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Abstract 

 The purpose of this thesis is to analyze the usage of multiple image blurring techniques 

and determine their effectiveness in combatting facial detection algorithms. This type of analysis 

is anticipated to reveal potential flaws in the privacy expected from blurring images or, rather, 

portions of images. Three different blurring algorithms were designed and implemented: a box 

blurring method, a Gaussian blurring method, and a differential privacy-based pixilation method. 

Datasets of images were collected from multiple sources, including the AT&T Database of 

Faces. Each of these three methods were implemented via their own original method, but, 

because of how common they are, box blurring and Gaussian blurring were also implemented 

utilizing the OpenCV open-source library to conserve time. Extensive tests were run on each of 

these algorithms, including how the blurring acts on color and grayscale images, images with and 

without faces, and the effectiveness of each blurring algorithm in hiding faces from being 

detected via the popular open-source OpenCV library facial detection method. Of the chosen 

blurring techniques, the differential privacy blurring method appeared the most effective against 

mitigating facial detection. 
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1 Introduction 

Today, individuals share personal data with the world in high capacity. One of the most-

used mediums for sharing is digital images and videos, with social media giants such as 

Instagram boasting over 100 million photos and videos uploaded each day [5]. With this kind of 

scale and the general availability of this data, privacy is arguably a commodity that few are 

afforded once they present such data. While individuals are partially protected via privacy 

settings within applications and general security measures set in place by the companies who 

own the platform, their data is still vulnerable.  Facial detection has grown steadily more and 

more widespread, with libraries such as OpenCV allowing practically anyone with access to a 

computer to implement a rudimentary facial detection screening on images. While isolating a 

face in an image is not necessarily a revealing step in itself, doing so allows attackers the 

opportunity to possibly engage in other attacks, such as running the detected face through a 

database for potential identity detection. 

While it doesn’t seem very intuitive, blurring images has been used as a way of 

preserving privacy within shared images. By blurring, viewers other than the intended party are 

generally rendered unable to determine the image’s content. In practice, a medium of 

communication might blur the image using some form of cryptography scheme (i.e. the image is 

only unblurred once accessed by the account that has the appropriate key) in order to protect the 

image’s integrity within transit. This scheme only works when parties are communicating, 

however. What happens when a user wants to share an image in a public environment that 

contains data about another individual who is unaware that their privacy is being jeopardized? 

Ideas such as that laid out in the [6] recognize the issue of privacy violations simply due to 
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unawareness and seek to preserve affected parties. Steps such as this are steps in the right 

direction, the issue is making sure we are making the steps quickly enough to keep ahead of 

attackers and their innate ability to quickly determine exploits. For example, [6] outlines the 

application PrivacyCamera as giving users the opportunity to have their face blurred if they 

appear in other users’ pictures taken with the application. However, an attacker and retrieved 

one of these images containing the blurred face and was hellbent on determining the identity of 

the person obscured, one of their first steps is going to be isolating the affected portion of the 

image. Many blurring algorithms utilized commonly are open-source and potentially 

mathematically reversible, albeit through brute force [7]. While developing an almost 

completely irreversible blurring algorithm such as the purpose was of [3] is an amazing step 

towards preserving individuals’ privacy, what if we could slow down or even stop attackers 

significantly before they even reach the unblurring step. What if we prevented them from 

detecting the affected portion of the image at all, other than visually? Any step that preserves 

privacy is a step in the right direction and, though this may be a less daunting operation than 

developing blurring algorithms that are harder and harder to reverse, preventing attackers from 

isolating the affected portion of an image upon which they may begin running attacks would 

significantly stall them, thereby allowing the community the opportunity to take a few more 

steps in the right direction and keep ahead of those attempting to violate privacy. 

 

2 Background 

2.1 Image Processing Operations 

2.1.1 High-Pass vs. Low-Pass Filtering 

 In image processing, images can be filtered with either a high-pass filter or a low-pass 
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filter.  In general, high-pass filters are associated with the sharpening of an image and low-pass 

filters are associated with the smoothing of an image. Sharpening is used to increase the contrast 

of an image, which entails the brightening of bright areas of images and the darkening of dark 

areas of images in an effort to make edges appear more defined. Smoothing an image is an 

effort to make an image appear less pixelated and reduce the noise present, generally by 

adjusting each pixel’s value to be closer to an “average value,” which is usually the average 

RGB value calculated from the image’s entire set of pixels. Despite most people’s natural 

propensity to contrast the two with one another, it is very important to recognize that the two 

operations are not proper inverses of one another. Despite the fact that smoothing can 

rudimentarily be used to lower contrast and, therefore, counter sharpening operations, 

sharpening cannot be used to recover lost details in images that are too blurry, dark, bright, etc. 

