
University of Arkansas, Fayetteville
ScholarWorks@UARK
Biological and Agricultural Engineering
Undergraduate Honors Theses Biological and Agricultural Engineering

5-2019

Design of Remote Datalogger Connection and
Live Data Tweeting System
Zachary Wofford

Follow this and additional works at: https://scholarworks.uark.edu/baeguht

Part of the Bioresource and Agricultural Engineering Commons, Digital Communications and
Networking Commons, Hardware Systems Commons, and the Systems and Communications
Commons

This Thesis is brought to you for free and open access by the Biological and Agricultural Engineering at ScholarWorks@UARK. It has been accepted for
inclusion in Biological and Agricultural Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For
more information, please contact ccmiddle@uark.edu.

Recommended Citation
Wofford, Zachary, "Design of Remote Datalogger Connection and Live Data Tweeting System" (2019). Biological and Agricultural
Engineering Undergraduate Honors Theses. 59.
https://scholarworks.uark.edu/baeguht/59

https://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/baeguht?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/baeguht?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/baeg?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/baeguht?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/baeguht/59?utm_source=scholarworks.uark.edu%2Fbaeguht%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

Design of Remote Datalogger Connection and Live Data Tweeting System

Zachary Wofford

Biological Engineering Program

Biological and Agricultural Engineering Department

College of Engineering

University of Arkansas

Undergraduate Honors Thesis

1

PROJECT SUMMARY

 Low-Impact Development (LID) is an attempt to sustainably respond to the potential hazards

posed by urban expansion. Green roofs are an example of LID design meant to reduce the amount of

runoff from storm events that are becoming more intense and less predictable while also providing

insulation to buildings. LID has not yet been widely adopted as it is often a more expensive alternative to

conventional infrastructure (Bowman et. al., 2009). However, its benefits are apparent. The University of

Arkansas Honors College awarded a grant to research the large green roof atop Hillside Auditorium. One

part of this grant is aimed at educating the public on the benefits LID infrastructure and encourage its

development. To accomplish this task, a Raspberry Pi was programmed to operate in tandem with a

Campbell Scientific CR1000 datalogger to collect, organize and tweet data to the public under the

moniker, “Rufus the Roof.” It is believed that personifying the roof allows data to be conveyed in an

entertaining manner that promotes education and public engagement in the LID design.

 The Raspberry Pi was initially intended to collect data and publish tweets automatically on a live

basis. However, automation was not realized due to time constraints and challenges in establishing

connection to the datalogger. Instead, a system was developed that allowed the remote transfer of

environmental data files from a datalogger on the green roof. Along with remote file transfer protocol,

several Python scripts were written that enabled tweets to be published by the Raspberry Pi.

 The design was successful. Manual remote file transfer and tweeting was achieved. Full

automation remains to be achieved, but the Python scripts are built with the capability to operate

automatically. The conditions are in place for future development of the project in order to achieve full

autonomy. A fully automated system could open the doors for more widespread public engagement in

the value and benefits of Low-Impact Development initiatives.

2

I. INTRODUCTION

Global average temperatures have increased alongside increases in population and

consumption. These changes pose serious threats to the current standard of living as weather events

become less predictable and more intense (Westra et. al., 2014). Along with this trend, increases in

population are accompanied by corresponding increases in urbanization. Peak runoff is known to

increase with urbanization due to the conversion of infiltrating soils to pavements and other impervious

surfaces (Miguez et. al., 2015). Low-impact development (LID) is a strategy to sustainably overcome the

stormwater runoff hazards posed by climate change and urbanization (PGCo, 1999). Green roofs, also

commonly referred to as vegetative or living roofs, are representative of LID through their capture of

stormwater and capacity to insulate. An Honors College research grant was awarded to members of the

Biological Engineering Department with the intent to study the impacts of a green roof on the University

of Arkansas campus. The site selected was the large, extensive green roof above Hillside Auditorium due

to its high visibility to passing students. The ongoing study collects environmental data regarding the

green roof via a network of sensors connected to a Campbell Scientific CR1000 datalogger (Image 1;

Image 2). Along with examining the physical impacts of the green roof, the project also sought to

educate the public on how LID designs can be worthwhile investments. As a complimentary activity this

thesis seeks to design a method of transmitting collected environmental data to the public in an open

and accessible way on a live basis.

