
University of Arkansas, Fayetteville
ScholarWorks@UARK
Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2019

Stoplight Detection: Implementation and Forgery
Attacks
Olivia Degner

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at ScholarWorks@UARK. It has been
accepted for inclusion in Computer Science and Computer Engineering Undergraduate Honors Theses by an authorized administrator of
ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu.

Recommended Citation
Degner, Olivia, "Stoplight Detection: Implementation and Forgery Attacks" (2019). Computer Science and Computer Engineering
Undergraduate Honors Theses. 65.
https://scholarworks.uark.edu/csceuht/65

https://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fcsceuht%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csce?utm_source=scholarworks.uark.edu%2Fcsceuht%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/65?utm_source=scholarworks.uark.edu%2Fcsceuht%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

Stoplight Detection: Implementation and Forgery Attacks

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering
College of Engineering
University of Arkansas

Fayetteville, AR

by

Olivia Degner

Thesis Advisor: Dr. Qinghua Li

Thesis Defense Committee Members:
Dr. Matthew Patitz

Dr. Khoa Luu

Abstract:

One of the up and coming topics in the world of technology is that of autonomous

vehicles and self-driving cars. Autonomous vehicle technology has the potential to make a

dynamic impact on society, drastically altering global transportation and the automotive industry.

When human beings are no longer responsible for making the decisions required of controlling a

vehicle, the importance of security and accuracy will become absolutely vital for these

autonomous systems. If the system can be hacked and fed false information, there is the

possibility of putting innocent lives at risk. In a world of growing global terrorism, this is a key

and reasonable concern that must be addressed if autonomous cars are truly the future of global

transportation.

The goal of this project is to create a system that will take the output of a self-driving

car’s camera and use it to detect if a stoplight is present in an image and collect information

about the current state of the stoplight and how it changes over time. This collected data is paired

with a supervised learning algorithm, such as the K Nearest Neighbor algorithm, which gives the

system the ability to classify what type of color change is occurring in a stoplight. In addition to

collecting raw data from several stoplights, the system was tested by creating and assessing

several different types of forgery attack to see if they cause the identification algorithm to suffer

a drop in accuracy. Ultimately, the purpose of this research is to create a more intelligent system

in autonomous vehicles that will be able to detect forgery attacks on its camera system. This

intelligent system would work to prevent situations where attacks on the system could result in

collisions between vehicles and nearby pedestrians.

1. Introduction

The development of autonomous vehicles is one of the biggest areas of discussion in the

technology world today. Commercialized self-driving vehicles have the potential to change

transportation dramatically. In theory, intelligent transportation through autonomous vehicles

could reduce the amount of accidents on the road due to human error and create an overall safer

transportation infrastructure. One of the most vital components to the development of

autonomous vehicles is the process by which the vehicle is able to detect the environment around

it. The utilization of LIDAR sensors and cameras are two of the most common approaches to

solve this problem. LIDAR sensors allow the vehicle to detect objects in its proximity, such as

other vehicles or obstacles, and determine how close or far these objects are from the sensor.

Cameras can provide the vehicle with a digital image of the area in front of the autonomous

vehicle, providing either a monochrome or full-colored image (Mahdavi 117). Through the use

of the sensors and cameras, the system can be provided with significant data about the world

surrounding the vehicle such as proximity to pedestrians or other objects, whether the vehicle is

close to a stoplight, what the color of that stoplight is, and the location and quantity of nearby

vehicles.

While cameras are a powerful option for viewing the environment around itself, they also

introduce a big security concern. If the camera is hacked by an attack, the false information that

it provides to the system poses a large danger to the passengers of the autonomous vehicle,

passengers in nearby vehicles, and nearby pedestrians. This forged information can lead to

collisions between vehicles or pedestrians. For example, forging a green light while the light is

actually red could cause the car to drive straight into the intersection and into oncoming traffic or

pedestrians crossing the street and violate traffic rules.

The goal of this project is to create a system that will take the inputs from these cameras

and use image processing to implement a program to detect stoplights in these images and

determine what information the vehicle needs to know about the stoplight, specifically whether a

change has occurred in the color of the stoplight. This information will then be run through a K

Nearest Neighbor algorithm to create a program that will be able to correctly classify what type

of change has occurred based on the collected data and test this process when forgery attacks are

present in the KNN algorithm’s testing data.

