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Abstract 

In perceptual learning studies, participants engage in extensive training in the discrimination of 

visual stimuli in order to modulate perceptual performance. Much of the literature in perceptual 

learning has looked at the induction of the reorganization of low-level representations in V1. 

However, much remains to be understood about the mechanisms behind how the adult brain (an 

expert in visual object categorization) extracts high-level visual objects from the environment 

and categorically represents them in the cortical visual hierarchy. Here, I used event-related 

potentials (ERPs) to investigate the neural mechanisms involved in object representation 

formation during a hybrid visual search and prototype distortion category learning task. EEG was 

continuously recorded while participants performed the hybrid task, in which a peripheral array 

of four dot patterns was briefly flashed on a computer screen. In half of the trials, one of the four 

dot patterns of the array contained the target, a distorted prototype pattern. The remaining trials 

contained only randomly generated patterns. After hundreds of trials, participants learned to 

discriminate the target pattern through corrective feedback. A multilevel modeling approach was 

used to examine the predictive relationship between behavioral performance over time and two 

ERP components, the N1 and the N250. The N1 is an early sensory component related to 

changes in visual attention and discrimination (Hopf et al., 2002; Vogel & Luck, 2000). The 

N250 is a component related to category learning and expertise (Krigolson et al., 2009; Scott et 

al., 2008; Tanaka et al., 2006). Results indicated that while N1 amplitudes did not change with 

improved performance, increasingly negative N250 amplitudes did develop over time and were 

predictive of improvements in pattern detection accuracy. 

 

 



 

Acknowledgements 

 Thank you to everyone who has had a role in my academic accomplishments up to this 

point. To my family, for their unwavering support and love throughout this process, I could not 

have achieved this without you. To Matthew Gannon, words cannot express how grateful I am 

for all your support through this roller coaster of a journey. Finally, to my committee members, 

each of whom has provided advice, guidance, and patience throughout the changes that occurred 

during the thesis process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table of Contents 

I. Introduction ...………………………………………………………………………………... 1 

     Background Literature …...………...………………………………………………………… 1 

     The Current Investigation …...…………………………………………………………..…… 5 

II. Methods ...………………………………………………………………………………….... 6 

     Participants ...……………………………………………………………………………...….. 6 

     Stimuli ...……………………………………………………………………………………… 7 

     Procedure …………………………………………………………………………………...... 9 

          a. EEG Recording …...………………………………………………………………..…. 11 

     Statistical Analyses ………………………………………………………………………..... 12 

          a. Psychophysical Data ……………………….………………………………………..... 12 

          b. ERP Data …………………………………………...……………………………….... 12 

          c. Participant Exclusion ………………………………………………………………..... 15 

          d. Multilevel Modeling ……………………………………………………….………..... 16 

III. Results …………………………………………………………………………………….. 18 

IV. Discussion ……….……………………………………………………………………….... 22 

V. Conclusion ...………………………………………………………...……………………... 25 

VI. References ………………………………………………………………………………… 27 

VII. Appendix …………………………………………………………………………………. 31 



1 

Introduction 

Background Literature 

The human brain learns to process varying objects in the environment using the visual 

system, something that computer science is still attempting to accomplish computationally 

(Nguyen, Yosinksi, & Clune, 2015). Yet by full maturation, the human visual system is highly 

efficient at pattern detection in a world cluttered by visual objects (Logothetis & Sheinberg, 

1996). As humans, we have the extraordinary ability to interpret varying forms of an object and 

recognize them as the same thing, such as a horse being shown in two or three dimensions, in 

sketches or pictures, occluded by other elements, in detail or as a silhouette, or even shown 

overhead as opposed to the side. Though this seems trivial, there are patients with impairments in 

visual cortex that develop what is known as visual object agnosia who cannot perform these 

simple tasks. Although this impairment ranges in effects, it can prevent patients from correctly 

identifying a visual object even though they have the ability to see and draw the object (Zihl, 

2003). Visual agnosia cases call into question how the brain is perceptually organized. In The 

Mind’s Eye, Oliver Sacks (2010) describes a case where one woman was able to identify solid 

objects but not drawings of the same object. He wrote, ‘[Lillian] made me wonder whether she 

had a specific agnosia for representations. The recognition of representations may require a sort 

of learning, the grasping of a code or convention, beyond that needed for the recognition of 

objects’ (p. 12). Dr. Sacks’ insight highlights the complexity of the brain’s ability to learn to 

represent objects in many forms. These cases reveal that damage to the visual cortex can cause 

disruption in the brain’s ability to flexibly represent objects; however, the neural mechanism 

underlying this process is still largely unknown. 
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How object representations are encoded in the visual system and what the mechanism is 

which allows for the incredible flexibility in object identification are questions that are still being 

asked in vision science. Hubel and Wiesel (1962) famously began investigations in cats to study 

how the visual system learns to process its environment. In these studies they discovered that 

single cells in early visual areas such as V1 and V2 represent low-level features of the 

environment such as the orientation of edges. These early visual areas then feed into areas later 

in the visual hierarchy such as V3 and V4, where more complex visual representations are 

formed (Felleman & Van Essen, 1991; Martin, 2007). In humans, studies have shown 

impairments in both early and late areas in the visual system are involved in deficits related to 

visual agnosia (Behrmann & Kimchi, 2003). Neuroimaging has led to a greater understanding of 

the brain areas in the visual system involved in object processing (Ishai, Ungerleider, Martin, 

