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ABSTRACT

With the introduction of sophisticated electronic gadgets which cannot sustain interruption
in the provision of electricity, the need to supply uninterrupted and reliable power supply,
to the consumers, has become a crucial factor in the present-day world. Therefore, it is
customary to correctly identify fault locations in an electrical power network, in order to
rectify faults and restore power supply in the minimum possible time. Many automated fault
location detection algorithms have been proposed, however, prior art requires topological and
physical information of the electrical power network. This thesis presents a new method of
detecting fault locations, in transmission as well as distribution networks, using state-of-
the-art machine learning algorithms on the real-time synchrophasor measurements obtained
from the network. The proposed method first generates a bus admittance matrix from
the synchrophasor data and then uses a neural network to identify the faulty buses. It is
independent of network-specific data of the electrical power network. The proposed algorithm
is evaluated using actual outage data from a real transmission system of Southwest Power
Pool, in the year 2015. The results of the system implemented in python shows that the

proposed method can detect fault locations with 100% accuracy.
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1 CHAPTER: INTRODUCTION

In this chapter, the problem statement at hand, its importance, limitations in prior

art and the proposed solution method have been introduced, which are as follows:

1.1 Overview

With the introduction of revolutionary and complex electronic equipment which can-
not sustain interruption in the supply of electricity, it is customary to provide ceaseless
electric power. In the past, permanent faults were a subject of great interest but with the
advancement in science & technology and inception of cutting edge yet sensitive electronic
appliances, there is a paradigm shift in diverting attention towards temporary faults as well
and emphasis has been laid on supplying electric power smoothly. For this reason, various
protection schemes, for electric power network, have been introduced in order to minimize
duration of a fault as well as the customers affected by a fault. Previously, the staff of an
electric utility were mainly informed of faults or outages by phone calls from the consumers.
They had to use the location of the caller and send a crew in order to patrol the whole feeder
area for detecting fault and restoring electricity supply. This process was cumbersome and
time consuming. Numerous automated algorithms have been proposed till date to alleviate
this procedure and make it more efficient, each having its own strengths and weaknesses. The
coherence of each algorithm depends on how accurately it identifies the network topology
and pin points fault locations.

A common impediment in fault location detection is the physical nature of the elec-
trical network topology being implemented in that area, since the algorithms proposed are
intrinsic to a special category of transmission/distribution systems. Conventionally, numer-
ous physical constraints are required to be realized before proposing any fault-detection
algorithm e.g., What kind of network topology is being implemented? Are the transmis-
sion lines under study over-head or underground? Are the transmission lines under study
transposed or un-transposed? etc. Besides these aspects, most of the fault location detection
algorithms require steady state data for accurate analysis. Furthermore, the accuracy of such
algorithms is greatly affected by the assumptions made due to line parameters uncertainty

and insufficient or imbalanced data.



Therefore, such customized approaches of automating fault-detection in an electri-
cal power system are specific to the particular power systems they are designed for, and
cannot be deployed universally, and any crucial changes in the electrical network topology
of those power systems i.e., grid/transmission system expansion or augmentation, would
make it obligatory, for such power companies, to reshape their fault detection algorithms
as well. Hence, the current approaches for detection of fault currents are limited by vari-
ous physical constraints. And with the growing demand of energy and an increase in the
integration of renewable resources into electric grids, substantial changes in a power system
network are inevitable; therefore, the need of hour is to propose such an automated and
generic fault-detection algorithm as is void of the aforementioned physical constraints, can
efficiently detect faults in transmission or distribution networks irrespective of their nature
and construction, and can ensure rapid restoration of electricity to the customers resulting
in fewer customer complaints and outage time, as well as decreased loss of revenue due to

outages and crew repair costs, in a competitive electric power industry [2].

1.2 Problem Statement

The development of an efficient, precise and accurate real-time fault detection system
using artificial intelligence, based on synchrophasor measurements of bus voltages and current

injections, in an electrical transmission and distribution network.

1.3 Limitations of Prior Art

The prior at in fault location detection in distribution networks is broadly limited in
the following four aspects. Firstly, it is specific to either balanced networks or unbalanced
networks in power systems and does not cater for both at the same time. Secondly, it
relies on feeders mathematical models and mostly assumes radial topology for distribution
networks. Thirdly, it uses network specific data in its computations e.g., network topology,
feeder connection schemes and electrical parameters like cable type and geometry etc. The
data required for computations is obtained from utility companies database once and is
updated occasionally, thus ignoring the rapid changes in distribution networks. And lastly,
as explained further in the section of literature review of this thesis, some of the prior art in
distribution networks does not address the issue of multiple fault locations.

On the other hand, the conventional prior art in transmission networks is broadly



limited in the following three aspects. Firstly, while using single-ended data measurements,
numerous assumptions are made for the lines, which might not reflect the original system.
Secondly, while using transmission lines models, lumped models are preferred for computa-
tions thus ignoring inter-phase coupling phenomenon in transmission lines. Some solutions
do offer compensations for inter-phase coupling in transmission lines but such schemes work
for off-line post-fault analysis only. Thirdly, a relatively accurate method of detecting fault
current in transmission lines, called as the traveling wave phenomenon, is dependent on
frequency and requires very high sampling rate thus increasing the associated costs by man-
ifolds. Therefore, there has been a paradigm shift in using synchrophasor measurements for
detecting fault currents in such creative ways as are not constrained by the aforementioned
limitations.

In this thesis, a blend of synchrophasor measurements with artificial neural networks
has been presented, in an innovative way, to detect fault currents in power systems in real-

time. The solution methodology proposed is free from the limitations stated above.

1.4 Proposed Solution Methodology

My proposed methodology is to build upon the work of using synchrophasor mea-
surements of bus voltages and current injections to form the network bus admittance matrix
statistically, by constructing and training a neural network to learn different patterns, based
on its excellent pattern recognition skills [3], so that the dependency on transmission line
models or physical constraints is reduced/omitted. Once the network bus admittance ma-
trix is extracted statistically from the provided synchrophasor data, a neural network can be
formed by connecting biologically-inspired elementary neurons in different formations and
made to learn patterns about the system admittances. These learned patterns can then be
used to detect and locate faults in the system. This pattern recognition algorithm formed,
using artificial neural network, has many advantages over other conventional methods de-
vised for fault location detection e.g., parallel- processing and non-linear curve mapping etc.,
specifically in cases where explicit solution formulation is impossible.

Before going into the details of the algorithms designed using artificial neural net-
work, it is customary to give its general introduction first, followed by the broader concept

formulated, which is as follows:



An Overview of Neural Networks

Basic Structure A basic neural structure consists of several layers of neurons e.g., input
layer, output layer and hidden layer etc. Each neural layer can receive weighted inputs ‘i’
from input layer or another neural layer and/or an external source (explained in detail in
the section 3.2.1 and 3.2.2 of the thesis) and calculate the sum of weighted inputs, followed
by application of an ‘activation’ function on the weighted sum of the received input signals

to produce requisite outputs. This activation function can be of different types e.g.,

fli)

Figure 1.1: Step Function

, Lifi>0 -
Step: f (i) = , it is illustrated in Fig. 1.1.
0, ifi<0

1, ifi>1
Piece-wise Linear: f (i) =< —1, if i < —1, it is illustrated in Fig. 1.2.
i, if |i| <1

Sigmoid Uni-Polar: f (i) = it is illustrated in Fig. 1.3.

]__;’_ [317

Sigmoid Bi-Polar: f (i) = tanh(f5i) = it is illustrated in Fig. 1.4.

1_;’_ —2[327

Types of Neural Networks A neural network can be of two types, trained in three

different ways. The two types of neural networks are:
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Figure 1.2: Piece-wise Linear Function
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Figure 1.3: Sigmoid Uni-Polar Function
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Figure 1.4: Sigmoid Bi-Polar Function

INPUT HIDDEN/NEURAL OUTPUT
LAYER LAYER LAYER

Figure 1.5: Feed-forward Neural Network



1. Feed-forward Neural Network: Also known by the name of ‘Perceptrons’, as the
name suggests, feed-forward neural networks work by one-way propagation of weighted
input values, modified at each stage. There is no direct feedback path provided between

the output and input values as shown in the Fig. 1.5.

The neurons in a feed-forward neural network compute the weighted sum of the received
inputs in terms of elements of either an input vector and external bias vector or output

ths

from the preceding neural layer. Thus, the signal processing in the ‘a’”’ layer of a

feed-forward neural network is executed as follows:
Let ‘x’ be the input vector to the a™ layer i.e., x = [z1 22 x5 ... ), ,

and ‘W’ be the neural connection weights assigned to the input vector i.e.,

W11 W12 ... Wim
W = W1 W22 ... Wym
Wn,1 Wn2 .. Wpm

’ nxm

where,

n is the number of elements comprising the input vector.

m is the number of neurons in the a'* neural layer.

w; ; is the neural connection weight between element ‘" of the input vector and neuron
‘j of the a'* neural layer.

B1 = constant x [unity matriz], showing any external inputs to the a'* neural layer.

Then, the collective output of the neurons of the a'* neural layer can be represented

as: Z'=X.W + Bl

2/ T1.Wyg + ToWig + ..o+ Tp Wi, 1
I __ / _
Z'= |4y | = |wrwey Faowan .+ w0, + b1 |1
2 L1 W1 + ToWpo + ...+ Ty Wi 1
1xm 1xm

where, z’; = output of j'* neuron in the a'" neural layer.

Since there is an absence of any direct feedback path between the predicted outputs and
provided inputs, therefore, for minimizing error between the predicted output values

and requisite output values, the weights of input values are adjusted, during training



of the neural network, through ‘back-propagation’, by looking at the requisite out-
put values, predicted output values and provided input data-base after each iteration.
The neural weights are adjusted by computing and minimizing the difference between
requisite (actual) and predicted outputs. This difference is calculated through a loss

function, which is a function of internal network parameters.

Different types of loss functions can be used, for calculating the difference between
requisite outputs and predicted outputs depending upon the nature and type of the
target variables / outputs e.g., continuous target variables (continuous outputs)
i.e., ‘regression’ and discrete target variables (discrete outputs) i.e., ‘classification’

ete.

Some of the commonly used loss functions for continuous outputs are as follows [4]:

e Absolute Error: It computes the element-wise difference i.e., zy — x, where, zq is

the actual output value and z is the predicted output value.

e Smooth Absolute Error: It is a modified and smoother version of absolute error

obtained by including moving average in its computation.

Similarly, some of the commonly used loss functions for discrete outputs are as follows
[4]:

e Cross Entropy:

This function determines the loss in terms of probability of a certain input value

to be in a particular output class i.e.,

— (ylog (p) + (1 —y) log (1 —p)),

in case of two output classes. where,

y is a binary variable, being assigned a value based on the actual output class of
input ‘i’. y can either be ‘0’ (indicating the input is not in the first output class)
or ‘1’ (affirmative), and,

p is the predicted probability of the input to be in the first output class. and,

— % (yelog (pe) + (1 — ye) log (1 — p.)),

in case of multiple output classes (in which the binary Cross Entropy for each

class is computed separately and summed up for all the output classes to give the



combined Cross Entropy error for multiple output classes). where,

C represents the total number of output classes.

y is a binary variable, being assigned a value based on the actual output class of
input ‘i’. y can either be ‘0’ (indicating that input ‘i’ is not in the output class
‘¢’) or ‘1’ (affirmative), and,

p is the predicted probability of input ‘i’, between 0 and 1, to be in the output

class ‘c’.

e Negative Loss Likelihood (NLL): This function determines the loss by taking
negative loss of the predicted probability of an input class to be in an output
class [5] i.e., L(y) = —log (y) where, y is the score or probability of an input value

‘4’ obtained as the output of a neural network to be in a certain output class.

e Margin Classifier: This function computes the loss by associating a distance ‘d’ to

each predicted class from the respective decision boundary of that output class.

e Soft Margin Classifier: This loss function is used in case of non-separable output

classes. It works the same way as the Margin Classifier.

