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Abstract  
Multispectral imaging is becoming more practical for a variety of applications due to its ability to 

provide hyper specific information through a non-destructive analysis.  Multispectral imaging 

cameras can detect light reflectance from different spectral bands of visible and nonvisible 

wavelengths.  Based on the different amount of band reflectance, information can be deduced on 

the subject.  Counterfeit detection applications of multispectral imaging will be decomposed and 

analyzed in this thesis.  Relations between light reflectance and objects’ features will be addressed.  

The process of the analysis will be broken down to show how this information can be used to 

provide more insight on the object.  This technology provides desired and viable information that 

can greatly improve multiple fields.  For this paper, the multispectral imaging research process of 

element solution concentrations and counterfeit detection applications of multispectral imaging 

will be discussed.  BaySpec’s OCI-M Ultra Compact Multispectral Imager is used for data 

collection.  This camera is capable of capturing light reflectance from wavelengths of 400 – 1000 

nm.  Further research opportunities of developing self-automated unmanned aerial vehicles for 

precision agriculture and extending counterfeit detection applications will also be explored. 
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1.0 Introduction  

  With the declining prices of hyperspectral cameras, the applications of these technologies 

have drastically expanded in multiple industries.  The use of hyperspectral cameras is 

increasingly being employed in the medical [1, 2], pharmaceutical [3], and food industries [4].  

Hyperspectral imaging attains both spatial and spectral information through a combination of 

conventional imagery and spectroscopy.  For this image capturing, data is stored in 3-

dimensional data sets known as hypercubes, where two dimensions are spatial readings and one 

dimension is a spectral reading [2].  In the case of hyperspectral imaging, the spectral 

information is typically from hundreds to thousands of small spectral bands.  Multispectral 

imaging (MSI) is a subcategory of hyperspectral imaging.  MSI is also used to capture both 

spatial and spectral information; however, MSI usually captures spectral information from two to 

five wavebands that are specific to features of interest.  These systems generally provide some 

combination of visible (400 – 700 nm), near infrared (700 – 1000 nm), short-wave infrared (1000 

– 1700 nm), mid-wave infrared (3500 – 5000 nm), and long-wave infrared (8000 – 12000 nm) 

bands [5].  The use of MSI allows for a quick, non-destructive analysis of objects at reduced 

costs.  MSI cameras are less expensive than HSI cameras, and MSI data requires less processing 

due to the wider spectral bands. 

  MSI cameras can be used in a variety of applications.  Developing applications include 

outfitting Unmanned Aerial Vehicles (UAVs) with MSI cameras, providing a cost effective and 

efficient capability to survey agricultural fields.  This paper will explain how MSI data can 

provide valuable information on agricultural fields.  This analysis concept will be applied to 

other applications including scanning different elemental solutions for classification of element 

type and concentration and scanning different materials for counterfeit detection.  This will be 

the main focus of this paper.  These applications will be decomposed and analyzed to show how 

different band reflectance measurements will be used to deduce specific and insightful 

information on the subject.  Further research opportunities will also be explored and discussed 

for these applications.  This paper shows how to use BaySpec’s OCI-M 8 band MSI camera to 

analyze elemental solutions, printer documents, and counterfeit clothing. 
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2.0 Background 

2.1 MSI Data Analysis Concept 

 To understand how MSI data can be indicative of features of interest, Precision 

agriculture, an information and technology-based farming system, will be examined.  Precision 

agriculture allows for farmers to manage crops, soil, fertilization, irrigation, and other factors, 

optimally [6].  With an MSI outfitted on a UAV, necessary data for real time assessments on 

agricultural fields can be used to assist in determining precision agriculture actions to increase 

crop yield.  Currently, farmers typically use average conditions and measurements or years of 

observant based knowledge to maintain their overall crops.  This approach creates variability of 

crop yield dependent upon the section of the agricultural field [6].  Through the use of MSI 

equipped UAVs, different sectors of agricultural fields can receive specific amounts of water, 

fertilizer, herbicides, pesticides, and any other attention required to produce maximum crop 

yield.  However, MSI is only capable of capturing data.  Data must be processed so that farmers 

know how to effectively and efficiently attend to their crop sections.  For this research, the main 

objective will be processing collected MSI data to develop algorithms to allow for real-time data 

processing.  Precision agriculture will be used to exemplify how MSI data can provide hyper 

specific information for features of interest. 