Schouten, & Haxby, 1999; Martin, 2007) and object category representations in high-level brain 

regions (Seger & Miller, 2010). However, in cognitive neuroscience there is still a gap in 

understanding the development of these representations from start to finish. The brain is not 

preprogrammed with innate representations of objects but instead uses experience to become an 

expert object processor (Hirsch & Spinelli, 1970). 

Research into what is known as perceptual learning focuses on how early primary 

sensory areas (V1) functionally reorganize (the process known as neuroplasticity) due to 

extensive training and practice (Bao, Yang, Rios, He, & Engel, 2010). Perceptual learning is the 

term used to refer to adaptations to (and generally improved) perceptual performance following 

training and/or feedback (for review, see Fahle, 2005). Although perceptual learning provides 

insight into how areas early in the visual hierarchy flexibly adapt to visual experiences, generally 
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these effects are specific to V1 (Ramachandran & Braddick, 1973) and are not able to extend our 

understanding of the adaptability of later areas in the visual hierarchy. 

 Outside studies of V1 and its low-level feature discrimination of edges and Gabor tilt 

angles, studies of categorical learning are used to examine changes in higher-order visual areas. 

Category learning and research of visual object expertise both allow for the investigation of how 

the visual system forms representations for high-level visual objects. Object stimuli used in these 

studies range widely from artificial objects such as dot patterns (Posner & Keele, 1968) or morph 

blobs (Krigolson, Pierce, Holroyd, & Tanaka, 2009) to real-world objects such as birds (Scott, 

Tanaka, Sheinberg, & Curran, 2006) or cars (Gauthier, Skudlarski, Gore, & Anderson, 2000). 

There are several categorization paradigms according to Seger and Miller (2010). In particular, 

prototype distortion tasks allow for the study of the development of novel object representations. 

During these tasks, participants learn to discriminate between a distorted prototype pattern and 

randomly distorted patterns (Homa, Sterling, & Trepel, 1981), and this can be learned through 

feedback alone, eliminating the need to show the prototype (Ashby & Alfonso-Reese, 1998). 

Neuroimaging research (functional magnetic resonance imaging) of categorical learning using 

dot patterns has shown neuronal activation changes in the visual cortex during learning, such that 

as participants improve in performance their activations decrease (Little, Klein, Shobat, 

McClure, & Thulborn, 2004). This provides evidence that as the visual system gains experience 

categorizing objects, the brain is undergoing high-level neuroplasticity, where processing 

becomes more efficient and adapts to this experience. 

To further understand how representations for prototype distortion categories change in 

the brain it is essential to investigate the gradual changes in category learning with temporal 

precision using event-related potentials (ERPs). Using EEG, researchers can examine 
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millisecond changes in electrical potential in the cortex related to changes in visual field. These 

specific potentials are referred to as visual evoked potentials (VEPs). Further, components of 

these VEPs can be decomposed and potentially reveal the underlying neural dynamics involved 

in a visual task. In this study, VEPs were used to examine the neural object representation being 

formed and refined over the course of a category learning task. Two components in particular 

were expected to play a role in these changes in the visual system, the N1 and the N250. 

The N1, or N100, is an early sensory component that is a negative deflection which 

onsets around 100 to 200 milliseconds post-stimulus onset at the posterior midline (Luck, 2013). 

When investigating perceptual changes early in visual processing, this is a common component 

analyzed for changes due to its role in attentional processes. It has been theorized to be reflective 

of changes in visual attention (Hillyard & Anllo-Vento, 1998; Luck, 2013) as well as perceptual 

discrimination (Hopf, Bogel, Woodman, Heinze & Luck, 2002; Vogel & Luck, 2000). In 

categorical learning specifically, N1 has been shown to increase in negativity for category 

stimuli after learning compared to non-category stimuli (Curran, Tanaka, & Weiskopf, 2002).  

The N250, an inferior temporal component associated with object category learning, is a 

negative deflection that follows stimulus onset by 200-300 milliseconds (Schweinberger, Huddy, 

& Burton, 2004). Several studies have shown that changes in the amplitude of this component 

are associated with the acquisition of perceptual expertise in object recognition (Scott et al., 

2006; Scott, Tanaka, Sheinberg, & Curran, 2008; Tanaka, Curran, Porterfield, & Collins, 2006). 