On a study abroad course at the University of Gent, Belgium during my freshman year I

encountered a tree with embedded sensors that collect and post biological data to Twitter on a live

basis. The system struck me as an ingenious way of enabling public engagement in science. That tree

also happens to be a member of a large network of trees across European universities that operate on

Twitter under the name TreeWatch (Steppe et. al., 2016). The network was designed to study how trees

are responding to climate change in their daily biological functions. It is believed that trees can serve as

3

early warning signals to climate change through die offs (Neumann et. al, 2017). The TreeWatch network

seeks to understand more about the trees’ reactions to climate change before they die while also raising

public awareness of the hazards posed by climate change. TreeWatch believes that tweeting sensor

arrays have an intrinsic educational power (Steppe et. al., 2016). This project intends to utilize that

power in order to have a lasting impact on the public’s understanding of LIDs and care for sustainable

initiatives.

Disseminating data to the public is the primary goal of this project. However, in the design

process new insights were gained regarding the competitive hold scientific instrumentation companies

place on their products and markets. Campbell Scientific offers a manual regarding connecting internet

capable devices to the CR1000 datalogger. However, all of the options in their product manual refer to

using compatible products sold by Campbell Scientific. This limits open access by researchers and

imposes increased system costs. Frustration has been expressed in online forums where individuals are

trying to establish connections without purchasing Campbell’s compatible hardware.

 One aspect of the design will be to program tweets coming from the green roof in first person.

This is inspired by the TreeWatch network as a means of further engaging the public. By personifying the

roof – giving it a name and a voice – it is hoped that the study will become more personable and

impactful. Getting the public engaged in LID infrastructure research on its own is a likely a challenge.

Offering the research in a fun and approachable manner may ease this challenge. The first step in

personifying a non-sentient object is to name the object. It was decided that the roof would tweet under

the name Rufus the Roof. The selected twitter handle for the account was @UAGreenRoof.

 In considering how the datalogger would be able to connect to the internet and compile

collected data into tweets the decision was made to use a Raspberry Pi microcomputer. This option was

chosen over the various alternatives such as Arduino microprocessors and Campbell Scientific’s own

4

connection device due to its low price, high accessibility, and ease of use. The Biological Engineering

department has several Raspberry Pis that are used in the Measurements and Controls lab, so one was

readily available for use in this project. However, if this project were to be carried out by any individual

without the privilege of lab access they would only see a cost of $35 for the device (not including

monitor, keyboard, or mouse). Once set up and connected to a monitor, the Raspberry Pi behaves like

any other computer. Thus, programming on it is a more intuitive process than on the desktop-lacking

Arduino. The Raspberry Pi also comes with a built in Wi-Fi receiver that makes it perfect for on-campus

remote studies.

II. LITERATURE REVIEW

Low-Impact Development (LID) is a relatively new concept in infrastructure design. Therefore, it

is unlikely that the general public fully grasps the functionality of some designs (Bowman, et. al., 2009).

This limited understanding extends to LID green roofs like that on Hillside Auditorium. Raising public

awareness of LID systems is an important step in their promotion and development on a wider scale.

The proposed live data tweeting system attempts to engage the public in the study of LID benefits.

Extending findings to the community in an open and accessible manner is a form of citizen science.

The primary objective of the live data system is to educate the public about the benefits of LID

green roofs. This community science initiative will not receive direct scientific contributions from the

community. Rather, it will provide a means of engagement with an ongoing study through promotion.

Promotion of the science will allow for a wide array of the public to better understand water-based LID

through regular interaction (Mercer, 2018). An increased level of engagement could also potentially

incite new scientific ideas from the general public.

The study also aims to exhibit the value of widespread livestream sensor systems. Specifically,

the study aims to exhibit how these systems can be both affordable and effective. Some universities are

5

considering the deployment of environmental sensing arrays in order to become a “smart campus”

where students are given live information about occupancy of buildings and other environmental data.

These studies have found that Raspberry Pi microcomputers are capable of accomplishing this at a low

cost (Hentschel, 2016). Decreasing cost is essential to the design of large scale sensing systems. The cost

of computing has decreased dramatically since the technology’s inception. A Raspberry Pi processor is a

credit card sized computer that is priced affordably at $35 USD. This affordability makes the widespread

deployment of sensing systems a reasonable venture economically.

