
University of Arkansas, Fayetteville
ScholarWorks@UARK
Chemical Engineering Undergraduate Honors
Theses Chemical Engineering

5-2019

Effects of Ambient and Laser Light on Water
Evaporation from the Surface of Polyurethane
Swabs Doped with Surfactant
Collin Campbell

Follow this and additional works at: https://scholarworks.uark.edu/cheguht

Part of the Bacteria Commons, Biomedical Devices and Instrumentation Commons, Medical
Microbiology Commons, Transport Phenomena Commons, and the Viruses Commons

This Thesis is brought to you for free and open access by the Chemical Engineering at ScholarWorks@UARK. It has been accepted for inclusion in
Chemical Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact
ccmiddle@uark.edu.

Recommended Citation
Campbell, Collin, "Effects of Ambient and Laser Light on Water Evaporation from the Surface of Polyurethane Swabs Doped with
Surfactant" (2019). Chemical Engineering Undergraduate Honors Theses. 142.
https://scholarworks.uark.edu/cheguht/142

https://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/cheguht?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/cheguht?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/cheg?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/cheguht?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/985?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/672?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/672?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/249?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/987?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/cheguht/142?utm_source=scholarworks.uark.edu%2Fcheguht%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu


1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of Ambient and Laser Light on Water Evaporation from the  

Surface of Polyurethane Swabs Doped with Surfactant 

 

Honors Thesis 

Collin N. Campbell 

April 26, 2019 

 

  



2 
 

ABSTRACT 

Polyurethane swabs are a common instrument for environmental sampling in the food, medical, 

and forensic fields due to their high recovery of organisms like viruses, spores, and bacteria. For 

sampling microbes in food and medical facilities, storage of the collected samples occurs under 

the absence of light to promote growth for more accurate testing. In the forensic fields, microbial 

growth results in sample contamination so the inhibition of this growth requires the drying of the 

swabs. This work studies the evaporation rates of water from polyurethane swabs under zero watt 

incident light, 30 W fluorescent bulb, 50 mW 532 nm laser, and surfactant dopant conditions to 

determine the effects of each condition on the swab recovery. Overall, the zero-watt incident light 

condition resulted in the lowest evaporation rates without surfactant dopant, but with surfactant 

dopant, the zero-watt incident light had evaporation rates higher than that of the 30 W fluorescent 

light bulb. Under 50 mW laser irradiation, the evaporation rate of water from the polyurethane 

swabs was consistently higher under all conditions. A dynamic period was observed when 

irradiating the swabs with the laser, which showed that from 0-60 s, the laser resulted in lower 

evaporation rates but after 60 s, the laser irradiation resulted in higher evaporation rates than the 

other conditions. These results showed that for food and medical fields needing the swabs to have 

reduced water evaporation; use of swabs doped with surfactant would allow for increased intake 

as well as reduced evaporation, while forensic science fields could use a 532 nm laser to dry the 

swabs to minimize microbial growth. 
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1. Introduction 

Polyurethane swabs are commonly used in the food, medical, and forensic fields due to higher 

recovery.1–8 These industries use polyurethane swabs for environmental sampling to collect 

microorganisms or biological evidence. An estimated 48 million people each year get sick in the 

United States, where 128,000 are hospitalized and 3,000 die from foodborne diseases.9 In the 

medical industry, 687,000 patients got a Healthcare Acquired Infection (HAI) and 72,000 people 

died during their hospitalizations due to an HAI in 2015.10 In both the food and medical industries, 

an improvement in environmental sampling devices has the impact to save thousands of lives every 

year.11–14 As the FDA switches from a reactive approach to a more proactive approach, 

environmental sampling will become instrumental in preventing contaminated foods from 

reaching consumers.15 However, the FDA does not have a standard sampling tool but recommends 

using polyurethane or cotton swabs and sponges.15–17 Collecting forensic evidence such as DNA, 

saliva, and blood, in the field is usually done under non-optimal conditions. Without a dedicated 

refrigerated storage for collected samples, a temporary storage method is required to preserve the 

evidence for future analysis, or a fast-drying method allowing for immediate testing is needed like 

adding a solvent of ethanol or isopropanol.18 Experiments to determine the optimum conditions 

for both storage and drying were performed by analyzing water evaporation rates from a sampling 

device. Most forensic evidence is obtained using a cotton swab, however, a major limitation of 

cotton swabs is their inability to be used for PCR analysis, which is used for making copies of a 

DNA genetic identifier sequence.19 Studies show that polyurethane swabs and cotton swabs are 

equivalent in real time PCR limit of detection.20 The addition of hydrophilic surfactant to a 

polyurethane swab will likely lead to increased intake.21 The effect of Triton in water, with cells, 

and with microbes has been studied.22–25 
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The present work observed water evaporation from polyurethane swabs under dark (0 W 

Incident), light (30 W fluorescent bulb), laser (50 mW, 532 nm), and surfactant (Triton X-100) 

conditions. The dark condition without surfactant had the least overall water evaporation. The light 

condition with surfactant had lower overall evaporation compared to the light and laser conditions 

with surfactant. The lower overall evaporation would be beneficial for the food and medical fields 

because higher water concentration leads to better microbial growth. The laser condition had the 

highest overall evaporation for all trials. The higher evaporation would be beneficial for forensic 

collection because less water inhibits microbial growth. An observed difference in evaporation 

over time occurs at 60 s. Before 60 s evaporation was under dynamic conditions and after 60 s the 

evaporation was under equilibrium conditions. The greatest difference between the dynamic and 

equilibrium evaporation rates occured for the laser condition. 

