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Abstract: 

One of the up and coming topics in the world of technology is that of autonomous 

vehicles and self-driving cars. Autonomous vehicle technology has the potential to make a 

dynamic impact on society, drastically altering global transportation and the automotive industry. 

When human beings are no longer responsible for making the decisions required of controlling a 

vehicle, the importance of security and accuracy will become absolutely vital for these 

autonomous systems. If the system can be hacked and fed false information, there is the 

possibility of putting innocent lives at risk. In a world of growing global terrorism, this is a key 

and reasonable concern that must be addressed if autonomous cars are truly the future of global 

transportation.  

The goal of this project is to create a system that will take the output of a self-driving 

car’s camera and use it to detect if a stoplight is present in an image and collect information 

about the current state of the stoplight and how it changes over time. This collected data is paired 

with a supervised learning algorithm, such as the K Nearest Neighbor algorithm, which gives the 

system the ability to classify what type of color change is occurring in a stoplight. In addition to 

collecting raw data from several stoplights, the system was tested by creating and assessing 

several different types of forgery attack to see if they cause the identification algorithm to suffer 

a drop in accuracy. Ultimately, the purpose of this research is to create a more intelligent system 

in autonomous vehicles that will be able to detect forgery attacks on its camera system. This 

intelligent system would work to prevent situations where attacks on the system could result in 

collisions between vehicles and nearby pedestrians. 

 



1.  Introduction 

The development of autonomous vehicles is one of the biggest areas of discussion in the 

technology world today. Commercialized self-driving vehicles have the potential to change 

transportation dramatically. In theory, intelligent transportation through autonomous vehicles 

could reduce the amount of accidents on the road due to human error and create an overall safer 

transportation infrastructure. One of the most vital components to the development of 

autonomous vehicles is the process by which the vehicle is able to detect the environment around 

it. The utilization of LIDAR sensors and cameras are two of the most common approaches to 

solve this problem. LIDAR sensors allow the vehicle to detect objects in its proximity, such as 

other vehicles or obstacles, and determine how close or far these objects are from the sensor. 

Cameras can provide the vehicle with a digital image of the area in front of the autonomous 

vehicle, providing either a monochrome or full-colored image (Mahdavi 117). Through the use 

of the sensors and cameras, the system can be provided with significant data about the world 

surrounding the vehicle such as proximity to pedestrians or other objects, whether the vehicle is 

close to a stoplight, what the color of that stoplight is, and the location and quantity of nearby 

vehicles. 

While cameras are a powerful option for viewing the environment around itself, they also 

introduce a big security concern. If the camera is hacked by an attack, the false information that 

it provides to the system poses a large danger to the passengers of the autonomous vehicle, 

passengers in nearby vehicles, and nearby pedestrians. This forged information can lead to 

collisions between vehicles or pedestrians. For example, forging a green light while the light is 



actually red could cause the car to drive straight into the intersection and into oncoming traffic or 

pedestrians crossing the street and violate traffic rules. 

The goal of this project is to create a system that will take the inputs from these cameras 

and use image processing to implement a program to detect stoplights in these images and 

determine what information the vehicle needs to know about the stoplight, specifically whether a 

change has occurred in the color of the stoplight. This information will then be run through a K 

Nearest Neighbor algorithm to create a program that will be able to correctly classify what type 

of change has occurred based on the collected data and test this process when forgery attacks are 

present in the KNN algorithm’s testing data. 

 

2.  Related Work 

Due to the widespread impact that stop lights have on a daily basis, research into 

stoplight detection has been an increasingly important area of research, especially as autonomous 

vehicles grow closer to market viability. Therefore, a wide variety of related work was 

referenced when beginning this research. In 2009, Raoul de Charette and Fawzi Nashashibi 

developed their own stoplight detection system using a modular algorithm for Traffic Lights 

Recognition (TLR) and an Adaptive Template Matcher (ATM). This system receives inputs from 

a camera mounted on a moving car. The images were converted into grayscale and a robust Stop 

Light Detection (SLD) was executed on the image to detect all stop lights that were visible on 

the image. After this, the ATM was executed on the image, which used geometric and 

algorithmic templates to provide each potential stop light with a level of matching confidence. 