Widespread sensing is ultimately necessary as a detector of climate change issues. Biological

systems are often our first sign of negative climatic change (Steppe, et. al., 2016). However, the way that

they present their data is through wilting, discoloration, and eventually die-offs. Live remote sensing and

aggregation of data allows us to detect the stressors that organisms are feeling in real time – as they are

feeling them. Sensing does not prevent die offs or climate change as a whole. But it does allow for early

warnings and a better understanding of the rate of change. Tweeting the data that is collected is a way

of conveying the data to a broad audience so that they too can feel the change. Tweeting data is not

absolutely crucial, the widespread audience likely cannot make direct use of the data, but larger

quantities of people collectively witnessing change is important. The collective of people are much more

acquainted with social media than scientific publications.

Twitter specifically possesses an ease and familiarity that is ultimately a fun way to process

information. One example is the University of Arkansas Student Union. It has a twitter (@Arkansas

Union) and uses it to assist in event planning and organization as well as student outreach. If a student

union can have a personality that has an ultimate educational purpose, why can’t a tree, or a green

roof? It is believed that bringing it to life and giving it a voice for our campus (even if it simply provides

data) will give students a better understanding of the sustainable development inherent in its design.

6

Specifically, it should be able to quantitatively show students how sustainable design is a good thing,

and how it is impacting the environment we inhabit.

III. METHOD

 The initial plans for the design involved automated data fetching, organization into graphs, and

tweeting with an accompanying randomized message. The first step in designing the live tweeting

system was to establish a stable and consistent connection between the Raspberry Pi microcomputer

and the Campbell CR1000 datalogger. However, because of Campbell Scientific’s aversion to third party

compatibility, a great deal of time was spent merely establishing the connection from the Raspberry Pi

to the datalogger. Because of this challenge and the accompanying difficulty in coding automated data

fetching and organization programs the design was shifted to a remote file transfer device. The final

design included a set protocol for connection and file transfer from the datalogger as well as a series of

Python scripts that allow for convenient dissemination of information regarding the green roof. The

overall connection protocol and series of commands necessary for the remote publication of a tweet

from the green roof is summarized in Figure 1 below.

Figure 1: Protocol diagram for remote tweet publication

7

1. Raspberry Pi Setup:

 Raspberry Pis require a 5v 2.5A power supply, keyboard, mouse, and monitor for initial setup.

The Linux-based operating system, Raspbian, is loaded manually onto a blank Pi via a micro-SD card. The

Linux-based operating system is automatically installed upon the first start up. After that, the computer

and its pre-programmed software, Raspbian, is ready to use. The first step in making the device

remotely accessible was establishing it as a Virtual Network Computing (VNC) server. VNC is a free

software that allows any computer with approved credentials to access remote servers and operate

them as a normal desktop. If the initial design plans of full automation were realized, a VNC would be

unnecessary. However, because the design shifted to manual operations it became a key component.

Logging on to the VNC software from a remote location is the first step in fetching data and operating

tweeting scripts.

 It was particularly difficult to provide power to the Raspberry Pi from the CR1000. The CR1000

offers multiple ports for powering external devices including two 12V ports, one switching 12V, and a 5V

port. Because the Raspberry Pi requires 5V the initial decision was to use the 5V port. However, the

CR1000 does not provide enough current through this port. The Raspberry Pi requires upwards of 2.5A

while the CR1000 was shown with a multimeter to only produce around 250mA. This low power output

made the 5V port ineffective. When examining the CR1000 operation manual it was noticed that the

12V ports have an accompanying amperage of up to 3A. Supplying 12V to the Raspberry Pi could cause

serious damage to the circuitry, however it is possible to step down the voltage from 12V to 5V while

maintaining the needed current. A linear voltage regulator was tested as the solution to this problem.

Linear voltage regulators take an input of 12V and provides an output of 5V. However, during testing the

small device reached an extremely high temperature, slightly melted, and then caused the Raspberry Pi

to lose power. The high temperature reached was due to 7V and 3A (21W) being lost as heat. A more

8

novel solution was found through the dismantlement of a 12V to 5V USB car charger intended for use in

cigarette lighter ports (Image 3; Image 4). Inside these devices one can find a positive and negative

terminal for connection. These devices are designed in such a way as to not produce excess heat. So, a

12V feed from the CR1000 was attached to the positive terminal (spring) of the car charger while

another wire connected from the negative terminal to the “ground” port of the CR1000 (Image 5).