Blurring can be implemented in different ways, but low-pass filters are the most heavily used 

methods. Due to the nature of this thesis, it is safe to say that the blurring approaches used are 

forms of low-pass filters. 

2.1.2 Kernels 

 In image processing, kernels are small matrixes used to alter an image in some way by 

convoluting between the image and the kernel. They are used for a wide variety of image 

processing operations and can only exist in odd number forms (3x3, 5x5, …). The convolution 

operation is the process of adding each element of the image to its neighbor, with the operation 

weighted by the kernel. Despite being denoted by a “*” symbol, this operation is not typical 

matrix multiplication. For example, imagine we have the two following 3x3 matrices: 

[
1 2 3
4 5 6
7 8 9

]  ∗  [
𝐴 𝐵 𝐶
𝐷 𝐸 𝐹
𝐺 𝐻 𝐼

] 

The central element of each of these matrices would be [2,2]. If the first matrix is the kernel and 
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the second is a piece of the image in question, then the value at the central element [2,2] of the 

image piece would become the value of (9 ∗ 𝐴) + (8 ∗ 𝐵) + (7 ∗ 𝐶) + (6 ∗ 𝐷) + (5 ∗ 𝐸) +

(4 ∗ 𝐹) + (3 ∗ 𝐺) + (2 ∗ 𝐻) + (1 ∗ 𝐼). We would repeat this calculation for each of the other 

elements by centering the kernel over each element in question. This does, however, lead to an 

issue when dealing with edge points. In order to properly handle edges, the kernel will request 

data from pixels outside of the image’s bounds, which is obviously not possible. Fortunately, 

there are multiple approaches to edge handling when it comes to kernels: (1) extend, (2) wrap, 

(3) mirror, (4) crop, and (5) kernel crop. Each of these methods are handled as follows: 

(1) Extend: The kernel is extended back into the image region the required amount to 

make up for missing pixels. Corner points are extended back in a 90° angle, while 

other edge points are extended in lines. 

(2) Wrap: The image is wrapped, meaning values are taken from the opposite edge or 

corner to fill in missing values. 

(3) Mirror: The image is mirrored at edges.  

(4) Crop: Any pixel in the resulting image that would require values from pixels that do 

not exist is ignored and, therefore, set to some other default value (usually 0). This 

form of edge handling usually results in the resulting image being slightly smaller 

than the original due to all edge pixels being converted to black forming a black 

border or simply being cropped off of the resulting image.  

(5) Kernel Crop: Any pixel in the kernel that extends out of the bounds of the original 

image is not used. Normalization, which will be discussed next, is adjusted to 

compensate not using these kernel values. 

Another important concept to understand when discussing kernels is the idea of normalization. 
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Normalization is an effort to make sure that average brightness/darkness of the average pixel in 

the resulting image is as close, if not equivalent, to that of the average pixel in the original 

image. This is achieved by dividing the value of each element within the kernel by the sum of all 

of the kernel’s element values. Performing this operation ensures that the sum of all of the 

elements of a normalized kernel is always one. 

2.1.2 Box Blurring Method 

 As alluded to above, box blurring is a form of low-pass filter for image processing. The 

kernel utilizes uniform values, meaning that every element within the kernel is equivalent. 