Both components are integral to understanding the temporal changes in object representations 

during learning within the visual system. 
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The Current Investigation 

As part of an undergraduate honors thesis, I collected data and preliminarily analyzed the 

data to investigate the short-term plasticity mechanisms in the brain, while participants learned to 

represent a novel prototype pattern through category learning (Long, 2016). In that investigation, 

we crudely developed a timeline of category learning and found changes in the N250 component 

similar to previous studies (Scott et al., 2006; Tanaka et al., 2006). As predicted, the N250 

amplitude increased (became more negative) as participants improved in object recognition 

across learning. All methods, procedures, and data described in this thesis were used previously 

for my undergraduate thesis (Long, 2016). However, the current investigation describes an 

improved analysis procedure to capture a more refined time course of learning to compare 

changes in N1 and N250 in conjunction with changes in behavioral performance. 

Here, I describe the results of my investigation into the underlying perceptual 

mechanisms that develop in the visual hierarchy as the brain gains experience in recognizing a 

prototype pattern, using a multilevel model (MLM) of behavioral outcomes. In the preliminary 

analysis of the data we used signal-averaging and repeated measures ANOVAs to test 

component changes over several blocks of time. This is a very common technique used across 

EEG research (Luck, 2014; Picton et al., 2000). However, MLM is becoming increasingly 

popular in psychophysical studies as well as in ERP research because it is a more flexible 

technique that allows for the incorporation of subjects as a source of variability (Volpert-

Esmond, Merkle, Levsen, Ito, & Bartholow, 2018) and this potentially allows for more power to 

detect fixed effects (Vossen, Van Breukelen, Hermens, Van Os, & Lousberg, 2011). Critical to 

this study, however, is that MLM allows for the inclusion of time as a continuous variable, while 

testing other effects at the subject level. This enables the modeling of learning over time, while 
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also accounting for differences in subjects’ learning rates. Using MLM to model data that is 

time-series in nature, such as ERPs and learning, allowed for a much more precise and detailed 

analyses in this study. 

In this study, I used MLM with predictor variables including time, to model changes in 

perceptual learning over the course of the experiment, N1, to model early visual discrimination 

processing, and N250, to model object category formation. The relationships between these 

predictors and the outcome variable, behavioral performance (as measured by d’), were analyzed 

to evaluate changes in object representation formation over time. I hypothesized that all three 

predictors would have significant main effects such that perceptual learning, N1, and N250 

would all significantly increase with behavioral performance. I also hypothesized two significant 

interactions between both ERP component amplitudes and time. If these ERP components reflect 

the development of visual object processing, then the amplitude changes in these components 

should vary in conjunction with performance across time (both ERP components should increase 

in amplitude as performance increases over time). 

 

Methods 

Participants  

Forty-four participants with normal or corrected-to-normal vision were recruited from the 

University of Arkansas undergraduate population (age M = 20.8, SD = 2.52, range = 18-29 years, 

23 females). Each participant completed one session lasting three hours and was compensated 

with psychology course credit. Additionally to incentivize accuracy, participants received 

monetary reward (one cent for each correct response trial and one cent subtracted for each 

incorrect response trial) with a total average bonus of $5.48. Two participants were excluded 
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from all analyses due to technical failures preventing physiological recordings. Twenty-three 

participants were excluded from analysis for one of three reasons, (1) data containing artifacts (N 

= 3), (2) large amounts of missing data (N = 3), or (3) non-learners/outliers (N = 17). The details 

of the exclusion criteria can be found in the “Statistical Analyses” section below. A final total of 

19 participants were used in the analyses (age M = 20, SD = 1.8, range = 18-26, 11 females). The 

University of Arkansas International Review Board approved all procedures described in this 

thesis.  

Stimuli  

All experimental sessions were conducted in a laboratory under low levels of ambient 

light. All stimuli were presented on a 21-inch CRT monitor (85 Hz vertical refresh, 1024 x 768 

resolution), electrically shielded in a grounded aluminum Faraday cage. A chinrest was used for 

all participants to maintain a viewing distance from the monitor at 57 cm. 