2. Related Work

Due to the widespread impact that stop lights have on a daily basis, research into

stoplight detection has been an increasingly important area of research, especially as autonomous

vehicles grow closer to market viability. Therefore, a wide variety of related work was

referenced when beginning this research. In 2009, Raoul de Charette and Fawzi Nashashibi

developed their own stoplight detection system using a modular algorithm for Traffic Lights

Recognition (TLR) and an Adaptive Template Matcher (ATM). This system receives inputs from

a camera mounted on a moving car. The images were converted into grayscale and a robust Stop

Light Detection (SLD) was executed on the image to detect all stop lights that were visible on

the image. After this, the ATM was executed on the image, which used geometric and

algorithmic templates to provide each potential stop light with a level of matching confidence.

De Charette and Fawzi tested their stoplight detection system using a video stream database

consisting of over 20 minutes of video recorded from their prototype vehicle in Paris, France (de

Charette and Nashashibi).

While their system was able to function in real time, their system did not make use of

machine learning. With the advancement of technology since 2009, machine learning processes

and deep learning have become the focus of modern technology development. In addition, the

results from De Charette and Fawzi’s detection software did little to provide information about

the stoplights that were detected, such as the color of the stop light in the image. The goal of this

new project is to not only to detect stoplights in an image, but to gather visual information from

the lights themselves to be able to provide more sophisticated results, such as the type of change

occurring on the stoplights over a set of images from the camera.

3. Data Collection

The first task that needed to be completed to develop this program was the collection of

data. Videos of various stoplights were collected to be used to test the detection of stoplights in

an image and to determine information about the stoplights from the image. A Sony Handycam

video camera was used to record this data. This camera allowed for videos to be recorded at a

steady 60 frames per second, providing more accurate recordings of the transitions in the

stoplights. Recordings of stop lights at intersections were conducted over a period of 4 months

and each video was recorded during daylight hours. This footage was then used to test the image

detection software and gather data for the system so that it can determine what type of change

occurred in the stoplight during the video. The camera setup used to collect these videos is

shown in Figure 1.

Figure 1. Camera setup used to record the stop lights.

There are many different manufacturers of stop lights, and their products may have

different designs. In a single city, it is highly likely that more than one style of stoplight will be

present. While these changes in stop light design may be small, they could cause problems in the

image processing system if they are not accounted for. In order to combat this, videos were

recorded at seven different stop lights of varying manufacturers around the city of Fayetteville,

Arkansas. At each stoplight, three types of changes were observed and recorded with the Sony

Handycam. These included a change from a green light to a yellow light, a change from a yellow

light to a red light, and a change from a red light to a green light. Each change cycle was

recorded 10 times. The chosen stop lights are indicated by the red dots on the map in Figure 2

below:

Figure 2. Map of stop lights used to collect data (Map of Fayetteville, AR).

4. Data Processing

4.1 Tensorflow and Image Detection:

Being able to detect objects in an image is a powerful characteristic of image processing.

In the case of autonomous vehicles, it is absolutely vital to be able to locate and correctly

interpret a stoplight in an image. When it comes to detecting certain objects in an image, many

traditional approaches in machine learning are being replaced by more efficient and intelligent

deep learning methods (Haridas and S.). One of the powerful deep learning tools that has become

popular in recent years is Tensorflow’s Object Detection API. Using Tensorflow, a model can

easily be trained to detect a certain type of object, such as a person, a car, or even a stoplight.

With the rise of the open source culture in software development, it is becoming

increasingly common for software developers to release their pre-trained models for other

software developers to use in their own programs. This collaborative environment fosters

productive development worldwide. In this collaborative spirit, Junsheng Fu’s

“traffic-light-detector” repository on GitHub was selected as the base for this program’s design

(Fu). In his code, Fu used Tensorflow’s Object Detection API and a frozen detection graph to

detect where a stoplight was in the images input into his program (Fu). The result of his program

was an output command of “stop” if a light was yellow or red and “go” if the stoplight was green

or if no stoplight was detected in the image. This was done by using OpenCV to apply a mask to

the image to only consider if there was red in the stoplight and whether it exceeded a certain

threshold. If this threshold was breached, then the program would output the “stop” command.

4.2 Data Preprocessing

In order to gather data about the color values of the light, each image of a stoplight that

was detected by Fu’s trained Tensorflow model was converted from the traditional RGB color

space into a HSV color space. A pixel in a HSV color space contains three main components.