Image 1: Sensing station on Hillside Auditorium Green Roof

Radiometer

Solar Panel

Volumetric Water

Content and Matric

Soil Sensors

Instrumentation Box

9

Image 2: Instrumentation inside sensing station

Image 3: 12V to 5V USB car charger with casing removed

Image 4: Voltage reducer with lead wires and USB assembled

5V USB
12 V Lead

Ground Lead

12V Battery

Raspberry Pi

CR1000 Datalogger

10

Image 5: Power adapter connected CR1000 and battery via switching 12V port

 The Raspberry Pi requires significantly more power to operate than the environmental sensors

attached to the CR1000. In order to avoid the overuse of battery power supplied by the solar panel on

the sensing station it is necessary to power down the Raspberry Pi when not being used. Luckily, the

CR1000 comes equipped with a “switching 12V” port that can be controlled by the operating script of

the datalogger, CRBasic. This addition is simple and can be adjusted to only have the Raspberry Pi

powered on when needed for file transfer. The switching 12V port was programmed to only be active

from 11:00am to 4:00 pm every day via the CRBasic code in Figure 2 below.

11

Figure 2: Switching 12V power CRBasic code

One challenge with the switching 12V power supply is that the Raspberry Pi requires a proper shut down

before power is disconnected in order to avoid corruption of the operating system. This process was

accomplished with a program built in to the Raspberry Pi called “crontab.” Crontab allows for terminal

commands to be scheduled based on the Raspberry Pi’s onboard clock. To schedule a shutdown for

3:50pm with crontab the following script must be added to the “/etc/crontab” directory:

50 15 * * * root shutdown

2. CR1000 Connection:

 Once the Raspberry Pi and its VNC software are functional a connection to the CR1000

datalogger must be established. This connection proved to be the most difficult portion of the project.

The CR1000 connects to computers via an RS-232 cable. The Raspberry Pi has no RS-232 ports. Luckily,

the device is built to be manipulated to accomplish a wide variety of tasks. The first attempted solution

was installing an RS-232 adapter. This solution came in the form of a HAT (hardware on top) that can be

soldered to the Raspberry Pi’s pins. This device showed no promise, however, and any attempts at

establishing a connection failed. The cause for its ineffectiveness is unknown. As an alternative, it was

12

decided that a USB to RS-232 adapter would be most effective. This adapter was included in the final

design.

 This project was not the first time someone has attempted to connect a Raspberry Pi – or any

other computer – to a CR1000 datalogger. Therefore a wide array of predeveloped code exists online

from sources such as Github.com. However these sources consistently failed to establish steady

connections, likely due to being out of date and incompatible with current Python and Linux software

versions. The creators of the source code were unresponsive to any troubleshooting requests.

 At this point in the project I teamed up with Biological Engineering PhD student, Colby Reavis, to

establish a stable connection. Colby and I tried more incompatible, predeveloped code before deciding

to establish the connection ourselves. Colby suggested a connection protocol I was unaware of called

Point-to-Point Protocol (PPP). The CR1000 datalogger has PPP imbedded into its design. We simply had

to assign an IP address to the datalogger and manually tell the Raspberry Pi, via a PPP command, to

establish a link between its own IP address and the one assigned to the datalogger. The command is as

follows:

sudo pppd /dev/ttyUSB0 115200 debug noauth nodetach

192.168.27.236:10.0.0.1

 sudo – tells the Raspberry Pi that the command is given full administrator privileges

 pppd – initiates the Point-to-Point Protocol command

 /dev/ttyUSB0 – tells the pppd command to use the USB port that is being used by the USB

to RS-232 adapter

 115200 – the baud rate (communication speed) of the CR1000

 debug noauth nodetach – suggested PPP alterations to ensure stable connections and

bypass authorization requirements

13

 192.168.27.236:10.0.0.1 – the Raspberry Pi IP address and the assigned CR1000 IP

address

Upon the input of this command the two devices are effectively communicating. Communication can be

confirmed by pinging the datalogger with the following command:

ping 10.0.0.1

If the Raspberry Pi control terminal shows ping communication then the two devices have successfully

been connected.

