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Abstract 

 Aerial imagery offers great potential as a predictive scouting method and could allow 

growers to better understand crop performance over time. Evidence suggests that the seed 

treatments fluopyram and abamectin result in decreased reproduction and root galling by 

Meloidogyne incognita, but yield protection in fields with higher or different nematode pressure 

is unclear. The objective of this work was to determine the efficacy of these seed treatments 

compared to 1,3-dichloropropene (1,3-D) applied site-specifically and then predict where these 

might best be applied to other fields. In a soybean field infested with M. incognita, apparent 

electrical conductivity was highly correlated with sand content, and treatments were applied the 

total length of the field, across two soil textural zones. Fluopyram and abamectin seed treatments 

were compared to seeds without a nematicide seed treatment (control) and seeds without a 

nematicide seed treatment but planted within 1,3-D treated areas. Historical satellite images, 

normalized difference vegetation index (NDVI) and near infrared (NIR), from Sentinel-2 at 10-

meter resolutions were compared to yield to determine if correlations with crop performance were 

evident over time. In 2016, treatment yields were not significant by zone, but yield was greater in 

the 1,3-D strips than all other treatments, while fluopyram and abamectin were not different than 

strips lacking nematicide (P=0.001). In 2017, 1,3-D strips had higher yield than all other treatments 

in both zones except for residual 1,3-D treatments that were applied in 2016 in Zone 2 (P=0.01). 

Fluopyram, abamectin, and the control treatments were not significantly different in Zone 1. 

Treatment effects for all treatments differed between the two textural zones (P=0.01). The 

distribution of M. incognita at harvest was uniformly distributed by treatments (P=0.08), 

suggesting that 1,3-D could be used as a two-year control and would be economically beneficial 

as a whole-field application when a susceptible soybean is planted.  In 2017, NDVI and NIR 

observations were clustered, meaning that data are significantly positive for local spatial 



 

 

autocorrelation (P<0.05). Seven surrounding fields were further observed and 100% of analyses 

were clustered using NDVI and NIR images from multiple snapshots throughout the 2017 growing 

season. Initial analyses indicated correlations with yield, suggesting opportunities for prediction 

and that site-specific application of 1,3-D in these fields might be beneficial when susceptible 

soybean varieties are planted.
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Chapter 1: Literature Review 

Soybean Production in Arkansas 

Soybean was first introduced in Arkansas during the 1920’s and gained popularity among 

growers around the mid-1900s. From 1960 to 1979, harvested hectares increased dramatically, 

with soybean peaking in Arkansas during the 1979 growing season at 2.08 million hectares (Coats 

& Ashlock 2000).  Although somewhat lower than in 1979, soybean are still grown on more 

hectares today than any other production crop in Arkansas, and account for fifty-one percent of all 

principle crops planted in Arkansas; with 1.27 million hectares grown in 2016 (Arkansas Acreage 

Report 2016).  

Common Tillage Practices  

Tillage practices have intensely shifted from conventional tillage to conservation tillage in 

the past three decades. Regardless of the tillage system used, the goal on the farm level is to 

promote adequate root and crop development that results in profitable production (Huitink & 

Tacker 2000). Conservation tillage (CT) is a production system where at least 30% of crop residue 

remains on the soil surface (Evans et al. 2000) and varies with specific field operations that may 

include stubble mulch tillage, reduced tillage, or no-till systems. Furthermore, improved planting 

equipment and effective herbicides make CT economical and practical for soybean production 

(Kulkarni 2002). Stale seedbeds are an aspect of a reduced tillage system, that save time, conserve 

moisture, and can result in higher soybean yields (Kulkarni 2002). Implementing stale seedbeds in 

a tillage system will allow growers to re-form old seedbeds in the fall and let them settle 

(undisturbed) over the winter to "mellow" clods (Spradley 2005). Herbicides are applied in early 

spring to kill winter vegetation, and then the tops of the seedbeds are flattened and (or) packed 
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before planting. Stale seedbeds are most effective in clay soils that often form clods after being 

tilled, resulting in increased planting difficulties (Huitink & Tacker 2000).  

No-till systems (NT) are commonly recommended for increasing soil organic matter and 

decreasing soil erosion, but they require proper use of herbicides and heavy-duty no-till seeding 

equipment that are long-term investments for growers (Huitink & Tacker 2000). In many cases, 

growers are hesitant to switch to NT from CT because of the expense involved in acquiring more 

precise equipment, which can be substantially higher. Because much of the land that is farmed in 

Arkansas is leased, growers may be hesitant to make the investments that are required, because of 

the uncertainty of access to the land from season to season. Many growers are given a verbal lease 

agreement that could change anytime, based on discretions of the land owner. 

Fertilization Practices 

 As with other legumes, soybean roots are associated symbiotically with the bacteria 

Bradyrhizobium japonicum. The soybean plant supplies nutrients and energy for the bacteria to fix 

nitrogen in nodules, which in turn is beneficial for the plant. Since soybean plants have a high 

demand for nitrogen and most of the nitrogen is provided via biological fixation, producers should 

evaluate plants to determine if they are activity fixing nitrogen. In fields with poor nodulation, 

soybean seeds should be inoculated with B. japonicum, especially where soybean have not been 

grown in the past three to five years (Slaton et al. 2013). In row crops, phosphorous and potassium 

are generally the most yield limiting nutrients and are normally applied before planting (Spradley 

2005). Micronutrient deficiencies are rare but can occur in soils with low cation exchange capacity 

(CEC). Every 100 kg of soybean requires 1.5 kg of phosphorus (P2O5), and 6.2 kg of potassium 

(K2O.), which is 150% to 300% more per bushel than that of other row crops, such as corn or rice 

(Slaton et al. 2013).  
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 The University of Arkansas Division of Agriculture recommends that soil samples 

(collected at a ten-centimeter depth) should be used to guide fertilizer inputs.  Samples should be 

collected following the same crop in a rotation and at approximately the same time of year; soil 

test results should be calculated based on an anticipated average field yield of 3362.55 kg      

hectare-1 (Slaton et al. 2013). Potassium-depleted soils, which are mostly silt loam or sandy soils, 

commonly contain 0-90 ppm of potassium. These soils should be amended with an additional 

application of 135 to 179 kg of K2O hectare-1 (Slaton et al. 2013). The most common source of 

potassium used in Arkansas is muriate of potash (0-0-60). Growers generally apply potassium 

during the fall or early spring, but before seedbeds are re-formed in order to incorporate the 

nutrients into the soils. Phosphorous is recommended by the University of Arkansas Division of 

Agriculture when soil test levels are ≤ 26 ppm.  Phosphorus is generally not expected to increase 

soybean yields but is applied to replace the phosphorus that was removed with the harvested grain 

(Slaton et al. 2013). The two most commonly used fertilizers supplying phosphorus in Arkansas 

are triple superphosphate (0-46-0) and diammonium phosphate (18-46-0). Poultry liter can also be 

applied as a phosphorus and potassium source, but nutrient contents can vary. So, every load of 

litter that is applied should be subsampled individually.  Slaton et al. (2013) suggests that spring 

fertilizer applications may be best on soils soil test levels below ≤ 60 ppm of potassium and ≤ 15 

ppm of phosphorus, because as soil test index values decrease, the soil’s capacity to rapidly fix 

nutrients into unavailable forms increase. 
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Pest Management 

Insects 

The University of Arkansas Division of Agriculture reports research-based economic 

threshold levels for most problematic insects, and control applications that should be triggered 

when threshold levels are reached (on a field by field basis). Pests in Arkansas soybean are 

extremely variable from year to year, due to environmental conditions (Lorenz et al. 2000). 

Agricultural practices also have a huge impact on the occurrence of pests in soybean.  Row width, 

planting date, tillage systems, adjacent crops, and soybean monoculture all can impact pest 

incidence and pressure. Sweep nets and drop cloths are the most efficient methods for determining 

insect thresholds in soybean (Zehnder 2014).  