 The stimuli presented during the experiment were designed for participants to perform a 

hybrid category learning (an “A, not A” version of prototype distortion category learning 

reviewed in Ashby & Maddox, 2005) and visual search task (Neisser, 1967; Wolfe, 1994) that I 

developed and detail in the next section. While participants fixated on a central yellow dot (0.2° 

diameter), four sets of white square stimuli (each at an eccentricity of 6.4° from fixation) flashed 

briefly in the four quadrants of peripheral vision: upper left, lower left, upper right, and lower 

right. Each set of stimuli was contained within a 2.3° × 2.3° area and included 48 white squares 

(0.12° × 0.12° each), for a total of 192 white squares displayed on each trial. Participants viewed 

stimuli from two conditions: Target Absent and Target Present. In the Target Absent condition, 

participants viewed small white squares positioned as random noise in all four peripheral 

quadrants (see examples in Figure 1C). The positions of the small white squares in each 2.3° × 
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2.3° quadrant were formed by first randomly extracting the x- and y- coordinates of each square 

from a uniform distribution and then each x- and y- coordinate was shifted by a pseudo 

randomly-generated number extracted from a normal distribution (M = 0°, SD = 0.25°). In the 

Target Present condition, participants viewed the same four peripheral quadrants, three of which 

contained random noise (generated as previously described in the Absent condition), while one 

(which varied randomly from trial to trial) contained the target stimulus. The target stimulus was 

a statistically distorted version of a prototype object pattern roughly resembling an “X” (Figure 

1A). Critically, the target stimulus that participants viewed was never the prototype pattern itself. 

Participants solely viewed the target stimulus as distortions of the prototype (see examples in 

Figure 1B). The target stimulus was created for each Target Present trial by taking the x- and y- 

coordinates of each white square from the original coordinates of the prototype pattern and 

shifting each square’s coordinates via the same normally distributed distortion used in the Absent 

condition. 
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Figure 1. The target stimulus was a prototype pattern that was displayed distorted in one of the 
four peripheral locations, while the rest contained random noise during the Target Present trials. 
In the Target Absent trials, all four locations contained random noise. 

Procedure  

Ashby et al. (1998) reviewed four main tasks used to study human perceptual category 

learning including prototype distortion. The type of category learning used in this experiment 

was similar to a prototype distortion task, specifically the “A, not A” type. Like other prototype 

distortion tasks this experiment used distortions of prototype dot patterns as visual targets for 

categorization (Little, Shin, Sisco, & Thulborn, 2006; Posner & Keele, 1968). Participants either 

responded with a ‘1’ on the keyboard number pad if the target was present, indicating that the 

target they saw was part of category “A,” or responded with ‘2’ if the target was absent, 

indicating that all the stimuli presented were random and thus not category “A.”   

However, the task used in my study was not designed solely as a category learning task. 

It was important to closely mimic how the visual system extracts object categories from a 

cluttered visual environment. Other vision scientists have used visual search tasks to study the 

visual system in this environment (Wolfe, Oliva, Horowitz, Butcher & Bompas, 2002; Yang & 
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Zelinsky, 2009). Similarly, my laboratory task also included elements of visual search and 

perceptual learning. At the beginning of each experiment, participants were instructed to look for 

a “pattern” that would appear on half of the trials. The prototype pattern was not described or 

shown to participants in any way. Instead, participants learned categorization through corrective 

feedback. Through the process of perceptual learning, over time most participants learned to 

correctly detect the target pattern (subjects had an average accuracy of 71% over the course of 

the experiment). Unlike other category learning tasks, participants were not asked to categorize a 

single object. Instead they had to perform a task with visual search, where they were presented 

with four peripheral objects and asked to categorize the environment as one that included a 

version of the target category or not. This provided a more ecologically valid experience to study 

the visual system learning to extract objects from the environment and categorize them.  

To familiarize participants with the timing and response procedures, they first completed 

six practice trials. No instructions or explanations were given on what was being displayed, they 

were only told when to respond. Participants then viewed a total of 1792 trials in the hybrid 

category learning and visual search task, half of which were either Target Present trials (896) or 

Target Absent trials (896). Within each trial, participants began by fixating on the yellow 

fixation for a random interval between 1500 and 2500 milliseconds (ms). Then the four 

peripheral quadrants, each containing 48 white square stimuli, were flashed on the screen for 200 

ms. Following the stimulus presentation, participants responded with a button press to indicate if 

the target was present or absent. Then after a random interval between 300 and 500 ms, a 

feedback stimulus (a green square for correct responses or a red square for incorrect responses) 

was displayed at fixation for 2000 ms. The experiment was composed of 16 blocks and following 

each was a display of the participant’s accuracy and total bonus money. Following the 
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experiment, participants were asked to fill out a survey to draw and describe the target pattern if 

they saw one.  

Figure 2. All trials began with a fixation screen and then were either Target Present trials or 
Target Absent trials. Participants responded on a keyboard after each stimulus presentation to 
indicate whether the target was present or absent. Corrective feedback was then displayed to 
complete the trial. *Note that the dashed white square in the Present condition is merely a 
demonstration of the target; participants were never shown the target during the task.  