The first component, H, contains the hue or dominant wavelength of the image. This value most

holistically represents the color value of the image. The second component, S, holds the

saturation value of that pixel. The saturation values represent the “purity” of the color or what

shade the color is. The third and final value, V, represent the value or intensity of the image. This

tells the program how vibrant the color is (Gupta). One of the benefits of using an HSV color

space over a RGB color space is that all of the color’s hue value is stored into one value. This

makes filtering out colors in an image much easier, as only the H value is vital to performing this

filtering process.

Using Fu’s code as a base, functionality was added to the program that created two

additional masks for filtering colors in the images. One mask was made for detecting green

pixels and one mask was made for detecting yellow pixels. These masks were combined into one

total mask that would ignore the dark areas of the stoplight and only show and consider the

sections of the stoplight where the lights were present. The benefit of using masks in this way

was that any the parts of the stoplight that did not contain the lights could easily be removed

from the pixel calculations that would occur in the next part of the program. Figure 3 shows an

example of a green stoplight in the HSV color space before the color mask was applied and after

the mask was applied to the image.

Figure 3. Stop light image with no mask applied (left) vs. with the color mask applied (right).

Once a mask has been applied, every pixel in the image that was not included in the mask

will be set to black. In other words, its HSV values have been set to [0, 0, 0].

After the color mask was applied to the stoplight image, the image was converted back to

a RGB color space and a function iterated over every pixel to calculate the average red value, the

average green value, and the average blue value for the entire image, excluding the black pixels.

This was done by taking each non-black pixel and adding it to the count of the total pixels and

adding its red, green, and blue values to a running total for each, respectively. The calculated

average RGB value for each image was then added to an array to be used to calculate the change

in RGB values between the images.

The final step in this program was to calculate the changes in the average RGB values

between adjacent images. In addition to calculating the changes between the images, the program

also checked to see if it had found the first set of RGB differences in which either the red, green,

or blue difference value was greater than 15.0 and saved its index in the difference array. This

marked the beginning of a color change in the light. For example, the first time the value

exceeded this 15.0 threshold was an indication for the first frame of a stoplight’s change

sequence from green to yellow.

Once all of the change values were calculated, the program called a function that takes

the index of the first change and records 10 sets of RGB values for the frame changes, beginning

with the 2nd change before the marked index and ending with the 7th change that occurred after

the marked index. These 10 RGB change values were then written to a .csv file that would be

used as an input to the K Nearest Neighbor Algorithm that is used to classify what type of

change is occurring based on these RGB change values. When implemented, the user will have

to go into the CSV file and add the classification of the stoplight change (what type of change

occurred) if the data will be used in the training data set for the K Nearest Neighbor algorithm.

4.3 Data Analysis

Frames were taken from the videos at each stoplight and run through the program

dictated above. After observing all of the frames and analyzing the data produced when run

through the data preprocessing program, several patterns were observed. These patterns

primarily pertained to the number of frames it took to observe a complete change from one color

to another in a stoplight. The images for the patterns below were all taken from the same

stoplight at College Avenue and Dickson Street in Fayetteville, AR.

The first observed pattern was in the change from a red light to a green light. This change

occurred fairly quickly, usually taking 3 to 4 frames for the image to go from a fully lit red light

to a fully lit green light. In most cases, the red light did not go from completely on to completely

off in 2 frames, but would instead the red light would dim over a few frames before turning off

completely, as seen in Figure 4 below.

Figure 4. Frames from a red to green change on a stoplight at the intersection of College Ave.

and Dickson St.

The second pattern was observed when a stoplight changed from a yellow light to a red

light. This change occurred in a similar fashion to the red to green change. The change occurred

over 3 to 5 frames on average and the yellow light would take several frames before it no longer

produced any light. In some cases, the red light would not turn on completely in one frame.

Instead, the red light would require 2 frames before it no longer showed a visible change in the

image.

Figure 5. Frames from a yellow to red change on a stoplight at the intersection of College Ave.

and Dickson St.

The third pattern that was observed was in the change from a green stoplight to a yellow

stoplight. This was, by far, the most unique change between the three types. Being the longest

observed change, the transition from green to yellow would usually take around 6-9 frames. In

this change, there would be a few frames that were “dark”, where neither the green light nor the

yellow light were exuding any light output. There would also be at least one frame where the

green light would be dimmed, but not completely off. This was also the case for when the yellow

light turned on. The light would take an extra frame or two before it turned on completely, as

seen in Figure 6.

Figure 6. Frames from a green to yellow change on a stop light at the intersection of College

Ave. and Dickson St.