Because this uniformity is relatively simple to calculate compared to some other methods, box 

blurring is a fairly quick and common method for blurring images. The main parameter in box 

blurring is the size of kernel you would like to use. For example, imagine we wish to blur an 

image using a 3x3 matrix. Our kernel then would appear as such: 

1

9
[
1 1 1
1 1 1
1 1 1

] =  

[
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The 
1

9
 preceding the first matrix is the normalization value for the kernel, which is how we reach 

the equivalent second matrix. It is important to note that the value of each element of the kernel 

is reduced to one if the kernel is normalized. For example, consider the 3x3 kernel below: 

[
2 2 2
2 2 2
2 2 2

] 

This is, by definition, an appropriate kernel to utilize for box blurring because all of the values 

are uniform. It has not yet been normalized, but when we work to normalize it, we learn it is 

equivalent to the previous kernel we found: 



8 
 

[
2 2 2
2 2 2
2 2 2

] ∗  
1

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
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Between two different normalized kernels of different sizes, the larger of the two projects the 

greatest visual impact on the image. For example, consider the following images: 

 

 

 

 

Figure 1: Original Image, selected due to high resolution (1200x800) and the amount of 

different colors present [9] 
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Figure 2: Image from Figure 1 box blurred using a 15x15 kernel 

Figure 3: Image from Figure 1 box blurred using a 45x45 kernel 
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As you can see from the images, the visible blurriness increases as the size of the kernel used 

increases. This is due to the idea that, as kernel size increases, the number of pixels that affect a 

single pixel’s value increases. We can also begin to make out box-like shapes in the image in 

the image blurred by a 75x75 kernel, reflective of the kernel and how its values are determined. 

2.1.3 Gaussian Blurring Method 

 Gaussian blurring, like box blurring, is also a low-pass filter method for blurring images. It 

also utilizes a kernel to alter the image, but, unlike box blurring, the kernel’s elements are not 

all a uniform value. Instead, the values of each element of a Gaussian kernel are calculated by a 

Gaussian function, meaning the resulting image is the convolution of the original image with a 

Gaussian function. The function utilized for the calculation of the kernel’s elements is as 

follows: 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒

−
𝑥2+ 𝑦2

2𝜎2  

The x and y correspond to an (x, y) coordinate system starting at the origin of the image (the top 

Figure 4: Image from Figure 1 box blurred using a 75x75 kernel 
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leftmost pixel), while 𝜎 is the standard deviation. This is the Gaussian function carried out in 2 

dimensions, but it is important to note that a lot of times the Gaussian filter is carried out in one 

direction (usually horizontal first), followed by another run that runs in the other direction. In 

this case, the Gaussian function used only considers one direction: 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑎) =  
1

√2𝜋𝜎2
𝑒

−
𝑎2

2𝜎2 

The a is whichever direction the run is being made at the time (x when running horizontal, y 

when running vertical). This two-pass method of Gaussian filtering requires fewer calculations 

and, therefore, is generally preferable in implementation. Consider the following 3x3 Gaussian 

kernel: 

[
0.077847 0.123317 0.077847
0.123317 0.195346 0.123317
0.077847 0.123317 0.077847

] 

As you can see, there are actually only 3 unique values in this kernel: 0.077847, 0.123317, and 

0.195346. This shows us that the kernel values decrease symmetrically as we move away from 

the center element. If we move away from the center element of any Gaussian kernel by moving 

only in cardinal directions (i.e. not up, down, left, or right), then all elements that are an 

equivalent distance from the center element are the same value. For example: 

[
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The element denoted 0 is the central element and all elements denoted by the same number 

would be equivalent in value to one another (i.e. all 1’s have the same value, all 2’s have the 

same value, etc.). As with box blurring, the visual impact on an image increases as the kernel 

size increases. To display this, consider the following examples of Gaussian blurring applied to 
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the original image depicted in Figure 1: 

Figure 5: Image from Figure 1 Gaussian blurred using a 15x15 kernel 

Figure 6: Image from Figure ] Gaussian blurred using a 45x45 kernel 
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This blur appears much more radial visually as compared to the box blurring method, which 

correlates with the kernel values decreasing radially from the center point.  

2.1.4 Differential Privacy Blurring Method 

 The differential privacy method is described further in the related work section due to the 

fact that it is not a widely established blurring method and is outlined in a very recent paper. 

2.2 Related Work 

 Image blurring is not a new concept by any means, nor is the idea of utilizing it for means 

of privacy [3]. It has often been used in the obfuscation of information, though this has recently 

been considered to be insecure [7]. Box blurring and Gaussian blurring are two of the most 

commonly used blurring algorithms utilized in image processing, even implemented within 

image editing software such as Adobe® Photoshop®. The differential privacy blurring scheme 

used for this thesis was outlined in a recent paper from the University of Albany [3]. 