The most common insect pests of soybean grown in Arkansas are Helicoverpa zea (corn 

earworm), Halyomorpha halys (brown mamorated stink bug), Chinavia hilaris (green stink bug), 

Nezara viridula (southern green stink bug), Piezodorus guildinii (redbanded stink bug), and 

Pseudoplusia includens (soybean looper). Helicoverpa zea is considered the most devastating 

insect to soybean plants in Arkansas, because larvae feed on pods and seeds, directly decreasing 

yield. This pest also has an extremely wide host range, resulting in exponential opportunities 

throughout the season for reproduction to occur. Although young larvae do not cause significant 

injury, the last two instars account for 96% of the damage (Spradley 2005). According to Lorenz 

et al. (2000), fields that do not have canopy closure by the time soybean plants start to bloom are 

more susceptible to H. zea. An “Early Soybean Production System,” which became popular in the 

Mid-South several years ago involves planting MG III and IV soybean in late March or early April 

to enhance canopy closure before the first H. zea flight, which should reduce the number of 

insecticide applications (Lorenz et al. 2000). 
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Weeds 

 Weeds in soybean production must be properly identified to get effective control. The most 

common weeds in Arkansas soybean are Amaranthus palmeri (palmer amaranth), Echinochloa 

crus-galli (barnyard grass), Ipomoea spp. (morningglory species), Digitaria sanguinalis (hairy 

crabgrass), Urochloa platyphylla (broadleaf signalgrass), Euphorbia maculate (spotted sandmat), 

Sesbania herbacea (hemp sesbania), and Lolium multiflorum (perennial ryegrass). Herbicide-

resistant weeds are currently the most crucial issue in soybean production systems. Amaranthus 

palmeri is the number one herbicide-resistant weed for growers to manage. Populations of A. 

palmeri at 5, 10, 20, and 40 weeds per 6 row meters reduced soybean yield by 26%, 40%, 64%, 

and 66%, respectively (Baldwin et al. 2000). One female A. palmeri plant can contain up to 1.5 

million seeds (Scott & Smith 2011), which is why a “Zero Tolerance” program is being practiced 

by many Arkansas growers to help eliminate pigweed seed production and reduce the soil seed-

bank. Seed-bank management is critical with respect to herbicide resistant species, because even 

with a 99.9% effective herbicide program, an estimated 54 to 1,020 A. palmeri plants will likely 

escape and be present in the first and second years after is a “Zero Tolerance” program is not 

adopted (Barber et al. 2015). Amaranthus palmeri has been confirmed to be resistant to several 

chemical classes of herbicides, including microtubule inhibitors, acetolactate synthase (ALS) 

inhibitors, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase inhibitors, and 

protoporphyrinogen oxidase (PPO) inhibitors in Arkansas (Barber et al. 2015).  

Glyphosate and PPO inhibitor resistant A. palmeri continue to be a major concern for 

soybean producers. New herbicide classes and strategies for controlling resistant pigweed are 

limited. New herbicide resistant lines of soybean have been introduced into the Arkansas 

production system. Cultivars with traits that resist glufosinate and dicamba are becoming 
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increasingly available commercially, but a concern with the introduction of this technology is that 

soybean plants without the glufosinate (Liberty-Link®) or dicamba-resistance genes are highly 

susceptible to these herbicides. As of the 2016 growing season, glufosinate was the only labeled 

post-emergence herbicide on soybean that was recommended for control of glyphosate-resistant 

A. palmeri. In 2017, dicamba (Engenia®) was approved by the Arkansas Plant Board to be used as 

a post-emergence control for this weed. Although the new dicamba formulation can be used as a 

control throughout the growing season, there are still certain limitations that include buffer zones 

and specific spray nozzle types. Research shows that the first growth stage of reproduction in 

soybean is one of the most sensitive stages to dicamba drift, and a ten percent yield loss was 

observed from an over-the-top application of 1/1024X the labeled rate (Barber 2016). By the end 

of the 2017 growing season, the Arkansas State Plant Board had received 985 complaints about 

dicamba drift, and effective 2018 February 1 applications of dicamba cannot be applied between 

April 16 and October 31. Even with timing and buffer restrictions, growers are swiftly adopting 

this technology into production fields due to the concern of dicamba drift from on and off label 

applications. 

Diseases 

 For growers, many important decisions are made before seeds are planted. Some of these 

include the type of crop and appropriate cultivar selection. Pathogens have caused severe yield 

suppression on crops, and management methods are constantly being revised and improved. The 

most common disease management practices include tillage, crop rotation, burning, and chemical 

control. Each of these management methods have benefits and drawbacks for both growers and 

the environment. For many growers today, the overall farming objective includes selecting the 

highest yielding variety for production, with little concern for disease resistance. Disease control 
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using fungicides has been the most popular method for disease management in Arkansas. Many 

variables have required growers to use chemicals to control diseases, rather than using cultural 

practices and disease-resistant plants. Soybean diseases are a significant consideration in both 

soybean production and cultivar selection, and the University of Arkansas Division of Agriculture 

tests numerous soybean cultivars annually for yield, maturity date, lodging, and nematode and 

disease resistance (University of Arkansas Division of Argriculture 2017). Fungi, bacteria, 

nematodes, and viruses all may impact soybean yield performance in the state. 

Plant-parasitic Nematodes 

Root-knot Nematode 

Meloidogyne incognita, southern root-knot nematode, overwinters in the soil as eggs in 

masses attached to the roots of the previous crop. Juveniles may also survive in the soil all winter, 

during favorable environments (Evans & Perry 2009). As the egg develops, cells differentiate and 

the first stage juvenile (J1) forms inside the egg. When temperatures reach 25°-30°C, M. incognita 

eggs hatch and emerging second-stage juveniles (J2) move to soybean roots, targeting the root tip 

where cells are undifferentiated in the zone of root elongation. Upon root penetration, the nematode 

stylet secretes proteins and other compounds that allow the nematode to evade host defense 

response pathways and oxidative reactions. These secretions also help degrade the cell wall and 

allow for manipulation of cellular functions for nematode benefit (Hussey 1989). Cells are signaled 

to initiate cell division but do not complete the last stage, resulting in multi-nucleate cells called 

“giant-cells” (Favery et al. 2016). Once the giant-cell is formed, the nematode remains sedentary 

at the site and relies on the cell as the sole source of nutrients for the remainder of life (Choi et al. 

2017). These structures along with the growing nematode result in the formation of visible galls 

or “knots” on the roots (Mitkowski & Abawi 2003). The juvenile molts through J3 and J4 stages 
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and then becomes an adult, either male or female. Adult females begin to produce eggs in an 

exterior, gelatinous mass that can contain up to a thousand eggs. The J1 forms completely within 

the egg shell, molts, then hatches into the J2 stage, completing the lifecycle (Chitwood & Perry 

2009). 

Galls can be observed visually on infected roots, and some above ground symptoms may 

include stunted and yellowed plants. Also, foliar symptoms of nutrient deficiencies are commonly 

observed and associated with M. incognita infected plants because of the reduced uptake of soil 

nutrients. Although nutrient levels could be optimum in the soil, root damage and galling caused 

by nematodes may prevent uptake for plant growth, therefore reducing yield. Management 

strategies for M. incognita are limited in soybean production, which includes the availability of a 

few resistant cultivars, crop rotation, and nematicidal seed treatments. 

Three Meloidogyne spp. (M. incognita, M. javanica, and M. arenaria) have been identified 

in the Mississippi Alluvial Plain and throughout the southern parts of Alabama, Georgia, South 

Carolina, and North Carolina, as well as in parts of California, Arizona, New Mexico, Texas, and 

Florida. However, in Arkansas M. incognita is by far the most predominant species, particularly 

in crop production (Kirkpatrick, personal communication). Meloidogyne incognita has a broad 

host range that includes cotton, tomato, okra, banana, sunflower, tobacco, and several other crops 

including soybean. Meloidogyne incognita estimated to reduce soybean yield in Arkansas by 40, 

142, and 181 million kilograms during the 2013, 2014, and 2016 growing seasons, respectively 

(Koenning 2014; Allen et al. 2015; Allen et al. 2017).  

The distribution of M. incognita within a field is associated with noticeable areas called 

“hot spots,” which result in significant yield losses in sandy soils within the field (Monfort et al. 

2007). Because nematodes are clustered, soil sampling using the grid sampling method may be 
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effective in determining nematode populations but can be labor-intensive and cost-prohibitive 

(Wheeler et al. 2000; Wrather et al. 2002). Another sampling method is referred to as zone 

sampling. This method identifies areas (or zones) in a field with similar characteristics, such as 

crop yield, soil fertility or soil texture for targeted sampling. Zone sampling could be an effective 

method to characterize the spatial distribution of nematode populations. Soils with a ≥ 86% sand 

content showed a significantly higher level of migration of M. incognita than soils between 75% 

and 86% (Prot & Van Gundy 1981). Also, Monfort et al. (2007) found that fewer M. incognita in 

population are required to suppress yield in soil with a higher sand content. Therefore, soil texture 

is crucial in determining the damage potential of M. incognita, and percent sand is directly related 

to the migration and penetration of roots by the J2.  