Likewise, there are loss functions for embedded type outputs i.e., when output is com-
puted based on the similarity or dissimilarity of the provided inputs and visualized
outputs i.e., when input data is processed to visualize an output image. The selection
of loss function depends on the type of application or in other words the target output

variable in the constructed neural network.

. Feedback Neural Network: Also known as ‘Recurrent Networks’, as the name
suggests, a feedback path is provided between the output and input layers. There can
be different types of recurrent networks depending on the nature of the connection
between the output layer (either from the output layer or a neural layer/hidden layer)

and input layer. A simple example of feedback neural networks is shown in the Fig. 1.6.

This type of neural network is best suited for dynamic processing, but a major draw-

back is the probability of the existence of unstable regions in the network.



Training Methodologies As stated earlier, the three types of neural networks training

ways are:

1. Supervised Neural Networks: A neural network when made to learn the patterns
of labeled input observations, constitutes supervised learning. This type of learning

process is commonly implemented for classification purposes, when the requisite input-

INPUT HIDDEN/NEURAL

LAYER LAYER
v v
- -
-
®
-
FEEDBACK

output mapping is known.

2. Unsupervised Neural Networks: A neural network when made to learn the pat-
terns of unlabeled input observations, constitutes unsupervised learning. This type of

learning process is commonly implemented for clustering purposes, when the inputs

are required to be clustered in specific groups.

A chart describing supervised and unsupervised learning strategies is shown in Ta-

ble. 1.1 [6]:

OUTPUT
LAYER

Figure 1.6: Feedback Neural Network

Table 1.1: Supervised and Unsupervised Neural Networks

Supervised Learning

Unsupervised Learning

Continuous

Regression

Dimensionality Reduction

Discrete

Classification

Clustering

3. Semi-supervised Neural Networks: This type of learning falls between supervised

and unsupervised learning of neural networks. It is used when some of the input data

is labeled and the rest is not labeled.




Proposed Concept Formulation

A supervised feed-forward neural network when constructed and trained would be

used to detect and locate faults in the power network, as shown in the Fig. 1.7.

Learned

Training Data Admittance

(~70%)

Patterns

Prediction Block Output Classes

Total Input )
Observations Labeling
Testing Data

(~30%)

Color Codes Step #

Figure 1.7: Proposed Methodology

The input values i.e., system admittances would be labeled (keeping in mind the
requisite input-output mapping) as normal data and faulty data, and divided into two data
sets i.e., the training data set and the testing data set. The training data set would then be
used to train the neural network and the testing data set to test the accuracy of the trained
neural network. The efficacy of the proposed methodology has been illustrated in actual

transmission system.

1.5 Thesis Outline

The rest of the thesis explains literature review followed by technical details and

results of my proposed methodology, envision and conclusion.
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2 CHAPTER: LITERATURE REVIEW

This section discusses the prior art in fault location detection primarily, in both
transmission and distribution systems, in electrical power networks. It also analyzes the

strengths and weaknesses of each scheme.

2.1 Prior Work in Distribution Systems

Several algorithms have been proposed in distribution systems to accurately locate
faults in power lines [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] each having its own merits and
demerits.

M.Wache in [7] describes the inevitability of deploying Phasor Measurement Units
(PMUs) in distribution networks and proposes acquisition of phasor measurement data
through PMUs for accurately studying the dynamic behavior of distribution networks, caused
due to power injection from renewable energy resources like solar, wind and biomass etc.,
since distribution networks are taking over the tasks originally reserved for transmission
networks in power systems. The synchrophasor data obtained through these PMUs can be
utilized in a variety of crucial applications in distribution networks e.g., wide-area monitor-
ing, fault detection and automatic restoration, angle/frequency monitoring, voltage stability
monitoring and improved state estimation etc. Therefore, it is highly likely to have distri-
bution networks with installed PMUs, in the future.

E.C.Senger in [8] proposes an automated system for fault location detection in pri-
mary distribution networks. The proposed system uses Intelligent Electronic Devices (IEDs)
with built-in oscillography function (installed at each medium voltage feeder level) and in-
formation about network topology, network specific electrical parameters e.g., cable type,
feeder geometry such as overhead, spacer, twisted and underground etc., nominal power of
distribution transformers and different feeder connection schemes, to acquire requisite data
for automatically detecting fault locations in the system. This scheme works for both bal-
anced and unbalanced distribution networks and provides probable fault locations; however,
there are five limitations to this approach. Firstly, this scheme utilizes network-specific data
like network topology, feeder connection schemes and distribution networks electrical pa-

rameters e.g., cable type and underlying geometry etc., which is obtained from the electric

12



utility companys data-base and updated periodically. Due to the frequent modifications in
feeder structure, it is highly likely to use outdated data this way for fault location detec-
tion. Secondly, this scheme only works for over-current faults detection and doesnt identify
high impedance faults (HIF) incurred in the distribution networks. Thirdly, this scheme
neglects fault impedance for phase-to-ground faults and works for radial topology of distri-
bution networks only. Fourthly, all the connected segments in the distribution networks are
inspected iteratively for detecting fault locations. The probable fault locations are identi-
fied and ranked by combining information about the fault type and load rejection (obtained
from DSP module) with the feeders topology (assumed to be radial) and electrical param-
eters (stored in the database which may be outdated) e.g., for permanent faults isolated
by breakers, the algorithm ranks detected faulty points protected by fuses, as less probable
ones and vice versa. Since the operation of primary/secondary protection schemes is not
considered, therefore, it may detect multiple or misleading fault locations. And lastly, while
estimating load currents during the faults, it simplifies the problem by assuming that each
distribution transformer connected to the feeder supplies load in proportion to its nominal
apparent power, which may not always be correct (since it depends on the connected load).

L.Xu in [9, 10] investigates two different classification methods i.e., logistic regression
and artificial neural networks (ANN), used in distribution systems, to diagnose faults. Two
major causes of faults i.e., animal and tree contact, in distribution systems are used to
show the characteristics and the effectiveness of the investigated approaches. In logistic
regression’s approach, Lu talks about getting recorded faulty data from Dukes Energy Power
Distribution Fault Data Collection System, and using six (6) most important features i.e.,
x1,x2,x3,x4,x5 & x6, out of thirty-three (33) total recorded features of the fault incident, to
fit a linear curve (a4 X where X = (x1,x2,x3,x4,x5,x6) — x1 € Circuit ID, x2 € Weather,
x3 € Season, x4 € Time of Day, x5 € Number of Affected Phases, x6 € Protective Devices
Activated) between them, for each fault cause. The probability of each new data point X is
calculated by P(Y = 1) =1/(1 4+ e — (a+ X)), for each fault cause, and compared with a
predefined threshold value (determined using probabilistic approach) of that particular fault
cause, to classify the new fault cause as ‘yes/no’. Since only two fault causes are considered
here, therefore, each new fault cause is classified as ‘animal/non-animal’ and ‘tree/non-
tree’. A fusion mechanism is then used to provide the final decision of the most probable
fault cause, by comparing the two probabilities of the new fault cause by their respective

threshold values. The farther a probability is from its threshold value, for a particular
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fault cause, the most likely the fault is caused by that fault cause. Although this approach
gives satisfactory results yet there are two limitations to this approach. Firstly, multiple
parallel branches compute probable outputs which are merged at the end to provide the
final decisions based on probabilistic approach. The data used for probabilistic approach is
fixed and may change in future, due to the frequent modifications in distribution networks,
which may give erroneous results. Secondly, linear curve fitting technique is used without
providing enough evidence, whereas the data used for curve-fitting may be non-linear. In
Artificial Neural Networks (ANN) approach, L.Xu constructs a neural network and trains
the neural network once to learn the patterns of different fault causes, through the fault data
obtained from utility company. The trained neural network then determines fault causes for
new fault incidents based on its own learning. Although the conclusion explained in this work
favors neural network for accurate fault cause classification yet one short-coming observed
in this technique is that the neural network is trained once using fixed data from the utility
company and the data trends may change in future.

D. Thukaram in [11] talks about locating faults in radial distribution networks by
using artificial neural networks (ANN) and support vector machine (SVM) approach, using
measurements at the sub-station only. Principle component analysis (PCA) technique is used
to analyze faults which are then classified using SVM according to their type and short circuit
levels (SSC), based on reactances of their paths. An ANN is trained to locate faults based
on SVMs outputs as inputs (which are fault type and SSC level). The varying numbers of
operational generators in a distribution network are specified by different short circuit levels
and the ANN is trained separately for each SSC level and fault type e.g., if 4 fault types and 7
SSC levels (20MVA to 50MVA with a step of 5SMVA) are considered, then 28 different neural
networks are required to be trained, to accurately determine fault locations. This approach
takes its requisite data from SCADA system, installed in the distribution network, through
distribution automation (DA) system. Two of the shortcomings of this technique are that it
does not address multiple locations problems, and needs a large number of neural networks
for addressing wide-area distribution networks with numerous operational generators.

J.Kim in [12] uses PQ) monitoring data to locate faulted sections in distribution net-
works. It first identifies the type of fault by noticing over-currents in the phases and neutral
line (from PQ monitoring data) and classifies the fault as line-to-ground (L-G), line-to-line
(L-L), line-to-line-to-ground (L-L-G) and three phase (3®) faults. After classification, this

scheme compares the fault current value (as seen at the feeder) with pre-determined fault-
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current values at the feeder, for each fault type. The pre-determined fault current values are
calculated theoretically using short-circuit analysis, for the feeder model, and stored in a ta-
ble for comparison. As stated earlier, the actual fault current values are then compared with
the pre-determined fault current values stored in the table and faulted sections are identified.
These faulted sections are ranked in descending order of the closeness of actual fault current
value with the theoretical table value. It is a relatively simple approach but there are four
limitations to this approach. Firstly, this approach doesnt identify high impedance faults
(HIFs). Secondly, in case of L-L faults it plots the curves for over-currents in both the phases
and takes the flat portions of the curves as the fault current value/level; however, it doesnt
provide any solution to the issues faced in assigning a level to the fault current value when
the fault is changing i.e., it starts-off as L-L fault and ends as 3® since in this case there is no
flat portion of the over-currents curves. Thirdly, this scheme determines the faulty sections
of the distribution network. And lastly, the feeder model used for performing short-circuit
analysis is not shown; therefore, in case of some assumed parameters, the pre-determined
theoretical values may not match the actual fault current values and may cause mis-leading
rankings of all the faulty sections determined.

A Meier in [13] talks about developing high-precision Phasor Measurement Units
(PMUs) for different applications in distribution systems e.g., unintentional island detection,
topology status verification, direct-phase identification and balancing, reverse power flow
detection, state estimation and fault detection etc. Thus, the presence of synchrophasor
measurements in distribution system works wonders and it is highly likely to deploy PMUs
in distribution networks as well, in the future.

