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Abstract 

High energy density lithium-ion batteries (LIBs) are widely demanded for portable electronic devices and 

electrical vehicles. Layered-structure LiCoO2 oxide (LCO) has been the most commonly used cathode material 

in commercial LIBs. Compared to LCO, LiNi1-x-yMnxCoyO2 (NMC) cathodes are particularly attractive due to their 

reduced cost and higher capacity. Among the NMC cathodes, nickel-containing LiNi0.5Co0.3Mn0.2O2 (NMC532) 

is one of the most promising cathode materials undergoing intensive investigation, but suffers from a series of 

technical issues, such as structural instability, performance fading, and safety issues. In this report, material 

structure and synthetic methods of LiNi0.5Co0.3Mn0.2O2, as well as current issues and progresses are introduced. 

Keywords: LiNi0.5Co0.3Mn0.2O2, material structure, synthetic methods, current issues, recent progresses 

I. Intro 

 Lithium ion batteries have shown much promise as the premier battery technology for the 

future. There is still much work to be done to improve the capacity, life, and rate performance of these 

batteries. LiNixMnyCo(1-x-y) (NMC) cathodes are being developed for improving the electrochemical 

performance of lithium-ion batteries. The US Department of Energy has set some goals for the 

performance of lithium-ion batteries in the future. The DOE wants the cost of batteries used in electric 

vehicles, for instance, to be reduced to $80/kWh [1]. Other goals include increased range and a greatly 

reduced charge time for the batteries used in electric cars.  This review will cover recent innovations and 

methods for improvement of the performance of NMC cathodes, as well as how safety concerns are 

being addressed.  



 𝐿𝑖𝐶𝑜𝑂2 is an older material used in lithium-ion batteries which has been supplanted by NMC 

and others due to the high cost of cobalt and the performance of newer options. 𝐿𝑖𝑀𝑛2𝑂4 was used as 

a cheaper, safer alternative but was hampered by a low specific capacity compared to 𝐿𝑖𝐶𝑜𝑂2 [2]. 

Today, NMC is being used over other alternative materials due to its relative low cost, small volume 

change of only 2% during cycling [3], along with the natural abundance of the elements used. Cobalt is 

unfortunately very limited in its dispersion around the globe. Indeed, most cobalt comes from the 

Democratic Republic of Congo. The Congo has little political stability and few labor laws. The price of 

cobalt is therefore volatile compared to nickel and manganese. Nickel by comparison is more evenly 

distributed across the globe. Thus, NMC is being considered to help reduce dependence on cobalt. 

 NMC materials have been shown to have a higher specific capacity [4] compared to other 

candidates for cathode materials (figure 1). 

 

Figure 1: Characteristics of cathode compounds. [4] Julien et al. licensed under CC BY 3.0. 

 

 Note that NMC 111 has the highest practical capacity of any of the other compounds listed. 

Julien et al. also identified NMC as a good candidate for high power and high energy applications, but at 

the time did not name it as a good candidate for long cycle life. 

II. Characteristics and Methods for NMC 

𝐿𝑖𝐶𝑜𝑂2 has a structure similar to that of NMC, (Figure 2). It features distinct layers of cobalt 

oxide and lithium. 𝐿𝑖𝑀𝑛2𝑂4 keeps a spinel structure and lithium iron phosphate olivine structure is also 

shown. Lithium ions are free to flow from the cathode to the anode and vice versa. 

https://creativecommons.org/licenses/by-nc-sa/3.0/


 

Figure 2: Structure of LIB cathode materials. [4] Julien et al. licensed under CC BY 3.0.  

 

The structure of all NMC materials is similar, with a typical crystalline lattice structure as seen in 

figure 3 [4]. The difference between types of NMC is the ratios of the elements seen between Ni/Mn/Co. 

Note how the structure is highly layered like the 𝐿𝑖𝐶𝑜𝑂2. 

The performance of the cathode material in lithium batteries is “strongly affected by the 

properties of the particles, such as morphology, specific surface area, crystallinity and phase 

homogeneity.” [6] Many papers demonstrate the differences between structure for NMC materials, as 

shown in figure 3. Figure 4 shows the ternary phase diagram for various types of NMC materials. 

 

Figure 3: Lattice of NMC layered structure. [26] Cui et al. licensed under CC BY 3.0. 

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/


   

 

Figure 4: Ternary Phase Diagram of NMC cathode materials. [14] Julien et al. licensed under CC BY 4.0. 