3. Twitter Application:

 Twitter has a section of their website that serves as a platform for application developers. In

order to have automated scripts write and publish tweets it was first necessary to register the design as

an application on the platform. Once the profile for @UAGreenRoof was operational an application

request was sent to Twitter under the name “UAGreenRoofBot” in order to acquire access to the

developer platform. The request was immediately accepted and access was made available to important

information required by the Python scripts. In order to bypass the typical steps of posting a tweet such

as entering a password and logging in, the Twitter developer platform grants access to a profile’s specific

tokens and keys that allow remote access from external programs. These tokens and keys are basically

long strings of letters and numbers that serve as a username and password that grant login bypass

access to external programs. With this information in hand, the next step was to create a module in

Python that saved these tokens and keys so that other Python modules can simply pull from them in

order to achieve access to the account. The module was titled “auth.py” and looked like the script below

(tokens and keys redacted to maintain privacy):

consumer_key = 'insert_key'

14

consumer_secret = 'insert_secret'

access_token = 'insert_token’

access_token_secret = 'insert_token_secret'

4. Python Script:

 With “auth.py” saved it was able to be conveniently referenced by any new Python script.

Because full automation was not reached in this design, several different scripts were written for

different occasions in order to make the device easily accessible by any future students who might take

up the mantle of maintaining the Twitter account. These Python scripts actually operate independent of

the datalogger and are built as a way to easily publish graphs, captured water volume data, and

randomized messages regarding water capture. The initial design had these scripts pulling data from the

datalogger, designing graphs of daily soil water balances, and posting them as images. However, this

objective proved too complex of a process for the time available so it was scrapped in favor of simple

volumes of captured rain calculations. Below is an example of the Python script titled

“Rain2Volume_random.py”:

15

Figure 3: Python script for random captured rainfall tweet

This script operates by calculating a captured volume based on rainfall depth, rounding it to two decimal

places, selecting a random caption to be tweeted via a list of strings, inputting the calculated value into

the empty braces of the randomly selected caption via the command “random_caption.format(output),”

and posting the message value to twitter. The “.format(output) command takes any “{}” and replaces it

16

with an assigned value. The script is primarily used for quickly calculating and publishing a randomized

tweet the day following a precipitous day.

The following script, “Rain2Volume_nonrandom.py” is used when a tweet requires more customization:

Figure 4: Python script for custom captured rainfall tweet

This script operates like “Rain2Volume_random.py” except it foregoes randomized messages and allows

more control. In the above example it was used to give the captured volume total for a series of rainy

days.

The above Python scripts act independently of the green roof datalogger and use rainfall data generated

by the National Weather Service rain gauge at Drake Field. They are used to educate the public on the

17

primary function of green roofs which is to decrease impervious areas in a watershed and reduce the

amount of runoff from a precipitation event.

The final Python script is a simple program that uploads an image file to twitter with an accompanying

caption. The example, “Image_tweet.py” is displayed below:

Figure 5: Python script for custom image tweet

The function of this script could just as easily by replicated manually on the Twitter app or website

without any complicated Python syntax. However, it was designed with an automated system in mind.

One that would create the image file from data fetched from the datalogger and post it on a daily basis

to update and educate the public on the environmental conditions of the green roof. The remaining

challenge here was not automated tweeting, but automated fetching and organization of data. Data

fetching was achieved on a manual level via a 47 year old program called “File Transfer Protocol.”

5. File Transfer Protocol:

 The most significant breakthrough of this project was the successful transfer of a file from the

data logger to the Raspberry Pi. The significance is because remote file transfer became the primary goal

of the design after the pivot was made from automation. File Transfer Protocol (FTP) is an ancient

18

method of sending and receiving files from two devices over any stable connection. For this project it

was first successfully tested via a Graphical User Interface (GUI) called Filezilla. Filezilla allows the user to

input the IP address and port of the server (in this case the CR1000) to which the Raspberry Pi is

connected. After that, the program runs an FTP and allows the free transfer of files between the two

devices.