Because classical soil texture analysis can be laborious, extensive research has been 

performed to identify other field characteristics that are less formidable to sample. Mueller et al. 

(2003) indicated that soil electric conductivity was correlated with soil texture, and based on 

research conducted in eleven cotton fields during 2005 and 2006, Ortiz et al. (2011) reported areas 

within a field that are likely to have high levels of M. incognita could be predicted using relative 

field changes in apparent EC. 

Stunt Nematode 

Stunt nematodes, including Tylenchorhynchus spp. (T. annulatus, T. canalis, T. claytoni, 

T. dubius, T. ewingi, T. goffarti, T. maximus, T. nudus), Merlinius brevidens, and Quinisulcius spp. 

(Q. acti and Q. acutus), are another common nematode found in Arkansas. Of these species, four 

are commonly found in soybean production: T. canalis, T. ewingi, T. goffarti, and Q. acutus 

(Robbins et al. 1987; Wehunt et atl. 1989). Robbins et al. (1987) sampled 134 fields in 1985 and 

1986, and they found that 52% and 34% of those fields, respectively, showed the presence of stunt 
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nematode (Tylenchorhynchus spp. and Q. actus). Furthermore, of the fields sampled in 1985 and 

1986, Q. acutus and T. ewingi were the most common (Robbins et al. 1987). Unlike M. incognita, 

stunt nematodes reproduce well across a variety of soil types from sandy to loamy clay soils (Bond 

et al. 2000) and have a wide host range. Population densities are reduced in saturated soils, such 

as flooded rice fields (Rodriguez-Kabana 1965). Stunt nematodes are usually deemed a minor pest 

in row crops, although in corn, populations can cause damage in conjunction with other nematodes. 

Spatial Analysis 

Why Use Spatial Analysis 

 Spatial analysis is the process of answering important questions, explaining patterns, and 

enhancing decision making with spatial data, which is information that identifies a geographic 

location by relying on both exploratory and confirmatory techniques (Grubesic & Nelson 2016). 

Exploratory data analysis looks for patterns while confirmatory data analysis tests the proposed 

models. For example, understanding distributions of pathogens in production fields could explain 

the dynamics of how the disease is dispersed by showing where it was initially, where it spread, 

and how fast it spread. Answering these questions could lead to discoveries of more effective 

control strategies.  

Significant Distributions 

There are three main types of distinctions of spatial association: uniform, clustered, and 

random. Uniform distribution, or even distribution, is a distribution that has constant probability. 

These values are equally spaced apart and are usually describable by rectangular patterns or lines 

in nature. Samples that are consistent and equally spaced throughout the field are often man-made 

in one way or another. These can occur due to malfunctioning equipment, cultivation, or pesticide 

or fertilizer applications. Clustered distributions occur when data points show a relationship due 
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to location (likely spatial dependence). Diseases or fertility issues often correlate with soil texture 

and are the main causes of clustered distributions in production fields.  

Fields that are variable in soil texture may fluctuate in soil nutrient levels, and potassium-

deficient plants may be more susceptible to pathogens (Wang et al. 2013). Plant available soil 

potassium is in an ionic, electrically charged, form. This is a positive charge, making potassium a 

cation. Cations are attracted to, and held by negatively charged colloids, (clay and organic matter) 

that make up the cation exchange capacity (CEC) of the soil. The higher the CEC values, the more 

potassium that can remain in the soil. Areas with low CEC values within in a field can be leached 

of potassium due to excessive rainfall or irrigation, while soil potassium levels can remain 

adequate in more clay areas. Random distributions occur when data points show no correlation in 

location between each other. Foliar diseases caused by pathogens with secondary cycles can be 

randomly distributed initially. Secondary infections can be repeated many times during a growing 

season from the spread of asexual spores. These infections result in exponential growth of the 

pathogen so that the disease may spread to become clustered.  

Of the three distribution patterns, only two of them are relevant: values that are clustered 

(positive spatial autocorrelations) or dispersed (negative spatial autocorrelation). Problematic 

areas within a field that are either clustered or uniform tend to have an identifying cause or 

association, while random patterns are unpredictably formed. With an identifying cause, 

aggravating agent(s) can be discovered and diagnosed for proper management methods. Without 

properly identifying the causal agent, a solution can only be generated by trial and error. Uniform 

distributions are likely caused by man or objects that are man-made, while clustering patterns may 

not have such an obvious contagion causing the distribution. 
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Modifiable Areal Unit Problem 

 Geographical space can either be composed of boundaries or locations of objects and 

features (Wong 2008). The Modifiable Areal Unit Problem (MAUP) impacts the results of 

univariate and multivariate regressions and arises from errors that are created when data are 

grouped together for analysis (Openshaw 1984). The Modifiable Areal Unit Problem is associated 

with the use of scaling or zoning data related to geographical areas (Ervin 2012). The scale effect 

refers to how changing the number of areal units on a map can influence the interpretation, and the 

zoning effect refers to how changing the space within a map, while maintaining the same number 

of areal units, can also influence the interpretation (Jones 2011). An example would be looking at 

the average number of kilograms per hectare of soybean grown in Arkansas. The scale of this 

analysis could be changed to look at kilograms per hectare on a regional, county, farm, or field 

level scale. Each level would provide different quantitative values. This could be due to many 

things, for example, certain fields or areas in the state might be irrigated while other parts are non-

irrigated. Also, some growers practice a high input production system, which usually means both 

higher input costs and higher yields. Changing the volume or shape of the observation area within 

the same study would be a zonal problem. To satisfy MAUP all solutions must be consciously and 

logically attempted to minimize negative effects of grouping (Ervin 2012).   

Spatial Regression 

 Spatial regression examines, explores, and models geographical data. Also, it explains the 

factors that contribute to clustered distributions. Predictive modeling can be derived from spatial 

regressions. Ordinary least squares (OLS) linear regression can be used to estimate the relationship 

between a dependent variable (y) and one or more independent variables (x) (Brusilovskiy 2010). 

Ordinary least squares generates predictions or models a dependent variable in terms of its 
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relationships to a set of explanatory variables. The closer the data points are to the line, the more 

the variables are correlated with each other. Correlation is a statistical technique that can show if 

and how strongly variables are related. Probability values (p-values) and coefficients in a 

regression analysis demonstrate which relationships in the model are statistically significant and 

the nature of those relationships. The coefficients describe the mathematical relationship between 

each independent variable and the dependent variable. The p-values for the coefficients indicate 

whether these relationships are statistically significant (Frost 2014). Recently these techniques 

have been used for more practical application in pest management and understanding losses, 

specifically for M. incognita (Liu et al. 2014). 

Geographically weighted regression (GWR) should be used when modeling spatial 

heterogeneity or uneven distributions across a study area. Unlike other regression models, GWR 

produces a separate equation for every feature and generates a set of location-specific parameters 

that can be mapped and analyzed (Matthews & Yang 2012). 

Designing a Spatial Test 

 A test that can be analyzed spatially must have observations collected at fixed points in an 

area. The points where data are collected cannot change and data should be collected at a given 

point in time so as not to introduce temporal variability. Typically, experimental units are lacking 

when spatial design is implemented, creating issues with analysis. For example, Anselin (2006) 

indicated a minimum of 50 observations were needed to perform an accurate Moran’s I analysis 

and approximately 100 observations were necessary to reliably analyze a spatial dependence 

model. When numbers of points of observations are satisfied, determining spatial dependence and 

correlation across points in space between a dependent and explanatory variable is accomplished 

using measures of aggregation (Moran’s I) and correlation using spatial regression. Spatial 
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dependence is a phenomenon that occurs when the values of a variable at a point in space are 

related to nearby values of the same variable. Spatial models can be used to adjust for spatial 

dependence by exploiting the relationship of the data set. 

Recently, a “strips and anchors” (Spurlock 2017) method of spatial analysis was proposed, 

and it will be used for one objective in this project. With this approach, treatments are applied in 

strips across the area. Observations are made within and adjacent to each treatment, exhausting 

logical space and satisfying MAUP. Quantitative variables that correlate to the desired dependent 

variable are kriged (Oliver 1990) and aggregated areas of different values are used as qualitative 

zones for analysis of treatment means (within zones). This method of spatial analysis allows the 

use of fewer observations to collect data while still relating it to important changes in disease 

pressure and treatment efficacy.    