 

One major issue is the optimal ratio of Ni, Mn, and Co to use in a cathode. Amin et. al. analyzed 

the electronic and ionic transportation of NMC 111 and 532, concluding that “chemical diffusion is 

always limited by lithium-ion transport rather than electric conductivity.” [7] Many other researchers 

have analyzed the performance of the different types of NMC. 

The methods to make NMC are similar for all types of NMC.  Coprecipitation is the most 

common method for synthesizing NMC material for battery use. The metal compounds are mixed at 

high temperature and the precipitate is gathered. 

There exist several experimental methods for synthesis of NMC cathodes, such as thermal 

destruction of organometallic compounds (TOMC), solid state (SS) [8], and single crystal synthesis [9] 

which all seek to reduce the particle size of NMC materials. It has been found that reducing the particle 

size of conventional NMC materials improves their performance, and these novel methods are meant to 

reduce particle size. 

TOMC describes a process in which acetates containing the metals used in NMC are mixed with 

a high-pressure polyethylene (HPPE) matrix and hydrocarbon oil solution at temperature (230-250 C) in 

a reactor with argon gas to prevent unwanted reactions with air. After reactions within the solution 

cease, the sample is cooled and then remaining liquid is removed from the precipitate. The precipitate is 

then washed to remove remaining hydrocarbon oil. In the experiment discussed, the solution was later 

heat treated at 450-900 C for 12-18 hours again in argon gas. 

 Voronov’s solid state (SS) method starts with carbonate powders of the various metals involved 

which are then mixed and ground in a ball-mill for 30 minutes. The precursor is then heat treated in an 

alumina crucible for 14-18 hours at 450-900 C in air. 

https://creativecommons.org/licenses/by/4.0/


 Li’s single crystal synthesis method for NMC 532 begins with a typical coprecipitation method to 

obtain precursors. The precursors were mixed with 𝐿𝑖2𝐶𝑂3 by hand with a mortar and pestle. The 

resulting mixtures were then sintered at high temperature (930-1020 C) for 12 hours. After cooling, the 

resulting solid material was ground again with a mortar and pestle and passed through a sieve. 

In producing battery coin cells, the powdered or solid cathode material is combined with a liquid 

electrolyte (possibly an anode also for a full cell) and is pressed into a coin cell. The cell is typically 

heated for some time at a mild temperature (50-80 degrees C) to remove excess solvent.  

NMC cathodes will need to be mass produced before they are truly viable for real-world 

application. Some work has been done to create and optimize high-throughput manufacturing methods. 

Currently, experimental battery cells are hand made in labs, and exhibit a degree of cell-to-cell 

variability. Liu et al. have detailed the mass production processes of MTI Corporation in California [10]. 

The general process is the same, but on a much larger scale. MTI’s production line can process multiple 

samples and multiple different compositions at a time. Their planetary ball mill, for example, can 

process 16 different 2 ml samples at once. 

 

Figure 5: MTI Corporation’s production line. [10] Liu et al. licensed under CC BY 4.0. 

 

III. Issues and Challenges of NMC Cathodes 

NMC cathodes suffer from several issues, including structural instability, formation of SEI, 

performance fading, and safety issues.  

Solid Electrolyte Interface and Structural Issues 

https://creativecommons.org/licenses/by-nc-nd/4.0/


The formation of solid-electrolyte interface (SEI) represents a portion of the capacity loss during 

cycling. Zhang et al. performed post-mortem analyses of NMC 532/graphite cells and found that “minor 

cracks and some additional layers are formed on surfaces of both the cathode and anode” [11]. These 

layers are what is known as the SEI. As this layer forms, lithium ions become trapped in it and can no 

longer be used. This irreversibility has been observed to be linear (figure 6).  

Figure 6: Long-term discharge capacity of LCO + NMC532/Gr fuel cells. [11] Zhang et al. licensed 

under CC BY 4.0. 

 

Analysis of the cathodes in Zhang’s study showed that the NMC 532 material had significantly 

larger disruptions after 700 cycles compared to the small cracks in the lithium cobalt (LCO) material in 

the same cell. Such cracks are common. 

https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 7: Crack growth in LCO + NMC 532 cathode. [11] Zhang et al. licensed under CC BY 4.0. 

 

The formation of a surface layer on the cathode and anode was also observed. In figure 8, the 

formation of an SEI layer is observed over 700 cycles. 

 

Figure 8: SEI layer formation on LCO + NMC 532 cathode. [11] Zhang et al. licensed under CC BY 4.0. 

