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APPENDIX A

DOCUMENTATION OF COMPUTER PROGRAM

I. Program Information 

Origin o f Program:

General Office:
Director, Arkansas Water Resources Research Center 
325 Administration Building, University o f Arkansas 
Fayetteville, Arkansas 72701 
(501) 575-4403

Principal Investigator:
L. J. Thibodeaux, Associate Professor
Department o f Chemical Engineering, Rm. 331
College o f Engineering
University o f Arkansas
Fayetteville, AR. 72701
(501) 575-4951

Research Assistant:
C. K. Cheng
Monsanto Chemical Company 
St. Louis, Missouri

Purpose o f Program:
The program simulates some of the major physical, chemical and biological 
processes occuring within the aqueous phase o f lakes and reservoirs. The 
program was developed to study the eutrophic development o f these water 
bodies.

Problem Statement:
Inland lakes and man-made reservoirs constitute a sizable freshwater resource in 
the Mid-South region o f the U.S.A. Maintaining this water o f high quality for 
multiple uses w ill be a never-ending challenge as population increases and 
associated cultural developments crowd the lake shores and tributaries. A means 
o f assessing the impact o f proposed or present cultural developments upon the 
lake ecosystem is desirable. The regulation o f chemical and energy inputs, which 
enter the lake through a combination o f the tributaries, runoff or point sources, 
and the output is the major means o f controlling and manipulating water quality 
w ithin a lake or reservoir.
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Areas o f Application:
Comprehensive computer simulation models provide a means of assessing the 
impact o f proposed or present cultural developments. These models are also 
capable o f predicting proposed lake restoration programs and in this sense serve 
as tools o f water quality control. (See Appendix C for specific applications).

Methods o f Computation:
The IBM System/360 program for the simulation of continuous systems was 
used.

Basis for Selection of Method:
This program provides an application-oriented input language that accepts 
problems expressed in the form o f a system of ordinary differential equations. 
Consult: IBM Application Program System/360 Continuous System Modeling 
Program User's Manual Program Number 360A-CX-16X, Edition GH20-0367-4, 
5th (1972) of later editions.

Limitations and Restrictions:
See section in body of report titled: General Model Assumptions.

Definition o f Technical Terms:
Variable and constant symbols used in the presentation of the model are the 
same as employed in the computer program. This technique was used to 
simplify the transition from the model development to the program application. 
All terms are defined and the units of measure are given in the model 
development section.

Physical Constants:
See Table 1 in body of report.

Functional Information:
The IBM System/360 CSMP automatically sorts the structure statements to 
establish the correct information flow. See User's Manual.

II. Usage Information

Program Language, Equipment and Operating System:
CSMP is a digital simulation language employing S/360 FORTRAN IV 
statements. The program requires a minimum of 102K bytes o f storage 
(excluding that required by OS/360), the Standard Instruction Set, and the 
Floating-Point Option. In addition to the I/O units needed by the Operating 
System/360 for FORTRAN IV (Level G) compiling, the program requires three 
logical u tility  units. One o f these must be a direct access storage device (DASD); 
the other two units may be portions of the required DASD, or may be portions 
o f other DASD's or magnetic tape driver.
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Input Requirements:
Inputs are in the form o f function generators FUNCTION and constants 
CONSTANT. There is no data deck as such in CSMP. See program listing for 
format o f function generators. In general, format is free form. See User's 
Manual.

Input Data Description:
Reservoir surface area vs. elevation, reservoir volume vs. elevation, tributary 
flows vs. Julian Day, reservoir surface temperature vs. Julian Day, tributary 
chemical concentration vs. Julian Day, etc. are input as function generators 
FUNCTION. The constants CONSTANT listed in Tables II through VI are 
inputted by variable name followed by numerical value. See program listing for 
point o f input and User's Manual.

Program Output:
CSMP output includes a graphical display PRINTPLT or a numerical listing 
PRINT. See User's Manual.

Variable Definitions:
Each variable used in the program has been defined in the model development 
section o f the report. See: Definition o f Technical Terms entry.

Example Case:
Six case studies are presented in Appendix C.

Job Processing Time:
Each simulation run presented in Appendix C required less than six minutes 
CPU (Central Processing Unit) time using IBM 370/155. Output volume depends 
upon the number o f variables designated PRINTPLT or PRINT by the user.

Miscellaneous:
It is recommended that the user become fa irly familiar w ith the IBM 
System/360 Continuous System Modeling Program. See: IBM Application 
Program System/360 Continuous System Modeling Program User's Manual, 
Program Number 360A-CX-16X, Edition GH20-0367-4, 5th (1972) or later 
editions.
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APPENDIX B

COMPUTER PROGRAM LISTING
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* * * *CONTINUOUS SYSTEM MOOELING PROGRAM**#*

* * *  VERSION 1 . 3  * * *
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APPENDIX C

SELECTED CASE STUDIES

1 . Introduction

After the simulation model was tuned to the Beaver Reservoir field data, it was 

used for further investigations. The "tuned model" represents Beaver Reservoir 

conditions as they existed in the early 1970's (i.e. 1970-75) and is defined: base case. 