J.Ren in [14] uses synchrophasor measurements in distribution networks to accurately
locate faults. The proposed scheme can be used for active and passive networks, radial and
looped topologies, high impedance faults, and is not limited to a certain pattern of PMU
locations. This scheme works in two phases. In the first phase, all the perspective faulted
segments are identified by calculating the fault distance based on its apparent impedance
and checking if the calculated fault distance lies within the presumed faulty segment. And
in the second phase, the actual faulted segment is located by comparing voltage phasors at
the branches junctions obtained through synchrophasor measurements obtained from differ-
ent terminals, where the voltage phasors at succeeding junction nodes are calculated from
their respective voltage drops, since voltage phasor measurement at the starting junction

point /terminal is known from synchrophasor measurement of that terminal. This scheme
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has two limitations. Firstly, the electrical parameters like voltage drops, line impedance etc.,
and the physical connections in the network are required to be known. Thus accurate and
complete prior knowledge of the system is necessary for this scheme to work. Secondly, it is
dependent on line models for calculations.

J.Mora-Florez et al., in [16] explains and compares different impedance-based fault
location detection techniques in distribution systems. These techniques locate fault in distri-
bution networks by analyzing the deviation between the pre-fault and post-fault impedance
of distribution lines. The major difference between these techniques lies in the power system
topology used, line and load models used, and the necessity of other power system infor-
mation required to be known. Though these techniques provide a good estimate of fault
location detection in distribution networks but most of them use simplified feeder model,
equivalent to voltage divider model. Moreover, these impedance-based methods work only
on steady state values of voltages and currents used to estimate apparent impedance, from
impedance deviation, which is directly linked with a distance to the fault, and do not account

for multi-estimation of probable fault locations.

2.2 Prior Work in Transmission Systems

As seen in distribution systems, several algorithms have been proposed in transmission
systems to accurately locate faults in power lines [2, 17, 18, 19, 20, 21, 22| each having its
own merits and demerits.

J.D.L.Ree in [17] explains the importance of Phasor Measurement Units (PMUs) in
transmission systems, and proclaims that the world-wide frequent blackouts have necessi-
tated and expedited the process of installing PMUs in transmission systems. Hence, it is
highly likely to expect an adequate number of PMUs in transmission systems, in near future.
Furthermore, the work in [17] provides an overview of the different types of application pos-
sibilities viable due to the availability of voltage and current synchrophasor measurements
e.g., power system monitoring, protection and control. J. Sykes et al., in [18] talks about
the importance and evolution of synchrophasor measurements and informs that the concept
of synchrophasor measurements dates back to 1980s. This paper also briefly explains the
deployment history of PMUs in United States, Canada and Mexico. Thus implicating the

necessity of PMUs in todays’ power systems.
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J.Jiang in [2, 19, 21] proposes a Phasor Measurement Unit (PMU) based fault location
detection technique. While talking about the prior work in fault location detection in trans-
mission systems, the work presented in [2] clearly identifies five major limitations in prior art,
and supports using PMU measurements, in fault location detection, in transmission systems.
First limitation is the use of single ended data measurements while implementing Fourier
and Laplace transforms for locating faults in transmission lines, since several assumptions
are required to be made which cause errors in computations due to source impedance varia-
tion, fault incidence angle, line asymmetry and loading conditions. Second limitation is the
use of time domain transmission line models which require data sampling at a very high rate
for accurately approximating the underlying derivatives of computational variables; such a
high sampling rate is hard to achieve. Third limitation lies in using lumped models of trans-
mission lines for fault location detection since these models cannot capture the inter-phase
coupling phenomenon of transmission lines. Fourth limitation lies in implementing compen-
sation techniques for long transmission lines while using lumped models of transmission lines,
since such schemes works for off-line post-fault analysis only. And the last limitation lies in
using traveling wave phenomenon for locating faults in transmission lies since this technique
is frequency dependent, needs very high sampling rate and is costly. Conclusively using
synchrophasor measurements are far most a better way to locate faults within transmission
lines. The work in [2] performs online fault detection and location on single-phase or three-
phase transposed transmission lines using synchronized phasor measurements of voltage and
current at both ends of the transmission line. This scheme can work for series compensated
transmission lines as well with slight modification. The basic idea is to write and solve
second order partial differential equations (using KVL) in terms of fault distance x, for the
transmission lines, where all other measurements are in per unit values i.e., for a single phase
transmission line, the partial differential equations would be of the form: % = Ri + L%
and % =Gv+C % (this concept can be extended to three-phase systems as well). The line
parameters are estimated from the synchronized phasor measurement values obtained. This
paper also talks about fault location detection in case of un-transposed lines (due to aging),
by first estimating line parameters through perturbation method of matrix transformations
and then using the same differential equations. The drawback of this method only lies in case
of un-transposed lines (due to aging) when the line parameters are required to be estimated

since it makes the solution computationally extensive for large networks.

Y.Lin in [20] talks about separating arching faults from permanent faults based on
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phasor measurement units. This technique works by comparing magnitude of the arching
voltage with a set threshold value. If the magnitude is higher than a set threshold value,
the fault is classified as arching fault. It uses distributed parameter model of long trans-
mission lines and implements Extended Discrete Fourier Transform on voltage and current
waveform, for determining accurate waveform components, to eliminate errors from com-
putations caused due to DC off-sets. Furthermore, it also detects and locates faults using
existing fault detection algorithms. However, a limitation of this work is that it only identi-
fies in-zone and out-of-zone faults in transmission systems and does not precisely locate the
faults.

S.M.Brahma in [22] talks about using synchrophasor measurements for locating faults
in multi-terminal transmission lines instead of using current measurements from current
transformers (which are faulty with as high as 10% tolerance). The proposed scheme first
identifies the faulty section first by comparing synchronized voltage phasor measurement at
each tap with one another i.e., the section of a multi-terminal transmission line is assumed
to be faulty if difference of the terminal voltages is higher than a specified tolerance, and
then locates fault. The fault location detection algorithm works by deriving equations from
bus admittance matrix in terms of fault current, post-fault bus admittance values, voltage
deviation and distances L1 & L2, where L1 and L2 refers to the location of the fault from
terminals 1 and 2 of the transmission line, and solving them to find the requisite unknown
variables. This scheme assumes that fault resistances varies between 10Q2 to 100€2 in case
of faults involving ground and 1€2 to 102 in case of faults not involving ground and locates
faults with 1% error.

The fault location detection method proposed in my thesis, uses the approach shown
in [22] for calculating fault distance from the source, after identification of faulty segments

through artificial neural networks.
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3 CHAPTER: TECHNICAL SOLUTION DESCRIPTION

3.1 Proposed Algorithm: Concept

My Master’s thesis focuses on devising a methodology for fault location detection by
intelligently constructing upon the perks of the existing schemes to avert the need to provide
network specific solutions. The algorithm devised builds on the work stated in [23], which
treats bus voltages and current injections, in a power network, as random stochastic signals

linked by a cross covariance matrix called as bus-impedance matrix, given by the formula:
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The work in [23] makes use of synchrophasors, of different voltages and currents in
the system, for identifying the topology of an electric network by extracting bus impedance
matrix statistically using (3.1). Thus, omitting the requirement to know the physical connec-
tion of the electric network. The only parameters required for extracting network topology
are bus voltage and injected currents synchrophasor measurements, where synchrophasors
are phasors of sinusoidal waveforms at different time instants i.e., timed phasors of sinusoidal
waveforms, which can be obtained from the Phasor Measurement Units (PMUs) installed
separately or within the protective relays in the system (protective relays have been designed
with built-in PMU functionality since 2002 and one is only required to enable the PMU mod-
ules of these protective relays to acquire the requisite synchrophasor measurements).

Building upon this concept, my research work focuses on forming such a supervised
neural network as is trained by 1D input vectors of system admittances, acquired by con-
verting the statistically determined bus admittance matrix — using bus voltage and injected
currents’ synchrophasors — to one-dimensional arrays. This supervised and trained neural
network is then used to detect and pin-point normal admittances as well as admittances un-
der fault conditions in the system. In other words, my research work makes use of artificial
intelligence to learn the patterns of system admittances under normal and fault conditions,
based on the bus admittance matrices provided in the form of 1D vectors from time to time.
This system-specific learned pattern is the key to detecting fault currents in the power sys-

tem, in real time. Conclusively, this neural network can be trained on any data set provided
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from any power network (with training time ranging from a few microseconds to a few min-
utes depending on the number of buses in the power network and computational capacity
of the underlying data center or computer), and used for real time fault-location detection,
without having to know the network topology or physical construction of the power system
e.g., it liberates the requirement of knowing whether it is a transmission system or a distribu-
tion system etc. for deployment purpose, provided that adequate number of synchrophasor
voltage and injected current measurements are available for that system. An overview of the

proposed methodology is shown in Fig. 3.1.
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Figure 3.1: Concept of Proposed Methodology

Acquisition of synchrophasor measurements is not of concern in the transmission
systems, since they can easily be acquired from Phasor Measurement Units (PMUs) or
the protective relays (with built-in synchrophasor functionality) installed in the transmis-
sion networks; however, it was of concern in distribution networks. In the past, the use
of synchrophasor measurements was not very common in distribution networks, but with
the advent of synchrophasor measurements being used for wide area monitoring or stability
supervision of transmission systems, efforts are being diverted to incorporate these mea-
surements into distribution networks as well, where they would help us better understand

such dynamic requirements of distribution networks as are caused due to inclusion of power
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injections from renewable energy resources like wind, solar and biomass etc. With an in-
crease in dynamic processes and power injections from renewable energy resources into the
distribution systems, the distribution networks are also handling tasks originally reserved for
transmission systems, thus making it a necessity to supervise or monitor distribution systems
as well. To this end, Phasor Measurement Units (PMUs) are being deployed in distribution
networks as well [1]. And thus, the real-time fault location detection methodology proposed,
shows promising results in the present as well as in the future. Moreover, every approach
implemented till date to automatically detect fault currents in the power networks, needs
some kind of Intelligent Electronic Devices (IEDs) for extraction of information; therefore,
making use of built-in synchrophasors measurement option, of the deployed protective relays,

is prolific.

3.2 Proposed Algorithm: Prototype

3.2.1 Prototype Design

A supervised feed-forward artificial neural network, to learn the patterns of a power
network’s admittances under normal and fault conditions, is intended to be prototyped. This
learned neural network would then be used to detect fault currents in the power network
in real time. Thus, the proposed neural network for automatically detecting fault current
locations, in real time, would work in two stages. An overview of these stages is explained

as follows:

Stage 1

Stage I would be the construction and training phase of the neural network. A neural
network can be constructed by integrating multiple layers of computational units called as
neurons or nodes. These layers of neurons form the input and output layer, with/without
hidden layers which are sandwiched between the input and output layer, as shown in Fig. 3.2.

Introduction of hidden layers in the neural network usually increases the precision of
its non-linear pattern learning capabilities i.e., the more the number of hidden layers in a
neural network, the precise it is in learning complex non-linear features of a specific data
set, but at the cost of increased computational complexity. Thus, one must make a trade-

off between precision and computational complexity depending on the nature and type of
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Figure 3.2: Different Layers of Neural Network

application; however, this is not always the case and one needs to experiment with different
formations of neural layers, for getting the intended results, for a specific application.

The neurons in the input layer typically store input values whereas, the neurons in

the hidden and output layer may perform certain mathematical transformations on these
input values for getting the requisite results e.g., each neuron in the hidden and output layer
of the neural network may compute its own output by applying a function ‘f’ to the weighted
sum of the received input signals i.e., if a neuron ‘a’, from a hidden/output layer, receives
input-1 with weight-1, input-2 with weight-2 and input-3 with weight-3, its output may be
computed as shown in Fig. 3.3.
Remark. It should be noted here that, in the discussion of the proposed and designed
neural network, the input layer is treated as modes storing values of inputs, whereas the
term ‘neuron’ is being referred to the neurons of hidden and output layer performing certain
mathematical computations since there is no hard and fast rule of designing a neural network
and a developer may work around those options only as suit his/her application through
educated guesses.

