of all testing instances. The proposed seizure onset detection

framework was able to identify on average 96.3% of the seizure occurrences correctly. In term

of the false positives, on average, the proposed method triggers a false alarm 3.47 per hour,

which is relatively high, compared to the reported false positive rate of existing seizure

detection methods in the literature. However, note that this is the first study analyzing

these set of patients. Previous detection methods are mainly applied on a dataset collected

at Childrens Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) which is

inherently di↵erent from this dataset in terms of the patients and seizures characteristics.

In addition, the high false positive rates could be related to artifacts. There is a high

chance that some environmental or extraphysiologic artifacts reduced the performance of

seizure detection framework. Regarding latency, the proposed seizure detector was able to

detect the majority of the seizure onsets in 3.7 seconds of seizure onset. In some cases, the

proposed method detects the seizure prior to its onset. This shows that with some extension
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Figure 3.1: Total e↵ective inflow measures for patient 2– the blue dotted lines represent
the seizure onset
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Figure 3.2: Standardized mean of channel 3 for patient 1 prior and after seizure. Red
dotted lines represent the seizure onset

Table 3.2: Summary of the performance measures of the HMFA framework in seizure
detection

Patient Sensitivity False Positive (per hr) Latency (seconds)

1 2/2 2.6 10.1
2 8/9 3.3 7.5
3 5/5 4.1 -6.4

the proposed method is capable of seizure prediction. Figure 3.3 summarizes these results.
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Figure 3.3: The performance of HMFA seizure detection framework on three patients from
the UAB data
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4 Conclusion

Epilepsy is a common neurological disorder characterized by abnormal excessive or

synchronous neural activity in the brain. In this study, we develop an unsupervised learning

method for seizure detection. Seizure onset detection enables developing implantable closed-

loop devices for automatic intervention during the seizure activity and on time triggering of

the injection of a radiotracer to localize the seizure activity, which could ultimately enhance

the quality of life of epileptic patients. We developed and tested a hidden Markov factor

analysis framework for seizure detection based on di↵erent measures. The primary measure

of interest was total e↵ective inflow to brain sites that are known or estimated to be the

seizure onset zones. We also used other statistical measures such as signal mean, variance,

skewness, and kurtosis as features in the HMFA seizure detection framework. The algorithm

was tested on long-term (2.4-7.66 days) continuous SEEG recordings from three patients

and a total of 16 seizures, producing a mean sensitivity of 96.3% across all seizures, a mean

specificity of 3.47 false positives per hour, and a mean latency of 3.7 seconds form the actual

seizure onset. The latency was negative for a few of the seizures which implies the proposed

method detects the seizure prior to its onset. This is an indication that with some extension

the proposed method is capable of seizure prediction. The proposed method is also capable

of online seizure detection. The testing algorithm used in this thesis is the Viterbi algorithm.

However, it is possible to implement a threshold based Bayesian updating framework which

enables online seizure detection.

An extension of this algorithm can lead to a system for real-time detection and treat-

ments. As for the future extension of this work, other features such as teager energy, short-

term maximum Lyapunov exponent (ASTLmax) and entropy-based features could be used.

More specifically, total inflow showed to be very informative for some patients (patient 2), but

not for other patients (patient 1). Therefore using more informative patient-specific features,
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the proposed seizure detection algorithm can be improved. In addition, as discussed above,

the proposed model can be extended to an online threshed-based detection system through

a Bayesian belief state updating. Further, incorporation of a control loop system optimized

through partially observable Markov decision processes (POMDPs) framework could be used

for treatment through production of electrical impulses that regulate abnormal impulses or

injection of a radiotracer to localize the seizure activities.
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