 MSI data collected can be used to determine plants’ health.  There is a correlation 

between healthy plant structures and light reflectance of different bands.  This correlation can be 

observed through the Normalized Difference Vegetation Index (NDVI).  Studies have shown that 

healthy chlorophyll absorbs the majority of visible light from 400 – 700 nm for the 

photosynthetic process.  Healthy cell structures of leaves also reflect near-infrared light from 700 

– 1100 nm.  If there are more leaves on a plant, then more wavelengths from 400 – 1100 nm will 

be affected [7].  Using this knowledge, the standardized NDVI can be calculated using the 

following equation: 

   𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑉𝐼𝑆)

(𝑁𝐼𝑅+𝑉𝐼𝑆)
     (1) [7] 

where NIR refers to the near-infrared light reflected, and VIS refers to the visible light reflected 

by the vegetation.  The NDVI is a comparison between the difference of visible and near-infrared 

light reflected to the total of visible and near-infrared light reflected.  For this reason, the NDVI 

can only be between -1 and 1.  An NDVI of less than or equal to 0 means that there is no 
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vegetation while an NDVI of 1 indicates the densest amount of green leaves possible [7].  The 

use of MSI is apparent when calculating the NDVI of agricultural fields.  However, algorithms 

must be created in order to process the MSI data captured by UAVs. 

An example of agricultural field MSI data provided by Chinese collaborators can be seen 

in Figure 1 below.  The MSI captures the normal visible light bands as well as non-visible 

infrared bands.  The non-visible light bands are equated to a visible color.  The final image 

composed is all image bands stacked, forming a single false color image. 

 

Figure 1. MSI of Agricultural Field (Provided by Chinese collaborators) 

 Decomposition of the images into separate bands will be required of these images to 

observe specific types of light frequencies.  By comparing these bands, vegetation information 

can be gathered.  The difference of visible light bands and near-infrared bands can then be used 

to make a calculated estimate on how healthy particular areas of the agricultural fields are.  This 
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data will need to be compared to real-life data taken from samples in the field.  By comparing the 

calculated estimate to the real-life samples, algorithms can be validated so that MSI capturing of 

agricultural fields can eventually be processed in real-time. 

The same MSI analytical concept for precision agriculture can be applied to many 

different applications.  Research has shown that rare earth elements have been used as fertilizer 

to increase crop yield [8].  For example, mercury solutions have been used to prevent seed-borne 

illnesses.  By scanning different earth element solutions, algorithms can be developed to classify 

different elemental solutions of varying concentrations in industries’ solutions.  For this research, 

BaySpec’s 8 band OCI-M Ultra-Compact Multispectral Imager captured MSI data on mercury 

(Hg), lead (Pb), Neodymium (Nd), and Strontium (Sr) elemental solutions.  Table 1 below shows 

the concentration of each elemental solution used for data collection. 

Table 1. Element Solution Concentrations 

Element Concentration 

Mercury (Hg) 10 parts per million 

Lead (Pb) 10 parts per million 

Neodymium (Nd) 500 parts per billion 

Strontium (Sr) 500 parts per billion 

 

Similar to how the light reflectance in the NDVI correlates to a plant’s health, it is likely that 

these different elemental solutions will have different light reflectance specific to the element.  In 

this paper, the MSI data collected on these solutions will be examined in attempt to classify each 

solution. 