Six selected cases were studied and compared with the base case. They were as 

follows:

a) Case I —  The effluent from the Fayetteville Treatment Plant to White River
was stopped.

b) Case I I —  The nitrogen in the Fayetteville Treatment Plant effluent was
eliminated before mixing with White River flow.

c) Casel l l—  The phosphorus in the Fayetteville Treatment Plant effluent was
eliminated before mixing with White River flow.

d) Case IV —  Effluent from septic tanks flowing into Beaver Reservoir was
stopped.

e) Case V —  All nitrogen and phosphorus in runoff and War Eagle Creek flow
were eliminated before entering Beaver Reservoir.

f) Case V I —  Upsurge of nitrogen and phosphorus from rich sediments was
stopped.

CSMP outputs (PRINT PLOTS) are presented as the results of all case studies. 

PRINT PLOTS include a computer generated graphical presentation plus numerical 

outputs. All PRINT PLOTS contain time (Julian Day) as the independent variable and 

represent one calendar year. Note that the scales of the dependent variables are 

adjusted to a maximum height of 12.5 centimeters. Graph height should, therefore, 

not be compared between cases. Make comparison of cases on the numerical 

magnitude of the dependent variable only.
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2. Base Case

The base case is essentially the CSMP PRINT-PLOTS of the figures in the 

results section. Model constants which quantify this base case are presented in 

Tables II through VI. The simulated outputs follow:
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3. Case I

The effluent from Fayetteville Treatment Plant was stopped. This was 

achieved by setting the tributary flow parameter QFTP to zero in the main 

computer program. The simulated results were compared with those of the base 

case. The second segment was in parallel w ith the first segment, therefore, it was 

completely unaffected. As the Treatment Plant flow was stopped, the retention 

time of flows into the first and third segments were slightly increased. This 

allowed the phytoplankton to grow more steadily and, thus, increased 

phytoplankton concentrations slightly. As a result, overall fish and zooplankton 

concentrations also increased slightly. Since those changes were slight, there 

were minimal variations in the concentrations of bacteria, nutrients, oxygen and 

organic matter in both the first and third segments. The simulated outputs 

follow (the unchanged outputs are not included):
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4. Case 11

The nitrogen in Fayetteville Treatment Plant was eliminated before 

mixing with White River flow to the first segment. This was achieved by setting 

the parameter CNFTP to zero in the main computer program. The simulated 

results were compared w ith those of the base case. The second segment was in 

parallel w ith the first segment, therefore, it was completely unaffected. In the 

first and third segments, the phytoplankton concentrations decreased slightly as 

a result o f the slight loss o f nitrogen nutrient from the treatment effluent. In 

the beginning o f the year, the slight decrease in phytoplankton concentrations 

reduced the growth rate o f fish and zooplankton slightly. As the concentrations 

of fish were decreasing gradually, the predation of omnivores on zooplankton 

was reduced slightly. This reduction in predation induced the growth of the 

zooplankton despite the slight decrease in phytoplankton concentrations. As the 

zooplankton was increasing steadily, fish was then stimulated for growth. As a 

result, the overall fish and zooplankton concentrations were increased slightly. 

However, those changes were slight. There were only minimal changes in the 

concentrations of bacteria, phosphorus and oxygen and there was no change in 

the organic matter concentrations in both the first and third segments. The 

simulated outputs follow (the unchanged outputs are not included):

149



EUTR MODEL PAGE 1

150



EUTR MODEL PAGE 1

151



152

page: i



153

PAGE 1



154

PAGE 1



PAGE 1

155



156

E UTR MODEL P A G E  1



EUTR MODEL PAGE 1

157



158

EUTR MODEL PAGE 1



159

EUTR MODEL PAGE 1



P A G E  1

160



161

TIME 02WW

MINIMUM
7.9978E 00 

I
O2WW VERSUS TIME

PAGE 1

maximum
1.2148E 01



5. Case III

The phosphorus in Fayetteville Treatment Plant effluent was eliminated 

before mixing with White River flow to the first segment. This was achieved by 

setting the parameter CPFTP to zero in the main computer program. The 

simulated results were compared with the base case. The second segment was in 

parallel with the first segment. Therefore, it was completely unaffected. In the 

first and second segments, the phytoplankton concentrations decreased slightly 

as a result of the slight loss of phosphorus nutrient from the treatment 

effluent. In the beginning of the year, the slight increase in phytoplankton 

concentrations reduced the growth rate of fish and zooplankton slightly. As the 

fish decreased gradually, the predation of omnivores on zooplankton was 

reduced slightly. This reduction in predation induced the growth of the 

zooplankton despite the slight decrease in phytoplankton concentrations. As the 

zooplankton was increasing steadily, fish was then stimulated for growth. As a 

result, the overall fish and zooplankton concentrations were increased slightly. 