De Charette and Fawzi tested their stoplight detection system using a video stream database 



consisting of over 20 minutes of video recorded from their prototype vehicle in Paris, France (de 

Charette and Nashashibi). 

While their system was able to function in real time, their system did not make use of 

machine learning. With the advancement of technology since 2009, machine learning processes 

and deep learning have become the focus of modern technology development. In addition, the 

results from De Charette and Fawzi’s detection software did little to provide information about 

the stoplights that were detected, such as the color of the stop light in the image. The goal of this 

new project is to not only to detect stoplights in an image, but to gather visual information from 

the lights themselves to be able to provide more sophisticated results, such as the type of change 

occurring on the stoplights over a set of images from the camera. 

 

3.  Data Collection 

The first task that needed to be completed to develop this program was the collection of 

data. Videos of various stoplights were collected to be used to test the detection of stoplights in 

an image and to determine information about the stoplights from the image. A Sony Handycam 

video camera was used to record this data. This camera allowed for videos to be recorded at a 

steady 60 frames per second, providing more accurate recordings of the transitions in the 

stoplights. Recordings of stop lights at intersections were conducted over a period of 4 months 

and each video was recorded during daylight hours. This footage was then used to test the image 

detection software and gather data for the system so that it can determine what type of change 

occurred in the stoplight during the video. The camera setup used to collect these videos is 

shown in Figure 1. 



 

Figure 1. Camera setup used to record the stop lights. 

 

There are many different manufacturers of stop lights, and their products may have 

different designs. In a single city, it is highly likely that more than one style of stoplight will be 

present. While these changes in stop light design may be small, they could cause problems in the 

image processing system if they are not accounted for. In order to combat this, videos were 

recorded at seven different stop lights of varying manufacturers around the city of Fayetteville, 

Arkansas. At each stoplight, three types of changes were observed and recorded with the Sony 

Handycam. These included a change from a green light to a yellow light, a change from a yellow 

light to a red light, and a change from a red light to a green light. Each change cycle was 

recorded 10 times. The chosen stop lights are indicated by the red dots on the map in Figure 2 

below: 



 

Figure 2. Map of stop lights used to collect data (Map of Fayetteville, AR). 

 



4. Data Processing 

4.1 Tensorflow and Image Detection: 

Being able to detect objects in an image is a powerful characteristic of image processing. 

In the case of autonomous vehicles, it is absolutely vital to be able to locate and correctly 

interpret a stoplight in an image. When it comes to detecting certain objects in an image, many 

traditional approaches in machine learning are being replaced by more efficient and intelligent 

deep learning methods (Haridas and S.). One of the powerful deep learning tools that has become 

popular in recent years is Tensorflow’s Object Detection API. Using Tensorflow, a model can 

easily be trained to detect a certain type of object, such as a person, a car, or even a stoplight.  

With the rise of the open source culture in software development, it is becoming 

increasingly common for software developers to release their pre-trained models for other 

software developers to use in their own programs. This collaborative environment fosters 

productive development worldwide. In this collaborative spirit, Junsheng Fu’s 

“traffic-light-detector” repository on GitHub was selected as the base for this program’s design 

(Fu). In his code, Fu used Tensorflow’s Object Detection API and a frozen detection graph to 

detect where a stoplight was in the images input into his program (Fu). The result of his program 

was an output command of “stop” if a light was yellow or red and “go” if the stoplight was green 

or if no stoplight was detected in the image. This was done by using OpenCV to apply a mask to 

the image to only consider if there was red in the stoplight and whether it exceeded a certain 

threshold. If this threshold was breached, then the program would output the “stop” command.  

 

 



4.2  Data Preprocessing 

In order to gather data about the color values of the light, each image of a stoplight that 

was detected by Fu’s trained Tensorflow model was converted from the traditional RGB color 

space into a HSV color space. A pixel in a HSV color space contains three main components. 

