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Abstract 

 

 Harmful Algal Blooms (HABs) are a growing issue worldwide, posing harm to both aquatic 

ecosystems and drinking water quality. This issue could be potentially mitigated using 

nanoparticle (NP) treatment, simultaneously removing cyanobacteria and associated cyanotoxins 

in HABs. This research seeks to discern the effectiveness of using titanium dioxide and iron (III) 

oxide NP treatment at removing cyanobacteria via flocculation and sedimentation. Each NP at 25 

mg/L and 50 mg/L were used to treat suspended culture of Microcystis aeruginosa, the 

representative cyanobacteria, up to 72 hours. Cell concentration and morphology in the 

supernatant were measured via a Coulter counter and light microscopy. The decreasing cell 

concentration in the supernatant showed that both NP can flocculate M. aeruginosa and allow 

subsequent sedimentation. High concentration NP treatments were more effective than low 

concentration NP treatments, removing a higher percentage of cells in the same amount of time.   
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Background 
 

 Drinking water treatment processes serve to remove contaminants that could potentially harm 

individuals in the community. The Environmental Protection Agency (EPA) regulates a selection 

of contaminants such as solids, bacteria, heavy metals, and disinfection byproducts in the 

Primary Drinking Water Standard, and also publishes a list of unregulated contaminants of 

interest every five years under the Safe Drinking Water Act. The most recent list expressed great 

concerns over cyanotoxins ("Fact sheet"; 2016). Cyanotoxins are often associated with the 

presence of harmful algal blooms (HABs) containing cyanobacteria (Paerl et al., 2016). The most 

common of toxin-producing cyanobacteria is Microcystis aeruginosa, forming the hepatoxin 

microcystin, which is a liver toxin in mammals (Hodgson, 2012).   

 HABs form in the presence of excess nutrients in aquatic ecosystems, often due to agriculture 

and urban runoff. According to the National Oceanic and Atmospheric Association (NOAA), 

HABs “occur with colonies of algae… grow out of control and produce toxic or harmful effects 

on people, fish, shellfish, marine mammals and birds” (“What is a Harmful Algal Bloom?”; 

2016). The presence of HABs in drinking water sources has greatly increased greatly over the 

past 40 years, thus increasing the presence of cyanobacteria and associated toxins in drinking 

water sources world-wide (Duan et al., 2017). Reports of algal blooms containing M. aeruginosa 

date back to 1878 and have since been reported on all continents except Antarctica (Hodgson, 

2012). Beyond increasing levels of cyanotoxins, HABs also have detrimental environmental 

effects via eutrophication. These combined processes lead to the illness and fatalities in fish, 

shellfish, humans, and marine animals, harming aquatic ecosystems as a whole (Anderson et al., 

2002). The EPA classifies exposure to HABs with cyanobacteria concentrations ranging between 

105 cells/mL to 107 cells/mL as having a high probability of causing severe human health effects 
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(D'Anglada, n.d.). It is therefore beneficial to develop a treatment for HABs which removes 

cyanobacteria and resulting cyanotoxins. This research seeks to do so in aquatic ecosystems that 

serve as drinking water sources, effectively treating cyanotoxins and cyanobacteria prior to 

entering the water treatment plant and reducing the environmental consequences of HABs. 

 Reactive and catalytic NP materials have been investigated for both the inactivation of HAB-

causing cyanobacteria and the degradation of cyanotoxins separately. Previous studies have 

focused on TiO2 and Fe-based nanomaterials because of their low environmental and human 

health impacts. These studies show that TiO2 and Fe-based NPs effectively cause deactivation of 

HAB cyanobacteria in a fully-established bloom while simultaneously reducing the total nitrogen 

and phosphorus levels of the water, likely due to the intake of nutrients from the algal bloom 

(Bessa da Silva et al., 2016; Comotto et al., 2014; Kim & Lee, 2005; Lee et al., 2013; Sharma et 

al., 2016; Wang et al., 2015). Reported mechanisms of HAB deactivation include bloom 

reduction via flocculation and settlement, cell growth inhibition, cell membrane damage, loss of 

photosynthetic activity, and cell destruction (Bessa da Silva et al., 2016; Comotto et al., 2014; 

Kim & Lee, 2005; Lee et al., 2013; Sharma et al., 2016; Wang et al., 2015). Although bloom 

deactivation is the goal, TiO2 toxicity is a potential negative impact of concern (Bessa da Silva et 

al., 2016).  