2.2.1 Differential Privacy Blurring Method 

Figure 7: Image from Figure 1 Gaussian blurred using a 75x75 kernel 
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 The differential privacy method as utilized in this thesis is a new form of blurring technique 

described in Liyue Fan’s paper “Image Pixelization with Differential Privacy” [3]. Because this 

method is relatively new, its implementation is questionable. The concept as outlined builds off 

of the idea of pixelization. Pixelization is the idea of reducing an image’s resolution in an effort 

to deliberately induce pixelation, or the display of a bitmap at such a high size that its individual 

pixels are visible and distinguishable to the naked eye. This technique essentially gets the color 

stored within a pixel, duplicates it, and pastes it into surrounding pixels until reaching a desired 

size. This idea then results in all colors within the image being represented in blocks. By doing 

so, we receive images such as the following:  

 

Figure 8: Image from Figure 1 pixelized with a pixel block size of 4 
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As the pixel block size increases, the image appears to be made of fewer total pixels, therefore 

appearing to be of a lower resolution. This is basic pixelization at work. The differential privacy 

scheme, however, adds a new element: noise is added to the dominant RGB value acquired in 

each pixel. This noise is calculated as a random value selected from a Laplace distribution. A 

Figure 9: Image from Figure 1 pixelized with a pixel block size of 8 

Figure 10: Image from Figure 1 pixelized with a pixel block size of 16 
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Laplace distribution is a continuous probability distribution, which, therefore, allows us infinite 

possible values to select as our noise value. However, due to the nature of RGB values only 

ranging from 0 to 255, we must use those values as our bounds. As laid out in [3], the Laplace 

distribution is calculated with a mean of 0 and a scale of 
255𝑚

𝑏2𝜀
 where b is our pixel block size, m 

is a selected number of pixels that differ between any neighboring images, and ε is our privacy 

parameter. As described, the default values are b= 16, m = 16, and ε = 0.5. [3] also explains the 

impact each of these variables has, as explained more rudimentarily below: 

(1) b: As b increases, the produced image more closely resembles a pixelized image 

developed without the added noise (i.e. if b increases, the range of potential noise 

values is lowered). 

(2) m: As m increases, so too does the strength of the degree of privacy achieved. 

(3) ε: Lower ε values ensure a stronger degree of privacy achieved. 

While the focus of this thesis was more focused on the concept of privacy achieved through the 

inability to detect faces, it is important to note that this technique of image processing is the most 

secure of the provided methods. 

 

3 Design 

 The goal of this thesis is to determine which image processing technique most effectively 

reduces the possibility of facial detection. In the case of this thesis, the technique providing the 

most security is the technique that sees the greatest average decrease in the number of faces 

detected after utilization of that method to blur initially detected faces in the original image. 

These three techniques are by no means the only three available, but simply are meant to act as 

a base set for determination to be built upon later through future research. 
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 The initial thought behind this thesis was this: blurring algorithms are effective, but in 

certain regards the content can still be determined, especially through the naked eye in large-

scale cases. For example, I may detect and blur a face within an image, present it to an 

individual asking them what has been blurred, and, through context, they may determine that it 

is, in fact, a person’s face that is blurred. While they may not be able to determine identity, they 

were still able to determine the subject matter. The question then arose: could the same be said 

for facial detection algorithms? This question cannot be answered completely in one definitive 

“Technique A is better than all other techniques” format simply because each of the techniques 

implemented for this thesis rely on their own parameters that alter their effectiveness. In order 

to effectively test each technique, this thesis was designed to implement each technique, run 

each of them with multiple parameter values, and to compare the number of faces detected in 

the original image to the number of faces detected in each produced image. 

3.1 Data Sources 

 In order for each of the techniques to be tested thoroughly, an appropriate dataset needed to 

be developed. Images can be taken of anything and anyone and so the dataset needed to be as 

large as possible in order to cover the most amount of possibilities as possible. Ultimately, the 

decision came to utilize two main datasets: the AT&T Database of Faces and an image dataset 

collected by another student at the University of Arkansas who is also researching the in the 

field of image privacy. All of the images in both datasets are of .jpg format, making them easily 

handled by many existing Java libraries. 