 

2. Materials and Methods: 

2.1 Dark, Light, and Laser Evaporation Measurements. 

 

Figure 1. Images of the polyurethane swabs used for the water evaporation experiments with 

corresponding length, width, and thickness dimensions. 

 

Polyurethane swabs (EZ-DRY-PUR, World Bioproducts, Libertyville, IL) were cut into 6 mm 

x 6 mm x 2 mm (length x width x thickness), as shown in Figure 1, and used to determine the 

effects of dark, light, and laser conditions on the water evaporation from the swab surface. Two 
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methods were used to add water to the swab surface: (1) a dip method consisting of soaking one 

corner of the swab in 1000 µL of water for 5 min and (2) a pipette method consisting of dropping 

20 µL of water onto the surface of the swab and providing time for the water to soak into the swab 

(~ <1 min). The swabs were placed in a swab holder (a mixing cup wrapped in metallic wire with 

a small binder clip to hold the swab) on a Pioneer Analytical Balance (PA114, OHAUS, Pine 

Brooks, NJ) before the addition of water with the mass of the swab and swab holder being zeroed. 

Once the water was added onto the swab surface via either method, either dark, light, or laser 

conditions were applied to the system. For dark conditions (black dot-dashed line in Schematic 1), 

a light blocking cover was placed over the scale containing the swab and a 3-minute evaporation 

period was performed while the mass of water displayed on the scale was video recorded for later 

analysis. For light conditions (yellow dashed line in Schematic 1), the system was exposed to 

ambient room light consisting of a 30 W light bulb ~75 in. away from the system for 3 minutes 

with the mass of water displayed on the scale being video recorded for later analysis. The light 

bulb was ~60 in. overhead at an angle of ~30° from the system. For laser conditions (green dashed 

line in Schematic 1), a 532 nm laser (MXL-FN-532, CNI, Changchun, China) was used to irradiate 

the swab from a distance of ~8.5 in. at ~50 mW for 3 minutes while the mass of water displayed 

on the scale was video recorded for later analysis. During each experiment, the temperature, 

relative humidity, and pressure within the system was measured and recorded using an Omega 

Pressure, Humidity, and Temperature Logger (OM-CP-PRHTEMP2000, Omega, Bridgeport, NJ). 

After initial data analysis, the pipette method was determined to be a more consistent and accurate 

method and was used for all further experiments and analysis. Each dark, light, and laser 

experiments were performed in triplicate. Video recordings of each trial were used to determine 

the mass of water evaporated at 5 s intervals.     
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Schematic 1. Experimental setup for measuring the water evaporation rates from the surface of 

polyurethane swabs when exposed to dark (D, black dot-dashed line), light (L, yellow dashed line), 

and laser (Z, green dashed line) conditions. The setup, as shown in the box outlined with a black 

dashed line, consisted of a swab holder, the swab, and a scale. 

 

2.2 Addition of Surfactant Dopant. 

 

The aforementioned experimental procedure for applying dark, light, and laser conditions to 

polyurethane swabs containing water was used for swabs that had been doped with Triton X-100 

surfactant (Sigma Aldrich, St. Louis, MO). Two methods were used to dope the swabs with 

surfactant: (1) 3 µL of 1 wt% Triton X-100 was dropped on the swab surface, heated at 100 °C 

for 10 min, and cooled to room temperature for 10 min (Triton on swab) and (2) a solution of 1 
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wt% Triton X-100 was made and used for the water addition via the pipette method (Triton in 

water). 

 

3. Results and Discussion. 

3.1 Dip vs. Pipette Methods 

 

Figure 2. The fractional water evaporated from polyurethane swabs was measured under three 

conditions: dark, light, and laser. Two methods for applying water to the polyurethane swab were 

performed, in Figure 2 (a) the dip method is shown and in Figure 2 (b) the 20 μL pipette method 

is shown. 

 

For the dip method in Figure 2 (a), the dark condition had the highest average fractional water 

evaporated at the end of 60 s followed by the light and then the laser conditions. The laser condition 

had the lowest initial fractional water evaporated average, however, after 60 s the laser condition 

had an increased average fractional water evaporated over time. At the end of the trials, the average 

fractional water evaporated for the laser had the highest average at 6.64%, followed by the dark at 

6.34%, and the lowest was the light at 5.97%. All three conditions ended within .67% of each 

other. From 130 s onwards, the laser had the highest evaporation followed by the dark and the 

lowest was the light. For the pipette method in Figure 2 (b), the light condition had the highest 



8 
 

initial fractional water evaporated average ~60 s followed by the dark and then the laser conditions. 