It is pertinent to mention here that the input to a neuron can come from both external
sources as well as other nodes in the neural network. Furthermore, the weight to a particular
input would initially be assigned randomly and later adjusted in the ‘training phase’ of the
neural network, in such a way as minimizes the difference between the predicted output class
and actual output class i.e., the loss function.

In the training phase, the neurons of the first hidden layer would be trained on
input vectors along with external input, and each succeeding hidden layer on the outputs

from the preceding hidden layer along with external input, to learn the patterns of the
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Figure 3.3: Mathematical Computations by a Neuron

Table 3.1: System Admittance Matrix

Bus 1| Bus 2 | Bus x
Bus 1| 43S 248 28
Bus 2| 24S | 4458 2S
Busx| 28S 2S 39S

admittances in a power network by adjusting inputs’ weights (neural connection weights) in
an iterative process for getting the requisite output classes e.g., if a power network has a
nominal admittance matrix of the form shown in Table. 3.1:

The learned admittance pattern/output classes (with tolerance), by the neural net-
work, could be of the form shown in Fig. 3.4.

This learning phase of neurons would be supervised, and the neural network would
be made to learn certain system admittances as normal admittances and certain other ad-
mittances as admittances under fault conditions. Since a branch admittance under fault
condition would have different admittance value than its nominal value (by a certain ratio),
therefore, the neural network can be made to learn this anomaly, and detect branches with
admittance values different than the nominal values by a certain ratio, as the ‘faulted’ or

‘short circuited’ branches later in the testing phase (Stage II).

Stage 11

Stage II would be the testing phase of the neural network. In this phase, input

vectors in real-time would be provided to the trained neural network, which would analyze
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Figure 3.4: Learned Admittance Pattern

and classify them into the learned output classes. These classified outputs would provide

information about the locations of faults in the system (if any).

Correspondence b/w Stage I & Stage II

Thus, the proposed solution methodology would work by the sequential correspon-
dence of the afore-mentioned stages. The first stage can be termed as the ‘constant stage’
since the proposed neural network would require training data for a specific power system,
only once. Whereas, the second stage can be termed as the ‘variable stage’, since it would
continuously acquire testing data, every few minutes, from the same power network (on
which the neural network has been trained), to locate fault currents in the system (if any),
in real time. Fig. 3.5 and Fig. 3.6 provides an overview of the sequential correspondence of
the two stages.

Working on the aforementioned concept, the prototype has been implemented as

follows.
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3.2.2 Prototype Implementation

A three-bus 69kV transmission network has been used as a test case for detecting
faults. The data for this network is obtained from [23] in which synchrophasor measure-
ments of bus voltages and current injections are used to extract system Ybus matrix, using

parameter estimation technique, as follows:

Extraction of Topology

A summary of the steps followed in [23] for identifying topology of a system are as

follows:

1. Acquisition of Synchrophasors: The synchrophasor measurements of nodal volt-
ages and branch currents, are obtained from a power transmission company, for a
69kV, three-bus network, the topology of which is required to be determined. These
synchrophasor measurements acquired are either obtained from phasor measurement
units (PMUs) or the already installed protective relays (with built-in PMU functional-
ity) i.e., current differential relay, distance or impedance relay, overcurrent and earth

4

fault relay etc., in the system, in the form of “.phasor” file format. The “.phasor” files
obtained, for an event i.e., a specific duration of time, contains information about the
terminal ID (the point where PMU is installed), magnitude and phase angle of cor-
responding nodal voltage and branch currents, time instant, frequency of the system

4

and rate of change of frequency. This information is converted into “.cvs” file format

for utilization purpose.

2. Calculation of Current Injections: The current injected into a particular node
or bus, in the electrical power transmission system, is calculated from the available
synchrophasor measurements of branch currents. For instance, if the bus diagram
shown in Fig.3.7 is taken into account, the current injection at node A is equal to
branch current at branch 1, however, if PMU is not installed at branch 1 then current
injection can be calculated by adding branch currents in branch 2,3 & 4 with reversed
polarity. Therefore, one needs to have a PMU installed at every node or most of the
branches in the system. However, the presence of protective relays (with built-in PMU
functionality), at all the circuits in the system, has exempted one from worrying about

the non-availability of a synchrophasor measurement. Moreover, in worst case scenario
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A

Figure 3.7: Bus ‘A’ Current Injections

i.e., absence of a synchrophasor measurement for a particular branch, partial current

injections can also be calculated and used to extract partial Ybus matrix.

. Estimation of Ybus Matrix: Instead of using an approximation or iterative tech-
nique like Newton raphsons method in power flow analysis, this code treats current
signals as signals generated from a random process. Since voltage and current elements
are related by a cross covariance matrix of impedance, therefore, the voltage signals
can also be treated as signals generated from a random process. The cross covariance

between the two measurements is given by the formula:

I((fk)H

M k
Zyus = 2 Sty Vot s W

where,
M denotes the Time Instants Taken
V, is the Normalized Voltage Matrix

I, is the Normalized Current Matrix

And Zy,, is the respective bus impedance matrix of the power system under study.
This Z3,s matrix is then used to calculate Y, matrix at different time instants. The
overall process of calculating Ybus matrices statistically at ‘¢,” time instants, using

parametric estimation, is shown in the Fig.3.8.

Using these estimated Ybus matrices, topology of a power network can be extracted,

which is explained in the following section.
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Figure 3.8: Estimation of Ybus Matrix

4. Extraction of Topology:

The Ybus matrices obtained at different time instants i.e., tg,t1, ..., t, are shown in
Fig.3.9.

The topology of the electrical power network is extracted from these Ybus matrices by
analyzing them e.g., if a single Ybus matrix at a time instant ¢, is observed, as shown

below (the values of this admittance matrix are taken from the work stated in [23]):

4.087 +21.010¢  10.249 — 2.381¢ —10.309 + 10.723¢
Ybus = | 10.203 — 2.404¢  2.391 — 0.461: —3.599 + 2.225i
—10.219 +10.6837 —3.696 + 2.248; 27.225 + 11.294:

It can be seen that all the buses relate to one another through an admittance value,
or in other words all the buses are interconnected, in the transmission network being
analyzed. Suppose if any of the admittance value i.e., Y12 was ‘0’, it would have
shown that busl and bus2 are not connected with each other. Thus, the topology of
a network can be extracted from its respective Ybus matrix (determined statistically

from synchrophasor measurements of bus voltages and injected currents).

28



Buses in the System

Busl Bus2 .. Busy
E A I
o Bus 1
e
(72
>
)
w
£ | Bus2
)
k=
n
4 .
5| Busy
m A J
Figure 3.9: Ybus Matrices at Time Instants tg,t1, ..., t,

Implementation of Artificial Neural Network (ANN)

As stated earlier in this section, the Ybus matrices, shown in Fig.3.9, are converted
into one dimensional vectors to be used as inputs to the neural network. This conversion
process takes-in Ybus matrices and selects upper triangular elements along with diagonal
entries of each Ybus matrix (for simplicity) e.g., if a single Ybus matrix at a particular time
instant is taken into account i.e., Y;;, the selected matrix elements to be used, in training

the neural network, are as shown in the Fig.3.10.

Figure 3.10: System Admittance Matrix at Time Instant ¢,

The reason for only selecting upper triangular elements of the admittance matrix
is because mutual admittances of the form Y;; are commonly equal to Yj; (where ‘i’ and
‘j” denotes buses in the power network), unless phase shifting transformers are used in the
power system (which is rare). In case of phase shifting transformers, all the elements of the

bus admittance matrix are required to be considered (for training purpose).
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The magnitudes of these upper triangular elements and diagonal elements of each
Ybus matrix at a particular time instant, are converted into one dimensional vector as
shown in the Fig.3.11. Multiple input vectors are constructed in this way, for multiple time

INPUT VECTOR

Figure 3.11: Input Vector to the Neural Network

instants, with each admittance value labeled as either normal ‘0’ or faulty ‘1’.

The artificial neural network implemented has one input layer, two hidden layers and
an output layer for maximized accuracy and precision at minimal computations. There is no
specific rule to select the number of hidden layers or the number of neurons in each hidden
layer; a programmer is required to play with these parameters for obtaining best results
for a particular application, therefore, these values are selected by educated trial and error;
furthermore, a minimum of two hidden layers are enough to capture major non-linear features
of any dataset. The input layer of the neural network comprises of the aforementioned labeled
input vectors. The labeling data is saved in the neural network and each element of the input
vector i.e., admittance value, is assigned with a random weight and passed into hidden layer
1 (with seven neurons), along with an external input called as ‘bias’. The outputs obtained
from hidden layer 1 are passed into hidden layer 2 along with external bias, and the same
strategy is adopted for output layer, as illustrated in Fig.3.12.

Each neuron in the hidden layers computes the weighted sum of the received inputs,
and doesn’t apply any activation function, as shown in the Fig.3.13. The outputs of the
neurons in the hidden layers are then propagated in this manner till the final layer i.e., output
layer, where an activation function ‘f” called as ‘Softmax Function’ is also applied [24]. The
activation function has been applied only once, toward the end, to reduce computational
complexity as shown in the Fig.3.14.

Softmax activation function is best suited for multi-class logistic regression. Since

there are multiple output classes in my application i.e.,
e ‘No Fault’
e ‘Fault between bus i and j’, where ¢, j € buses in the system etc.,

therefore, it is through Softmax activation function applied at the output layer of the neural

network which helps the neural network calculate the probabilities of the provided training
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Figure 3.12: Neural Network: Prototype
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Figure 3.13: Computations by Neurons in the Hidden Layers

1: Y11 with Weight-1
2: Y12 with Weight-2
3: Y13 with Weight-3
4: Y22 with Weight-4
5: Y23 with Weight-5
6: Y33 with Weight-6
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Figure 3.14: Computations by Neurons in the Output Layer
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samples to be in a certain output class. The predicted output classes, based on the predicted
output probabilities, for the respective input vectors are compared with the requisite output
classes of those input vectors, by comparing the predicted probabilities (between 0 and 1)
with the saved labeling data (provided earlier). If the predicted results do not match the
intended outputs, the network is made to adjust its neural connection weights, through back
propagation, in such a way as minimizes the difference between the predicted output classes
and requisite or actual output classes. This means that a loss function is computed in terms
of internal parameters of the neural network, after each training iteration (or in other words,
after providing a batch of input vectors out of the total input vectors available), and tried to
be minimized by adjusting these internal parameters of the neural network i.e., weights/bias
of the neural connections which were originally assigned randomly.

The loss function used for computing the error between the predicted and actual out-
put classes, in the three-bus network, is ‘Cross Entropy’. Cross Entropy loss, also sometimes
referred to as ‘Log Loss’, is best suited for determining the performance of a classification
model. Cross Entropy determines the discrepancy between the predicted output classes and
the intended or actual output classes, along both axes, in terms of the internal parameters
of the neural network i.e., weights and bias and provides a matrix of error values. These
error values are transformed into a scalar quantity, denoting loss, by computing their mean
(along both the axes) through ‘Reduce Mean’ function. This computed loss is then tried to
be minimized through an optimization technique called as ‘Adam Optimization’ by adjust-
ing the internal parameters of the neural network. Adam optimization is an extension of
classical stochastic gradient descent optimization procedure and usually best suited for large

number of data samples and sparse matrices, owing to the following features [25]:

e [t is relatively easy to implement and uses a smaller number of computations despite

handling large data-sets.
e [t is memory efficient and doesn’t burden the processor.

e [t is not affected by rescaling of computational gradients and works well even in case

of noisy or sparse gradients.
e [ts parameters can be intuitively adjusted with minimal modifications.

e [t combines the perks of two types of optimization techniques i.e., Adaptive Gradient

algorithm and Root-Mean-Square propagation.
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Remark. The mathematical formulation and working of Softmaz activation function, Cross-
Entropy and Adam optimization is described in detail in the section 3.3 of this thesis, de-
sceribing actual design of the proposed algorithm.