MSI research will also be applied for counterfeit detection.  Each printer implements its 

own digital watermark on every printed page.  This digital watermark is known as a Machine 

Identification Code (MIC).  It allows for traceable identification of the specific printer used to 

print each document [9].  In the case of counterfeit money, not only is it possible to detect 

counterfeit, but it’s also possible to identify the printing source.  For this research process, 

different printers were used to print color images as well as black and white images.  The same 

settings were used to print the documents from different printers.  MSI data collected on these 

printer documents will be analyzed in attempt to classify the printer source of each document. 
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This research will explore the counterfeit materials and see if MSI data can be used to 

detect counterfeit clothing.  MSI data will be collected on an original manufactured Kate Spade 

dress and a counterfeit dress.  This data will be analyzed to see if there is a significant difference 

between the light reflectance of each dress.   

2.2 MSI Data Capture 

The beginning of this research process requires capturing MSI data.  Data was captured 

in a controlled, inside environment.  Two halogen lamps were used as the light source.  Halogen 

light sources are essential for MSI data collection due to its continuous spectrum of light output 

from near ultraviolet (~315 nm) to infrared (~1050 nm). 

Data was captured using BaySpec’s 8 band OCI-M Ultra-Compact Multispectral Imager.  

This camera is capable of capturing light reflectance from 400 nm to 1000 nm wavelength using 

a push broom scanning format.  The light reflectance from 400 nm to 1000 nm will be evenly 

separated into 8 equal bands (band 0 through band 7).  This means that band 0 will capture light 

reflectance from 400 nm – 475nm, and band 7 will capture light reflectance from 925 nm – 1000 

nm.  BaySpec’s CubeCreator software application will then be used to generate hypercubes.  It 

creates bitmap (BMP) image files of each spectral band that correlate the amount of light 

reflectance to an 8 bit binary number representation between 0 and 255.  In order to create a 

high-quality hypercube, BaySpec’s CubeCreator requires a diverse background to correctly stitch 

the scanned images together.  This was achieved by using a newspaper for the background 

during data collection.  Once high-quality hypercubes have been collected, preprocessing steps 

will be required so that pixel data only comes from specific regions of interest.   

2.3 Data Preprocessing 

2.3.1 Scale Invariant Feature Transform (SIFT) Keypoint Detection 

 During the data collection for this research, BaySpec’s CubeCreator generated 8 BMP 

images for each scan.  Unfortunately, these images were not perfectly aligned with each other.  

This was likely caused by human induced error, a common problem during real life data 

collection processes.  In order to overcome this error, image processing took place using Scale 

Invariant Feature Transform (SIFT) to detect key image features.  These features were used to 

warp the perspective of the image in order to ensure alignment of pixels between band images.  

This image warping ensures that each pixel between bands can accurately represent 8 spectral 

readings of the same location. 
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 SIFT works by locating key points of an image through the detection of scale-space 

extrema.  Scale-space extrema identify locations in images that are invariant of scale and 

orientation [10].  Computing SIFT works by first doubling the width and height of the image.  

Once this is completed, a Gaussian convolution is used to manipulate the image by blurring the 

image with a Gaussian function as shown in equation (2) below: 

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦)     (2) [10] 

where 𝐿(𝑥, 𝑦, 𝜎) is the output image, 𝐺(𝑥, 𝑦, 𝜎) is a variable scale Gaussian function, ‘∗’ is the 

convolution, and 𝐼(𝑥, 𝑦) is the input image.  The Gaussian function, 𝐺(𝑥, 𝑦, 𝜎) is defined by 

equation (3). 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 𝑒−(𝑥2+𝑦2)/(2𝜎2)     (3) [10] 

This Gaussian convolution is performed multiple times to the image with increasing standard 

deviation for the convoluted Gaussian function.  Once a threshold is reached, the final blurred 

image will be down sampled to obtain a smaller image.  This process is performed multiple times 

until the picture becomes too small to scale down further.  After this process, a scale space of 

different sizes of the image will be constructed.  Next, stable keypoint locations will be detected. 