The first component, H, contains the hue or dominant wavelength of the image. This value most 

holistically represents the color value of the image. The second component, S, holds the 

saturation value of that pixel. The saturation values represent the “purity” of the color or what 

shade the color is. The third and final value, V, represent the value or intensity of the image. This 

tells the program how vibrant the color is (Gupta). One of the benefits of using an HSV color 

space over a RGB color space is that all of the color’s hue value is stored into one value. This 

makes filtering out colors in an image much easier, as only the H value is vital to performing this 

filtering process. 

Using Fu’s code as a base, functionality was added to the program that created two 

additional masks for filtering colors in the images. One mask was made for detecting green 

pixels and one mask was made for detecting yellow pixels. These masks were combined into one 

total mask that would ignore the dark areas of the stoplight and only show and consider the 

sections of the stoplight where the lights were present. The benefit of using masks in this way 

was that any the parts of the stoplight that did not contain the lights could easily be removed 

from the pixel calculations that would occur in the next part of the program. Figure 3 shows an 

example of a green stoplight in the HSV color space before the color mask was applied and after 

the mask was applied to the image.  



 

Figure 3. Stop light image with no mask applied (left) vs. with the color mask applied (right). 

 

Once a mask has been applied, every pixel in the image that was not included in the mask 

will be set to black. In other words, its HSV values have been set to [0, 0, 0].  

After the color mask was applied to the stoplight image, the image was converted back to 

a RGB color space and a function iterated over every pixel to calculate the average red value, the 

average green value, and the average blue value for the entire image, excluding the black pixels. 

This was done by taking each non-black pixel and adding it to the count of the total pixels and 

adding its red, green, and blue values to a running total for each, respectively. The calculated 

average RGB value for each image was then added to an array to be used to calculate the change 

in RGB values between the images. 

The final step in this program was to calculate the changes in the average RGB values 

between adjacent images. In addition to calculating the changes between the images, the program 

also checked to see if it had found the first set of RGB differences in which either the red, green, 

or blue difference value was greater than 15.0 and saved its index in the difference array. This 

marked the beginning of a color change in the light. For example, the first time the value 



exceeded this 15.0 threshold was an indication for the first frame of a stoplight’s change 

sequence from green to yellow.  

Once all of the change values were calculated, the program called a function that takes 

the index of the first change and records 10 sets of RGB values for the frame changes, beginning 

with the 2nd change before the marked index and ending with the 7th change that occurred after 

the marked index. These 10 RGB change values were then written to a .csv file that would be 

used as an input to the K Nearest Neighbor Algorithm that is used to classify what type of 

change is occurring based on these RGB change values. When implemented, the user will have 

to go into the CSV file and add the classification of the stoplight change (what type of change 

occurred) if the data will be used in the training data set for the K Nearest Neighbor algorithm. 

 

4.3  Data Analysis 

Frames were taken from the videos at each stoplight and run through the program 

dictated above. After observing all of the frames and analyzing the data produced when run 

through the data preprocessing program, several patterns were observed. These patterns 

primarily pertained to the number of frames it took to observe a complete change from one color 

to another in a stoplight. The images for the patterns below were all taken from the same 

stoplight at College Avenue and Dickson Street in Fayetteville, AR. 

The first observed pattern was in the change from a red light to a green light. This change 

occurred fairly quickly, usually taking 3 to 4 frames for the image to go from a fully lit red light 

to a fully lit green light. In most cases, the red light did not go from completely on to completely 



off in 2 frames, but would instead the red light would dim over a few frames before turning off 

completely, as seen in Figure 4 below. 

 

Figure 4. Frames from a red to green change on a stoplight at the intersection of College Ave. 

and Dickson St. 

 

The second pattern was observed when a stoplight changed from a yellow light to a red 

light. This change occurred in a similar fashion to the red to green change. The change occurred 

over 3 to 5 frames on average and the yellow light would take several frames before it no longer 

produced any light. In some cases, the red light would not turn on completely in one frame. 

Instead, the red light would require 2 frames before it no longer showed a visible change in the 

image. 