Besides minimizing the loss value, through optimization, by updating neural network
internal parameters i.e., weights and bias, there are some other parameters which are also
required to be adjusted for getting precise and accurate results. These different neural

network parameters are as follows:

1. Learning Rate: It is an important training parameter of the neural network by which
the extent of variations in ‘weight” and ‘bias’ can be controlled, after each iteration,
in the training phase. It should not be kept too high as to overshoot the ideal weight
and bias values or too low as to obstruct algorithm convergence. The typical value
chosen for learning rate is around 0.3 and is suggested to be varied by power of 10.

For prototyping, this parameter is set to 0.1.

2. Batch Size: The number of training vectors (out of the total available training vectors)
to be shown to the algorithm at one time, before allowing it to adjust weights of the

neural connections, comprise batch size. For prototyping, this parameter is set to 5.

3. Number of Steps: Number of steps refers to the number of iterations performed in
the neural network to learn system characteristics/patterns etc. It also refers to the
number of times, a batch of training data set (with a specified batch size) is provided
to the neural network during its training phase. For prototyping, this parameter is set
to 100. It is because of the fact that 500 input vectors are available for training the
neural network prototype; therefore, ‘Number of Steps’ should be set to 100 for ‘Batch

size’ of 5, such that:

Batch size x Number of Steps =5 x 100 = 500 total input vectors

These parameters are adjusted to accurately classify the 500 available input vectors,
for 500 time instants, into the seven output classes, for the given three-bus transmission

network i.e.,

1. No Fault.

2. Fault at Location 1 = Bus 1 to Gnd.
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3. Fault at Location 2 = b/w Bus 1 & Bus 2.
4. Fault at Location 3 = b/w Bus 1 & Bus 3.
5. Fault at Location 4 = Bus 2 to Gnd.

6. Fault at Location 5 = b/w Bus 2 & Bus 3.
7. Fault at Location 6 = b/w Bus 2 & Bus 3.

8. Fault at Location 7 = Bus 3 to Gnd.

This accuracy of the neural network’s performance is highly dependent on how the
neural network is constructed, for a particular type of application, and the number of samples
provided for training the neural network. As stated earlier, in this code, 500 samples have
been provided for 500 time-instants and learning rate is set to ‘0.1°, to get maximum accuracy.
The code implemented for the prototype detects faults in the transmission system with

99.999% accuracy.
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‘ South Dakota
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| QOklahoma
’Arkansos

Texas

Louisiana

Figure 3.15: Southwest Power Pool [1]
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3.3 Proposed Algorithm: Actual Design

The proposed fault location detection algorithm’s prototype designed for and tested
on three-bus 69kV transmission system earlier, as proof of concept, is now expanded to cover
actual 456 bus transmission network under Southwest Power Pool (SPP), following the same
approach. The synchrophasor data used for this purpose, is the actual field data of 456 buses
obtained from SPP transmission network. Southwest Power Pool (SPP) is one of the nine (9)
Regional Transmission Organizations (RTOs) aimed at ensuring reliable supply of electric
power at competitive electricity market prices in central states of USA, as shown in the
Fig.3.15. The fourteen (14) member states of SPP are Arkansas, lowa, Kansas, Louisiana,
Minnesota, Missouri, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South
Dakota, Texas and Wyoming. The SPP monitors and coordinates power flow among the 14
member states and ensures regional power flow scheduling and network traffic administration
at consistent rates, and terms of conditions.

The following paragraphs explain the proposed fault location detection system design

process in detail.

3.3.1 Programming Environment

The methodology adopted for implementing the aforementioned proposal involves
both matlab and python programming languages. The data pre-processing i.e., acquisition
of system admittance matrix in real time and its transformation into neural network input
vectors is carried out in matlab programming environment owing to its numerous advantages
of handling large matrices over other programming languages. It should be kept in mind
here, that the basic data element in matlab is a matrix i.e., a simple integer is treated as a
matrix with single row and single column. Moreover, the different mathematical operations
on arrays and matrices are built-into matlab environment. Therefore, matlab environment
has been used, in the code, for dealing with matrices of complex and intensive electrical power
distribution network, to achieve highly optimized and most efficient performance in real-time.
Whereas the construction and implementation of artificial neural network for fault location
detection in power systems is executed in python environment, since python environment not
only has extensive support libraries, user friendly data structures, productivity and agility
but also supports third party modules and is open source as well. Conclusively, the output

of the code implemented in matlab acts as an input to the code implemented in python
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and therefore, a dual combination of the two programming environments serves the requisite
purpose.

The same code has also been implemented in python only, to avoid switching between
multiple platforms and it has been observed that both of these approaches give the requisite

results. While the former approach is programmer friendly, the latter one is user friendly.

3.3.2 Fault Location Detection

The work presented in [23] is used as a foundation for building upon the concept
of fault location detection in power systems using artificial intelligence. Once the power
system admittance matrices are extracted statistically, for particular instants of time, from
synchrophasor measurements of bus voltages and injected currents (in real time), the pro-
posed fault location detection algorithm’s job comes into play. This fault location detection
algorithm utilizes artificial intelligence for providing the requisite results. The design and im-
plementation of artificial neural network for detection of faults, in the transmission network

of Southwest Power Pool, is presented in the following steps:

Design of Neural Network

Type and Architecture: A supervised feed-forward neural network has been designed
for detecting fault locations in the power system. The reason for selecting ‘supervised’ neural
network in place of ‘unsupervised’ or ‘semi-supervised’ is to avoid incorrect learned patterns
in case of faulty measurement data from the sensors. The neural network designed has only
two hidden layers of neurons, sandwiched between the input and output layers. The input
layer has neurons equal to the length of input vector, to store each element of the input
vector i.e., the admittance value, in a neuron. Since each admittance value of the input
vector eventually determines a special output class of fault in the transmission network
based on any anomaly in its magnitude, therefore, the output layer has neurons equal to
the length of input vector plus one, to include the extra output class denoting ‘No Error’ in
the power transmission network. Similarly, each hidden layer contains 5000 neurons. The
number of hidden layers and neurons in each layer is selected through educated hit and
trial mechanism since there is no fixed rule to adjust these parameters and one must try
different combinations for a particular ‘nature’ of the problem statement, for coming up

with minimized losses and maximized prediction accuracy.
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Weights and Bias: The weights of the neural connections between the adjacent layers

i.e., input layer, hidden layers and output layer, have been set to ‘1.0 initially (with ‘1.0” as

the standard deviation and mean value as well), thus giving equal importance to the output

of each neuron in the neural network designed. The format of these weights is set to 32

bits floating-point format for ensuring optimal efficiency, fast performance and a memory

efficient algorithm. Similarly, each hidden layer and the output layer is assigned with an

external bias value of ‘0.0" (with ‘0.0” as the standard deviation and mean value as well), to

allocate equal importance to all these layers initially. A glimpse of these values is shown in

Fig.3.16.

INPUT
LAYER

INPUT VECTOR

-

Bias 1

* Bl1l of the neural connections have the same properties initially as depicted by the highlighted values
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HIDDEN
LAYER 1

10

Bias 2

HIDDEN
LAYER 2

Bias 3

10

OUTPUT
LAYER

/. No Fault

. Fault b/w Bus1 & Bus2

g . Fault b/w Bus1 & Bus3

,. Fault at Location ‘xyz’

Figure 3.16: Neural Connections’ Weights” and Bias’ Initialization

Network Parameters:

The network parameters are set as follows:

e Learning Rate: The learning parameter of the neural network was initially set to 0.1

(typical value) and since it gave accurate results therefore this value has not been

changed.

e Number of Steps & Batch Size: The batch size and number of steps should be chosen

in such a way as their multiplication does not exceed the available input vectors for

training the neural network i.e.,

batch size x number of steps < number of available input vectors
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Therefore, different combinations of number of steps vs batch sizes were tried and
tested to achieve maximum accuracy and it was observed that for power transmission
systems, the ratio of 2:1 works the best for ‘batch size: number of steps’, in a neural
network, based on the available data or input vectors. Thus, the batch size was set to
‘100" and number of steps were set to ‘50’ to get optimal results, for the available 5000
input vectors i.e., synchrophasor data of bus voltages and injected currents for 5000
time instants was used to extract 5000 system admittance matrices, for training the
neural network, which indicates that the synchrophasor data was obtained for 166.66
seconds or 2.77 minutes (since 30 frames of synchrophasors, or in other words data
for 30 instants of time, are provided per second by the Phasor Measurement Units

installed in the power system).

The Algorithm: The algorithm has been devised by making each neuron in the neural
network calculate weighted sum of the received inputs and only authorizing neurons in the
output layer to apply an activation function called as ‘Softmax’ (once, toward the end). The
outputs of the neurons, in the output layer, are evaluated by comparing them with the req-
uisite output classes and the losses in prediction are computed using ‘Cross Entropy’. These
losses are compiled by taking their mean value and reduced through ‘Adam’ optimization

algorithm.

Working of Neural Network

Data Preprocessing: The system admittance matrices obtained are pre-processed before
making the neural network learn admittance pattern. This pre-processing of data is achieved

in the following four steps:

1. Segregation: The 456x456 system admittance matrices obtained are segregated into
upper and lower triangular matrices, and elements of the upper triangular matrices
along with diagonal entries are used for training the neural network, assuming absence
of phase shifting transformers in the power system under analysis (since in such a
scenario an admittance matrix is always symmetric i.e., Yj2 = Y5;). In case of phase
shifting transformers in the transmission system, all the elements of the admittance
matrix are required to be used for training purposes and segregation of data is not

required.
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2. Conversion: The absolute values of the upper triangular elements along with the
diagonal entries, of the power system admittance matrices are computed and converted
into 1D arrays, with their original indices’ numbers preserved in a look up table. This

process is further illustrated in the Fig.3.17.

¢ - (1,456) System admittance matrix with
: : elements’ positions specified as
(456,1) -+ (456,456)| matrix entries for clarification
4 .
1
‘ 1,1 ‘ 1,2 ‘ ....... ‘ 1,456 ‘ 2,2 ‘ 2,3 ‘ ....... ‘ 456,456 ‘ i
1
‘ V i 1D Vector Physical Location in the
Absolute value of the admittances at the specified positions A Index # Power Network
[
@ 1 Fault at Bus 1
1 J—
Fault Fault |....... Fault Fault Fault | ....... Fault P2 Fault b/w Bus 1 & 2
at b/w b/w at b/w at : - @@
Bus 1 Bus1 & Bus1& | Bus2 Bus2 & Bus 456 :
Bus 2 Bus 456 Bus 3 :
i
[
!

Lookup Table showing Relationship between 1D Vector’s
Index Numbers and Physical Locations in the Power System

Figure 3.17: Illustration: Conversion of Data

3. Normalization: The 1D arrays (called as input vectors in this thesis) obtained from
the conversion process are normalized. Each input vector is normalized by dividing
it element-wise, with the respective maximum values i.e., since 5000 input vectors are
used for training the neural network, therefore, each element of the 1D array or input
vector is divided by its respective maximum value out of the 5000 values, along ‘0" axis
(column-wise). For Example if three (3) input vectors i.e., red, blue and green, of four

(4) elements each are taken into account, as shown in Table. 3.2:

Table 3.2: Red, Blue and Green Input Vectors with 04 Elements Each

Col 1: 0 axis | Col 2: 0 axis | Col 3: 0 axis | Col 4: 0 axis
Row 1: 1 axis 2 1 2
Row 2: 1 axis 2 2 3
Row 3: 1 axis 2 3




These three vectors would be normalized by dividing elements of ‘Col 1: 0 axis’ by its
maximum entry along ‘0 axis’ i.e., 2, ‘Col 2: 0 axis’ by its maximum entry along ‘0
axis’ i.e., 4, ‘Col 3: 0 axis’ by its maximum entry along ‘0 axis’ i.e., 3, and ‘Col 4: 0

axis’ by its maximum entry along ‘0 axis’ i.e., 3.