 In order to detect stable keypoint locations, the difference-of-Gaussian must be 

computed.  This is done by finding the pixel value difference between the different blurred 

images.  The difference-of-Gaussian, represented by 𝐷(𝑥, 𝑦, 𝜎), can be calculated using equation 

(4): 

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) −  𝐺(𝑥, 𝑦,)) ∗ 𝐼(𝑥, 𝑦) =  𝐿(𝑥, 𝑦, 𝑘𝜎) −  𝐿(𝑥, 𝑦, 𝜎)       (4) [10] 

where k is a constant.  The 𝐷(𝑥, 𝑦, 𝜎) image shows the pixel value difference between Gaussian 

blurs.   Figure 2 graphically represents this calculation. 
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Figure 2. Difference-of-Gaussian Graphic Representation [10] 

As you go through the scales, the images become more blurred.  This results in a smoothness of 

pixel value surface intensities.  If the surface intensities of the image are smoothed out, then the 

amplitude of image derivatives decreases as you increase the scale (i.e. increasing ).  This 

creates a negative proportional relationship between  and the image derivative. This results in 

the maximum amplitude image derivative at the beginning of the scale and the minimum 

amplitude image derivative at the end of the scale.  Thus, scale normalization is required to 

correctly observe the image extrema across the scale. 

Theoretically, the scale-normalized Laplacian of Gaussian (22G) should be computed 

for each scale space.  Through the normalization of the Laplacian, true scale invariance can be 

achieved.  The extrema of the Laplacian represent the candidates for the keypoint locations.  The 

difference-of-Gaussian is a discrete approximation of the scale normalized Laplacian of 

Gaussian related by equations (4) and (5). 

𝐺


= 2𝐺          (4) [10] 

2𝐺 =
𝐺




𝐺(𝑥,𝑦,𝑘𝜎)− 𝐺(𝑥,𝑦,𝑘)

𝑘 − 
      (5) [10] 

From these equations, the following can be seen: 

 𝐺(𝑥, 𝑦, 𝑘) − 𝐺(𝑥, 𝑦,) ≈ (𝑘 − 1)22𝐺      (6) [10]  



University of Arkansas  14  EE Department 

 

From equation (6), it can be seen that the difference-of-Gaussian includes 2 required for scale 

normalization of the Laplacian.  The extrema of the difference-of-Gaussian can then be used to 

detect stable features across the images.  The overall SIFT process is represented by Figure 3. 

 
Figure 3. SIFT Algorithm Graphic Representation [11] 

Once SIFT features are detected across the band images, the keypoints will be used to 

warp the perspective image to a base image.  By warping all band images to a base perspective, 

all pixel values should be lined up.  This means each spatial location of the images can be 

analyzed by an 8-dimensional vector of spectral information.  SIFT features will be computed 

with python’s OpenCV library. 

2.3.2 Image Segmentation 

After aligning the band images, image segmentation must be performed on the collected 

data.  This will be completed by applying a binary mask to the hypercubes, allowing for analysis 

of only the pixels of interest.  Pixels of interest for this research include the elemental solutions, 

the image from the printer documents, and the original and counterfeit clothing.  Image 

segmentation will be performed using MATLAB’s image segmenter application. 

2.4 Support Vector Machine (SVM) Algorithm Development 

Once the data has been preprocessed, algorithm development will take place to see if the 

MSI data can be used to classify the elemental solutions, printer sources of documents, and 
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counterfeit clothing.  These algorithms will use Support Vector Machine (SVM), a supervised 

learning model, to classify data with training and testing data.  The basic principle of SVM uses 

support vectors to create planes between different data in order to categorize them.  These 

division planes are known as hyperplanes.  SVM uses training data to compute these 

hyperplanes. 

Suppose training data denoted by {(x1,y1), … ,(xn,yn)} is a subset of  x  where  

denotes the space of the input.  Therefore,  exists in a real dimension d.  The goal of SVM is 

to use the training data to compute a function, f(x), that has a maximum deviation of  from the 

targets yi while remaining as flat as possible [12].  A flat function signifies that the derivatives go 

to 0 at some point.  This allows for SVM to classify information as long as errors are within .  