 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


The formation of the SEI layer has been explained by Su et al. (Figure 9). NMC on the surface of 

the cathode dissolves into the electrolyte and can no longer transport lithium.  

 

Figure 9: Schematic of (a) pristine and (b) ALD Al2O3 coated NCM532 electrodes after charged to high 

voltage conditions. [5] Reprinted with permission from reference 5. Copyright 2015 American Chemical Society. 

 

However, this reaction between the electrolyte and electrode can be slowed with atomic layer 

deposition. This strategy will be discussed in detail in section IV. 

Performance Fading and Longevity 

Most papers featured in this review are focused on the improvement of battery life and 

capacity. NMC cathodes face a significant decrease in capacity after many cycles, similar to that seen in 

silicon anodes [12]. This is one of the most challenging issues facing NMC materials, and many different 

methods are being tested to mitigate the problem. Managing or preventing the growth of the SEI is one 

goal of researchers trying to improve battery performance. 

A major limiting factor in Li-ion cathodes is their poor conductivity. [13] A typical approach to 

improve the conductivity is carbon additives, which will be discussed later. NMC has inherently poor rate 

performance “due to low intrinsic electronic and ionic conductivity [14]”. This poor performance is 

attributed to “low electron transport of the material and slow Li-ion kinetics within the grains.”  

Increasing the particle size of the active material was identified as an obstacle to improving the 

rate capability. [15] Manufacturing techniques such as ball milling and other synthesis methods often 

have the goal of reducing particle size. 

Safety Issues 

NMC materials have been shown to have a low reaction in temperature due to state of 

overcharge [16]. However, NMC materials still have a risk of exploding due to oxygen release at certain 

temperatures [17]. 



 Bak et al. performed an analysis of various types of NMC for oxygen released at different 

temperatures (Figure 10).  

 

Figure 10: Mass spectroscopy profiles for the oxygen (O2, m/z = 32) collected simultaneously during 

measurement of TR-XRD [17] Reprinted with permission from reference 17. Copyright 2014 American Chemical 

Society. 

 

 Note the near zero pressure rise from NMC 433 and 532. The phase changes of the NMC 

materials were also recorded with temperature in figure 11: 

 

Figure 11: Temperature Region of phase transitions for NMC samples. [17] Reprinted with permission 

from reference 17. Copyright 2014 American Chemical Society. 

 

 From this diagram it can be concluded that oxygen release in NMC cathodes correlates 

with a rapid phase change in the cathode material. In order to reduce this oxygen release and the 

potential for combustion, the phase change needs to be slowed. 

Manufacturing Issues 



No manufacturing process is perfect, but for an NMC cathode, a defect can mean greatly 

reduced performance and life of the cell [18]. Several different types of common defects have already 

been identified as well as their causes. Figure 12 shows how for an NMC 532 cathode various defects 

affected the performance of a cell. Mohanty et. Al. suggest that agglomerates are created when the 

coating of the NMC material is not mixed well enough, pinholes are created because of bubbles in the 

slurry, and defective coating areas are a result of tool malfunctions or inaccurate mixing protocols. Note 

how agglomerates and several small defective areas reduced capacity retention significantly more than 

the other defects tested and should be avoided. 

 

Figure 12:  The capacity retention values after 200 cycles for baseline and defective electrodes at the 2C 

discharge rate and at the 5C discharged rate. [18] Reprinted with permission from reference 18. Copyright 2016 

Journal of Power Sources. 

 

IV. Strategies for Improving NMC Performance 

As discussed earlier, much of the current research regarding NMC materials in batteries is 

concerned with improving performance of the batteries. 

Additives 

A common approach to improving performance is adding various materials to the NMC slurry. 

Carbon nanotubes, nanoribbons, graphene, and carbon black [19] have been tested. Layer thickness of 

these additives is typically 40 micrometers thick. Researchers have tested the effects of each such 

material individually and in conjunction with others. For instance, carbon black alone was found to leave 

many holes in the coating on the electrode, but when carbon nanotubes were added, the number of 

holes largely decreased [17]. Combining various carbon additives improved the capacity, life, and rate 

performance of the 532 cathodes.  



 

Figure 13: Diagram of carbon additives. [19] Chen et al. licensed under CC BY 4.0. 

 

Figure 14: SEM image of electrode with carbon black, CNT’s, and graphene. [19] Chen et al. licensed under 

CC BY 4.0. 

 

The performance improvement for Chen et al. is as follows: 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 15: Electrochemical performances of three types of electrode: (a) the initial charge/discharge 

profile at 0.1C; (b) rate capabilities. [19] Chen et al. licensed under CC BY 4.0. 