3.1.1 AT&T Database of Faces 

 AT&T, one of the leading telecommunications companies in the world, released a large 

collection of grayscale images entitled “The Database of Faces” in 2002 [8]. This repository 
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contains 10 images each of 40 different subjects, comprising a dataset of 400 images. Each of 

the 10 images of a subject are profile shots, meaning that the image’s sole subject is the 

individual’s face. The 10 images are taken of the face at different angles and of the individual 

making different facial expressions in an effort to provide a diverse dataset both for each 

individual and for the entire collection of individuals overall. This database is easily accessible 

and was also utilized in [3], making it a very appealing dataset, especially given its focus on 

faces. This dataset was solely used to test the implementation of each of the image processing 

techniques. 

3.1.2 Personally Collected Dataset 

 While the face images provided by the AT&T Database of Faces are excellent testing 

material, they are unfortunately idealized images. Very rarely are the images that individuals 

share online grayscale images that contain only a face in front of a neutral background. Images 

may contain 1 or multiple subjects from a variety of angles and distances in various settings. In 

an effort to utilize a more realistic dataset, this thesis utilized a dataset already collected by 

another student performing research on facial detection as given permission by the advisor. This 

dataset was compiled of 213 images, each image drastically unique from the others. These 

images are more reflective of real images shared regularly online every day, consisting of 1 or 

more subjects in different lighting, environments, positions, etc. This dataset was solely used to 

test the effectiveness of each of the techniques in beating a facial detection algorithm.  

3.2 Facial Detection 

 Facial detection has become increasingly popular, with even common smartphones now utilizing 

for security purposes. Because of this, there are an increasing number of face detection algorithms being 

made available to the public for developmental purposes. Because of this and in the interest of avoiding 

some type of developmental bias, the design decision was made to utilize a commonly used facial 
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detection algorithm for the purposes of testing. This choice is further explained in section 4. 

 

4 Implementation 

4.1 Box Blurring and Gaussian Blurring 

 Because box blurring and Gaussian blurring are commonly used blurring algorithms, they 

were easily implemented via the commonly used open-source image processing Java library 

OpenCV. To operate each algorithm, the image in question is converted to a Mat object. Mat 

objects are also defined within the OpenCV library as n-dimensional dense numerical arrays 

that can be either single-channel or multi-channel [2]. Because it can store matrices, it has the 

ability to store grayscale and color images (the RGB values are stored in a matrix). This allows 

us to alter the values via matrix operations, as described involving kernels in section 2. Both the 

box blurring and the Gaussian blurring function accept a source Mat object, a destination Mat 

object which allows us to save the alterations made to an entirely new image rather than 

overwriting, and then a Size object used to develop the kernel. The Gaussian function also 

requires a sigma value, which was set to 1 for the purpose of this thesis since this is widely 

accepted as the default sigma value for Gaussian filtering [4].  

4.2 Differential Privacy Blurring 

 To implement the differential privacy blurring scheme as outlined in [3], the OpenCV 

library and the Apache library were both used. Pixelization was implemented to operate on a 

Mat object following the example of the box blurring and Gaussian blurring methods. The 

Apache library’s math package included a Laplace distribution function greatly simplifying the 

whole process of getting the value to use as noise for this scheme. Depending on the pixel size 

specified (the b value for this scheme), a subimage of the appropriate size is created, the dominant 
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color from said subimage is collected, the noise is added to this collected RGB value, and then each 

pixel in the subimage is set to the corresponding value. This results in a pixelated, potentially discolored 

image such as the figure below: 

 

 

 

The discoloration comes from the addition of noise to the fetched dominant RGB value.   

4.3 Facial Detection 

 As mentioned previously, facial detection has become much more accessible and popular in 

the past few years. Due to the popularity and simplicity of the OpenCV, it was also selected to 

implement facial detection. OpenCV facial detection utilizes what is referred to as a 

“CascadeClassifier,” which is just a class used to load a classifier for object detection. Because 

of the idea that faces present in images can be of various sizes and in various positions, 

OpenCV’s multi-scale detection seemed to be wise choice. Upon loading the classifier, the 

classifier is then fed the image in question and returns a MatOfRect object, which is essentially 

Figure 11: Image from Figure 1 blurred via differential privacy method with default 

values of b = 16, m = 16, ε = 0.5 as outlined in [6] 
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an array of Rect objects. Each Rect contained within the MatOfRect object depicts the outline 

around the detected object or faces in this case.   