An SVM linear classification function will be broken down to understand the simplest case of 

SVM classification.  The linear function, f(x), is represented by equation (7) below: 

𝑓(𝑥) = < 𝑤, 𝑥 > +𝑏       (7) [12] 

where < . , .> denotes the dot product in  .  To make this function flat, the norm should be 

minimized so that ∥w∥2 = ⟨w,w⟩.  This can be turned into a convex optimization problem as 

shown in equation (8): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒      
1

2
∥ 𝑤 ∥2  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:          𝑦𝑖−< 𝑤, 𝑥𝑖 > −𝑏 ≤  𝜀    (8) [12] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      < 𝑤, 𝑥𝑖 > +𝑏 − 𝑦𝑖 ≤  𝜀  

assuming that it is possible to approximate all pairs of (xi, yi) in f(x) with 𝜀 precision [12].  

However, it is likely that 𝜀 precision cannot be obtained for all pairs.  In this case, error can be 

accounted for by including the slack variables i and i
*.  The convex optimization problem from 

before becomes: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒      
1

2
∥ 𝑤 ∥2+ 𝐶 ∑ (

𝑖
+ 

𝑖
∗)𝑙

𝑖=1   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:          𝑦𝑖−< 𝑤, 𝑥𝑖 > − 𝑏 ≤  𝜀 + 
𝑖
   (9) [12] 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      < 𝑤, 𝑥𝑖 > +𝑏 − 𝑦𝑖 ≤  𝜀 + 
𝑖
∗
  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      
𝑖
,   

𝑖
∗  ≥ 0  

where C is a constant > 0 that is related to the tradeoff between the flatness of f(x) and the 

toleration of error larger than 𝜀.  This type of optimization problem corresponds to an 𝜀-

insensitive loss function shown in equation (10) below. 

||𝜀 ≔ {0,            𝑖𝑓|| ≤ 𝜀      (10) [12]  

||𝜀 ≔ {|| − 𝜀,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Figure 4 below shows the linear SVM optimization process. 

 

Figure 4. Soft Margin Loss of Linear SVM [12] 

The points outside the 𝜀 margin are the reason for a non-flat region.  Figure 4 displays the basic 

principle behind SVM.  However, the optimization problem from equation (9) can be solved in a 

dual formulation for nonlinear functions.  This means that the previous function will be used as a 

bound for another function.  The previous function will be referred to as the primal objective 

function, and the Lagrangian will be used for this dual formulation. 

 A dual set of variables, known as the Lagrangian multipliers, will be required to construct 

the Lagrangian from the primal function.  The Lagrangian, denoted by L, is represented in 

equation (11): 
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𝐿 ≔
1

2
∥ 𝑤 ∥2+ 𝐶 ∑(

𝑖
+ 

𝑖
∗)

𝑙

𝑖=1

− ∑(𝜂𝑖𝑖
+ η𝑖

∗
𝑖
∗)

𝑙

𝑖=1

 

− ∑ 𝛼𝑖(𝜀 + 
𝑖

− 𝑦𝑖+< 𝑤, 𝑥𝑖 > +𝑏) −𝑙
𝑖=1 ∑ 𝛼𝑖

∗(𝜀 + 
𝑖

+ 𝑦𝑖−< 𝑤, 𝑥𝑖 > −𝑏)𝑙
𝑖=1   (11) [12] 

where 𝜂𝑖 , η𝑖
∗, 𝛼𝑖 , 𝛼𝑖

∗ are positive Lagrange multipliers used to satisfy the saddle point condition.  

The saddle point condition means there will be a point on the surface where the partial 

derivatives are zero with respect to the primal function variables (𝑤, 𝑏, 
𝑖
, 

𝑖
∗) in the orthogonal 

direction. In other words, the following conditions will be satisfied. 