 Similar studies have shown that Fe-based NPs are effective at cyanobacteria deactivation by 

the disruption of normal cellular function with minimal toxicity towards desirable aquatic species 

(Marsalek et al., 2012; Sharma et al., 2016).  For both TiO2 and Fe NPs, the toxicity level varies 

depending on the organism evaluated and the parameters of exposure (Blaise et al., 2011). These 

small, consequential risks could be potentially remedied by the strategic spatial placement of the 
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NPs in the bloom, rather than homogeneously dispersed particles in the ecosystem, and by NP 

removal following treatment.  

 With regards to cyanotoxin degradation, TiO2 and Fe are the primary NP catalysts under 

investigation thus far. When activated by light, TiO2 produces hydroxyl radical species that 

oxidatively degrade cyanotoxins to reduce their toxicity. Hydroxyl radicals are non-specific and, 

therefore, react with any compound that is near the catalyst. Similarly, the Fe-based NPs produce 

broad-spectrum reactants that are naturally reactive in aquatic ecosystems, including the 

oxidative hydroxyl radical and reductants such as hydrogen. The advantage of using a non-

specific reactant is that it will likely react with any set of cyanotoxins present in the water; the 

disadvantages include the need for the target toxins to be close to the catalyst surface and non-

productive side reactions with other organics such as natural organic matter. Therefore, it can be 

hypothesized that the use of TiO2 and Fe-based NPs will be effective in the mitigation of both 

present and future HABs and their toxins.  

In situ mitigation of HABs and the resulting cyanotoxins remains a challenge. While it will 

also be important for water treatment plants to address cyanotoxins present in pumped drinking 

water sources, successful and efficient treatment of HABs and cyanotoxins at the source would 

provide an initial barrier and immediate mitigation strategy. In situ mitigation would reduce 

cyanotoxin load on treatment plants, prevent unpredicted spikes in cyanotoxin contamination, 

and reduce the risk of cyanotoxins in finished drinking water while simultaneously remediating 

the impacts of HABs in aquatic environments. Most proposed approaches suffer from key issues, 

including the addition of chemicals, the use of chemicals that are difficult to recover and or 

remove, and the inability to mitigate both the HAB and the cyanotoxin concurrently. There has, 

however, been successful demonstration of catalytic NP immobilization on various types of 



 

6 
 

fibers, including silks, filtration polymers, nonwoven materials, fabrics, and meshes (Li et al., 

2002; Liang et al., 2013; Lu et al., 2014; Ma et al., 2012; Zhang & Zhu, 2012). These studies 

demonstrated that the NPs retain their reactivity when immobilized and provide beneficial 

functions including antimicrobial activity and degradation of water contaminants (Lu et al., 

2014; Ma et al., 2012). For TiO2 and Fe-based NPs, the primary mechanism is the formation of 

short-lived, broad-spectrum, powerful oxidants as mentioned above. Studies have evaluated the 

immobilized stability of TiO2 and Fe-based NPs and have shown that both can be immobilized 

and reused to a certain extent (Pavía-Sanders et al., 2013; Yu et al., 2013).  

The proposed design for the delivery of NPs to water is a polymer fiber net embedded with 

catalytic, immobilized nanoparticles (NPs) that can be deployed at the location of HABs and 

retrieved after treatment, minimizing harm to beneficial aquatic organisms. The NPs used here 

are TiO2 and Fe2O3. The ultimate goal of this project is to immobilize the selected NPs to a net, 

which can be efficiently applied and withdrawn from the aquatic environment suffering from 

HABs, minimizing harm to aquatic ecosystems by removing cyanobacteria and cyanotoxins 

simultaneously. 

Objective and Hypothesis 

 The main objective for this thesis is to discern the treatment effects of titanium dioxide and 

iron oxide NPs on M. aeruginosa regarding inactivation of cyanobacteria by removing them 

from water. The hypothesis is NPs can remove cyanobacteria by flocculation and sedimentation. 
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Materials and Methods 

M. aeruginosa growth and preservation 

 M. aeruginosa (strain #2386) in suspension was obtained from the UTEX algae center at the 

University of Texas, Austin, and maintained in autoclaved BG-11 medium as instructed. Flasks 

of M. aeruginosa were set near a window, allowing for adequate sunlight. The growth of M. 

aeruginosa was monitored by measuring the optical density at 680 nm. Fresh BG-11 medium 

was supplemented into existing culture every 21 days to maintain algal growth (UTEX Culture 

Collection of Algae, 2009).  