 

Figure 5. Frames from a yellow to red change on a stoplight at the intersection of College Ave. 

and Dickson St. 

 

The third pattern that was observed was in the change from a green stoplight to a yellow 

stoplight. This was, by far, the most unique change between the three types. Being the longest 

observed change, the transition from green to yellow would usually take around 6-9 frames. In 

this change, there would be a few frames that were “dark”, where neither the green light nor the 

yellow light were exuding any light output. There would also be at least one frame where the 

green light would be dimmed, but not completely off. This was also the case for when the yellow 

light turned on. The light would take an extra frame or two before it turned on completely, as 

seen in Figure 6. 



 

Figure 6. Frames from a green to yellow change on a stop light at the intersection of College 

Ave. and Dickson St. 

 

5.  Fabricating an Attack 

After the data for each stoplight had been retrieved through the data preprocessing 

program, the next step was to create several type of forgery attacks that would also be run 

through the data preprocessing program and have their data preprocessed. When testing the K 

Nearest Neighbor algorithm program, these forged attacks are needed in order to prove that the 



algorithm can still accurately predict what type of change is present even when there are attacks 

present in the training data. Three different types of forged attacks were created.  

The first type of attack that was created, Type 1, was done by taking the last fully lit 

frame before the color change started and altering its RGB value. The frames for this attack were 

created through the same program as the data preprocessing. By adding the “attack” parameter 

when running the main.py file, the program would still detect the stoplight in the image. 

However, this time it would perform image manipulation to change the pixels in the image to 

reflect the attack. For the green to yellow changes, the green value of the light’s pixels were 

increased by 100. This change can be seen in the image shown in Figure 7. 

 

 

Figure 7. A Type 1 fabricated attack on a green to yellow change. 

 



To create the Type 1 attack for the red to green change, the image with the last fully lit 

red light before the change began had their pixels’ R color value increased by 100. An example 

of this addition is shown below in Figure 8. 

 

 

Figure 8. A Type 1 fabricated attack on a red to green change. 

 

The Type 1 attack for a yellow to red change was created in the same manner as the red 

to green change. The program used the RGY_mask to detect the colored pixels in the stoplight 

and added 100 to the R color value in each pixel. 



 

Figure 9. A Type 1 fabricated attack on a yellow to red change. 

 

All of the images shown for the Type 1 attacks were created using videos from the 

intersection at Dickson Street and West Avenue in Fayetteville, AR. 

The second type of attack, Type 2, was created by removing all of the frames that the 

stoplight changed over. The goal of this attack was to simulate a situation where instead of 

taking several frames for a stoplight to change from one color to another, the change would 

appear to be instantaneous.  This means for each of the three type of changes, there would be no 

partially lit frames or any of the “dark” frames that were mentioned earlier. Examples of these 

Type 2 attacks are shown with the following figures. Figures 10, 12, and 14 shown the full 

transition of a stoplight change without any frames removed. Figures 11, 13, and 15 show how 

the change appears when the Type 2 attack is created by removing these transition frames. The 

images used in these figures were taken from the videos at the stoplight at the intersection 

Garland Avenue and Cleveland Street in Fayetteville, AR. 



 

Figure 10. The original frames on a green to yellow change. 

 

Figure 11. A Type 2 fabricated attack on a green to yellow change. 



 

 

 

Figure 12. The original frames on a red to green attack. 

 

 

Figure 13. A Type 2 fabricated attack on a red to green change. 

 



 

Figure 14. The original frames from a yellow to red change. 

 

Figure 15. A Type 2 fabricated attack on a yellow to red change. 



The third and final type of attack, Type 3, was created by taking the last fully lit frame 

before the color change started occurring in the stoplight and selecting a percentage of pixels to 

retain their color instead of dimming with the rest of the light. In the created attacks, the pixels 

were randomly selected from the first image by using the random class in python to generate a 

number between 0 and 1 and if the number was greater than 0.75, then the pixel would be 

selected. The result was that approximately 25% of the pixels would be chosen to remain 

unchanged. Figures 16, 18, and 20 show the original frames and figures 17, 19, and 21 shown the 

frames after the changes have been applied. The images shown in these figures were taken from 

the videos at the stoplight at the intersection of Dickson Street and Arkansas Avenue in 

Fayetteville, AR. 