EEG recording. A 64-channel BrainAmp DC ActiCap active EEG system was used 

while each participant completed the experiment. Scalp-recorded Ag/AgCl electrodes were 

placed according to the standard 10-10 system. The electrodes were recorded from positions: 

AF3/4, AF7/8, Fz, F1/2, F3/4, F5/6, F7/8, FCz, FC1/2, FC3/4, FC5/6, FT7/8, Cz, C1/2, C3/4, 

C5/6, T7/8, CPz, CP1/2, CP3/4, CP5/6, TP7/8, Pz, P1/2, P3/4, P5/6, P7/8, POz, PO3/4, PO7/8, 

PO9/10, Oz, O1/2, and M1/2. Four bipolar electrode pairs were placed on the face of each 

participant to record electrooculogram (EOG) at the following locations: left and right canthi and 

above and below the left eye. Before EEG recording began, all electrode channels were verified 
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to have impedance levels at or below 5 kΩ. During continuous EEG recording, all electrodes 

were referenced to a common reference electrode (FCz), digitally sampled at 1000 Hz, and low-

pass filtered at 250 Hz.  

Statistical Analyses 

Psychophysical data. To assess each participant’s progress of perceptual learning, his or 

her behavioral responses were averaged over time using a moving average. The moving average 

encompassed a 20 trial window with 10 trials of overlap between each window (88 windows 

total). This windowing was used in the electrophysiological data as well to match the brain 

activity in time with the behavioral responses. This windowing sought to both optimize the 

signal-to-noise ratio of the ERPs as well as capture varying learning rates in the behavioral data. 

There was a wide range of learning rates across participants, with some taking as few as 10 trials 

to detect the target pattern with high accuracy, while others took many more trials. To capture 

participants’ change in perceptual sensitivity over time, d’ was calculated for each window 

(Wickens, 2002). This procedure allowed for the measurement of each participant’s ability to 

discriminate between Target Present and Target Absent trials, while remaining uninfluenced by 

individual bias towards either condition.  

ERP data. Offline, all data processing was performed with custom scripts in MATLAB. 

Using the EEGLAB toolbox (Delorme & Makeig, 2004; http://www.sccn.ucsd.edu/eeglab), all 

EEG channels were re-referenced to the average of the left and right mastoid channels (M1/2) 

and low-pass filtered at 50 Hz. Horizontal EOG (HEOG) was calculated by averaging the left 

and right canthi channels and vertical EOG (VEOG) was calculated by averaging EOG channels 

above and below the left eye. 
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Separate processing was performed on the scalp channels to clean the data for 

identification of ocular artifacts with extended Infomax ICA (Lee, Girolami, & Sejnowski, 1999) 

using runica (Makeig, Jung, Bell, Ghahremani, & Sejnowski, 1997) from the EEGLAB toolbox. 

First, all channel data were resampled at 250 Hz, then high pass filtered at 1 Hz, and segmented 

into non-overlapping segments from 200 ms before stimulus onset until 2000 ms after stimulus. 

On the segmented data, DC-offset was removed and epochs containing peak amplitudes of ± 250 

mV were removed to minimize contamination of ICs by bad channels and muscle artifacts. The 

runica function was then applied to this cleaned data and 55 ICs were calculated from the scalp 

channels. The weights of this ICA were then applied to the continuous data and ICs containing 

ocular artifacts (eye blinks and eye movements) were identified through visual inspection and 

removed. The continuous data, free of ocular artifacts, was then processed outside of EEGLAB 

with custom scripting in MATLAB. 

To extract visual evoked potentials (VEPs), the continuous EEG data was time-locked to 

the presentation of the white square stimuli and segmented from 200 ms before the onset of the 

stimuli until 400 ms after this onset (-200 – 400 ms). All segments were then baseline corrected 

200 ms prior to stimulus onset (-200 – 0 ms). In the target present trials, the target locations were 

collapsed across the left and right visual fields. Artifact rejection was performed to reject 

segments with an absolute difference greater than 200 microvolts (µV). If any participant had 

greater than 20% of segments rejected then electrodes were evaluated across segments for 

noisiness by calculating root-mean-square (RMS). Only three subjects fit these criteria. Any 

electrode with greater than two SDs from the mean RMS was considered an outlier and removed 

from analysis, which resulted in up to two electrodes being removed from analysis (none were 

electrodes of interest). 
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Similar to the psychophysical data, the ERP data was averaged using a moving average 

with the same window of 20 trials with 10 overlapping trials. From these moving averages, 

components N250 and N1 were quantified as the average voltage within a specific time window, 

visually identified from grand averaged ERP waveforms collapsed across experimental 

manipulations. The components were also evaluated by pooling electrodes that were 

crosschecked within the literature (N250: Scott et al., 2006; Tanaka et al., 2006; N1: Hopf et al., 

2002; Luck, 2013) as well as visual inspection of scalp distributions to identify electrodes with 

maximum amplitude (Figure 3C and 3F). Each participants’ mean N250 component amplitude 