5. Fabricating an Attack

After the data for each stoplight had been retrieved through the data preprocessing

program, the next step was to create several type of forgery attacks that would also be run

through the data preprocessing program and have their data preprocessed. When testing the K

Nearest Neighbor algorithm program, these forged attacks are needed in order to prove that the

algorithm can still accurately predict what type of change is present even when there are attacks

present in the training data. Three different types of forged attacks were created.

The first type of attack that was created, Type 1, was done by taking the last fully lit

frame before the color change started and altering its RGB value. The frames for this attack were

created through the same program as the data preprocessing. By adding the “attack” parameter

when running the main.py file, the program would still detect the stoplight in the image.

However, this time it would perform image manipulation to change the pixels in the image to

reflect the attack. For the green to yellow changes, the green value of the light’s pixels were

increased by 100. This change can be seen in the image shown in Figure 7.

Figure 7. A Type 1 fabricated attack on a green to yellow change.

To create the Type 1 attack for the red to green change, the image with the last fully lit

red light before the change began had their pixels’ R color value increased by 100. An example

of this addition is shown below in Figure 8.

Figure 8. A Type 1 fabricated attack on a red to green change.

The Type 1 attack for a yellow to red change was created in the same manner as the red

to green change. The program used the RGY_mask to detect the colored pixels in the stoplight

and added 100 to the R color value in each pixel.

Figure 9. A Type 1 fabricated attack on a yellow to red change.

All of the images shown for the Type 1 attacks were created using videos from the

intersection at Dickson Street and West Avenue in Fayetteville, AR.

The second type of attack, Type 2, was created by removing all of the frames that the

stoplight changed over. The goal of this attack was to simulate a situation where instead of

taking several frames for a stoplight to change from one color to another, the change would

appear to be instantaneous. This means for each of the three type of changes, there would be no

partially lit frames or any of the “dark” frames that were mentioned earlier. Examples of these

Type 2 attacks are shown with the following figures. Figures 10, 12, and 14 shown the full

transition of a stoplight change without any frames removed. Figures 11, 13, and 15 show how

the change appears when the Type 2 attack is created by removing these transition frames. The

images used in these figures were taken from the videos at the stoplight at the intersection

Garland Avenue and Cleveland Street in Fayetteville, AR.

Figure 10. The original frames on a green to yellow change.

Figure 11. A Type 2 fabricated attack on a green to yellow change.

Figure 12. The original frames on a red to green attack.

Figure 13. A Type 2 fabricated attack on a red to green change.

Figure 14. The original frames from a yellow to red change.

Figure 15. A Type 2 fabricated attack on a yellow to red change.

The third and final type of attack, Type 3, was created by taking the last fully lit frame

before the color change started occurring in the stoplight and selecting a percentage of pixels to

retain their color instead of dimming with the rest of the light. In the created attacks, the pixels

were randomly selected from the first image by using the random class in python to generate a

number between 0 and 1 and if the number was greater than 0.75, then the pixel would be

selected. The result was that approximately 25% of the pixels would be chosen to remain

unchanged. Figures 16, 18, and 20 show the original frames and figures 17, 19, and 21 shown the

frames after the changes have been applied. The images shown in these figures were taken from

the videos at the stoplight at the intersection of Dickson Street and Arkansas Avenue in

Fayetteville, AR.

Figure 16. Original frames on a green to yellow change.

Figure 17. A Type 3 fabricated attack on the previous green to yellow frames.

Figure 18. Original frames on a red to green change.

Figure 19. A Type 3 fabricated attack on the previous red to green frames.

Figure 20. Original frames on a yellow to red change.

Figure 21. A Type 3 fabricated attack on the previous yellow to red frames.

For each of the 3 types of forgery attacks, 10 attacks were created for each type of

change: green to yellow, yellow to red, and red to green. This resulted in 30 total attacks for each

type.

The types of attacks used were chosen because of their simplicity. These types of attacks

are simple enough that they can easily be defined as forged when looked at by a user. Given the

time limitation, more advanced attacks will be studied in future work.

6. Stoplight Detection without and with Attacks

6.1 Detection Algorithm

Once all the data was collected on types of attacks, the next step was to create a program

to determine what type of change was occurring in a set of data that was collected by the data

preprocessing program. A K Nearest Neighbor (KNN) algorithm was determined to be the best

way to accomplish this task. The KNN algorithm was designed around the assumption that

similar types of data exist in close proximity to each other (Harrison). This is why the KNN

algorithm is a beneficial method for classification problems. One of the benefits of using this

algorithm is that it does not require a large amount of time that must be dedicated for training the

system. All of the data will be stored locally and the training phase of the algorithm occurs each

time the algorithm is called in the program. However, one of the drawbacks of using this method

is that computation time can increase as the size of the data becomes substantially large

(Harrison). However, in the case of this project, the size of the data did not appear to cause any

significant increase in computation time.