 



Figure 16. Original frames on a green to yellow change. 

 

Figure 17. A Type 3 fabricated attack on the previous green to yellow frames. 

 

 



Figure 18. Original frames on a red to green change. 

 

Figure 19. A Type 3 fabricated attack on the previous red to green frames. 

 

 

Figure 20. Original frames on a yellow to red change. 

 



 

Figure 21. A Type 3 fabricated attack on the previous yellow to red frames. 

 

For each of the 3 types of forgery attacks, 10 attacks were created for each type of 

change: green to yellow, yellow to red, and red to green. This resulted in 30 total attacks for each 

type. 

The types of attacks used were chosen because of their simplicity. These types of attacks 

are simple enough that they can easily be defined as forged when looked at by a user. Given the 

time limitation, more advanced attacks will be studied in future work. 

 

6. Stoplight Detection without and with Attacks 

6.1 Detection Algorithm 

Once all the data was collected on types of attacks, the next step was to create a program 

to determine what type of change was occurring in a set of data that was collected by the data 

preprocessing program. A K Nearest Neighbor (KNN) algorithm was determined to be the best 

way to accomplish this task. The KNN algorithm was designed around the assumption that 



similar types of data exist in close proximity to each other (Harrison). This is why the KNN 

algorithm is a beneficial method for classification problems. One of the benefits of using this 

algorithm is that it does not require a large amount of time that must be dedicated for training the 

system. All of the data will be stored locally and the training phase of the algorithm occurs each 

time the algorithm is called in the program. However, one of the drawbacks of using this method 

is that computation time can increase as the size of the data becomes substantially large 

(Harrison). However, in the case of this project, the size of the data did not appear to cause any 

significant increase in computation time. 

The K Nearest Neighbor algorithm begins by loading in a data set for training the 

algorithm and another data set for testing. For each data entry in the testing data set, the 

Euclidean distances between the test data entry and all of the entries in the training data set will 

be calculated. The k variable in the KNN algorithm represents an integer value of the number of 

neighbors closest to the testing data entry that the program will find. Using the found nearest 

neighbors function, the program will look at the label and classification of each neighbor to 

determine what classification should be given to the test data entry. In the case of this program, 

the program will find the k nearest neighbors in the data set and will look at what type of 

changes had occurred. The most common classification among the neighbors will then be chosen 

for this test data entry and the program will be able to predict that the data is showing that type of 

change with a certain percentage of confidence. This confidence value is calculated by how 

many of the neighbors are of the same classification as the chosen label. 

 

 



6.2 Results without Attacks 

Using the data obtained from the videos of the seven stoplights and the three types of 

attacks that were forged, the accuracy of the K Nearest Neighbor algorithm as a classifier can be 

tested. The first test performed was to take all of the data (not including forged attacks) and 

check the accuracy of the program with varying numbers of k. For this test, there was no 

specified set of test data. Instead, this non-attack set of data was fed into the algorithm and was 

split using a random object in python and splitting the data on the value 0.85. Therefore, 

approximately 85% of the data would be assigned to the training data set and the rest of the data 

was assigned to the testing data set. For the purpose of testing the different numbers of k, the 

random variable was given a seed of 1000 so that number of data entries in the training and 

testing data sets would be the same regardless of the value of k. This test was performed with the 

following values of k: 2, 3, 4, 5, 6, and 7. The results are shown below in Figure 22. 

 

Figure 22. Accuracy of KNN Algorithm with Detecting Stoplight Change Types. 



 

By looking at the graph, it can be determined that the best number of k to use for this K 

Nearest Neighbor algorithm is 3. The reason why the value of 3 was chosen is that out of all 6 

values of k, 3 has the most consistency between the accuracy of the three types of changes and 

the overall accuracy. Each of the other k values has an outlier in the data, meaning that for one 

type of change, the KNN algorithm with be noticeably less efficient. With an overall accuracy of 

95.23809524%, the accuracy of this KNN algorithm can be verified when it considers the 

number of neighbors, k, to be 3. 