4.4 Data Collection 

 For data collection, it was important to run all of the original images within the manually 

collected dataset through facial detection multiple times: once on the original images and then 

once on each altered image developed from the utilization of the various schemes. In total, 

facial detection was run 56 times for every 1 image in the dataset. As our dataset was 213 

images, this results in 11,928 different facial detection tests run total. The number of faces 

detected from each of these facial detection runs was then record for evaluation. 

4.5 Evaluation 

 Upon completion of all tests, the collected number of detected faces for each individual 

altered image was compared to the number of faces detected in their corresponding original 

image. A lower number of faces detected in an altered image when compared to the original was 

considered an improvement in privacy, an equivalent number of faces detected in the altered 

image when compared to the original was considered to be no improvement in privacy and the 

alteration was rendered unnecessary, and a higher number of faces detected in an altered image 

when compared to the original was considered a significant error. 

5 Results 

 After all of the tests were run, all of the altered images were written to new images and 

saved, while the values regarding number of faces detected before and after alterations were 

recorded and kept in a spreadsheet for evaluation. 

5.1 Images 

 Each alteration performed on the original images from the datasets were kept as reference 
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for the effects the alteration had and for later potential use. As there are way too many images to 

display them all here, a set of them has been selected to display each of the types of alterations 

made on images from both datasets: 

 

 

 

 

 

 

 

Figures 12 - 16: Box blurred images, from left to right: Original image of subject s1, kernel size 15, kernel size 

45, kernel size 75, kernel size 105 [8] 

Figures 12, 17 - 20: Gaussian blurred images, from left to right: Original image of subject s1, kernel size 15, 

kernel size 45, kernel size 75, kernel size 105 [8] 

Figures 12, 21 - 23:  Images blurred via differential privacy method, from left to right: 

Original image of subject s1, b value 4, b value 8, b value 16, all images have an m value 

of 16 and an ε value of 0.5 [8] 
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Figures 12, 24 - 27:  Images blurred via differential privacy method, from left to right: Original image of 

subject s1, m value 16, m value 32, m value 48, m value 64, all images have a b value of 16 and an ε value of 

0.5 [8] 

Figures 12, 28 - 31:  Images blurred via differential privacy method, from left to right: Original image of 

subject s1, ε value 0.25, ε value 0.5, ε value 0.75, ε value 1.0, all images have a b value of 16 and an m value 

of 16 [8] 

Figures 32-35:  From left to right: Original image, faces detected and boxed in, faces box blurred w/ kernel 

size 45, faces gaussian blurred with kernel size 45[1] 
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For all 613 original images collected across both datasets, there exist 56 altered images. This 

results in 34,384 images in total. Of those 34,328 images, 29,424 of them are alterations via the 

differential privacy method using multiple b, m, and ε values. The remaining 4,904 images are 

images created via the box blurring and Gaussian blurring methods. 

5.1 Algorithm Analysis 

 Upon completion of all tests, the number of faces detected before and after each alteration 

on the 213 images in dataset 2 was recorded in order to determine which blurring algorithm was 

the most effective at mitigating facial detection. Success in mitigation was measured in the 

difference between the number of faces detected in the original image and the number of faces 

detected in the altered image, which we will refer to as the DIFF. The higher the DIFF, the 

higher the number of faces from the original image that were obscured. A lower DIFF means 

that more of the faces from the original images are still detectable, with a negative DIFF 

meaning the alteration produced a new section (or sections) within the altered image that the 

facial detection feature recognized as a “face.” This means we ultimately want the method that 

produces the highest DIFFs on average. This value was calculated for every original image and 

each of its altered images, then averaged for each method at its respective parameters. Because 

box blurring and Gaussian blurring are the two more common blurring methods are utilized the 

Figure 36:  Faces from Figure 33 blurred via differential privacy method [1] 
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same kernel sizes, we will compare them first: 

 