After normalization, the input vectors are categorized as follows:

. Data Categorization & Labeling: The pre-processed and normalized 1D arrays, to
be used as input vectors, are divided into two categories i.e., training data and testing
data in approximately the ratio 0.75:0.25, therefore, out of the 5000 input vectors, 4848
are used as training vectors and the remaining are used as testing vectors as shown in

the Fig.3.18.

0001 (at 1t time instant)

Training Data with
5% fault values

4848
4849

Testing Data with
5% fault values

5000 (at 5000t time instant)

Figure 3.18: Illustration: Data Categorization

The training data is composed of system admittance values under normal conditions
as well as fault conditions. Since the neural network designed is supervised to learn
certain admittance values as normal admittances and certain as admittances under
fault conditions, therefore, input labels are created in python to label each admittance
value in the input vector as ‘normal entry’ or ‘faulty entry’. The procedure adopted
for labeling training data is that all the admittance values in all of the input vec-
tors are initially labeled as ‘0.0’ (meaning normal), and then faults are introduced in

some of the admittance values i.e., approximately 5% data (selected randomly), by
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multiplying their magnitudes with a constant number i.e., ‘3’ (imitating over-current
between the two buses) and changing their labels to value ‘1.0’ (meaning faulty). As
the minimum value of a fault current in a circuit is caused by single phase to ground
fault and is approximately 3 times higher than its nominal current value and since
Y o« I (where Y = admittance and I = Current) therefore, any fault or short circuit
between any two buses in the transmission system would cause the respective admit-
tance value to go higher than its original magnitude at least by a factor of ‘3’. The
threshold for fault values, set to ‘3x’, can be set to any higher value i.e., 2x, 3x, ...,
10x, since it only helps the neural network better learn about normal data and its

variability does not really affect the outcomes.

This labeled data is stored in two separate arrays called as X (storing input vectors)
and Y (storing respective binary labels), provided as input to the neural network,
and later used to make the neural network learn and detect the properties of normal
and faulty data. The testing data (with fabricated fault values i.e., test case I and
actual fault values i.e., test case II) is not labeled and is later being used to test the

performance of the neural network designed as shown in Fig.3.19.

Length of Input Vector

Input Vectors (X) Labels (Y)
1|0

0001 (at 1t time instant) 1(0|0
o{1|01]. |. |.]O
Training Data
with 5%
fault values
4848 010
4849
Testing Data 1 = Fault
with 5% 0 = No Fault
5000 (at 5000t time instant) fault values

Figure 3.19: Illustration: Input Data X and Labels Y
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Learning Process of Neural Network: The labeled training data (X and Y) is passed
as input to the neural network in batch size =100 and number of steps = 50, with 0.1 as the
learning parameter ‘a’ (to be used in optimization algorithm later). The input vectors X are
made to go through certain computations ‘batch-wise’ by the neural network whereas, their
respective labeling data Y is stored as is, by the neural network. These computations are
used to determine the error in the predicted outputs and requisite outputs, batch-wise, by
comparing the computational results with the already stored respective labels i.e., Y. And
the total error for a batch, calculated in terms of internal parameters of the neural network,
is tried to be minimized by adjusting the internal parameters of neural network i.e., neural
connection weights, after each batch’s computations (100th iteration in this case), through
an optimization algorithm. This process is continued for all the subsequent batches of the
input data X, till the neural network is trained to provide accurate/requisite results. Thus,
the total error while training the neural network is minimized through back propagation
method.

In the process of computations performed on X by the neural network, each input
vector (from the provided batch of input vectors) is propagated through a series of steps
where each neuron in the neural network computes weighted sum of the received input
vector along with external input, with the neurons in the output layer applying Softmax

activation function as well. These series of steps are as follows:

1. Step I: Hidden Layers’ Computations: The neural network receives n-dimensional
input vector (‘x’) from the provided batch of ‘X’, and its respective n-dimensional
labeling data ‘Y’, and neurons of each hidden layer compute the weighted sum of the

received inputs independently, explained as follows:

Let ‘x’ be the n-dimensional 1D input vector composed of power system admittances

ie.,
T =[] Xy T3 ... Tyliy,
w171 W12 .. Wim
W= Wa1 W22 ... Wym
Wp1 Wp2 --. Wpm
nxXm
where,

n is the number of elements comprising diagonal and upper triangular elements of
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power system admittance matrix.

m is the number of neurons in the first hidden layer.

w; ; is the neural connection weight between element 2’ of the input vector and neuron
‘7 of the first hidden layer.

B1 = constant X [unity matriz], since the code implemented uses a constant bias
value for each hidden layer.

Then, collective output of the neurons of the first hidden layer can be represented as:
7' = (XW)T 4+ B1

/

Z Trwy gt 2w+ Wy 1
! __ !/ —
Z'= |2y | = |Trway +Towrn + .. Tpw, + bl |1
/
Z'm T1.Wph1 + ToWpo+ ...+ TpWhpm 1
’ ? ’ mx1 mx1

where, z’; = output of j neuron in the first hidden layer.

Similarly, the computed output Z” of the second hidden layer, with 117 as the respective

matrix of neural connection weights, is: 2" = [(2']" .W")T 4+ B2

2! iy F 2w+ 4 A, 1
"
2= || = | Zrwyy + 2w+ A, +02 |1
" / / / / / /
z, 21w F W o+ .o+ 2 W, 1
) ’ ’ ox1 ox1

where,

m=number of neurons in the first hidden layer.

o=number of neurons in the second hidden layer.

wy,; = neural connection weight between neuron ‘k’ in the first hidden layer and neuron
‘37 in the second hidden layer.

B2 = constant x |unity matriz] , since the code implemented uses a constant bias

value for each hidden layer.
2"; = output of I** neuron in the second hidden layer e.g., if 1 = 1 then,
Z”lz z’l.w’m + Z,Q.U},LQ + ...+ z’m.w’Lo + b2

Z”l = (l’l.le + T2 W12 + ...+ Tn W1m + bl) .U}ll 1
+ <$1.w2,1 +wpwen + .+ Tpw, bl) wie 4.

+ (z’l.w’m,l + 25 e+ 4 e+ bl) 'y, + b2
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2. Step II: Output Layer’s Computations:

The outputs of the second hidden layer (Z”) again get multiplied with their respective
neural connection weights and are summed by the final layer i.e., output layer, along
with the respective bias value for the output layer (the same mathematical compu-
tations as that of hidden layer 1 and 2). However, besides calculating weighted sum
of received inputs (let it be Z” ), the output layer also applies Softmax activation
function on Z"” to calculate probability of the n-dimensional input vector x to be in a

certain output class c; explained as follows:

Let Z" be the weighted sum at the output layer. where, Z” = [(2"]" .W"" + B3

n " ! " ! " 1
2] 2w 2w g 2w e 1
" __ n R n " n " " "
2" =2 = iy + 2w+ + o’ +03 |1
n " " " 1 " "
Z, 2 F 2w e+ o+ 2, 1
’ ’ ’ cx1 cx1

where,

¢ =number of output classes or nodes in the output layer.

o =number of neurons in the second hidden layer.

wy, = neural connection weight between neuron ¢ in the second hidden layer and
neuron 1 in the output layer.

B3 = constant x [unity matriz| , since the code implemented uses a constant bias
value for output layer.

"

z,' = output of rth neuron in the output layer e.g., if r = 1 then,

2=zl + 2w g+ + 2w+ b3

7= (2 + g+ A D+ 02) W

+ <Z’1.w’2,1 + 2wy + .+ Z/m'w/zo + b2> Wizt
+ (le.w/m,l + 2l Whpp + .ot Wi, + 52) "y .+ b3

The Softmax function ‘f” takes in this c-dimensional vector Z” and outputs a c-
dimensional vector Z" of real values between 0 and 1 indicating probability distribution

of Z" across the ‘C’ number of output classes.

Softmax activation function is an extension of sigmoid unipolar activation function

(mentioned earlier in section 1.4 of this thesis), for more than two output classes. In
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sigmoid unipolar activation function, only two output classes are considered i.e., c=0
or c=1, with an aim to correctly predict an output class for the given input Z”” through
a probability distribution function described by [24]:

Z’v — f(Z///) — 1

_ v _ 1
P (0|Z///> — g — f (Z///) — w

P(O‘Z”’) =1-2"=1—f (Z///) - 1 1 _ e

1+€7Z”/ 1+67Z/”

The same concept is extended to cover multiple output classes of the type:

e ‘No Fault’
e ‘Fault at Bus i’,where i € buses in the power system
e ‘Fault between Bus i and j’,where i,j € buses in the power system
through Softmax activation function i.e., the value at each index of Z" refers to the

probability of Z"”, to be in the output class ‘¢’ represented by that index, explained as

follows:

For simplification, let Z"” = z and Z' = y, where ‘y’ is a c-dimensional vector, used in
place of Z" that should not be confused with the capital ‘Y’ (for denoting data labels
of X).

The Softmax function ‘f” is a normalized exponential function and provides the prob-

ability distribution (y) of ‘z” across all the classes, as follows:

e*c

f(z)c = Yec= Zic:lezi

2, is pre-softmax computed output of the ¢! neuron or node in the output layer

c € {1,2,3,...,C} i.e., the output classes in the neural network

The summation factor in the denominator is used for normalization so that the sum

of all the probabilities obtained for all the output classes, for a single input vector, is
lie, Y7 =1

The same probability distribution function can also be written as:
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P(c=1]z) ¢(2)1 el

P(c=Clz) S(2)c e

Once the probabilities (y or Z") of the input vector ‘x’, between numbers ranging from
0 to 1, for each output class are obtained at the output layer, they are compared with
the respective labeling data ‘Y’ provided to determine if the probabilities computed

for ‘x’ are in accordance with the provided labels as shown in the Fig.3.20.

w
z", 0.80 [N 1
[%2]
(5]
0 O 0
Softmax 5
Qo
5
. (@]

z". 0.19 |c=C 0
Weighted Sum Softmax Computed Already Stored
of Received Activation Probabilities Labeling Data
Inputs Function
ACTIVATION FUNCTION COMPARISON

Figure 3.20: Output Layer’s Computations

The error in predicted class (shown by the computed probabilities) and actual output
class (shown by the provided labels) is determined through a loss function called as
‘Cross Entropy’. The Cross Entropy loss is a log function used to determine error in
the predicted probabilistic output and actual output, this function decreases with an

increase in the accuracy of the predicted probabilistic output.

As mentioned earlier in section 1.4 of this thesis, the Cross Entropy loss determined
for multiple, independent, two-class classification is the same as that determined in
case of two output classes, except for the fact that for multiple, independent, two-class
classification, the total Cross Entropy error is the sum of individual errors determined

for each of the independent two-class classification output, given by the formula [26]:
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— 38 (Yelog (ye) + (1= Y.) log (1 — y.))

where,

C represents the total number of output classes.