𝜕𝑏𝐿 = ∑ (𝛼𝑖
∗ − 𝛼𝑖)

𝑙
𝑖=1 = 0      (12) 

𝜕𝑤𝐿 = 𝑤 − ∑ (𝛼𝑖
∗ − 𝛼𝑖)𝑥𝑖

𝑙
𝑖=1 = 0     (13) 

𝜕𝑖
𝐿 = 𝐶 − 𝛼𝑖 − 𝜂𝑖 = 0      (14) 

𝜕𝑖
∗𝐿 = 𝐶 − 𝛼𝑖

∗ − η𝑖
∗ = 0      (15) [12] 

The dual optimization problem can be formed by substituting equations (12), (13), (14), and (15) 

into equation (11).  This is shown in equation (16) [12]. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 
−1

2
∑ (𝛼𝑖

∗ − 𝛼𝑖)(𝛼𝑗
∗ − 𝛼𝑗) < 𝑥𝑖, 𝑥𝑗 >𝑙

𝑖,𝑗=1 − 𝜀 ∑ (𝛼𝑖 + 𝛼𝑖
∗) +𝑙

𝑖=1 ∑ 𝑦𝑖(𝛼𝑖 + 𝛼𝑖
∗)𝑙

𝑖=1   (16) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑(𝛼𝑖
∗ − 𝛼𝑖)

𝑙

𝑖=1

= 0 𝑎𝑛𝑑 𝛼𝑖, 𝛼𝑖
∗  ∈ [0, 𝐶] 

From equation (13), the following can be seen: 

𝑤 = ∑(𝛼𝑖
∗ − 𝛼𝑖)𝑥𝑖

𝑙

𝑖=1

 

which results in:  

𝑓(𝑥) = (𝛼𝑖
∗ − 𝛼𝑖) < 𝑥𝑖, 𝑥 > +𝑏.      (17) [12] 

b is a constant that is computed using the Karush-Kuhn-Tucker (KKT) conditions.  Since the 

primal function is convex, the KKT conditions are required for strong duality.  More details on 

how to compute b can be found in Smola (2004) [12]. 
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 For this research, SVM will be used to categorize the different elemental solutions, 

printer sources, and counterfeit clothing material.  An attempt using Python’s scikit-learn or 

sklearn library was made to perform SVM calculations and categorizations. 
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3.0 Experiment 

3.1 Data Collection 

After an understanding of the MSI classification process is obtained, data collection can 

begin.  Data collection was performed on a 10 ppm Pb solution, a 500 ppb Nd solution, a 10 ppm 

Hg solution, and a 500 ppb Sr solution.  These earth element solutions were created by Dr. 

Adriana Potra from University of Arkansas’ Department of Geosciences.  Solution samples were 

transferred to a petri dish where they were scanned in a controlled and inside environment.   

Printer documents from different printer sources were also scanned.  The image shown in 

Figure 5 was printed on different printers. 

 

Figure 5. Printed Image [13] 

This image was printed in black and white with 600 dots per inch (dpi) on the following 

printers: HP LaserJet P2055dn, HP OfficeJet Pro 276dw, and Xerox Color C60.  The image was 

also printed in color with 1200 dpi for the following printers: Dell C7765dn, and Xerox Color 

C60. 

Two dresses were scanned for MSI classification.  These included an original 

manufactured Kate Spade dress, and a counterfeit dress created by a student from the University 

of Arkansas’ School of Human Environmental Sciences.  All scanned samples were obtained in 

an inside, controlled environment.  Figure 6 below demonstrates the setup of the dress data 

collection. 
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Figure 6. Dress Data Collection Setup 

Similar data collection setups were used for each scanned item.  The newspaper was used as a 

diverse background so the CubeCreator software could correctly stich images together. 

3.2 Hypercube Generation 

After all samples had been scanned, BaySpec’s CubeCreator software application was used to 

generate hypercubes.  Each hypercube contains the 8 bands of spectral information.  An example 

of band 4 of the Hg 10 ppm solution is shown in the figure 7 below. 
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Figure 7. Band 4 of 10 ppm of Hg Elemental Solution 

This band represents light reflectance from 700 nm – 775 nm.   