(µV) over time was calculated by a peak difference of Target Absent trials subtracted from 

Target Present trials at 225 – 335 ms following stimulus onset (Figure 3D and 3E), from pooled 

electrodes (collapsed contralateral to the visual field) PO7/8 and P7/8 (Figure 3F). This 

difference was calculated to measure the N250 activity that was related to target presence instead 

of calculating and comparing the two conditions separately, consistent with the procedure used 

by Scott et al. (2008) and Tanaka et al. (2006). The N1 component was identified at 150 – 180 

ms post-stimulus (Figure 3A and 3B), from pooled electrodes (collapsed contralateral to the 

visual field) P5/6, P7/8, PO3/4, PO7/8, and O1/2 (Figure 3C). A mean N1 peak difference 

amplitude (µV) was calculated over time by subtracting Target Absent from Target Present to 

look at N1 change over time that was unique to target presence by removing baseline N1 activity 

occurring in the absent condition. 
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Figure 3. Grand averaged waveforms for the N1 and N250 components for both Target Present 
and Target Absent conditions (A and D) as well as the difference waveforms (Present – Absent) 
(B and E). These grand averages were used to identify the timeframe to analyze each component 
at. The N1 was pooled across electrodes showing maximum amplitude (C) and the N250 was 
pooled in the same way (F). 
 

Participant exclusion. Artifactual data was classified as data that contained so much 

noise and/or sweat artifact that no eye-blink component could be visually identified from 

extracted ICA components. Missing data was defined as data containing more than 20 missing 

trials, as this could have impacted the interpretation of the time-series analysis. Non-learners 

were identified using two methods. First, a moving average of d’ over 20 trials advancing one 

trial at a time was calculated to capture as much of the data as possible as well as capture the 

learning curve of those who learned the pattern within the first 20 trials. Then a pairwise one-

tailed t-test was performed to compare the first 20 moving average windows to the last 20 
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windows. If there was no significant (p < .05) difference between the beginning and the end of 

participant’s d’ over time then that participant was categorized as a non-learner (this followed a 

similar procedure performed by Yamashita, Kawato, and Imamizu, 2015). Following the t-test, 

participants with a mean d’ difference from beginning to end less than 0.5 were excluded as non-

learners, since their d’ value did not increase enough over time to indicate learning. Finally, the 

remaining participants were removed as outliers if their d’ difference from beginning to end was 

found to be greater than two standard deviations from the mean d’ difference of all remaining 

participants. 

Multilevel modeling (MLM). The remaining participants that met the learning criterion 

(N = 19) were included in further analyses using MLM to examine if behavioral performance 

changes could be predicted by changes in N250 and N1 mean peak amplitude over time.  

The lme function from the R package nlme (Pinheiro & Bates, 2002) was used to fit 

multilevel models via restricted maximum likelihood estimation for data analysis. Bagiella, 

Sloan, and Heitjan (2000) outlined the benefits to using MLM in psychophysiological studies. 

One critical benefit is the flexibility to set an appropriate variance-covariance matrix to model 

variance for time-series data such as EEG data. The matrix used in this model was the first-order 

autoregressive moving average, or ARMA(1,2) matrix, combining an AR1 covariance structure 

with a moving average covariance structure, which accounts for measures close in time being 

more highly correlated. The goodness-of-fit of the model containing this particular covariance 

structure was significantly better than models containing only an AR1 covariance structure or 

allowing unstructured covariance. 

 To predict the outcome variable of behavior (d’), three predictors were included in the 

model: time window (88 moving average windows), mean peak N1 difference amplitude 
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(present – absent; from now on will be referred to as “N1”), and mean peak N250 difference 

amplitude (present – absent; from now on will be referred to as “N250”). Additionally, 

interactions between time and each component were added for identification of the optimal 

model. The neural component predictors, N1 and N250, were each group mean-centered by 

subject, so that changes in either component were specific to differences within subjects. To find 

the optimal model, each predictor was added sequentially to compare progressively more 

complex models to simpler nested models using log-likelihood ratio testing. Since this was a 

within-subjects design, by-subject random adjustments were included for the intercept and for 

each predictor (i.e., random slopes) during model comparison to find the optimal model.  

Model comparison began with a maximal model (one which included all possible random 

effects varying by subject), which failed to converge. Then random effects were removed 

sequentially to make the model simpler. If including a random effect only explained a small 

portion of variance then instead it was treated as a fixed effect to create a more parsimonious 

model. Each subsequently less complex model was compared to the previous model until the 

optimal model was identified. Model comparison was assessed using the chi-square likelihood 

ratio test.  