Y. is the stored label (already provided to the neural network before its training phase)
i.e., ‘0’ (indicating that input ‘z’ is not in the output class ‘c’) or ‘1’ (affirmative), and,
Y. is the predicted probability of input ‘z’, between 0 and 1, to be in the output class

(]

C.

The aforementioned steps are repeated for each input vector of the batch. The output
probabilities obtained for all the input vectors in the batch of X if not equal to the
already stored labeling data “Y’, are adjusted through back propagation by changing
the neural connection weights, initially assigned as ‘unity’. The neural connection
weights are adjusted, through an optimization algorithm i.e., Adam optimization, in
proportion to the discrepancy between the predicted output classes and actual output
classes for the given batch of X in such a way as minimizes the total error content.
This total error content or discrepancy is determined by taking mean of all the errors
computed individually through Cross Entropy for all the input vectors in a batch of
X. The sequence of these steps is illustrated in the Fig.3.21.
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Cross Entropy Errors in a Batch of X

Figure 3.21: Working of Neural Network, taken a Batch of X

3. Step III: Optimization:

The optimization algorithm used to minimize the total error content is called as Adam

optimization.
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As mentioned earlier in section 3.2.2 of this report, Adam optimization technique is

an extension of gradient descent optimization technique but it uses adaptive learning

rate, based on the data provided, instead of fixed learning rate for minimizing the total

error content with respect to neural connection weights, during the training process.

It changes its adaptive learning parameter on run time based on the statistics of the

provided data i.e., mean or first moment estimate, and variance or second moment

estimate. An overview of the algorithm is as follows [27]:

Algorithm 1 Adam Optimization

while w,; converges do
t =t+1
9 = Vu fr(we-1)
my = Blmy_1+ (1—-B1)g
v, = f2u1+ (1-52)g%
my = my/(1— p1Y)
o, = v/(1 — B2
Wy = Wy—1 — QMY (\/ﬁ_t + 5)

return w;

> Increment time step

> Compute gradient of the objective function

> Update biased first moment estimate

> Update biased second moment estimate

> Calculate bias-corrected first moment estimate

> Calculate bias-corrected second moment estimate

> Update parameters (neural connection weights)

> Neural connection weights

In this algorithm:

e f(w) is the objective function or the total error function for a batch of X, required

to be minimized with respect to neural connection weights ‘w’.

e gt is the gradient of the objective function i.e., gradient of the total error function

for a batch of X, with respect to neural connection weights ‘w’.

e All vector operations are performed element-wise.

e The default setting of parameters used in Adam optimization for most of the

machine learning problems, is kept as is and mentioned as follows:

a = 0.1 = Learning rate or step size

Bl = 0.9 = FEaxponential decay rate for first moment estimate i.e., mean
B2 = 0.999 = FExponential decay rate for second moment estimate i.e.,
variance

e = 107® = Awery small number for preventing division by zero in the
algorithm
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e Likewise, the parameter vectors are initialized as follows:

wy = 1.0 = Initial weights of the neural connections
mog = 0 = Initial value of first moment vector

vg =0 = Initial value of second moment vector

t = 0 = Initial value of time step

The working of the algorithm is explained in algorithm 1.

The aforementioned steps are repeated for every batch of X, with the initial values
of neural connection weights for each subsequent batch of X set to the convergent values
obtained for the former batch of X in Adam optimization, till the last vector of the last

batch of X i.e., the end of the available training data set, as illustrated in the Fig.3.22.

/N1 ’ m c=1 t No Fault
z", 1.00 KX Fault at Bus 1

g
0.00 3 Fault b/w Bus 1 & 2
Softmax ]
. Q
5
. . ©] .

z". 0.00 |c=C Fault at Bus 456
Weighted Sum Softmax Predicted Lookup Table (for identifying
of Received Activation Output Classes faults as derived from indices
Inputs Function of the labels Y)

OUTPUT LAYER RESULTS

Figure 3.22: Working of Neural Network, taken all Batches of X for Training

As shown in Fig.3.22, the resulting probabilities of the output classes determines the
faulty segment of the transmission network, which is identified by looking at the respective
index values of the output vector e.g., the 2"* index of the output vector with fault probability

of 100% represents a fault at Bus 1 in the transmission system.
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4 CHAPTER: TESTING & RESULTS

The feed-forward supervised neural network once trained on 456 bus SPP transmission
network training data is tested using two types of testing data-sets. The first data-set is
composed of 152 input vectors having normal admittances and admittances under fabricated
fault conditions. Whereas, the second data-set is composed of data (10 input vectors) with
actual outage events, which occurred on the transmission lines under Southwest Power Pool
(SPP), in the year 2015.

These data sets were acquired by the trained neural network as inputs and were
made to go through the hidden layers’ computations and the output layer’s computations
with Softmax activation function. The probabilities obtained, at the output, for these input
data-sets to be in certain output classes determine the faulty portions of these data-sets. The
system setup with server and software specifications, benchmark data, performance metrics,
performance evaluation, analysis of results with effect of certain neural network parameters
like learning rate, number of neurons and number of hidden layers, and method for fault

classification along with exact distance calculation is as follows:

Table 4.1: Server Specifications

Processor Intel Core i7 4.00 GHz
Cores 4-Core
RAM 32 GB
Architecture 64-Bit
GPU NVIDIA GeForce 940M

4.1 System Setup

The specifications of the test-bench used for detecting fault location, in real time, are

as follows:
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4.1.1 Server Specifications

The server used for training the neural network and detecting fault locations, is a

common personal computer with specifications mentioned in Table. 4.1:

4.1.2 Software Toolkit

The specifications of the software toolkit used for designing the algorithm are men-

tioned in Table. 4.2:

Table 4.2: Software Toolkit

Programming Language | Python
Software Version Python 3.6.4

Libraries Tensor Flow (Free & open-source library used for
machine learning algorithms)

Numpy (for multi-dimensional arrays and matrices)
Pandas (for data manipulation and analysis)

Scipy (for scientific and technical computing)

Matplotlib (for plotting graphs)

4.2 Benchmark Data

The synchrophasor data for training and testing the neural network, for fault location
detection, has been obtained from the 456-bus transmission network of Southwest Power
Pool. The data set contains system admittances, acquired statistically as per the work
mentioned in [23], for the 456-bus network, at different time instants. The system admittance
matrices acquired at different time instants are converted into 1D input vectors and divided
into two categories i.e., training data and testing data. The training data thus acquired is
used to train the neural network, whereas the testing data is used to test the performance

of the trained neural network using different performance metrics.
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4.3 Performance Metrics

Five categories, of performance metric, are used to check the validity of the trained

machine learning algorithm i.e., neural network, which are as follows:

1. Accuracy (total number of correct predictions): It is a performance metric used to
determine the accuracy of the number of the predicted output classes, during training
phase. Accuracy is determined by equating predicted probabilities of the output classes
with the respective labels Y to get an array of 0’s and 1’s, taking sum of the elements
of the resulting array and dividing this sum value with the sum of the respective labels

Y, for each of the last input vector in the provided batch of input vectors X i.e.,

(ZOutput Classes 1 Predicted Class == Respective Label)xlOO

2 Output Classes liespective Label

% Accuracy =

Thus, accuracy determines the number of accurately predicted classes.

2. False Positive (a label of 1 is predicted for an output class but the true label is 0):
Unlike accuracy which determines the validity of the total number of predicted faults,
False Positive is used to check the number of times a predicted fault doesn’t match
its respective label, since it might be possible that the total number of faults and the
total number of faulty labels are equal whereas, a predicted fault does not match its
respective label. Thus, False Positive generates a flag whenever an output class has
been termed faulty (1), but the respective label is not faulty (0). Ideally, the value of
False Positive should be zero, indicating no false alarms or class-wise accuracy of the

predicted classes.

3. False Negative (a label of 0 is predicted for an output class but the true label is
1): Just like False Positive, False Negative works the opposite and generates a flag
whenever an output class has been termed normal/without fault (0), but the respective
label is faulty (1). Ideally, the value of False Negative should be zero, indicating no

false alarms or class-wise accuracy of the predicted classes.

4. True Positive (a label of 1 is predicted for an output class and the true label is also
1): Unlike accuracy which determines the validity of the total number of predicted
faults, True Positive is used to check the number of times a predicted fault matches
its respective label, since it might be possible that the total number of faults and the

total number of faulty labels are equal whereas, a predicted fault does not match its
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respective label. Thus, True Positive generates a flag whenever an output class has
been termed faulty (1), and the respective label is also faulty (1). Ideally, the value
of True Positive should be equal to the total number of faults in the testing data,

indicating no false alarms or class-wise accuracy of the predicted classes.

5. True Negative (a label of 0 is predicted for an output class and the true label is
also 0): Just like True Positive, True Negative works the opposite and generates a flag
whenever an output class has been termed normal /without fault (0), and the respective
label is also normal/without fault (0). Ideally, the value of False Negative should be
equal to the total number of non-faulty values in the testing data, indicating no false

alarms or class-wise accuracy of the predicted classes.

4.4 Performance Evaluation

The following test cases have been tried to detect faults:

4.4.1 Test Case I

In this test case, the testing data has been acquired from normal system data (1D
input vectors i.e., X). One hundred and fifty-two (152) input vectors are taken and fifty
(50) faults have been introduced deliberately at random locations. These faults have been
introduced by changing the magnitude of certain admittances to a value greater than the
nominal value (imitating the case of over-current between the two buses) and the labels
from ‘0’ (No Fault) to ‘1’ (Fault). These faulty input vectors are given to the trained neural
network as inputs. The neural network performs the same classification operations on these
vectors i.e., the testing data, as discussed earlier in section 3.3.2 and correctly identifies all
of these 50 fault locations.

The results obtained for performance metrics are shown in Table. 4.3:

The fifty (50) fault locations, displayed on the screen are shown in Fig.4.1, which are
exactly in accordance with the introduced fault locations.

Similarly, the graphs plotted between the predicted fault locations and actual fault
locations for four (4) of the one hundred and fifty-two (152) provided test data vectors are
shown in Fig.4.2, Fig.4.3, Fig.4.4 and Fig.4.5.
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Figure 4.1: 50 faulty Locations
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Table 4.3: Performance Metrics Results: Test Case 1

Performance Metric | Results | Description

Accuracy 100% Accurate

False Positive 0 0 False Alarms

False Negative 0 0 False Alarms

True Positive 50 50 Faulty Locations

True Negative 774998 152 vectors of length 5099,

with 50 fault locations:
= 50 + 774998 ~ 5099 * 152

10 - [ |

Faults

—i— testvector 1
predicted faults

0 1000

Figure 4.2: Test Vector at 6! Time Instant, Fault at 815" Index Value
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3000 4000 5000

Input vector
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Figure 4.3: Test Vector at 5 Time Instant, Fault at 1593 Index Value
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Figure 4.4: Test Vector at 11" Time Instant, Fault at 3885 Index Value
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Figure 4.5: Test Vector at 149"" Time Instant, Fault at 1999"" & 2946 Index Values

4.4.2 Test Case 11

In this test case, the testing data has been acquired from actual outage events that
occurred in the transmission system of Southwest Power Pool (SPP). Two of the transmission
lines i.e., Arcadia-Northwest and Cimmaron-Draper, experienced outages. Testing data for
ten (10) post-fault time instants is taken and provided to the trained neural network as 1D
input vectors, meaning that the testing data is composed of ten (10) faulty 1D input vectors
with two fault locations per vector. The neural network performs the same classification
operations on these 10 1D vectors i.e., the testing data, as discussed earlier in section 3.3.2
and correctly identifies the transmission line outages.