 

The carbon additives themselves can also be modified, as discovered by Su et al. [13] in which a 

commercially available carbon black was compared to a novel carbon black from Cabot (CBC). 

 

Figure 16: Commercial vs novel carbon black. [13] Su et al. licensed under CC BY 4.0. 

The rate performance of the CBC was better compared to the existing commercially available 

carbon black, even when just 1% wt was used (figure 17).  

 

Figure 17: Rate performance of commercial vs. novel carbon black. [13] Su et al. licensed under CC BY 4.0. 

 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


 Su et al. measured little difference when using 5% of either compound. However, there was a 

marked difference in the rate performance when just 1% of the CBC nanoparticle and standard carbon 

black was used. The mechanism for why this novel particle works better was described because of lower 

electric resistance of the particle. The CBC has a smaller particle size compared to the commercial 

carbon black.  

Doping 

Doping involves adding yet another element to the cathode with the goal of slowing or stopping 

phase changes as a function of temperature. Guo et al. added both aluminum and fluorine to combine 

the advantages of both types of doping [20]. This method mitigated the layered-to-spinel transition and 

inhibited capacity fade (Figure 18). This meant that both the safety aspect and a performance aspect 

were addressed with one method. 

 

Figure 18: Capacity was greatest and had the best capacity retention when concentration of Al and F were 

highest in this study (iv). [20] Reprinted with permission from reference 20. Copyright 2017 Electrochimica Acta. 

 

Surface Coatings 

Atomic layer deposition (ALD) and molecular layer deposition (MLD) are used to add a thin layer 

of aluminum oxide (𝐴𝐿2𝑂3), zinc oxide (𝑍𝑛𝑂), or titanium dioxide (𝑇𝑖𝑂2) to the surface of the NMC 

structure. This layer is typically on the scale of a few nanometers thick [21]. ALD allows for precise 

control of layer thickness, composition, and a high degree of homogeneity. Surface coatings are applied 

with the goal of improving cathode conductivity and life by preventing hindering electrode/electrolyte 

reactions (Figure 19). Su et al. showed that 5 coatings of Al2O3 on NMC 532 cathodes were optimal in 

improving performance of the material. [5] 



 

Figure 19: TEM Images of an uncoated electrode (a) and a 10-ALD electrode (b). [5] Reprinted with 

permission from reference 5. Copyright 2015 American Chemical Society. 

 

Figure 20: Capacity retention of ALD coated electrodes after 100 cycles. [5] Reprinted with permission 

from reference 5. Copyright 2015 American Chemical Society. 

 

 Laskar et al. found that just 2 coatings of Al2O3-Ga2O3 was optimal for NMC 532 and improved 

capacity 270% over the uncoated cathodes at a high rate of 10C [22] (Figure 21). 



 

Figure 21: Rate performance of different ALD layer thicknesses [22]. Reprinted with permission from 

reference 22. Copyright 2016 American Chemical Society. 

 

 Elemental mapping of ALD from Laskar showed an even distribution of elements on the surface 

of the cathode. This would suggest an even coating over the entire cathode which is desirable to prevent 

SEI formation. 

 

Figure 22: EDXS elemental mapping of NMC coated with Al2O3− Ga2O3 alloy film obtained from copulsing 

ALD method. The similarity in Ga and Alintensity profiles indicate uniform mixing, and uniform coverage, at spatial 

resolution of ∼0.25 μm. (b) [22] Reprinted with permission from reference 22. Copyright 2016 American Chemical 

Society. 

 

 



The layer thickness and difference in structure between the NMC and the ALD layer can be seen 

in figure 23. Note the layered, crystalline structure of the NMC versus the disordered structure of the 

AlGa-oxide layer. 

 

Figure 23: TEM image reveals the amorphous nature of the AlGa-oxide coating on crystalline NMC 

particle. [22] Reprinted with permission from reference 22. Copyright 2016 American Chemical Society. 

 

Electrolyte Modification 

The electrolyte used in a lithium-ion battery can also have a large impact on its performance. 

Both the composition of the electrolyte and the amount of electrolyte was analyzed. An et al. tested the 

performance of NMC 532 cathodes with different electrolyte volumes to pore volume factors in pouch 

cells, and Long et al. tested that of coin cells. An found an ideal ratio of 1.9 [23] while Long found an 

ideal factor of 2.7 [24]. The ratio is defined as the ratio of electrolyte volume to pore volume on the 

cathode and anode. The discrepancy between the ideal ratio for coin and pouch cells is explained by An: 

“Coin cells have large dead volume at spring zone and around spacers in the cans while pouch cells are 

tightly sealed in flexible pouches without spacers and springs under vacuum.” 