The final optimal model contained fixed effect predictors of time window, both neural 

components (both mean-centered by subject), and two interactions between time and each 

component. The only random effect varying by subject included in the final model was for the 

by-subject intercept. The N1 and N250 predictors both provided significantly better model fit 

regardless of which order they were entered into the model. Residuals for the final model were 

tested for normality using the Shapiro-Wilk test for normality and found to not significantly 

deviate from normal, W = 0.999, p = 0.401. Finally, to investigate any interaction effects of time 
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window, two models were created to compare differences from the beginning to the end of 

learning. The models differed by centering the time window predictor in one model at the first 

time window (1) and in the other model at the last time window (88). Statistical significance was 

set at p < .05. 

 

Results 

The base model, in which the outcome variable of behavioral performance (d’) had a 

single random intercept varying by subject, had an intraclass correlation coefficient (ICC) value 

of 0.34, indicating that MLM was an appropriate method of analysis because there is clustering 

in the data at the subject level. Therefore, modeling a random intercept for behavioral 

performance provided a better fitting model. The variability in behavioral performance intercepts 

is illustrated in Figure 4. Additionally, the final model provided a significantly better fit to the 

data than a linear regression model, χ2(3) = 2162.65, p < .0001. This indicated that allowing the 

intercept of behavioral performance to vary randomly at the subject level provided a significantly 

better fit than including all predictors at single level such as in a linear regression. Finally, 

pseudo-R2 for the final model in comparison with the base model was 0.25. Although there is 

still unexplained variance left in the model, by adding the fixed effect-predictors a quarter of the 

variance was further explained.  
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Figure 4. Linear fit lines presented for each subject’s performance across each time window. 
The lines all have an average positive linear trend, however their intercepts with the y-axis differ 
widely. All subjects generally improved in performance over the course of the study however, 
they had different learning rates at the very beginning of the study. 
 

 There was a significant fixed effect of time window on predicting behavioral 

performance (d’), β = 0.015, SE = 0.002, t(1647) = 6.704, p < .0001, for each participant’s 

average value of the predictors N1 and N250. The average performance across all participants 

improved from the first time window (M = 0.009, SD = 0.314) to the last time window (M = 

1.755, SD = 0.703).  

There was no significant interaction between N1 and time window as a fixed effect 

predictor of performance, β = 0.0002, SE = 0.0002, t(1647) = 1.139, p = 0.255. However, there 

was a significant fixed effect of the N1 on predicting behavioral performance during the last time 

window (at the end of learning), β = 0.018, SE = 0.009, t(1647) = 2.014, p < .05. In contrast, 
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during the first time window (at the beginning of learning) there was no predictive effect of N1 

on performance, β = -0.001, SE = 0.002, t(1647) = -0.050, p = 0.960. 

Although there was no fixed effect of N250 on predicting behavioral performance during 

the first time window, β = 0.016, SE = 0.016, t(1647) = 1.495, p = 0.135, there was a trending 

effect of N250 in the last time window, β = -0.020, SE = 0.002, t(1647) = -1.953, p = 0.051. 

More importantly, there was a significant interaction between N250 across time window as a 

fixed effect predictor of performance, β = 0.0004, SE = 0.0002, t(1647) = -1.967, p < .05. This 

indicates that the predictive power of the N250 component on performance increases over time. 

The average N250 component grew larger in negative amplitude from the first time window (M 

= -0.479, SD = 3.774), to the last time window (M = -1.867, SD = 4.776). Therefore, as the N250 

component became more negative over time this also predicted the increased behavioral 

performance over time. To investigate this interaction further, I calculated the average 

participant’s Spearman correlation between performance (d’) and N250 for each time window 

(Figure 5). In Figure 5, a LOESS curve has been plotted to show the trend line of these 

correlations over time; the correlations became more strongly negative later in time, reflecting 

the nature of this interaction was this change in the strength of relationship between the predictor 

N250 and the behavioral outcome later in time. All analyzed fixed effects can be found in Figure 

6. 
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Figure 5. A participant’s average spearman correlation between N250 and behavioral 
performance (d’) plotted for each time window. The correlations tend to be very randomly 
distributed positive and negative until the end of learning where they begin to cluster into a 
negative linear trend. 
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Figure 6. Fixed-effect parameter estimates and corresponding 95% confidence intervals from 
two models. The blue estimates indicate the model with time window centered on the first time 
window (beginning of learning) and the red estimates indicate the model with time window 
centered on the last time window (end of learning). N1 and N250 both reflect difference 
waveforms (present – absent). Asterisks indicate significance level, p<.05 (*), and p<.0001(***). 
 