3.3 SIFT Keypoint Detection 

Once hypercubes were obtained, SIFT feature matching was performed in order to correctly line 

up the images.  Figure 8 exemplifies SIFT keypoint detection using OpenCV’s library. 
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Figure 8. SIFT Keypoint Detection between 10 ppm Hg Band 4 and Band 5 

It’s apparent that not all keypoints are correct.  Each keypoint was manually selected as correct, 

and only matches on the petri dish’s edge were selected.  These keypoints were then used to 

warp the perspective of band 5 to match band 4.  This process was repeated for each band using 

band 4 or band 3 (i.e. a center band) as the base image to map to.  By mapping all images to the 

same base image, all images should align.  This ensures that each pixel location will be 

homologous across each band. 

3.4 Image Segmentation 

After the images are aligned, segmentation of each image must take place so that only the pixels 

of interest are analyzed for algorithm development. 
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Figure 9. Image Segmentation of 10 ppm Hg Band 4 

Once this is complete, these pixels will be combined into a 3-dimensional array. 2 dimensions 

will represent the spatial location.  The 3rd dimension will contain 8 channels, one for each band 

value.  This 3-dimensional array will be the input data for SVM classification. 

4.0 Results 

This research concluded in segmented images prepared for SVM classification.  Image 

alignment was performed to ensure that spatial positions of pixels were homologous between 

bands.  This allows for a pixel location to be correlated to an 8-dimensional vector represented 

by each band. 

 An SVM classification attempt was made using Python’s scikit-learn library.  However, 

in order for the SVM classifier to be created, data must be input such that each band image is 

represented as a single row in a matrix.  This will require reshaping the image matrix.  The 8 

bands of data for each scanned object would correlate to an 8 row matrix where band 0’s data 
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would be in the first row.  Labels must also be given for the input data so that the classifier 

knows how to correlate the training data. 

 Although the SVM classifier was unable to be obtained, it is likely that MSI data could 

recognize the printer source of documents if the same image was printed with the same settings.  

Figure 11 below shows the light reflectance of band 6 from both the HP LaserJet P2055dn and 

HP OfficeJet Pro 276dw printers. 

 

Figure 10. Band 6 Light Reflectance from P2055dn (Left) and 276dw (Right) 

If a histogram plot of the pixel values is created, the difference in light reflectance can be seen. 
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Figure 11. Histogram of P2055dn Band 6 Pixel Intensities 

 

Figure 12. Histogram of dw276 Band 6 Pixel Intensities 

The difference in pixel intensities can be viewed through these figures.  However, the histogram 

does not display the pixel location that correlates with these light reflectance intensities.  The 
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SVM classification algorithm would be able to correlate spatial location to light reflectance 

intensity.  A label will be given for each pixel data stating the printer source for each document 

to train the algorithm. 

4.1 Reflection 

 Originally, it was assumed that the CubeCreator software application would be able to 

generate hypercubes where every pixel was aligned.  However, this did not hold true, and image 

processing was required to ensure that each pixel location aligned correctly.  It is a possibility 

that human induced error caused the need for image processing.  During the data collection 

process, the camera was set on a tripod while items were moved across the MSI camera’s view.  

The movement of the scanned object did not occur in a perfectly horizontal manner.  It would be 

ideal to have a machine to ensure the object moves only in the horizontal axis.  This could be a 

platform that moves a scanned object, or a machine that moves the MSI camera.  It would be 

ideal if the MSI camera could attach to a machine that could move in the same manner as a 3D 

printer. 

 Another adjustment that could be made for better data creation is to have designated 

markers in the scan to allow for faster alignment during the image processing stage.  Four 

corners could be marked around the scanned object.  These corners could be used to easily warp 

the perspective ensuring pixel alignment across bands. 

 SVM classification can also be performed in MATLAB.  At first, an SVM classification 

attempt was made using MATLAB.  However, python’s library was eventually used due to the 

availability of more SVM example documentation.  After obtaining a better understanding of 

SVM, MATLAB could be a better program to provide SVM classification.  The advantage of 

MATLAB over python is that processed data structures are easily recognizable compared to 

python.  With this advantage, it is likely the data could be structured correctly to create an SVM 

classification. 