 Once it was known that FTP was effective and file transfer was possible, operating FTP from the

Raspberry Pi command terminal was faster and simpler than using Filezilla. The Linux commands and

responses for FTP are as follows:

Figure 6: File Transfer Protocol (FTP) command example

 ftp – starts the FTP program

 open 10.0.0.1 – establishes a connection between the Raspberry Pi and the CR1000

19

 Enter username and password of the FTP server

 cd, CRD – changes the directory in which files are being pulled from to the CR1000 memory

card

 lcd /home/pi/GreenRoofBot – sets the location on the Raspberry Pi for the files to

transfer to

 mget – command to download files (must confirm with y/n)

6. Operation Steps:

 This project is designed to continue past the date of thesis publication because the honors

research project it accompanies will continue through the 2019 calendar year. It seems apparent that

the operation of this design must be made accessible to any future students who wish to use it. It is also

apparent that this project is not alone in the quest to establish consistent and stable connection

between a Raspberry Pi and a CR1000. I will therefore detail the steps necessary to operate the system

below:

File Transfer and CR1000 data tweet:

1. Log into VNC viewer on your personal computer

2. Log into the VNC server of the Raspberry Pi

3. Run the PPP command in the Raspberry Pi command terminal using the script in Figure 5.

4. Establish an FTP connection

5. Transfer needed data files from the CR1000 to the Raspberry Pi

6. Open the “.dat” data file as a CSV file delimited by spaces and create a graph of the data

7. Save the graph as an .jpg image

8. Open the Image_tweet.py module from the folder titled “GreenRoofBot,” craft a caption to

accompany the data, and direct the script to open and upload the .jpg image

20

9. Run the Python script

Volume of water captured tweet:

1. If rain only occurred the previous day

a. Open the Rain2Volume_random.py module from the folder titled “GreenRoofBot”

b. Find total rainfall (cm) from the NWS page for the Drake Field weather station

c. Input the total depth of rain (cm) on the rainfall_depthcm value

d. Run the Python script

2. If rain occurred over a series of days or if attempting to send a customized tweet

a. Open the Rain2Volume_nonrandom.py module from the folder titled “GreenRoofBot”

b. Find total rainfall (cm) from the NWS page for the Drake Field weather station

c. Input the total depth of rain (cm) on the rainfall_depthcm value

d. Write accompanying tweet with “{}” as a placeholder for the total volume value

e. Run the Python script

IV. RESULTS

 If a stable connection is in place and any potential troubleshooting complete, following the file

transfer operation steps in section III.6 will deliver a successful remote data collection. This was proven

multiple times to be a successful procedure. Following the procedure of randomized or customized

tweeting was also shown to be consistently effective. While an automated data collection, organization,

and tweeting system was not successfully realized, the structure is in place for its establishment. All of

the operational Python script was designed to be built upon for the realization of full automation. The

possible procedure for continuation of this design is discussed in the Discussion and Future

Opportunities section.

21

1. Captured Rainfall Volume Tweets:

 This format for the Twitter account was inspired by the daily updates of sap flow delivered by

TreeWatch. Periodically collecting data from the green roof sensing station and manually organizing it

into graphs to tweet is more time consuming for both the account curator and the account followers. A

simple, regular, and significant data point from the green roof was sought after in order to emulate

TreeWatch’s daily sap flow tweets. One of the most significant benefits of green roofs are their abilities

to capture water that, on a typical roof, would be considered runoff from an impervious surface. This

feature of green roofs is the simplest to convey to the public. It avoids complicated water or radiation

balances while promoting the primary function of green roofs. Below I display both random and custom

tweets regarding captured rainfall (Image 6; Image7):

Image 6: Custom captured rainfall volume tweet

Image 7: Random captured rainfall volume tweet

22

These tweets were generated based on rainfall data retrieved manually from the National Weather

Service station at Drake Field.

2. Data Tweets:

 In order to prevent monotony and utilize real environmental data collected on site the system

was also designed to tweet visual data in the form of graphs. This is a deviation from TreeWatch and

showcases the wide array of sensors that are connected to the system. Below are examples of graphs

that were collected, compiled, and tweeted by the Raspberry Pi (Image 8; Image 9):

Image 8: Volumetric water content data tweet

23

Image 9: Net radiation data tweet

3. Twitter Analytics

Twitter has equipped users with a tool that allows the tracking of the reach and engagement levels

of an account called “Twitter Analytics.” The @UAGreenRoof account was created in January, 2019.