However, those changes were slight. There were only minimal changes in the 

concentrations of bacteria, phosphorus, and oxygen and there was no change 

in the organic matter concentrations in both the first and third segments. The 

simulated outputs follow (the unchanged outputs are not included):
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6. Case IV

The effluent from septic tanks flowing into Beaver Reservoir in all three 

segments was stopped. This was achieved by setting the parameter POP 

(population) to zero in the main computer program. The simulated results were 

compared with those of the base case. Flows from septic tanks were considered 

in all three segments. Therefore, all segments were' affected. However, the flow 

from septic tanks to each segment was smaller in comparing with river flows. As 

a result, there were only minimal changes in all three segments. The simulated 

outputs follow:
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7. Case V

All nitrogen and phosphorus in runoff and War Eagle Creek flow were 

eliminated before entering Beaver Reservoir in the third and second segments, 

respectively. This was achieved by setting parameters CNRUN, CPRUN, 

CNINWE and CPINWE to zero in the main computer program. The simulated 

results were compared with those of the base case. Only nutrients in runoff and 

War Eagle Creek flow were eliminated. Therefore, the first segment was 

completely unaffected. Nutrients concentrations in the second and third 

segments decreased slightly. This reduced the growth rate of phytoplankton 

slightly. This, in turn, reduced the growth rates of fish and zooplankton slightly. 

In the later part of the year, the zooplankton was induced for faster growth as 

predation by omnivorous fish was decreasing. Eventually, the overall 

zooplankton concentration increased slightly. Since the changes were slight, 

there were only minimal changes in bacteria and oxygen, but organic matter 

remained unchanged. The simulated outputs follow (the unchanged outputs are 

not included):
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8. Case VI

Upsurge of nitrogen and phosphorous from rich sediment was stopped. 

This was achieved by taking away those upsurge program statements of nitrogen 

and phosphorus to both the entire segment and epilimnion in all three 

segments. It is a characteristic of CSMP that all upsurge terms encountered in 

the nutrient balance equations in the main program will be automatically set to 

zero. Normally, this could also be achieved by setting the turbulent diffusivities 

in both stratified and unstratified periods to zero, but these parameters were 

also used in the diffusion equations across the thermocline (i.e. between 

hypolimnion and epilimnion). The simulated results were compared with those 

of the base case. In all the three segments, phytoplankton decreased drastically 

in the beginning of the year as a result of the sudden drop of nutrient 

concentrations. This sudden drop in phytoplankton concentrations reduced the 

growth rate of the fish sharply. This induced the rapid growth of zooplankton as 

predation by omnivores dropped sharply. Around the middle of the year, 

phytoplankton under favorable conditions increased sharply. This sudden 

increase stimulated the growth of zooplankton sharply. In the later part of the 

year, fish concentrations increased sharply as a result of the rapid growth of 

zooplankton. This increased the predation of phytoplankton by omnivorous 

fish, and thus phytoplankton concentrations dropped drastically. In general, the 

concentrations of nutrients decreased sharply. However, in the third segment, 

concentrations of phosphorous in the later part of the year showed a 

tremendous increase. This could be explained by the fact that the 

concentrations of phytoplankton dropped to the minimum detectable 

concentrations for a longer period of time than the other two segments. This 

reduced the nutrients uptake by phytoplankton tremendously. The 

concentrations of bacteria decreased slightly in the first segment, but decreased 

tremendously in the second and third segments as the result of the sharp 

decrease of nutrients. Although the phytoplankton decreased drastically, 

concentrations of oxygen dropped only slightly. The reduction of oxygen from 

phytoplankton was compensated by reduction of oxygen consumed by bacteria 

and by the increase in absorption rate through the air-water interface. The
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reduction in bacteria concentrations did not result in a sharp increase in organic 

matter concentrations. This was because phytoplankton settling rate was 

drastically reduced and thus caused a slight decrease in organic matter 

concentrations in ail three segments. The overall result of this case showed a 

very strong prey-predator relationship in the lake ecosystem. The simulated 

outputs follow:
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9. Comment

In a short period of a few years, either Case II or Case III is 

recommended. Both cases showed a slight decrease in overall phytoplankton 

concentrations, but showed slight increases in overall zooplankton and fish 

concentrations. Therefore, in either case, fish production could be increased 

with the reduction in phytoplankton. Also, either case could be achieved easily 

in the existing Treatment Plant. In both cases, the main source of nutrients will

be from the rich sediment upsurge. As time progresses, the nutrients in the rich 

sediment will be depleted gradually. Eventually, Case VI will be reached and 

desirable (or undesirable) effects will occur.
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