Experimental Protocol 

NP treatment impacts were discerned by adding different concentrations of TiO2 and Fe2O3 

to M. aeruginosa suspended cell solutions. Both NPs were prepared by Dr. Greenlee’s lab at the 

University of Arkansas and the stock solution of 1 mg/mL concentration were used. Prior to each 

experiment, cell morphology and concentration were assessed using a Nikon NiE upright light 

microscope and a Beckman Multisizer 4 Coulter counter, respectively. 

10 mL samples were prepared in 15 mL centrifuge tubes with M. aeruginosa diluted in 

phosphate buffer saline (PBS) at a 1:10 ratio. After samples were prepared, centrifuge tubes were 

gently vortexed to encourage even cell distribution throughout the PBS. Samples of the 

supernatant were taken for cell concentration measurement prior to NP addition, measuring 

initial concentrations of M. aeruginosa in cells/mL with diameters ranging from 2.5 to 4 μm. All 

cell concentration measurements were taken using the Coulter counter, prepared in 20 mL 

accuvettes with 20 μL added of supernatant to 10 mL of Isoton III Diluent as the electrolyte. 

Prior to being added to the accuvette, the electrolyte was filtered using a 0.22 μm syringe filter. 

The 20 μm aperture tube was used for Coulter counter readings, and the coulter counter was 
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operated using the volumetric operating mechanism for the preliminary experiment and the time 

operating mechanism for the final experiment. After initial cell concentrations were recorded in 

all samples, NPs were vortexed to evenly mix them. Treatment amounts of NPs were then added 

to each tube, with no NPs added to the two control tubes (Table 1 and Table 2). Cell 

concentration was again measured three hours following NP addition and once every 24 hours 

for three days after NP addition using the Coulter counter. Throughout the experiment, samples 

were left sitting upright in a 15 mL centrifuge holder near the window. 

Table 1. Preliminary experimental design for NP treatment on M. aeruginosa 

Treatment Concentration of NPs (mg/L) Tube Number 

Titanium Dioxide – low concentration 25 P1, P2 

Iron (III) Oxide – low concentration 25 P3, P4 

Control  0 P5, P6 

 

Table 2. Final experimental design for NP treatment on M. aeruginosa 

Treatment Concentration NPs (mg/L) Tube Number 

Titanium Dioxide – low concentration 25 F1, F2 

Iron (III) Oxide – low concentration 25 F3, F4 

Titanium Dioxide – high concentration 50 F5, F6 

Iron (III) Oxide – high concentration 50 F7, F8 

Control  0 F9, F10 
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 All experiments were conducted in duplicate. Results were analyzed using Z-score (Equation 

1), which considers values greater than an absolute value of 2 to suggest significant differences 

(alpha = 0.05); because this analysis involved decreasing concentrations over time, z-scores less 

than -2 were considered significant cell removal. In the z-score calculation, X represents the 

individual cell concentration of each tube, X̄ represents the average cell concentration of all 

tubes prior to treatment, and S represents the sample standard deviation of all tubes prior to 

treatment. 

Equation 1. Z-Score Calculation 

𝑍 =
𝑋 − 𝑋

𝑆
 

 Cell concentration results were also analyzed in JMP using the analysis of covariance 

(ANCOVA) in conjunction with Dunnett’s test compared against the experimental control group 

to control multiplicity, in which an effective treatment resulted in values above or below the 

upper and lower decision limits, respectively (alpha = 0.05). In this analysis, the dependent 

variable was cell concentration, the independent variable was treatment, and the covariant was 

hours elapsed.  

 Finally, percent of cells removed was calculated by subtracting the final cell concentration of 

each tube from the initial average cell concentration of all tubes in the experiment. This value 

was then divided by the initial average cell concentration of all tubes in the experiment and 

multiplied by 100. Duplicates of percent cell removal were then averaged to gain percent cell 

removal of each treatment in each experiment. 
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Results 

Cell Morphology 

 M. aeruginosa cell morphology were confirmed using 100x oil emersion light microscopy 

(Figure 1). Cells were moving rapidly throughout the media; only M. aeruginosa cells were seen 

in the sample.  

 

 

Figure 1. M. aeruginosa cell morphology, 10 μm scale bar 

Flocculation 

 Preliminary experimentation revealed flocculation as the main method of algal removal. This 

is illustrated in Figure 2, which shows cells prior to treatment (left), after TiO2 NP treatment 

(center), and after Fe2O3 NP treatment (right). The untreated sample showed cell movement, 

while the treated samples showed little movement of cells.  