Precision Agriculture 

Equipment and Remote Sensing 

Precision agriculture, or site-specific farming, is a farm management concept where 

growers focus on different variables within each field to optimize inputs and maximize outputs. 

The technology that makes precision agriculture available are global navigation satellite system 

(GNSS) that allow georeferencing of specific data.  For example, yield monitors on harvest 

equipment may record the yield for thousands of points per hectare and the data are georeferenced 

so that a spatial data layer can be created. Other factors that might be measured include soil texture 

and (or) fertility, presence and density of pests, crop growth, etc.  Although currently very few 

growers fully utilize site-specific/georeferenced practices in their production systems, yield maps, 

soil texture maps, aerial imagery all could improve efficiency and accuracy in making management 

decisions. As one example, evidence suggests that more economical and environmentally 
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appropriate control of nematodes, such as M. incognita, could be achieved by use of site-specific 

techniques (Monfort et al. 2007; Overstreet et al. 2014). 

Big Data  

 Precision agriculture can generate a tremendous amount of data, and each site-specific 

practice can have thousands of associated data points with many different properties for each one 

(Griffin et al. 2016). Manipulation and analysis of this huge quantity of data requires the use of 

complex software and high computation power.  Most often synthesis and analysis of these data 

are beyond the capabilities of farmers, consultants, and retail agriculture professionals. In addition, 

outputs from many applications may not be universally compatible due to software proprietary 

concerns, making it impossible to exchange data.  Because the concepts and technology that are 

associated with precision agriculture are relatively recent developments, not enough data has been 

collected to determine exactly what the results mean in certain scenarios.  The adoption of 

precision agriculture and site-specific management will be reliant on trained agronomists and will 

require more data to determine its true value.   

Farming of the Future 

 The Food and Agriculture Organization predicts that there will be 9.6 billion people in the 

world to feed by 2050, which means food production needs to increase by 70% despite the limited 

availability of arable land (Guerrini 2015). To resolve the issue of future food demands, current 

production systems need to increase yields per hectare, requiring implementation of new 

production systems. The goal of precision agriculture is to maximize outputs (yield), while 

optimizing inputs (costs). Computer programs will soon be able to tell growers exactly what 

applications to make on every hectare, or less, of their farm with few or no diagnosis being 
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performed by humans. On the other hand, new types of production systems have been created in 

other areas of agriculture, such as vegetable production.  
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Chapter 2: Site-specific management of plant pathogenic nematodes on soybean 

Abstract 

The southern root-knot nematode, Meloidogyne incognita, is responsible for substantial 

yield losses on soybean grown in the Mississippi Alluvial Plain. Evidence suggests that the seed 

treatment nematicides fluopyram and abamectin may suppress reproduction and root galling by M. 

incognita, but yield protection in fields with higher nematode pressure is less obvious. The 

objective of this work was to determine the efficacy of these seed treatment nematicides compared 

to 1,3-dichloropropene (1,3-D) applied site-specifically. In a production field infested with M. 

incognita, shallow (0 to 0.3 m) and deep (0 to 0.91 m) apparent electrical conductivity (ECa) 

readings were highly correlated with sand content, and treatments were applied the total length of 

the field (verification strips), across two soil textural zones. Fluopyram and abamectin treated 

seeds were compared to seeds without nematicide seed treatment (control) and seeds without 

nematicide seed treatment but planted within 1,3-D treated soil. In 2016, yields were not improved 

by the seed treatments in either of the zones. Fumigation with 1,3-D improved yield in comparison 

to all other treatments, while fluopyram and abamectin were not effective in improving yields 

(P=0.001). In 2017, 1,3-D strips had significantly higher yield than all other treatments in all other 

zones except for residual 1,3-D treatments that were applied in 2016 in Zone 2 (P=0.01). 

Fluopyram, abamectin, and the control treatments were not significantly different in Zone 1, but 

treatment effects were significantly different between textural zones for all treatments (P=0.01). 

The distribution of M. incognita at harvest was uniformly distributed by treatments (P=0.08) 

suggesting that 1,3-D could be used as a two-year control and would be economically beneficial 

as a whole-field application (across both soil textural zones) when a susceptible soybean is planted.  
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Introduction 

Nematodes are microscopic roundworms, many of which are soil-dwelling and plant-

parasitic.  Plant-parasitic nematodes feed on root cells with a stylet. They can also utilize the plant 

roots for reproductive activity (Mitkowski & Abawi 2003). Root dysfunction and damage caused 

by nematodes produce above-ground symptoms that are similar to soil nutrient deficiencies 

(Mitkowski & Abawi 2003). Plant-parasitic nematodes are economically important pests that 

affect many row crops in the Mid-South. Nematodes are host-specific organisms and strategies for 

management of these pests will vary by crop.  Chemical control options for nematodes are limited, 

so often crop rotation to a non-host is the best solution (Hurd & Faske 2017). However, with 

fluctuating commodity prices, rotational options are also limited because some crops are not 

economically beneficial to growers (Starr et al. 2007). For this reason, seed treatments are being 

marketed for crop protection, but their efficacy is questionable in fields with high nematode 

pressure.   

Soybean were first introduced in Arkansas during the 1920’s and gained popularity among 

growers around the mid-1900s. From 1960 to 1979, harvested hectares increased dramatically, and 

peaked in 1979 at 2.08 million hectares (Coats & Ashlock 2000).  Although somewhat lower than 

in 1979, soybean are still grown on more hectares today than any other production crop in 

Arkansas, and account for fifty-one percent of all principle crops planted in Arkansas; with 1.27 

million hectares grown in 2016 (Arkansas Acreage Report 2016). Three Meloidogyne spp. (M. 

incognita, M. javanica, and M. arenaria) have been identified in the Mississippi Alluvial Plain 

and throughout the southern parts of Alabama, Georgia, South Carolina, and North Carolina, as 

well as in parts of California, Arizona, New Mexico, Texas, and Florida. However, in Arkansas 

Meloidogyne incognita is by far the most predominant species, particularly in crop production 
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(Kirkpatrick, personal communication), and were estimated to reduce soybean yield in Arkansas 

by 40, 142, and 175 million kilograms during the 2013, 2014, and 2016 growing seasons, 

respectively (Koenning 2014; Allen et al. 2015; Allen et al. 2017). Meloidogyne incognita has a 

broad host range that includes cotton, tomato, okra, banana, sunflower, tobacco, and several other 

crops including soybean. Infected roots result in the formation of galls or “knots” that can be 

observed visually. Some above-ground symptoms may include stunted and yellowed plants and 

foliar symptoms of nutrient deficiencies, because of the reduced uptake of soil nutrients. Although 

nutrient levels could be optimum in the soil, root damage and galling caused by nematodes may 

prevent uptake for plant growth, therefore reducing yield. Management strategies for M. incognita 

are limited in soybean production, and include the availability of a few resistant cultivars, crop 

rotation, and nematicidal seed treatments. 

Meloidogyne incognita overwinters in the soil as eggs in egg masses attached to the roots 

of the previous crop; juveniles may survive in the soil all winter under favorable environments 

(Evans & Perry 2009). As the egg develops, cells differentiate and the first-stage juvenile (J1) 

forms inside the egg shell. At temperatures of 25°-30°C, M. incognita eggs hatch and emerging 

second-stage juveniles (J2) migrate to soybean roots, targeting the root tip where cells are 

undifferentiated in the zone of root elongation. During the penetration process, the nematode stylet 

secretes proteins and other compounds that allow the nematode to evade host defense response 

pathways and oxidative reactions. These secretions also help degrade the cell wall and allow for 

manipulation of cellular functions for nematode benefit (Hussey 1989). Cells are signaled to 

initiate cell division but do not complete the last stage, resulting in multi-nucleate cells called 

“giant-cells” (Favery et al. 2016). Once the giant-cell is initiated, the nematode remains sedentary 

at the site and relies on the cell as the sole source of nutrients for the remainder of its life (Choi et 
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al. 2017). These breeding sites along with the nematode result in the formation of visible galls on 

infection site of the roots (Mitkowski & Abawi 2003). The juvenile molts twice after the third and 

fourth stage and then becomes an adult male or female. Adult females will begin to produce eggs 

in an exterior, gelatinous mass that can contain up to a thousand eggs. The J1 forms completely 

within the egg shell, molts, then hatches into the J2 stage, completing the lifecycle (Chitwood & 

Perry 2009). 