From the date of creation to April, 21, 2019 it has produced 8 tweets and achieved the following

statistics relating to overall reach and engagement:

 116 followers

 14,008 impressions (number of times users encountered tweets from the account)

 769 profile visits

The amount of profile visits is a key indicator of the success of the design. As this value increases the

overall impact of the project increases as well. It shows that members of the public engage with

24

scientific information regarding LID infrastructure that they might not have previously. As engagement

increases, so too does the intrinsic educational power of a live data tweeting system.

V. DISCUSSION AND FUTURE OPPORTUNITIES

 The project is far from being truly complete. The initial goal of full automation was left

unrealized. However, the structure for its realization is in place. There are more alternatives to be

decided regarding how to achieve automation. They appear to be realistic endeavors especially

considering that consistent connections between the datalogger, the Raspberry Pi, and the University

Wi-Fi have been established.

1. Automation of Captured Rainfall Volume Tweeting:

The randomized Python script only requires one input in order to operate. This input is the

cumulative rainfall depth from the previous day. A value could be automatically pulled from the NOAA –

National Climatic Data Center’s (NCDC) data system and imported into the Python script via the NCDC

Web Services API on a daily basis. The Python scripts for captured rainfall volume tweeting have an

imbedded “else” function that prevents the script from publishing a tweet if no precipitation occurred

the previous day. Under manual operation this function is inept because rainfall depth is manually

inputted the day following a known precipitation event. If automated fetching from the NCDC server

were to be established this function would be essential.

 There are many developed software that can be used to schedule the running of Python scripts.

On the Raspberry Pi the most common method for automation is the “crontab” program that is built in

to the operating system. This program is able to schedule commands in the Raspberry Pi command

terminal. So with crontab it would be possible to schedule a command that fetches the rainfall depth,

imports it into the captured volume Python script, and publishes the volume in a tweet.

25

 Drake Field is several miles from the Hillside Auditorium green roof. Because of the geographic

distance there is inaccuracy in using rainfall depths captured there as the assumed depths captured at

the green roof. One potential solution to the inaccuracy would be to add an electronic rain gauge to the

Raspberry Pi or CR1000 that feeds on site rainfall totals into the Python script via crontab automation. A

rain gauge is the ideal alternative for the accuracy of the sensing station. However, the decision of

whether to use it or the NCDC Web Services API would depend on rain gauge cost.

2. Potential Future Applications:

 The Raspberry Pi microcomputer has shown itself capable of serving as a remote file transfer

device for scientific dataloggers. However, it is capable of far more. There are a myriad of sensors

available that are made specifically for using the Raspberry Pi as a datalogger itself. These cheap sensors

could be calibrated with the more accurate ones produced by Campbell Scientific and deployed on a

wider scale. The Pi has its processing power limits, but when power demands are low, it can serve as a

cost effective measurement and control device. As mentioned in the literature review, some colleges

are looking to the Raspberry Pi as a central element in the design of smart campuses. If these were

deployed with sensor arrays across the campus they could communicate with one another and publish

tweets to inform students of all manners of things regarding the campus, from study room vacancy to

overall foot traffic. These technologies could be designed and deployed at a remarkably low cost to

universities. The concept of a smart campus could also be extended to industry applications.

Widespread data collection in industrial settings could deliver real time information relating to process

inefficiencies.

 The low cost and capabilities of this technology could also be utilized beyond an entertaining,

educational setting. Cities could have a vested interest in installing systems like the one developed in

this thesis for the organization and deployment of maintenance operations. Green roofs and other LID

26

structures have imbedded maintenance costs associated with issues such as drain clogging or regular

landscaping. Sensors could be used to actuate maintenance with simple messages relating to the sensed

problems. Maintenance crews likely have little use for data and graphs, but if a quick blurb detailing

what the LID structure needs could simplify a city’s maintenance dispatch network. This would reduce

overall costs associated with damage that goes unnoticed and inefficiencies in maintenance dispatching.

 There are potential issues associated with the widespread deployment of sensors. In the

agriculture industry some companies are developing proprietary sensing networks that deliver real time

information to farmers. This is good for farmers and allows them to better understand their production.