Discussion 

 The central objective of this study was to investigate the temporal neural mechanisms 

involved in the development of a novel visual object representation in the human visual system. I 

used a novel paradigm combining visual search with a prototype distortion category task to study 

short-term changes in the brain’s visual system as participants learned to recognize a target 

object and identify trials that contained that object using only corrective feedback. Using MLM, I 

modeled behavioral performance (measured by d’) by including predictors of time (to model 

learning over time), N1 (to investigate visual processes early in the visual hierarchy that may be 
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involved in developing object representations), and N250 (to investigate later object category 

formation). 

 As predicted, behavioral performance improved over the course of learning, with time 

serving as a significant predictor of increasing performance. This confirms that early in time 

participants did not have a representation of the target visual object and as they gained expertise 

with the target this coincided with an increase in d’. 

 The ERP component effects both did and did not support my predictions. First, focusing 

on the N1 difference amplitude predictor, there was no predictability of behavioral performance 

over time by the difference in N1 (Target Present – Target Absent trials). Because there was no 

interaction with the time predictor, the N1 component does not appear to be associated with 

learning over time. Therefore, the lack of an N1 effect as learning progressed did not add any 

new information to our understanding of any short-term changes in the visual system during 

object representation formation as indexed by the component N1. This could be due to subject to 

subject differences in learning rate, baseline learning or different cognitive or behavioral 

strategies in learning, causing the relationship with N1 to be inconsistent from subject to subject. 

This is why I modeled this relationship using MLM because if the N1 predictor is truly involved 

in the development of object representations then it should be consistent across subjects. MLM 

allowed for the testing of these effects as true within-subjects effects. 

 In contrast, as predicted, the N250 change over time did significantly predict changes in 

behavioral performance, such that as participants gained more experience with the target object 

the N250 amplitude became more negative in the target present condition than the target absent 

condition and this predicted an increase in behavioral performance. This result indicated that, 

similar to previous studies (Scott et al., 2006; Tanaka et al., 2006), the N250 component might 
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be indexing the development of an object representation over time. Unique to my study, 

however, was that this N250 component was also involved in the development of a novel object 

representation in the visual system from first exposure. Instead of a pre vs. posttest measure, here 

the N250 was used as a predictive measure of the development of an object representation as 

evidenced by improved performance in identification of the object from very beginning exposure 

to end using a continuous measure of time. Although these results are not causal in nature, they 

provide correlational evidence that the N250 component is reflective of an underlying neural 

mechanism involved in object representation formation in visual cortex.  

 One caveat to these results was that the effect size for the interaction of N250 with time 

was quite small, semi-partial R2 = 0.002. However, this study could have become underpowered 

once participants were excluded due to differences in learning rate or for no evidence of learning, 

decreasing the sample from 42 to 19. Collecting more participant data could help clarify these 

results by potentially improving the effect size. Additionally, this data could be further 

underpowered from the use of a linear model to examine potentially non-linear data. Upon 

further investigation, the relationship between behavioral performance and time appeared to be 

more logarithmic than linear; however, for simplicity of interpretation I retained the use of a 

linear model. An improved analysis could provide a better model fit to the data if this 

relationship was modeled non-linearly. 

 Although the analyses detailed in this thesis were designed specifically to understand the 

short-term plasticity changes in the visual system during object representation formation, further 

investigation could be made into how visual feedback influences the reinforcement systems in 

the frontal cortex. Since participants learned to detect the visual target object through corrective 

feedback, my preliminary findings in Long (2016) analyzed the feedback-related negativity 
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(FRN) component and its development with learning. The FRN has been shown to begin as a 

large negative deflection following corrective feedback (200-300 ms) (Holroyd, Nieuwenhuis, 

Yeung, & Cohen, 2003). As learning progresses, performance improves, and participants do not 

require the feedback to assess whether they were correct, the FRN decreases in amplitude (Luft, 

2014). In Long (2016), I found mixed results with the FRN amplitudes but found a general 

decline in the difference (Incorrect trials – Correct trials) over the course of learning. An 

improved analysis could create an additional predictor of FRN difference amplitude to the 

current model. This may explain some of the unexplained variance in the model as well as 

explore the potential network connections between the visual and reinforcement systems of the 

brain involved in visual object representations. 

 

Conclusion 

 Using multilevel modeling, I showed correlational evidence of changes in the VEP 

component, the N250, which developed over time with improvement in behavioral performance. 

This finding indicates that the N250 component developed as participants formed an object 

representation in the visual cortex. Although we did not see changes over time in the N1 

component, this could be due to subject-level differences in learning. Further analyses are 

required to investigate these effects with improved power as well as improved causal 

experimental evidence of the N250 component indexing object representation formation. This 

study contributes to the basic research of the neural mechanisms underlying visual object 

representation formation, research that is vital to understanding the short-term plasticity changes 

in human visual cortex. Further understanding the mechanisms of this system in typical humans 
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contributes to the creation of artificial retinas as well as adds to our understanding of what 

happens when the mechanism is impaired in cases such as visual agnosia. 
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