The laser trial had an average of no fractional water evaporated for the first 15 seconds. After ~60 

s, the laser condition’s fractional water evaporated average surpassed the dark’s and after ~140 

seconds the laser surpassed the light condition’s. At the end of the 3 min trials, the average 

fractional water evaporated was 6.87% for the laser condition, 6.36% for the light condition, and 

5.55% for the dark condition. The difference between the three conditions was 1.32% at the end 

of the 3 min experiments. The light’s fractional water evaporated overtook the dark’s after ~30 s, 

while the laser’s overtook the dark’s after 60 s. The laser then overtook the light after ~155 s. The 

light and dark trials had constant evaporation throughout the 3 min experiment, while the laser was 

observed to have an increased evaporation rate after 60 s. 

The dip method and pipette method had similar fractional water evaporated for the laser 

condition at the end of the 3-minute trial: 6.64% and 6.87% respectively. Another similarity was 

the laser condition having a slower evaporation rate before 60 s (dynamic period) and higher 

evaporation after 60 s (equilibrium period). However, in the dip method, the dark condition was 

higher than the light condition at the end of the 3 min trial, and in the pipette method, the light 

condition was higher than the dark condition.  
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Figure 3: The pipette method was tested with three volumes of water pipetted onto the surface of 

the polyurethane swabs under dark conditions with 5 μL (blue), 10 μL (orange), and 20 μL (grey). 

The 5 μL had large spikes of fractional water evaporation followed by a long time period with no 

water evaporation. The 10 μL had less extreme spikes and shorter time periods of no evaporation. 

The 20 μL had the most consistent water evaporation. 

3.2 Triton on Swab Evaporation 

Figure 4: The water evaporation from polyurethane swabs was tested under the dark, light, and 

laser conditions. In Figure 4 (a), the 20 μL pipette, also seen in Figure 3 (b), was compared with 
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Figure 4 (b), where 3 µL of 1 wt% Triton X-100 was dropped on the swab surface, heated at 100 

°C for 10 min, and cooled to room temperature for 10 min.  

 

Figure 4 (a) shows the 20 μL pipette trials seen in Figure 3 (b). The trends discussed earlier are 

now compared to the 100-X Triton added to the swab in Figure 4 (b), where the laser condition’s 

fractional water evaporation average at 60 s was the highest followed by the dark then the light 

conditions. After 60 seconds, the laser trial had a much higher evaporation rate than before 60 

seconds. At the end of the experiment, the laser had the highest average fractional water evaporated 

at 7.35%, while the dark trial average was 5.83%, and the light’s average was 4.79%. The 

difference between the laser and light conditions was 2.56%. Triton caused the light condition to 

have lower fractional water evaporated than the dark and laser conditions. The laser condition 

continued to have both dynamic and equilibrium evaporation rates even with Triton added to the 

swab.  

3.3 Triton on Swab vs. Triton in DI Water 

 

Figure 5:  The water evaporation from polyurethane swabs was tested under the dark, light, and 

laser conditions. In Figure 5 (a), 3 µL of 1 wt% Triton X-100 was dropped on the swab surface, 
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heated at 100 °C for 10 min, and cooled to room temperature for 10 min. In Figure 5 (b), a solution 

of 1 wt% Triton X-100 was made and used for the water addition via the pipette method. 

 

In Figure 5 (a), the same trends seen in Figure 4 (b) with the Triton on Swab method were 

compared with the Triton in solution method seen in Figure 5 (b). In Figure 5 (b), the laser 

condition had the lowest fractional water evaporated for the 60 s. The light condition had the 

highest and the dark condition was in between. After 60 s, the laser percentage was higher than 

the dark’s at 80 s, and higher than the light’s at 160 s. However, the difference between the light 

and laser’s average (6.17% vs 5.90%) was not significant. Both were significantly higher than the 

dark’s at 180 seconds (4.92%). In Figure 5a, the fractional water evaporated from highest to lowest 

was the laser, dark, and then light condition. In Figure 5b, the order was laser, light, and then dark, 

which was the same order of conditions as the pipette method seen in Figure 2 (b).  

 

Conclusions. 

In conclusion, incident light had a positive impact on water evaporation from polyurethane 

swabs. This should lead to an increase in swab recovery of microorganisms and biological 

evidence in the food, medical, and forensic fields. 100-X Triton on the swab, however, inversed 

that trend by decreasing the water evaporation in the light below that of the dark conditions. A 

difference was found between the dynamic (0-1 min) and equilibrium (1-3 min) evaporation from 

the polyurethane swabs. The results of this experiment show that for the food and medical sampling 

industry, the dark conditions could allow the microorganisms to recover and revive for culture 

testing. For the forensic industry, the laser condition could allow a quick and cheap drying method 

to preserve the biological evidence from microbial growth. The next steps would be to test 

nanoparticles on the polyurethane swab to increase the water evaporation rate even more under 
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laser conditions. These tests would allow polyurethane sampling devices to provide better results 

for the food and healthcare industries. 
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