The K Nearest Neighbor algorithm begins by loading in a data set for training the

algorithm and another data set for testing. For each data entry in the testing data set, the

Euclidean distances between the test data entry and all of the entries in the training data set will

be calculated. The k variable in the KNN algorithm represents an integer value of the number of

neighbors closest to the testing data entry that the program will find. Using the found nearest

neighbors function, the program will look at the label and classification of each neighbor to

determine what classification should be given to the test data entry. In the case of this program,

the program will find the k nearest neighbors in the data set and will look at what type of

changes had occurred. The most common classification among the neighbors will then be chosen

for this test data entry and the program will be able to predict that the data is showing that type of

change with a certain percentage of confidence. This confidence value is calculated by how

many of the neighbors are of the same classification as the chosen label.

6.2 Results without Attacks

Using the data obtained from the videos of the seven stoplights and the three types of

attacks that were forged, the accuracy of the K Nearest Neighbor algorithm as a classifier can be

tested. The first test performed was to take all of the data (not including forged attacks) and

check the accuracy of the program with varying numbers of k. For this test, there was no

specified set of test data. Instead, this non-attack set of data was fed into the algorithm and was

split using a random object in python and splitting the data on the value 0.85. Therefore,

approximately 85% of the data would be assigned to the training data set and the rest of the data

was assigned to the testing data set. For the purpose of testing the different numbers of k, the

random variable was given a seed of 1000 so that number of data entries in the training and

testing data sets would be the same regardless of the value of k. This test was performed with the

following values of k: 2, 3, 4, 5, 6, and 7. The results are shown below in Figure 22.

Figure 22. Accuracy of KNN Algorithm with Detecting Stoplight Change Types.

By looking at the graph, it can be determined that the best number of k to use for this K

Nearest Neighbor algorithm is 3. The reason why the value of 3 was chosen is that out of all 6

values of k, 3 has the most consistency between the accuracy of the three types of changes and

the overall accuracy. Each of the other k values has an outlier in the data, meaning that for one

type of change, the KNN algorithm with be noticeably less efficient. With an overall accuracy of

95.23809524%, the accuracy of this KNN algorithm can be verified when it considers the

number of neighbors, k, to be 3.

6.3 Results with Attacks

The next three tests that were performed on the K Nearest Neighbor algorithm were to

add the forged attacks into the data set to determine how accurate the program would still be able

to detect the type of change occurring in an entry of data.

The first of these three tests was performed by adding all of the collected data for the

Type 1 attack into the csv with all of the non-attack data entries. Then, a group of seven videos

were chosen to serve as the test data. For each of these seven videos, the data for a green to

yellow, yellow to red, and red to green were included in the test data. This resulted in a test data

set with 21 entries in it. The second of the three tests was performed by adding all of the

collected data for the Type 2 attack into the csv with all of the non-attack data entries. The same

21 data entries were used as the test data. Finally, the last of the three tests was performed in the

same fashion as the last two tests, except this time all of the collected data for the Type 3 attack

was added into the csv with all of the non-attack data entries. The results from running the K

Nearest Neighbor algorithm under these three tests are shown in Figure 23.

Figure 23. Accuracy of KNN Algorithm with Detecting Stoplight Change Types Against Attacks.

As the results in the above graph show, the KNN algorithm suffered a loss in accuracy

when it was tested with the Type 1 and Type 3 attacks. The similarity in this data can be

attributed to the fact that both of these forged attacks were created by manipulating pixels in the

original image. The Type 2 attacks did not cause a drop in accuracy for the algorithm. This is due

to the dynamic aspect in how frames were all together deleted to create the attack. Detecting a

lack of changing frames is much easier when calculating the Euclidean distance than detecting

data with only altered frames, not removed frames.

The algorithm was also tested to see if the program could accurately categorize an

incoming attack of the three types. The program, however, struggled to accurately categorize an

attack as such. This can be explained by the small amount of data that was present for each type

of attack and that the attacks were not all created on the same stoplight location.