Within fields, M. incognita are associated with noticeable areas called “hot spots”, which 

may result in significant yield losses in sandy soils within the field (Monfort et al. 2007). Because 

nematodes are clustered in distribution, soil sampling using the grid sampling method may be 

effective in determining nematode populations but can be labor-intensive and cost-prohibitive 

(Wheeler et al. 2000; Wrather et al. 2002). Another sampling method is referred to as zone 

sampling. This method defines areas (or zones) in a field with similar characteristics, such as crop 

yield, soil fertility or soil texture. Zone sampling could be an effective method to characterize the 

spatial distribution of nematode populations because soils with a ≥ 86% sand content showed a 

significantly higher level of migration of M. incognita than soils between 75% and 86% (Prot & 

Van Gundy 1981). Also, Monfort et al. (2007) found that fewer M. incognita in population are 

required to suppress yield in soil with a higher sand content. Therefore, soil texture is crucial in 

determining the infectivity of M. incognita, and percent sand is directly related to the migration in 

the soil and penetration of roots by the J2. Because classical soil texture analysis can be laborious, 

identifying other field characteristics that are less formidable to sample may be beneficial. Mueller 

et al. (2003) indicated that soil electrical conductivity was correlated with soil texture. Based on 

research conducted in eleven cotton fields during 2005 and 2006, Ortiz et al. (2011) reported areas 
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within a field that are likely to have high levels of M. incognita could be predicted using relative 

field changes in apparent EC. 

Precision agriculture, or site-specific management, is a farm management concept where 

growers focus on field variability to optimize inputs (seed, fertilizer, pesticides, etc.) and maximize 

outputs (yield). The technology that makes precision agriculture available is global navigation 

satellite systems (GNSS) that allow georeferencing of data.  Computers on harvest equipment may 

record data, such as yield, grain moisture, elevation, etc., by georeferencing thousands of specific 

points in every hectare, thus creating a spatial data layer. A spatial data layer is a set of features 

that are symbolized and labeled to represent a geographic dataset. Variables that can be measured 

include (but are not limited to) soil texture, fertility, presence and density of pests, crop growth, 

crop health.  Evidence suggests that more economical and environmentally appropriate control of 

nematodes, such as M. incognita, could be achieved by use of site-specific techniques (Monfort et 

al. 2007; Overstreet et al. 2014). Although very few growers are currently utilizing site-specific 

practices in their production system, spatial data layers could improve farm efficiency, aid in 

management decisions, and help create a more profitable and sustainable industry.  

The objectives of this work were to determine the value in site-specific management of M. 

incognita in soybean, and to generate teaching materials explaining how and when to apply 

nematicides site-specifically.   

Materials and Methods 

A field near Backgate, Arkansas, with a center point coordinate of -91.399318° and 

33.946616° (longitude and latitude, respectively), was determined to have severe M. incognita 

based on nematode density, poor plant growth, and yield loss in 2015 (Figure 1). Soybean plants 

were yellowed and stunted (Figure 2), and roots were damaged from severe galling (Figure 3). 
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Leaf tissue and soil samples were collected and analyzed; indicating low potassium and manganese 

levels in the plants. A two-year study (2016 and 2017) was created in this field with treatments 

arranged in a randomized complete block design, with each treatment covering 12 rows wide and 

extending the length of the field (verification strips), replicated three times. In 2017, a second 

location was added in a field near Meroney, Arkansas, with a center point coordinate of -

91.727073° and 33.971782° (longitude and latitude, respectively), which had previously been 

diagnosed as severely damaged by M. incognita in 2016 (Figure 4). Aerial imagery was captured 

by the Sentinel-2 satellite at 10-meter resolution and from an airplane mounted with a visual (RGB) 

and near infrared (NIR) sensor at 20-centimeter resolution throughout the growing season for 

observation of field variability and treatment effects. Historical aerial imagery (2015 to present) 

was also recovered with the Sentinel-2 satellite for comparison of normalized difference vegetation 

index (NDVI) and NIR variability within the fields.  

Yield data of the verification strips were collected by a John Deere GreenStar™ 3 2630 

Display (Deere & Company, Moline, IL) and averaged in ArcMap 10.4 (Esri, Redlands, CA). 

Other spatial analysis of variables, where appropriate, were completed in GeoDa 1.12 (GeoDa 

Center, University of Illinois-Chicago). ArcMap 10.4 was used to perform geographically 

weighted regression (GWR), which models spatial heterogeneity or uneven distributions across a 

study area. Unlike other regression models, GWR produces a separate equation for every feature 

and generates a set of location-specific parameters that can be mapped and analyzed (Matthews & 

Yang 2012). Data were also subjected to analysis of variance (ANOVA) and means of treatment 

effects were separated using Fischer’s least significant difference test in ARM 2016 (Gylling Data 

Management, INC., Brookings, SD). 
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Backgate, Arkansas 

In 2016, verification strips of 1,3-dichloropropene (1,3-D) were applied with a modified 

liquid manure applicator three weeks prior to planting, 12 rows wide with a spacing of 96.52 cm 

per row, that extended the length of the field. Armor DK4744 soybean with fluopyram (56.19 

ml/140,000 seeds) and abamectin (41.99 ml/140,000 seeds) seed treatments were compared to 

seeds without a nematicide seed treatment (control) and seeds without a nematicide seed treatment 

but planted within the 1,3-D treated soil. All soybean seeds were standard treated with 

CruiserMaxx® seed treatment, while fluopyram and abamectin seeds were treated over the top of 

the standard CruiserMaxx®. Ten sampling points within each of the 12 verification strips were 

designated by dividing the field length equally and marked with a Yuma 2 (Trimble Inc., 

Sunnyvale, CA), which data was collected throughout the duration of the trial. Soil fertility and 

nematode samples were extracted at plant emergence and plant harvest and then divided 

proportionally for analysis at the Arkansas Nematode Diagnostic Laboratory in Hope, Arkansas 

and the Soil Testing and Research Laboratory in Marianna, Arkansas. During the growing season, 

an application of Quadris Top® SBX at 548.08 milliliters hectare-1 was applied and suppressed C. 

sojina (southern stem canker) from further escalating in the field. Prior to harvest, ten random 

plants at each of the 120 sampling points were extracted with a shovel and rated for incidence and 

severity of root galling, and other potentially yield limiting diseases. The trial was harvested on 22 

September 2016 by a John Deere 9770 combine (Deere & Company, Moline, IL), using a John 

Deere 635F draper header (Deere & Company, Moline, IL), with John Deere GreenStar™ 3 2630 

Display (Deere & Company, Moline, IL). Soil texture was estimated using the Veris 3150 Soil EC 

Mapping System (Veris Technologies, Salina, KS) on 4 November 2016 (Figure 5). 
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In 2017, treatments were placed in a randomized complete block design similar to the year 

before. Verification strips of 1,3-D were applied with a modified liquid manure applicator two 

weeks prior to planting, 11 rows wide with a spacing of 96.52 cm per row, that extended the length 

of the field. Armor 46-D08 soybean with fluopyram (56.19 ml/140,000 seeds) and abamectin 

(41.99 ml/140,000 seeds) seed treatments were compared to seeds without a nematicide seed 

treatment (control), seeds without a nematicide seed treatment but planted within the 1,3-D treated 

soil, and seeds without a nematicide seed treatment but planted within the residual of 1,3-D treated 

soil from the previous year. All soybean seeds were treated with CruiserMaxx® seed treatment as 

the standard, while fluopyram and abamectin seeds were treated over the top of the standard 

CruiserMaxx®. Each treatment was planted in adjacent verification strips of equal size and 

replicated three times. Ten sampling points within each of the 15 verification strips were 

designated by equal spacing, marked with a Yuma 2, and data was collected throughout the 

duration of the trial. Nematode samples were extracted and at the start of plant reproduction and 

at plant harvest. Fertility samples were also extracted at plant harvest. Samples were divided 

proportionally for analysis at the Arkansas Nematode Diagnostic Laboratory in Hope, Arkansas 

and the Soil Testing and Research Laboratory in Marianna, Arkansas. Prior to harvest, ten random 

plants at each of the 150 sampling points were extracted with a shovel and rated for incidence and 

severity of root galling and other yield limiting diseases. The trial was harvested on 19 September 

2017 by a John Deere 9770 combine, using a John Deere 635F draper header, with John Deere 

GreenStar™ 3 2630 Display. 