5.0 Future Work 

 To continue with this research, the preprocessed images can be used to create an SVM 

classification.  The data is prepared in a way that could result in a classification if the MSI data is 

distinguishable.  However, one more preprocessing step is required before SVM classification 

can be made.  The final preprocessing step is to reconstruct the image matrix into an 8-row 
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matrix.  Each row will be the input data from each band image.  For the elemental solutions, it 

may be difficult for the SVM classification to recognize the difference when the solution 

concentration was 10 ppm or 500 ppb.  It is possible the SVM classification could, however, pick 

up different printing sources of documents due to the MIC and the printing technique used by 

each printer.  Different printers usually have different ink cartridges for each printer.  These 

different ink cartridges will likely play a role in the light reflectance measurements.  It is also 

probable the SVM classification could recognize the counterfeit dress due to the counterfeit 

material used. 

5.1 MSI Research Possibilities 

 Further research possibilities for precision agriculture and counterfeit detection are 

available for MSI research.  Research on MSI data could provide valuable information in 

agricultural settings.  In precision agriculture, further research on the different light reflectance 

of plants with herbicides and pesticides and ones without could be explored.  This would provide 

more information to farmers and allow them to apply specific amounts of herbicides and 

pesticides to different sections of the agricultural field.  The use of machine learning could also 

be explored to create self-automated UAVs.  Machine learning, also known as artificial 

intelligence, combines the calculating power of Computer Science with data-based analysis from 

statistics [14].  Machine learning teaches a computer how to program itself and improve through 

large amounts of trial and error data.  In particular, neural networks will source the self-teaching.  

Neural networks form complex, non-linear hypotheses from data-based parameters using the 

computational unit known as a “neuron” [15].  Neurons form an output dependent on multiple 

inputs.  By linking multiple neurons, a multi-layer neural network can be created.  Each 

individual output of a neuron will be an input for all neurons found in the following neural layer.  

By doing so, information can be used to receive an input image and decompose the picture into 

separate classes [15].  This will be applied to UAVs for self-automated precision agriculture 

operation. 

 After algorithms are developed, applied machine learning could create UAVs that 

independently survey the unhealthiest field sections first.  The real-time information calculated 

would be processed by machine learning UAVs.  The idea is that UAVs could fly at different 

heights of the field and determine which sections of the field should be analyzed further.  This 
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would prioritize and optimize the path of the UAVs creating the most value out of the UAV 

operating time. 

 As for counterfeit detection, research is not limited to just the detection of counterfeit 

clothing.  The same process could be applied to many different items.  MSI’s nondestructive 

analysis capabilities would be a highly sought advantage for determining counterfeit. 

6.0 Conclusion 

  Research in multispectral imaging capabilities can allow for a specific, and 

nondestructive analysis of objects.  This can allow for identification of problems that would 

normally go unnoticed unless drastic measures or intrusions were completed on the objects.  

Through multispectral imaging, image processing, and algorithm creation techniques, highly 

desirable information can be obtained.  Multispectral imaging allows hyper specific information 

obtainable to users.  For example, the Normalized Difference Vegetation Index is one way to 

determine the health state of the plants being surveyed, and MSI could be used to further explore 

this correlation.  Multispectral imaging can also allow for counterfeit detection as well as the 

identification of the original source used for counterfeit. 

  The detail process for why multispectral imaging is used and how it is used for element 

solution concentrations and counterfeit detection is explored in this paper.  An understanding of 

how light reflectance of different frequencies is correlated to a specific topic is essential before 

data can be processed.  Analysis of only the specific regions of interest must be completed in 

order to create a reliable and highly effective algorithm for determining hyper specific 

information on a topic.  Support Vector Machine can be used to determine whether MSI camera 

data can detect light reflectance differences across a variety of items.  This paper shows the 

preprocessing steps required of MSI data and explains the complete SVM classification process. 
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Appendix: 

This shows one example of the data preprocessing done for this research. 
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