However, it also opens the doors to the sensors suppliers collecting metadata and developing algorithms

to know what a farm’s yield would be before the farmer knows. The sensor supplier could then use this

data to hedge bets against them in the open market. I believe that in order to maintain the beneficial

functionality of these sensing networks there must be a disconnect from massive investors that have

stakes in the sources of the data and could negatively impact those that use their products. Open source

technology like the Raspberry Pi could solve this problem. The technology could be deployed in a

manner that makes setup streamlined while maintaining distance from large agricultural corporations.

 For now, Rufus the Roof will remain steadfast on the Hillside Auditorium green roof, weathering

storms and informing the public on the benefits of LID design. There may be a future when Rufus no

longer needs to be operated manually, when data flows in automatically and smoothly. There may also

be a future where Rufus is not alone, and other research stations on campus join the fold. That

realization will require future students with interest in the automated conveyance of data. It is the hope

of this thesis that Rufus could serve as an inspiration of that interest just as the tweeting tree in Gent

inspired this project. There is something special about inanimate objects developing personalities and

the ability to communicate scientific data in an entertaining way. Rufus the Roof might be the first

tweeting LID on the University of Arkansas campus, but assuredly will not be the last.

27

VI. ACKNOWLEDGEMENTS

I would like to thank Dr. Benjamin R. Runkle for his mentorship and advising throughout the project.

I would also like to thank Dr. Thomas A. Costello for loaning the Raspberry Pi and accompanying

equipment as well as joining my defense committee, Colby Reavis for assistance in connecting the

Raspberry Pi to the CR1000 when the project was beginning to seem impossible, Dr. Kosana Suvočarev

for early assistance with station setup and CR1000 programming, and the University of Arkansas Honor’s

College for funding the overall research project.

The idea of this project would not have existed without a study abroad experience in Gent, Belgium

during the summer following my freshman year. Without Honors College Fellowship funding and

assistance from Fellowship coordinator, Kelly Carter, I would not have gone to Gent and would not have

encountered that tweeting tree. That trip to Gent also allowed me to meet and become great friends

with Dr. Curt Rom. His friendship and guidance has helped to propel me through college. I would like to

thank him for joining my committee and for showing me the wonderful city of Gent and its strange,

sentient tree.

28

VII. REFERENCES

Bowman, T., & Thompson, J. (2009). Barriers to implementation of low-impact and conservation

subdivision design: Developer perceptions and resident demand. Landscape and Urban

Planning, 92(2), 96-105. doi:10.1016/j.landurbplan.2009.03.002

Hentschel, K., Jacob, D., Singer, J., & Chalmers, M. (2016). Supersensors: Raspberry pi devices for smart

campus infrastructure. Paper presented at the 58-62. doi:10.1109/FiCloud.2016.16

Mercer, K. L. (2018). Citizen science. American Water Works Association. Journal, 110(6), 2-2.

doi:10.1002/awwa.1093

Miguez, M. G., Rezende, O. M., & Veról, A. P. (2015). City growth and urban drainage alternatives:

Sustainability challenge. Journal of Urban Planning and Development, 141(3), 4014026.

doi:10.1061/(ASCE)UP.1943-5444.0000219

Neumann, M., Mues, V., Moreno, A., Hasenauer, H., & Seidl, R. (2017). Climate variability drives recent

tree mortality in europe. Global Change Biology, 23(11), 4788-4797. doi:10.1111/gcb.13724

Prince George’s County (PGCo). (1999). Low-Impact Development Hydrologic Analysis. Department of

Environmental Resources, Prince George’s County, Maryland.

Steppe, K., von der Crone, J., & Pauw, D. (2016). TreeWatch.net: A water and carbon monitoring and

modeling network to assess instant tree hydraulics and carbon status. Frontiers in Plant Science,

7, 993. doi:10.3389/fpls.2016.00993

Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G.,

Roberts, N. M. (2014). Future changes to the intensity and frequency of short‐duration extreme

rainfall. Reviews of Geophysics, 52(3), 522-555. doi:10.1002/2014RG000464

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2019

	Design of Remote Datalogger Connection and Live Data Tweeting System
	Zachary Wofford
	Recommended Citation

	tmp.1556725242.pdf.7_HtI