Meroney, Arkansas 

In 2017, treatments were arranged in a randomized complete block with verification strips 

of 1,3-D applied with a modified liquid manure two weeks prior to planting, 12 rows wide with a 
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spacing of 96.52 cm per row, that extended the length of the field. Pioneer 46T59 soybean with 

abamectin (41.99 ml/140,000 seeds) seed treatment was compared to seeds without a nematicide 

seed treatment (control) and seeds without a nematicide seed treatment but planted within the 1,3-

D treated soil. All soybean seeds were treated with CruiserMaxx® as a standard, while abamectin 

seeds were treated over the top of the standard CruiserMaxx®. Furthermore, Pioneer 46T59 is rated 

as resistant cultivar to M. incognita, according to company data. Ten sampling points within each 

of the 9 verification strips were designated by dividing the field length equally and marked with a 

Yuma 2, which data was collected throughout the duration of the trial. Nematode samples were 

extracted and at the start of plant reproduction and at plant harvest. Fertility samples were also 

extracted at plant harvest. Samples were divided proportionally for analysis at the Arkansas 

Nematode Diagnostic Laboratory in Hope, Arkansas and the Soil Testing and Research Laboratory 

in Marianna, Arkansas. Prior to harvest, ten random plants at each of the 90 sampling points were 

extracted with a shovel and rated for M. incognita severity and incidence. The trial was harvest on 

14 September 2017 by a John Deere S680 combine (Deere & Company, Moline, IL) with a John 

Deere GreenStar™ 3 2630 Display. 

Results 

Backgate, Arkansas 

Apparent soil electrical conductivity (ECa) varied within the field from 3 to 114 

millisiemens meter-1 and ranged from sand to silty loam, respectively, with an average cation 

exchange capacity (CEC) of 8.05 meq/100g. Although ECa was dynamic across the field, only 

two soil textural zones were derived for data comparison, because of the minimal change in soil 

texture (Figure 6).  
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In 2016, nematode samples taken at planting showed no difference in M. incognita levels 

across treatments. Population densities were significantly lower at harvest in the 1,3-D verification 

strips than in the fluopyram treated strips, and verification strips lacking nematicide (Table 1).  

Consistent June, July and August average daily high temperatures remained from 30 to 35° C, with 

total monthly rainfall higher in July and August (Figure 7). During the growing season C. sojina 

was observed in the field and treated when lesions covered eight percent total leaf area index in 

the top one third of the plant canopy (average of the entire field). On 3 September 2016, visual 

differences in canopy densities were noticed between verification strips (Figure 8). Furthermore, 

treatment effects were noticeable with NDVI and CIR maps at 20-centimeter resolution, (Figures 

9 and 10, respectively). Harvest data indicated 1,3-D averaged 3,485.3 kilograms hectare-1, which 

was a significantly greater yield than the other treatments (Table 1, Figures 11 and 12). Fluopyram, 

abamectin, and the control treatments were not different from each other, and effects were not 

different among any of the treatments when compared by zone (P=0.01) (Figure 13). Additionally, 

the distribution of M. incognita at harvest was aligned with the treatments (P=0.08), suggesting 

that 1,3-D would be economically beneficial as a whole-field application across both soil textural 

zones when a susceptible soybean is planted. 

In 2017, nematode samples taken at the beginning of plant reproduction did not differ in 

M. incognita population density, while populations were significantly greater at harvest in the 

abamectin verification strips than all other treatments (P=0.10) (Table 2). During the growing 

season, temperatures were slightly cooler than the previous year (Figure 14) with the monthly high 

temperatures remained from 21°C to 31°C. Monthly average precipitation ranged from 5 to 20 

centimeters, with the lowest amount in July. On 17 August 2017, visual differences in canopy 

densities were noticed between verification strips (Figure 15). Treatment effects were detectable 
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with NDVI and NIR maps from the Sentinel-2 satellite at 10-meter resolution, (Figures 16 and 17, 

respectively). Harvest data indicated that 1,3-D verification strips applied in 2017 averaged 6,699 

kilogram hectare-1 in Zone 2, which was significantly greater than all other treatments in all other 

zones except the residual 1,3-D verification strips in Zone 2 that were applied in 2016 (Figures 18 

and 19). Fluopyram, abamectin, and the control treatments did not differ in Zone 1, but all 

treatments were significantly different from each other when compared by zones (Figure 19). The 

distribution of M. incognita across the field at harvest was consistent with the treatments (P=0.10). 

These results suggest that 1,3-D fumigation could be used as a two-year control of M. incognita 

and would be economically beneficial as a whole-field application (across both soil textural zones) 

when a susceptible soybean is planted. 

Meroney, Arkansas  

In 2017, nematode samples taken at the beginning of plant reproduction showed no 

difference in M. incognita population density (P=0.10) (Table 3). On 21 May 2017, treatments 

effects were detectable with a NDVI map from the Sentinel-2 satellite at 10-meter resolution 

(Figure 20). Treatment effects progressed further throughout the growing season and harvest data 

indicated that 1,3-D verification strips averaged 4,722 kilogram hectare-1, which was significantly 

greater than all other (Table 3 and Figure 21). The population of M. incognita across the field at 

harvest was uniform (matching the treatments, P=0.10). These results suggest that 1,3-D 

fumigation could be used to control M. incognita, even when a nematode-resistant variety is 

planted. 

Discussion 

Site-specific management of Meloidogyne incognita using management zones and 

predicting crop damage areas using EC may offer grower and environmental, as well as economic, 
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benefits when compared to field-wide 1,3-D fumigation applications. Meloidogyne incognita 

management strategies are limited for crop protection. Therefore, site-specific management 

strategies may be crucial for sustained and profitable soybean production in the Mid-South. With 

the average size of farms growing in the United states (MacDonald et al. 2013), field sampling 

may not adequately characterize spatial distributions of M. incognita in individual fields, because 

sampling can be labor-intensive and (or) cost-prohibitive. Accurate spatial and temporal detection 

of M. incognita can be questionable with classical sampling methods, while soil textural variability 

within fields can be estimated relatively accurately and easily by calculating EC with soil mapping 

equipment (Monfort et al.  2007). This study is in agreement with recent research investigating 

site-specific nematicide applications as a management tool for producers in the Mid-South 

(Overstreet et al. 2014). By utilizing this technology along with other spatial data layers, such as 

yield and aerial imagery, growers can make more economical and efficient management decisions. 

In the field near Backgate, Arkansas, soil EC was variable throughout the field with soil 

textures ranging from sand to silty loam. In both years of this study, M. incognita populations at 

harvest throughout the field correlated with treatments (P=0.08). Soybean yield was lower in 2016, 

a year that was moderately warm and received timely precipitation throughout the growing season 

(Figures 7 and 14). These environmental factors were conducive to D. merdionalis, as well as M. 

incognita, resulting in yield suppression across the entire field. Weather patterns in 2017 were 

similar to the previous year, except rainfall was less frequent during the month of July (Figure 7). 

Regardless of year, the relationship between M. incognita populations and soil texture was similar. 

Treatments differed significantly by zone in 2017; a year where rainfall was lower during 

reproduction and grain-fill stages, likely resulting in greater drought stress in the higher sand 

content soil texture. The uniformity of M. incognita populations during both years and under 
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different environmental factors implies that it may be possible to develop management strategies 

on a field-by-field basis that include site-specific nematicide applications based on soil textural 

zones. 

This research showed that EC can be employed as an indicator of where nematicides will 

be most effective. Moreover, this trial highlighted that the soil fumigant 1,3-D protected yield in 

both zones during both years. In this study, nematode populations across the field remained 

uniform during both years, but yield reduction was significantly greater in the higher sand content 

soil texture during the second year. Similarly, Monfort et al. (2007) found that M. incognita 

damage to cotton was more closely tied to soil texture than to population density. This challenges 

some of the classical thoughts relating plant damage with M. incognita quantity (population 

densities) regardless of soil texture (Seinhorst 1965). All treatments had significantly lower yields 

in Zone 1, which consisted of a higher sand content. These results support the hypothesis that 

management zones can be established with EC and verification strips can be used to indicate areas 

of a field that should or should not be treated with a nematicide (Overstreet et al. 2014). The lack 

of a treatment response by zone in 2016 were likely attributable to more frequent rainfall during 

the critical reproduction and grain-fill stages, reducing plant stress. The fumigant 1,3-D worked 

best in both zones in both years, while seed treatments provided acceptable levels of control in the 

zone with the lower sand content during the second year. Based on this research, a whole-field 

application of 1,3-D would be recommended as a two-year control application, due to the 

uniformity of CEC values across the field and the response to the fumigant across both zones in 

both years.  