7. Conclusion

The goal of this project was to create a system that would receive images from a camera

and use Tensorflow’s Object Detection API and image processing to detect stoplights in an

image and record the difference in the RGB color values between frames of the change in the

color of a stoplight. This collected data was then used, alongside the set of data for three

different forged attacks, to create a K Nearest Neighbor algorithm that would be able to

accurately classify what type of color change was occurring in a set of data. The found results

prove that the KNN algorithm is accurate in correctly classifying the type of change a stoplight

undergoes and only suffers a slight decrease in accuracy when the three attacks are introduced

into the KNN algorithm’s training data.

However, the system can still be improved upon. This could be done by collecting more

data and including a large data set for each of the forged attack types. The accuracy of the system

also needs to be further validated before it can be implemented for use in autonomous vehicles.

The next step towards improving this project is to increase the efficiency of the data

preprocessing system. Currently, the program takes around 15-20 minutes to process a set of

around 35 frames. This is acceptable for testing the program in the context of this project.

However, to implement this system in an active autonomous vehicle would require the

processing time to be reduced significantly. By working to improve upon these inefficiencies in

the future, this program has the potential for use in the real-time environment of an active

autonomous vehicle and drastically improve their security and functionality.

In addition to increasing the efficiency of the data, the results obtained from this project

can be further validated by increasing the size of the test data for both the standard stoplight data

and the three types of forgery attacks. This would help to both improve the quality of the

identification algorithm’s results and would allow for future tests in detecting the occurrence of a

forged attack. The data could be further expanded by creating a stronger variety of types of

forgery attacks. The overall intelligence of the algorithm will increase if it is able to correctly

detect a more efficient attack against the autonomous vehicle camera system.

Lastly, the accuracy of the system can be further improved by exploring different

methods of learning, such as neural networks, that can be used to classify what type of change a

stoplight is undergoing and detecting if an attack being forged on the system.

Works Cited

de Charette, Raoul, and Fawzi Nashashibi. “Traffic Light Recognition Using Image Processing

Compared to Learning Processes.” ResearchGate, Nov. 2009,

https://www.researchgate.net/publication/224090421_Traffic_Light_Recognition_using_

Image_Processing_Compared_to_Learning_Processes.

Fu, Junsheng. “Traffic Light Detector.” GitHub, GitHub, 18 Dec. 2017,

https://github.com/JunshengFu/traffic-light-detector.

Gupta, Vikas. “Color Spaces in OpenCV (C / Python).” Learn OpenCV, Big Vision LLC, 7 May

2017, https://www.learnopencv.com/color-spaces-in-opencv-cpp-python/.

Haridas, Nikhila, and Sandhiya S. “Traffic Light Detection Using the TensorFlow* Object

Detection API.” Intel® Software, Intel, 27 Apr. 2018,

https://software.intel.com/en-us/articles/traffic-light-detection-using-the-tensorflow-objec

t-detection-api.

Harrison, Onel. “Machine Learning Basics with the K-Nearest Neighbors Algorithm.” Towards

Data Science, 10 Sept. 2018,

https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-al

gorithm-6a6e71d01761.

Mahdavi Tabatabaei, Naser, et al. “Autonomous Vehicles : Intelligent Transport Systems and

Smart Technologies.” Nova Science Publishers, Inc, 2014. EBSCOhost,

http://0-search.ebscohost.com.library.uark.edu/login.aspx?direct=true&db=nlebk&AN=8

09607&site=ehost-live&scope=site.

Map of Fayetteville, AR. Google Maps, 30 Aug. 2018, www.google.ca/maps.

https://www.researchgate.net/publication/224090421_Traffic_Light_Recognition_using_Image_Processing_Compared_to_Learning_Processes
https://www.researchgate.net/publication/224090421_Traffic_Light_Recognition_using_Image_Processing_Compared_to_Learning_Processes
https://github.com/JunshengFu/traffic-light-detector
https://www.learnopencv.com/color-spaces-in-opencv-cpp-python/
https://software.intel.com/en-us/articles/traffic-light-detection-using-the-tensorflow-object-detection-api
https://software.intel.com/en-us/articles/traffic-light-detection-using-the-tensorflow-object-detection-api
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
http://0-search.ebscohost.com.library.uark.edu/login.aspx?direct=true&db=nlebk&AN=809607&site=ehost-live&scope=site
http://0-search.ebscohost.com.library.uark.edu/login.aspx?direct=true&db=nlebk&AN=809607&site=ehost-live&scope=site
http://www.google.ca/maps

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2019

	Stoplight Detection: Implementation and Forgery Attacks
	Olivia Degner
	Recommended Citation

	tmp.1556248631.pdf.curMP