The results obtained for performance metrics are shown in Table. 4.4:

The fault locations, per vector, displayed on the screen are shown in Fig.4.6, which

are exactly in accordance with the actual fault locations.

fault is between Bus Arcadia-Horthwest
fault is between Bus Cimarron-Draper

Figure 4.6: Two (2) Fault Locations

Similarly, the graph plotted between the predicted fault locations and actual fault

locations per vector is shown in Fig.4.7.
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Table 4.4: Performance Metrics Results: Test Case 11

Performance Metric | Results | Description
Accuracy 100% Accurate
False Positive 0 0 False Alarms
False Negative 0 0 False Alarms
True Positive 20 20 Faulty Locations
True Negative 2440 10 vectors of length 246,
with 20 fault locations:
= 20 + 2440 =~ 246 * 10
104 predicted faults
05
- 0.6 4
g
04
02 4
HAE
0 50 100 150 200 250
Input vector

Figure 4.7: Two (2) Fault Locations
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4.5 Analysis of Results

The results of the aforementioned experiments have been analyzed as follows:

e Training Results: The total training time required to train the neural network is 0.284

seconds per 10 input vectors.

e Test Case I Results: The output classes predicted, or fault locations identified for test
case | are exactly in accordance with the introduced faults. The total time required
to detect fifty (50) fault locations for one hundred and fifty-two (152) input vectors is
0.143 seconds.

e Test Case II Results: The output classes predicted, or fault locations identified for test
case II are exactly in accordance with the introduced faults. The total time required

to detect fifty (20) fault locations for ten (10) input vectors is 0.033 seconds.

4.5.1 Effect of Neural Network Parameters

As discussed earlier in section 3.2.2 and 3.2.3 of this thesis, the neural network pa-
rameters have a significant effect on the predicted output classes and one has to try different
parameters for a particular type of application through educated trial and error method.
Therefore, different neural network parameters were changed to see how the resultant accu-
racy of the predicted output classes is affected. The resultant effect on accuracy is explained

as follows:

Effect of Changing Learning Rate

The learning rate or step size («) used by the optimization algorithm to change the
values of neural connection weights after each batchs iteration is set to 0.1, which is the
typical value of used in machine learning algorithms. If is set to a very high value i.e.,
a = 1, the algorithm tends to overshoot the requisite target in each attempt to converge.
Similarly, if is set to a very low value i.e., « = 0.01, the algorithm does converge but is
time inefficient. This behavior of versus algorithms accuracy is shown in Fig.4.8.

As can be seen in Fig.4.8 that a smaller value of @« = 0.01 results in 100% accurate
results, but the convergence time or training time taken by the algorithm for a = 0.01 is
0.37 seconds per fifty (50) vectors, as opposed to 0.28 seconds per fifty (50) vectors in case
of a = 0.1.
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Figure 4.8: Effect of Changing Learning Rate (a)) on Accuracy

Effect of Changing Number of Neurons Per Hidden Layer

The number of neurons per hidden layer in the neural network designed is set to 5000,
which is an ideal value for a power network having 456 buses. This number was obtained
through educated trial and error method. If the number of neurons per hidden layer is set
to a lower value than 5000, the resultant accuracy is not 100%. Similarly, the number of
neurons per hidden layer exceeds 5000, there is no change in the output accuracy, yet the
algorithm becomes computationally extensive. This behavior of number of neurons versus

algorithms accuracy is shown in Fig.4.9.

Effect of Changing Number of Hidden Layers

The number of hidden layers in the neural network designed is set to 2, which is an
ideal value for capturing the admittance pattern of any power network. This number was
obtained through educated trial and error method. If the number of hidden layers is set to
a lower value than 2, the resultant accuracy is not 100% for large power systems with more
than 456 buses. Similarly, if the number of hidden layers exceeds 2, there is no change in

the output accuracy, yet the algorithm becomes computationally extensive.
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Figure 4.9: Effect of Changing Number of Neurons Per Hidden Layer

4.5.2 Fault Classification & Distance Calculation

Once a faulty transmission segment has been correctly identified by the neural net-
work, the faults can easily be classified into temporary faults and permanent faults depending
on the number of post-fault input vectors with fault values, since these post-fault input vec-
tors signify a time period. The rate at which the trained neural network is provided with
real-time faulty input vectors is associated with real time-stamps, which can be used to
determine if the fault is temporary or permanent e.g., if after detection of fault locations
in the first few vectors, lets say 10 vectors fetched at the rate of 1/30 seconds per vector
(synchrophasors are fetched at the rate of 30 frames per second), no fault is detected by the
neural network than it means that the fault was a temporary fault.

Similarly, the exact distance of fault from the terminals can also be determined in
many ways. One of the simplest ways would be to look at the post-fault admittance of
the faulty segment and determining the distance of the fault from known ‘admittance per
unit length’ of the transmission line. Another method could be the one mentioned in [22], in
which new equations are derived from the network admittance matrix, in terms of distance of
the fault from both terminals, and exact fault location is determined on the faulty segment.
The procedure adopted in [22] is as follows:

Let the post-fault statistically acquired Ybus matrix of the system, through the pro-
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cedure mentioned in [23], for a particular time instant be:

Yn1 " Ynn

Let the faulty transmission segment identified be segment A-B and the exact fault

location on segment A-B be bus (n+1), as shown in Fig.4.10.

A Bus (n+1) B

LA LB

labcF
|::| ZabcF

Figure 4.10: Exact Fault Location on Segment A-B

where ZabcF is the fault impedance and labcF is the fault current. Upon occurrence of a

fault, the change in all the bus voltages can be written as:

AW [0]
= Zbus_Fault : (4.1)
AVipg labcF

or in terms of admittance values, the relationship stated in (4.1) can be re-written as:

0 AV,
= Ybus_Fault : (4.2)

TabcF AVt
The elements of Ybus matrix mentioned in (4.5.2) are already known; therefore, the elements
of the new Ybus matrix i.e., Ybus_Fault, after occurrence of fault would be the same except
for the elements related to the faulty segment A-B. These changed elements of Ybus_Fault

are as follows:
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Y11 Y1n+1

Ybus_Fault = : : (4.3)
Yn+1,1 " Yntlnt+l 1 xmt 1

where,
Yaa =yaa — (Yabe)ap/L + (Yave) ap/La (4.4)
Yas = Yga= [0 (4.5)
YAn+1 = Yn+1,4 = — (yabc)AB /LA (46)

Similarly,

ygfg =YBB — (yabc)AB/L + (yabc)AB/LB (47)
YBn+1 = Yn+1,B = — (yabc)AB /LB (48)
Yn+1n+1 = (yab(:)AB /LA + (yabc)AB /LB (49>

where,

(Yabe) 4 18 the per unit admittance of line segment A-B
L4 and Lg are the distances of the fault point (n+1) from bus A and bus B
L is the total length of the faulty line segment A-B
Since, all the other elements of the Ybus_Fault are the same as that of Ybus matrix
and the newly introduced elements containing y,,,1 are zero except those mentioned in (4.3)-

(4.9); therefore, from (4.2), equations for AV, and AV can be written as:

0] = ya1-AVI + yap. AVa + - + Y48 AVa + -+ + Yani1- AV (4.10)

= [0] = ya1.AVi +ya2. AVa+ - - 4+ (ya.a — (Yabe)an/L
+(Yabe) aB/La) AVA + - - 4+ (=(Yabe) aB/ L a) AV (4.11)
and,
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0] = yp1- AVI +yp 2. AVo + -+ ygp AV + - - + yp 1 AV (4.12)

= [0] = yp1. AV + yp 2. AVo + - + (y,B — (Yabe) aB/ L
+ (yabc)AB/LB )AVB i (_(yabC)AB/LB)-A‘/(n+1) (413)

Thus, the equations (4.11) and (4.13) can be solved to get exact locations L, and Lp of
the fault on segment A-B. The different symbols used in these equations are described in

Table. 4.5:

Table 4.5: Symbols Used

Symbol | Description
La,Lp Length of Fault from Bus A & B

AV, Voltage at Bus n

Ya,a Admittance Value at Index [A,A]
Ya,B Admittance Value at Index [A,B]
YB,B Admittance Value at Index [B,B|

Yabeap/L | Admittance per Unit Length of Line Segment A-B
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5 ENVISION & CONCLUSION

In this chapter, the scope of the project, in terms of futuristic technology, has been

discussed, followed by the conclusions drawn.

5.1 Scope in terms of Futuristic Technology

The scope of this fault location detection algorithm can be envisioned in terms of a

futuristic technology as:

1. Each and every piece of information can be extracted from the provided synchrophasor
data of bus voltages and injected currents. This synchrophasor data is acquired and
processed in real-time, which accurately captures the ever-changing trends in trans-
mission/distribution networks due to uncontrolled factors like aging of transmission

lines.

2. It eliminates the dependency on physical models or systems, physical parameters,
network-specific data of and interconnections in transmission or distribution networks
e.g., connection schemes, distribution networks electrical parameters like cable type

and underlying geometry.

3. It is not affected by the different transmission/distribution network topologies i.e.,
over-head or under-ground, transposed and un-transposed, balanced and un-balanced,

and radial /ring/star etc.

4. This algorithm takes a few minutes to learn actual system parameters, does not make
any assumptions and therefore, is not affected by changes in transmission or distribu-
tion system interconnections as it can always be trained within a few minutes to learn

new system behaviors and detect faults accordingly.

5. This algorithm can also be trained for determining normal faults as well as High
Impedance Faults (HIF) in distribution networks, without making any significant

changes in its code.
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6. It gives optimal and fast performance, is deployment friendly since it does not require
any changes in system hardware and inexpensive. A control room operator can easily
see the faulty locations in the transmission or distribution networks on his/her monitor

in real-time within a few seconds of occurrence of the fault.

7. It has significant scope for research and innovation. For the time being, it has only been
tested in transmission system networks, but the same algorithm can also be deployed
in distribution networks. Furthermore, the physical realization of this algorithm would
have a direct societal-impact, liberating major workforce from trivial-issues demanding
immense physical /mental exertion and directing it toward the notion of controlling Al.
With the future lying in the hands of artificial-intelligence, such automated-systems

promise profitable long-term investment.

5.2 Conclusions

Several noteworthy conclusions can be drawn from the research conducted and re-
spective fault location detection algorithm derived.

In terms of parameters of the algorithm, it is concluded that the typical learning
rate set for most of the machine learning algorithms works well for fault detection in power
systems. It can also be concluded that batch size and number of steps, of the sample syn-
chrophasor data taken, provide the best results when taken in the ratio 2:1 for transmission
systems. Another conclusion which can drawn in terms of algorithm parameters, is that
synchrophasor data for continuous 2.7 minutes is more than enough for training the algo-
rithm designed for a 456-bus transmission network. Furthermore, the number of neurons per
hidden layers should be kept comparable to the size of the 1D input vectors used for training
the algorithm. Also, only two number of hidden layers are enough to detect faults in any
power system, irrespective of the number of buses in that power system. Last but not the
least, the threshold setting required to make the algorithm differentiate between normal and
faulty data can be set to any higher or lower value than the nominal value, irrespective of
the range of actual fault values in the power system.

Similarly, in terms of performance of the fault location detection algorithm designed,
it only needs synchrophasor data of bus voltages and injected currents to accurately detect
faulty segments in a transmission or distribution network. And the proposed algorithm

requires the admittance per unit length value of the lines for exacting locating the fault on
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the faulty line segment. Also, the proposed algorithm has eliminated the need to use line
models or make any assumptions in the computations of the fault detection in the power
network. And thus, it is one of the most reliable and efficient ways of detecting fault locations

in a power network in real time (merely taking a few milliseconds to detect faults in case of
456 buses).
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