Site-specific placement of nematicides in soybean holds potential for managing M. 

incognita in an economically and environmentally sound way without whole-field applications. 
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The use of EC mapping technologies to predict soil texture variability within fields has been 

suggested to be an effective management tool for nematodes in cotton in the Mid-South. The use 

of EC values to establish management zones does not eliminate the need for understanding the 

spatial and temporal distribution of M. incognita. The use of verification strips should be an 

essential component in understanding the intensity of damage and should be extensively used by 

growers during each growing season to improve the efficiency of their pesticide program 

(Overstreet et al. 2014). Spatial data equipment, such as that of the Veris EC Mapping sensors, can 

be combined with aerial imagery, in relation to crop health, to allow growers to implement better 

management decisions. 

The Food and Agriculture Organization predicts there will be 9.6 billion people in the 

world by the year 2050, which means food production needs to increase 70% despite the limited 

availability of arable land (Guerrini 2015). To resolve the issue of future food demands, current 

production systems need to dramatically increase yields per hectare. Computer software will soon 

be able to create and perform management decisions based on field performance with little to no 

human intervention.  However, this technological based farming will generate a tremendous 

amount of data. Often data management is complex, and each aspect will create thousands of data 

points that could include many different properties for each one. This huge amount of data requires 

the use of complex software and great computational power to manipulate and analyze the data. 

Often the requirements to deal with the data and synthesize it are beyond the capabilities of 

growers, consultants, and retail agriculture professionals (even using proprietary software). 

Further, the outputs from specific software are likely not to be compatible with other software. The 

incompatibleness makes it impossible to exchange and share data, which makes the process even 

that much more complicated. Because of the complexity, the adoption of precision agriculture and 
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site-specific management will be reliant on technologically trained agronomists and more data 

collection to determine its true value.   
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Tables 

Table 1.  Backgate, Arkansas 2016: Meloidogyne incognita population density at planting (Pi) was 
collected and sampled on 13 May 2016. Meloidogyne incognita populations at harvest (Pf), Root 
Galling (0-9), and Root Health (0-9) were collected and sampled on 15 September 2016. Treatment 
strips were harvested on 22 September 2016.  
 

Treatments Pi 
(nematodes/100cm3) 

Pf Y 
(nematodes/100cm3) 

Root 
Galling 

Root 
Health Z 

Yield 
(kg/ha) 

1,3-D 0.0 7.6b 0.6b 2.3a 3,485.3a 
Fluopyram 3.8 103.4a 5.3a 1.8ab 2,268.2b 
Control 2.5 85.4ab 7.1a 1.3b 2,105.4b 
Abamectin 1.3 38.1ab 6.2a 1.3b 2,067.2b 
LSD NS 54.32 2.18 0.75 377.72 
CV 49.41 58.4 22.8 22.4 9.59 

 
Y The same letters are not significantly different (P=0.10). 
z Ratings were based on the percent of functional roots left on the plant  
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Table 2.  Backgate, Arkansas 2017: Meloidogyne incognita population density at the beginning of 
plant reproduction (Pm) and after harvest (Pf) were collected and sampled on 30 May 2017 and 5 
October 2017, respectively. Root Galling (0-9) and Root Health (0-9) were collected and sampled 
on 2 August 2017. Treatment strips were harvested on 19 September 2017. 
 

Treatments Pm 
(nematodes/100cm3) 

PfY 
(nematodes/100cm3) 

Root 
Galling 

Root 
HealthZ 

Yield 
(kg/ha) 

1,3-D  11.4b 0.7 5.5 6,442.03a 
Residual  26.7ab 1.9 5.1 5,854.62ab 
Fluopyram  25.4ab 1.7 5.3 4,358.51bc 
Control  19.0ab 2.5 5.3 3,673.74c 
Abamectin  33.0a 2.0 5.3 4,608.40bc 
LSD  21.46 NS NS 760.20 
CV  14.13 67.1 0.31 10.04 

 
Y The same letters are not significantly different (P=0.10). 
z Ratings were based on the percent of functional roots left on the plant   
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Table 3.  Meroney, Arkansas 2017: Meloidogyne incognita population density at the beginning of 
plant reproduction (Pm) and after harvest (Pf) were collected and sampled on 30 May 2017 and 5 
October 2017, respectively. Root Galling (0-9) and Root Health (0-9) were collected and sampled 
on 10 August 2017. Treatment strips were harvested on 14 September 2017.  
 

Treatments Pm 
(nematodes/100cm3) 

Pf 
(nematodes/100cm3) 

Root 
Galling 

Root 
HealthY 

YieldZ 
(kg/ha) 

1,3-D 6.3 0 0.08 5.12 4,722.37a 
Control 15.5 391.9 0.18 5.06 4,078.61b 
Abamectin 26.6 188.3 0.3 5.15 4,362.17b 
LSD NS NS NS NS 312.29 
CV 84.26 145.51 111.36 2.92 4.06 

 
Y Ratings were based on the percent of functional roots left on the plant  
Z The same letters are not significantly different (P=0.10). 
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Figures 

 

Figure 1. Normalized Difference Vegetation Index (NDVI) shows poor crop performance due to 
Meloidogyne incognita in a field near Backgate, Arkansas on 10 August 2015; the year prior to 
designing a test.  

 1 Crop Performance   0 
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Figure 2. Soybeans in a field near Backgate, Arkansas showing symptoms caused by Meloidogyne 
incognita, including stunting and nutrient deficiency. Tissue samples collected on 6 June 2015 
indicated that the plants were deficient in potassium and manganese.  
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Figure 3. Galling on soybean roots caused by Meloidogyne incognita. 
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Figure 4. Normalized Difference Vegetation Index (NDVI) shows poor crop performance due to 
Meloidogyne incognita in a field near Meroney, Arkansas on 3 September 2016; the year prior to 
designing a test.  
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Figure 5. Soil EC Map from a field near Backgate, Arkansas. Red zones indicate soil texture with 
higher sand content, while dark blue zones indicate soil texture with higher silt content.  



 

46 
 

 

Figure 6. Soil EC Map from a field near Backgate, Arkansas indicating the two zones, represented 
by “Zone 1” and “Zone 2”, for data analysis.  
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Figure 7. Daily rainfall amounts during the 2016 and 2017 growing seasons were collected from 
the Arkansas Post, Arkansas weather station with a coordinate location of 34.025° and -91.3444° 
(longitude and latitude, respectively), approximately nine kilometers from the Backgate, Arkansas 
location.  
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Figure 8. Difference in plant growth and appearance on 3 September 2016 due to Meloidogyne 
incognita; the untreated plots (left) matured earlier and were less dense than in the 1,3-D fumigated 
plots (right). 
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Figure 9. Normalized Difference Vegetation Index (NDVI) map at 20-centimeter resolution of a 
field near Backgate, Arkansas on 3 September 2016 was collected with a multispectral sensor 
attached to an airplane, showing an elevated level of crop performance in the three 1,3-D treated 
strips as opposed to the rest of the field. 