 

Figure 2. Images of M. aeruginosa prior to dilution in PBS and NP treatment (left), after TiO2 

NP treatment (center), and after Fe2O3 treatment (right). The scale bar is 10 µm. 
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 Flocculation was further evident in preliminary experiment results through Coulter counter 

measurements, showing a decrease in cell concentration of the supernatant as treatment time 

increased as compare to the average of all initial sample cell concentrations (Figure 3). The z-

score here revealed significant reduction in cell concentration in the supernatant for both NP 

treatment types by 48 hours of treatment (Table 3).  

 

Figure 3. Cell concentration change over the treatment time in the preliminary experiment. 

Tubes 1 and 2 were treated with the low concentration of TiO2, tubes P3 and P4 were treated 

with the low concentration of Fe2O3, and tubes P5 and P6 were the control. There is no 

measurement for Tube P6 at 72 hours because of instrumentation issues. 
 

Table 3. Z-score over cell concentration change after treatment in the preliminary experiment; 

significant reduction in cell concentration is represented in green. There is no value for Tube P6 

at 72 hours because of instrumentation issues. 

Treatment: Hours Elapsed: 3 24 48 72 

Titanium Dioxide – low concentration 
Tube P1 z-score -0.27 -1.38 -6.82 -16.67 

Tube P2 z-score -0.86 -2.94 -17.95 -15.09 

Iron (III) Oxide – low concentration 
Tube P3 z-score 1.72 -5.16 -22.15 -9.16 

Tube P4 z-score -1.57 -0.41 -7.39 -9.69 

Control 
Tube P5 z-score -0.69 0.23 2.10 0.59 

Tube P6 z-score -0.13 -1.01 -0.88  
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 When M. aeruginosa was treated with varying concentrations of NPs, it was revealed that 

increased concentrations lead to faster flocculation. All four high-concentration NP treatments 

showed significant reduction in cell concentration by 24 hours, while only one replicate in the 

low-concentration iron NP treatment achieved the same (Table 4).  

Table 4. Z-score over cell concentration change after treatment of varying concentrations; 

significant reduction in cell concentration is represented in green. 

Treatment Hours Elapsed: 3 24 48 72 

Titanium Dioxide – low 

concentration 

Tube F1 z-score 0.49 -0.53 -2.97 -3.11 

Tube F2 z-score 0.69 0.32 0.47 -3.11 

Iron (III) Oxide –  

low concentration 

Tube F3 z-score -0.35 -2.10 -1.89 -2.68 

Tube F4 z-score -6.46 -0.80 -0.03 -1.84 

Titanium Dioxide – 

high concentration 

Tube F5 z-score 0.53 -3.36 -2.17 -3.04 

Tube F6 z-score 0.45 -3.04 -2.10 -4.30 

Iron (III) Oxide – high 

concentration 

Tube F7 z-score 1.02 -3.36 -3.04 -4.11 

Tube F8 z-score 0.69 -3.81 -3.95 -4.30 

Control 
Tube F9 z-score 0.45 0.81 0.19 -0.08 

Tube F10 z-score 0.47 6.68 0.26 0.42 

  

 When examining the cell concentration over time, the cell concentrations were more variable 

at zero and three hours than in the preliminary experiment (Figure 4). To ensure this had no 

significant affect on results, analysis of variance (ANOVA) was run in JMP with the logarithmic 

transformation of the cell concentration as the dependent variable and the treatment regime as the 

independent variable. This resulted in p-values of 0.4044 and 0.1465 for the initial data and data 

after three hours, respectively, showing that the variance of the data was not significant.  
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Figure 4. Cell concentration change over the treatment time in the final experiment. Tubes F1 

and F2 were treated with the low concentration of TiO2, tubes F3 and F4 were treated with the 

low concentration of Fe2O3, tubes F5 and F6 were treated with the high concentration of TiO2, 

tubes F7 and F8 were treated with the low concentration of Fe2O3, and tubes F9 and F10 were 

the control. 

 

ANCOVA and Dunnett’s Test Results 

 Dunnett’s test sets upper and lower decision limits (UDL and LDL, respectively) based on 

control values; if a treatment value exceeds either limit, it is considered significantly different. A 

significant reduction of both high-concentration treatments of the ANCOVA and Dunnett’s test 

here was revealed (Table 6. Dunnett's test results for final experiment (Table 6). This was 

expected because of the evident flocculation occurring throughout the treatment process.  