As the chart displays, box blurring continuously had a higher average DIFF than Gaussian 

blurring did, suggesting it was the blurring method that was more effective at facial detection 

mitigation than the Gaussian blurring method was. While this thesis does not delve into why that 

is exactly, Gaussian blurring does produce a radial filter which might be more easily recognized 

by the facial detection method as “face-like” since face shape is ovular. Because of the vast 

differences between the types of blurring exhibited (box and Gaussian blurring are a form of 

filtering, while the differential privacy method is pixelization), it is not exactly fair to compare 

them to one another. However, because of the sheer amount of differential privacy tests that were 

run, we can compare this method to itself when we change its parameters. 
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This chart reveals that changes in b value used with the differential privacy method have a 

greater impact on the DIFF than changes in m do. This suggests that the higher the b value, the 

higher the DIFF. Next, we can compare a constant b value to the changes in m and ε. 
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Figure [39]:  Changing m value vs. changing ε value 
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This chart reveals that the adjust me of the ε value does not appear to have a big impact on the 

DIFF, nor does a change in m value. From this and the previous display, we can make our final 

comparison between b and ε: 

 

This chart provides a similar conclusion to that of the first one dealing with the differential 

privacy method: changes in b value have a much greater impact on the DIFF than changes in the 

ε value do. After all of these comparisons, it is reasonable to conclude that the higher the b value, 

the more effectively the differential privacy method prevents facial detection. The m value and ε 

value have little impact on the effectiveness. Overall, the differential privacy method provided 

the highest DIFF out of all the methods: 1.666666667 on multiple occasions. Gaussian blurring 

provided the lowest DIFF out of all the methods: 0.55399061 at kernel size 15. 
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6 Conclusion 

6.1 Summary 

 The purpose of this thesis was to set the groundwork for the potential of utilizing image 

blurring to prevent facial detection within images in an effort to mitigate or delay attackers from 

utilizing such a tool to violate individuals’ privacy. Three image blurring methods were 

implemented in order to test the effectiveness of each in the prevention of successful facial 

detection: box blurring, Gaussian blurring, and a new differential privacy method of 

pixelization. Two datasets were collected for testing purposes, one being the AT&T Database of 

Faces, and the other being an image dataset compiled from various sources and provided by a 

fellow student also performing research at the University of Arkansas. Upon the collection of 

these datasets, tests were developed to determine the effectiveness of each method on the 

images within the dataset. These tests included box blurring at a kernel size of 15, 45, 75, and 

105, Gaussian blurring at a kernel size of 15, 45, 75, and 105, and the usage of the differential 

privacy pixelization method a every possible combination of b values 4, 8, and 16, m values of 

16, 32, 48, and 64, and ε values of 0.25, 0.50, 0.75, and 1.0. Facial detection was run on the 

original image, as well as the resulting image created by each of the tests, with the number of 

faces detected in each case recorded for later analysis. 

 Out of the three selected blurring methods, the differential privacy pixelization method 

provided the most effective negation of facial detection, with an average reduction of 

1.666666667 in the number of faces detected. Box blurring proved to be more effective in 

preventing successful facial detection than Gaussian blurring, with Gaussian blurring providing 

the lowest effectiveness of all. The positive relationship between an increase in b value used and 

the effectiveness of preventing successful facial detection through use of the differential privacy 
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pixelization method suggests that this method could be developed into an even greater tool for 

privacy protection. 

6.2 Drawbacks and Future Work 

 This thesis experienced its fair share of drawbacks, the most gleaming of which was the 

fact that the facial detection method implemented via OpenCV was not 100% in its detections. 

Certain images had faces present that remained undetected by the algorithm, some had “faces” 

detected within the image that were not actual human faces, while others experienced both of 

these issues. Because the focus of this thesis was the effectiveness of blurring in preventing 

faces from being detected in general, this issue was allowed as the blurring was enacted on any 

and all faces detected. However, if the information collected in this thesis were to progress in an 

effort to provide greater digital privacy to the world, a more accurate facial detection method 

would need to be developed or implemented if it already exists. Blurring in an attempt to 

prevent successful facial detection has no purpose if faces that are meant to be blurred aren’t 

detected in the first place. 

 Overall, this concept should be broadened to accept a much larger number of image 

processing techniques and compare their relative effectiveness. Blurring is by no means the only 

way to alter an image as to hide content from the naked eye and any such alteration should be 

included in this study to determine the most effective method currently available. 

 It is also still important to note that the privacy sought by this thesis does not prevent 

attacks, but rather mitigates them and stalls attackers. In today’s digital world, it’s practically 

impossible to do anything more than slow attackers down. Any time that can be bought for 

security professionals to implement further methods to mitigate new, fresh attacks is a priceless 

commodity. 
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