 

6.3 Results with Attacks 

The next three tests that were performed on the K Nearest Neighbor algorithm were to 

add the forged attacks into the data set to determine how accurate the program would still be able 

to detect the type of change occurring in an entry of data.  

The first of these three tests was performed by adding all of the collected data for the 

Type 1 attack into the csv with all of the non-attack data entries. Then, a group of seven videos 

were chosen to serve as the test data. For each of these seven videos, the data for a green to 

yellow, yellow to red, and red to green were included in the test data. This resulted in a test data 

set with 21 entries in it. The second of the three tests was performed by adding all of the 

collected data for the Type 2 attack into the csv with all of the non-attack data entries. The same 

21 data entries were used as the test data. Finally, the last of the three tests was performed in the 

same fashion as the last two tests, except this time all of the collected data for the Type 3 attack 



was added into the csv with all of the non-attack data entries. The results from running the K 

Nearest Neighbor algorithm under these three tests are shown in Figure 23. 

 

Figure 23. Accuracy of KNN Algorithm with Detecting Stoplight Change Types Against Attacks. 

 

As the results in the above graph show, the KNN algorithm suffered a loss in accuracy 

when it was tested with the Type 1 and Type 3 attacks. The similarity in this data can be 

attributed to the fact that both of these forged attacks were created by manipulating pixels in the 

original image. The Type 2 attacks did not cause a drop in accuracy for the algorithm. This is due 

to the dynamic aspect in how frames were all together deleted to create the attack. Detecting a 

lack of changing frames is much easier when calculating the Euclidean distance than detecting 

data with only altered frames, not removed frames. 

The algorithm was also tested to see if the program could accurately categorize an 

incoming attack of the three types. The program, however, struggled to accurately categorize an 



attack as such. This can be explained by the small amount of data that was present for each type 

of attack and that the attacks were not all created on the same stoplight location. 

 

7. Conclusion 

The goal of this project was to create a system that would receive images from a camera 

and use Tensorflow’s Object Detection API and image processing to detect stoplights in an 

image and record the difference in the RGB color values between frames of the change in the 

color of a stoplight. This collected data was then used, alongside the set of data for three 

different forged attacks, to create a K Nearest Neighbor algorithm that would be able to 

accurately classify what type of color change was occurring in a set of data. The found results 

prove that the KNN algorithm is accurate in correctly classifying the type of change a stoplight 

undergoes and only suffers a slight decrease in accuracy when the three attacks are introduced 

into the KNN algorithm’s training data. 

However, the system can still be improved upon. This could be done by collecting more 

data and including a large data set for each of the forged attack types. The accuracy of the system 

also needs to be further validated before it can be implemented for use in autonomous vehicles.  

The next step towards improving this project is to increase the efficiency of the data 

preprocessing system. Currently, the program takes around 15-20 minutes to process a set of 

around 35 frames. This is acceptable for testing the program in the context of this project. 

However, to implement this system in an active autonomous vehicle would require the 

processing time to be reduced significantly. By working to improve upon these inefficiencies in 



the future, this program has the potential for use in the real-time environment of an active 

autonomous vehicle and drastically improve their security and functionality.  

In addition to increasing the efficiency of the data, the results obtained from this project 

can be further validated by increasing the size of the test data for both the standard stoplight data 

and the three types of forgery attacks. This would help to both improve the quality of the 

identification algorithm’s results and would allow for future tests in detecting the occurrence of a 

forged attack. The data could be further expanded by creating a stronger variety of types of 

forgery attacks. The overall intelligence of the algorithm will increase if it is able to correctly 

detect a more efficient attack against the autonomous vehicle camera system. 

Lastly, the accuracy of the system can be further improved by exploring different 

methods of learning, such as neural networks, that can be used to classify what type of change a 

stoplight is undergoing and detecting if an attack being forged on the system. 
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