 

Figure 24: Discharge capacity comparison for different electrolyte volumes. [24] Reprinted with 

permission from reference 24. Copyright 2016 Journal of the Electrochemical Society. 

Note the decreasing performance as the electrolyte volume reaches F4.7 and F8.7. Long et al. 

speculated that this is due to “increased SEI formation in early cycles. The components of the SEI likely 

have a finite solubility, which may result in greater dissolution of the SEI requiring additional 

consumption of cyclable lithium. In addition, excessive electrolyte can act as a lubricant and make 

electrode alignment difficult by causing the electrodes to slip.” [24] 

Miscellaneous 

Aqueous electrode processing [25] is also being applied to batteries to improve their life and 

capacity. This method has the potential to “reduce the processing cost, by avoiding the need for the 

recovery of the processing solvent, facilitate the recyclability, and decrease the environmental impact of 

such potentially fluorine-free cathodes.” 

Layer distance between lithium and NMC layers (Figure 25) and therefore temperature affects 

the rate of lithium-ion diffusion in a cell. Cui et. al. found that NMC 622 had the best lithium diffusion 

coefficient and the least change depending on temperature. [26]  

 

 



 

 

Figure 25: Diffusion coefficient of different materials versus state of charge in a) 50° C (323 K), b) 25° C 

(298 K), and 0° C (273 K). [26] Reprinted with permission from reference 26. Copyright 2015 Advanced Energy 

Materials. 

 

Wu et al. came up with a unique “pre-lithiation” process which aims to reduce the first-cycle 

capacity loss by charging the cell to a low potential before cycling. Bringing the NMC 532 cathode to a 

1.2V led to an interphase normally found only on anode surfaces (Figure 26). The layer formed was 

roughly 40 nm thick and minimized the loss of manganese ions and side reactions in later cycling. This 

layer can easily be formed and incorporated in future designs. [27] 

 

Figure 26: Illustration of the layer formed by pre-lithiation. [27] Reprinted with permission from reference 

27. Copyright 2015 American Chemical Society. 



 

Figure 27: Charge/Discharge cycles of pristine cathode (a) and pre-lithiated cathode (b). Reprinted with 

permission from reference 27. Copyright 2015 American Chemical Society. 

 

 

Conclusions and Outlooks 

Layered lithium Ni-containing compounds LiNi1-x-yCoxMnyO2 are technologically important cathode materials 

for Li-ion batteries. Each of the three transition metals can contribute to the whole properties of the cathode 

materials. Within the NMC system, the inexpensive LiNi0.5Co0.3Mn0.2O2 cathode material which exhibits good 

electrochemical performance and high thermal stability, is widely used in commercial LIBs. As we know, NCA 

cathode materials have already been used in Tesla for electric vehicle application. However, because of their 

limited rate capability and drastic degradation in capacity and cycle-life at elevated temperatures and high 

operation voltages, some efforts are still needed to optimize the electrochemical performance of 

LiNi0.5Co0.3Mn0.2O2 cathodes. Recently, researchers are mainly focusing on doping and surfacing coating to 

minimize the issues faced by LiNi0.5Co0.3Mn0.2O2, such as cation mixing and surface side reactions. In particular, 

ALD coating becomes more and more popular, because it can utilize sequential and self-limiting surface 

reactions that enable tailored conformal coatings with Å-level thickness control. Additionally, ALD can be 

employed for powders and directly on fully fabricated electrodes. 

In the interest of the environment, considerations and future studies need to be made regarding the 

sustainability of LIBs, particularly regarding waste. Recycling methods should be utilized when practical. Further 



studies should be done to explore the effect of nanomaterials when they are released into the environment. 

These particles could be destructive on the cellular level. The effect of elements like nickel, cobalt, and 

manganese being released should also be evaluated. Although they occur naturally, they may pose a threat at 

high concentrations. 

In summary, the relationship between structure and performance of LiNi0.5Co0.3Mn0.2O2 cathode materials have 

been better understood and improved greatly these years. Certainly, these oxides still have many remaining 

challenges related to structural instability, surface side reactions, and safety concerns. Even so, through 

continuous scientific efforts, the energy density and reliability of LiNi0.5Co0.3Mn0.2O2 cathode material can reach 

a level comparable to that of NCA, which are suitable for electronic vehicles in the future. 
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