 It was also revealed that low concentration treatments are inconsistent in treatment 

effectiveness, for the preliminary experiment showed only the titanium NP treatment as 

effective, whereas the final experiment showed only the iron NP treatment as effective (Table 5, 

Table 6). This difference is likely due to different initial concentrations, which were on average 

4.25x106 and 1.16x106 cells/mL for the preliminary and final experiments, respectively.  
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Table 5. Dunnett’s test results for preliminary experiment 

Treatment 
Lower 

Limit  
Estimate 

Upper 

Limit 

Limit 

Exceeded 

Titanium Dioxide – low 

concentration 
6.178516 6.154286 7.015536 Lower 

Iron (III) Oxide – low concentration 6.178516 6.22953 7.015536 Neither 

 

Table 6. Dunnett's test results for final experiment 

Treatment 
Lower 

Limit  
Estimate 

Upper 

Limit 

Limit 

Exceeded 

Titanium Dioxide – low 

concentration 
5.581461 5.785244 6.917054 Neither 

Iron (III) Oxide – low concentration 5.581461 5.44993 6.917054 Lower 

Titanium Dioxide – high 

concentration 
5.581461 5.364479 6.917054 Lower 

Iron (III) Oxide – high 

concentration 
5.581461 5.188172 6.917054 Lower 

 

 

 Because ANCOVA considered both hours elapsed as a covariant to treatment method, 

ineffective treatments could likely be improved by increasing experimental timespan, or by 

increasing the NP concentration. Considering the goal of this research is to create a NP-

embedded net to be deployed in HABs and later retrieved, increased NP concentration is the 

preferred method of improving performance of treatment, decreasing the amount of time the net 

could cause harm to beneficial aquatic life.  
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Discussion 

 Flocculation of M. aeruginosa was expected because Bessa da Silva et al. (2016) reported 1 

g/L TiO2 NP treatment “enhancing the formation of aggregates and their rapid settlement, thus 

reducing the algal bloom.” According to Sanyano et al. (2013), microalgae carries a negative 

charge; for this reason, inorganic multivalent metal salts are often use as flocculants. Although 

TiO2 and Fe2O3 are not salts, they might still have some effect on the charge of microalgae, 

causing flocculation.  

 The differences between the low-concentration treatment effectiveness between the 

preliminary and final experiment was not expected. As stated, the difference in treatment 

effectiveness is likely due to initial cell concentration. Further differences in the data between the 

preliminary and final experiment could be in the Coulter counter operating method. Although 

both methods take accurate readings, the volumetric operating mechanism analyzes the algae 

over a longer time period than the time operating mechanism. The length of time used for the 

final experiment was 15 seconds, as compared to approximately 90 seconds in the preliminary 

experiment. The preliminary experiment had much cleaner data than the final experiment, 

possibly showing that a longer run time could be an effective method of getting cleaner data.  

 Concerning the effectiveness of the NP treatments, percent cells removed at 72 hours for 

each treatment is listed in Table 7. This shows similar removal efficiencies between low-

concentration treatments across the preliminary experiment and the final experiment, despite 

differences in initial cell concentration.  
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Table 7. Percent algae removed from each treatment 

Treatment Percent algae removed 

Titanium Dioxide – low concentration, preliminary experiment 95.2% 

Iron (III) Oxide – low concentration, preliminary experiment 84.9% 

Titanium Dioxide – low concentration, final experiment 93.1% 

Iron (III) Oxide – low concentration, final experiment 85.1% 

Titanium Dioxide – high concentration 95.0% 

Iron (III) Oxide – high concentration 97.2% 

 Despite these high removal rates, no samples achieved enough algae removal for 

concentration to fall below 20,000 cells/mL, which is the threshold the EPA specifies as low 

probability of human health risk (D'Anglada, n.d.). Cell removal could likely be improved by 

increasing concentration or amount of time treated. 

 

Conclusion  

 

 Although flocculation did occur in all treatment methods by 72 hours after NP addition, the 

ANCOVA analysis revealed flocculation was not consistently significant in low concentration 

NP treatments, while high concentration NP treatments resulted in significant cell concentration 

reductions in M. aeruginosa by flocculation and sedimentation. NP treatment removed 84.9% to 

97.2% of cells, depending on treatment; concentrations, however, failed to fall below the low 

health risk threshold. Further experiments should consider increased dosage levels, possible 

synergistic effects of titanium and iron-based NPs when used simultaneously in treatment, and 

effectiveness of treatment when NPs are embedded in fibers. 
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