 Crop Performance 0 1 
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Figure 10. Near infrared (NIR) map at 20-centimeter resolution of a field near Backgate, Arkansas 
on 3 September 2016 was collected with a multispectral sensor attached to an airplane, showing 
an elevated level of photosynthetic activity in the three 1,3-D treated strips as opposed to the rest 
of the field. Higher crop densities are characterized by bright red areas, while dark red to black 
areas indicate lower crop densities.  
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Figure 11. Interpolated yield map of a field near Backgate, Arkansas on 22 September 2016 
indicate that 1,3-D treated strips had higher yields compared to the other treatments, as well as the 
entire field. Soybeans were harvested at an angle across the rows to generate an unbiased map.  
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Figure 12. Soybean yield of treatment strips in a field near Backgate, Arkansas in 2016, showing 
that 1,3-D treated strips were significantly higher than the both nematicide seed treatments and the 
control treatment.  
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Figure 13. Soybean yield of treatment strips in a field near Backgate, Arkansas in 2016 was broken 
down into two soil textural zones, showing that treatment effects were not different between soil 
textural zones (P=0.01).  
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Figure 14. Daily average temperatures during the 2016 and 2017 growing seasons were collected 
from the Arkansas Post, Arkansas weather station with a coordinate location of 34.025° and -
91.3444° (longitude and latitude, respectively), approximately nine kilometers from the Backgate, 
Arkansas location.  
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Figure 15. Visual differences between nematicide treated and untreated strips on 17 August 2017 
in a field near Backgate, Arkansas. The control treatments (left) matured earlier due to poor plant 
health caused by Meloidogyne incognita, while 1,3-D fumigated strips (right) had an increase in 
crop density.  
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Figure 16.  Normalized Difference Vegetation Index (NDVI) map at 10-meter resolution of a field 
near Backgate, Arkansas on 17 August 2017 was collected with the Sentinel-2 satellite showing 
an elevated level of crop performance in all three 1,3-D treated strips applied in 2017 and two of 
the three 1,3-D treated strips applied in 2016 (residual 1,3-D) as opposed to the entire field.  
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Figure 17. Near infrared (NIR) map at 10-meter resolution of a field near Backgate, Arkansas on 
17 August 2017 was collected with the Sentinel-2 satellite, showing an elevated level of crop 
performance in all three 1,3-D treated strips applied in 2017 and two of the three 1,3-D treated 
strips applied in 2016 (residual 1,3-D) as opposed to the entire field. 
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Figure 18. Interpolated soybean yield map of a field near Backgate, Arkansas on 19 September 
2017, indicating that all three 1,3-D treated strips applied in 2017 and two of the three 1,3-D treated 
strips (residual 1,3-D) applied in 2016 had visibly higher yields when compared to the other 
treatments, as well as the entire field. Treatments were harvested one replication at a time.  
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Figure 19. Soybean yield of a field near Backgate, Arkansas in 2017 was broken down into two 
soil textural zones, showing that 1,3-D treated strips applied in 2017 had an average yield of 
approximately 6699 kilogram hectare-1 in Zone 2, which was significantly greater than all other 
treatments in all other zones except the residual 1,3-D treated strips in Zone 2 that were applied in 
2016 (residual 1,3-D). Fluopyram, abamectin, and the control treatments were not different in Zone 
1, but all treatments were significantly different from each other by zones (P=0.01). 
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Figure 20.  Normalized Difference Vegetation Index (NDVI) map at 10-meter resolution of a field 
near Meroney, Arkansas on 21 May 2017 was collected with the Sentinel-2 satellite, showing an 
elevated level of crop performance in all three 1,3-D treated strips as opposed to the entire field. 
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Figure 21. Interpolated soybean yield map of a field near Meroney, Arkansas on 14 September 
2017, indicating that all three 1,3-D treated strips had higher yields when compared to the other 
treatments. 
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Chapter 3: Prediction of soybean yield using satellite imagery and spatial analysis 

Introduction 

Soybean were first introduced in Arkansas during the 1920’s and gained popularity among 

growers around the mid-1900’s. From 1960 to 1979, harvested hectares increased dramatically, 

and peaked in Arkansas in 1979 at 2.08 million hectares (Coats & Ashlock 2000).  Although the 

amount is somewhat lower than in 1979, soybean are still grown on more hectares today than any 

other production crop in Arkansas, accounting for fifty-one percent of all principle crops planted 

in Arkansas; with 1.27 million hectares grown in 2016 (Arkansas Acreage Report 2016). 

Evidence suggests, that a significant amount of soybean fields are affected by Meloidogyne 

incognita (southern root-knot nematode) in Arkansas (Allen et al. 2017).  Recently, a cooperative 

effort between the Arkansas Soybean Promotion Board and the University of Arkansas System 

Division of Agriculture allowed subsidized nematode sampling for a period of three years.  

Approximately 16% and 28% of samples were positive for M. incognita in 2014 and 2015, 

respectively (Kikrpatrick et al. 2016).   

Nematodes are microscopic roundworms many of which are soil-dwelling and plant-

parasitic. Three Meloidogyne spp. (M. incognita, M. javanica, and M. arenaria) have been 

identified in the Mississippi Alluvial Plain and throughout the southern parts of Alabama, Georgia, 

South Carolina, and North Carolina, as well as in parts of California, Arizona, New Mexico, Texas, 

and Florida. In Arkansas Meloidogyne incognita is by far the predominant species, particularly in 

crop production (Kirkpatrick, personal communication). Meloidogyne incognita juveniles feed on 

plants by puncturing the root cells with a stylet. Meloidogyne incognita gets its common name, 

“root-knot”, because infection results in the formation of galls or “knots” on infected soybean 

roots. Both feeding and the gall formation contribute to root dysfunction impacting the ability of 
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the plant to absorb water and translocate nutrients. Galls are visible on infected roots, and above 

ground symptoms may include stunted and yellowed plants. Also, nutrient deficiencies are 

commonly observed and associated with M. incognita-infected plants due to the reduced uptake of 

soil nutrients. Although nutrients in the soil may be optimum, root damage caused by nematodes 

may prevent essential nutrient uptake for plant growth and reduce yield. Management strategies 

are limited for nematodes in soybean.  

Meloidogyne incognita overwinters in the soil as eggs in egg masses attached to the roots 

of the previous crop. Juveniles may also survive in the soil all winter, during favorable 

environments (Evans & Perry 2009). As the eggs develop, cells differentiate and the juvenile forms 

inside the egg protective coat, molting once inside the egg shell. At temperatures of 25° to 30°C, 

M. incognita eggs hatch and emerging second-stage juveniles (J2) move to soybean roots, targeting 

the root tip where cells are undifferentiated in the zone of root elongation. Upon root penetration, 

the nematode stylet secretes proteins and other compounds that allow the nematode to evade host 

defense response pathways and oxidative reactions. These secretions also help degrade the cell 

wall and allow for manipulation of cellular functions for nematode benefit (Hussey 1989). Cells 

are signaled to initiate cell division but do not complete the last stage, resulting in multi-nucleate 

cells called “giant-cells” (Favery et al. 2016). Once the giant-cell is formed, the nematode remains 

sedentary at the site and relies on the cell as the sole source of nutrients for the remainder of life 

(Choi et al. 2017). These structures along with the growing nematode result in the formation of 

visible galls or “knots” at the infection site on the roots (Mitkowski & Abawi 2003). The first 

juvenile stage (J1) forms completely within the egg shell, molts, then hatches into the J2 stage, 

completing the lifecycle (Chitwood & Perry 2009). The third and fourth molt occurs in the root, 
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becoming an adult, either male or female. Females begin to produce eggs in an exterior, gelatinous 

mass that can contain up to a thousand eggs.  

In the field, distributions of M. incognita are associated with noticeable areas called “hot 

spots”, which may suppress yield in sandy soils (Monfort et al. 2007). Because nematodes are 

clustered within a field, soil sampling using the grid sampling method may be effective in 

determining nematode populations but can be labor-intensive and cost-prohibitive (Wheeler et al. 

2000; Wrather et al. 2002). Another sampling method is referred to as zone sampling. This method 

identifies areas (or zones) in a field with similar characteristics, such as crop yield, soil fertility or 

soil texture. Zone sampling could be an effective method to characterize the spatial distribution of 

nematode. Soils with ≥ 86% sand showed a significantly higher level of migration of M. incognita 

than soils between 75% and 86% (Prot & Van Gundy 1981). Also, Monfort et al. (2007) found 

that a smaller population of M. incognita are required to suppress yield in soil with a higher sand 

content. Therefore, soil texture is crucial in determining the infectivity of M. incognita, and percent 

sand is directly related to nematode migration and penetration of roots by the J2. Because classical 

soil texture analysis can be laborious, extensive research has been performed to identify other field 

characteristics that are less formidable to sample. Mueller et al. (2003) indicated that soil electric 

conductivity was correlated with soil texture, and based on research conducted in eleven cotton 

fields during 2005 and 2006, Ortiz et al. (2011) reported areas within a field that are likely to have 

high levels of M. incognita could be predicted using relative field changes in apparent EC. 

The use of remote sensing to evaluate crop growth, development, and performance is a 

promising new area of agricultural research. Unmanned Aircraft Systems (UAS) and satellites 

have proven useful for evaluating crop health and managing pests site-specifically (Hunt et al. 

2005; Sugiura et al. 2007; Torres-Sanchez et al. 2013). Nutrient requirements can be estimated 
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from chlorophyll concentration and biomass, which can be estimated from Leaf Area Index 

(Daughtry et al. 2000; Scharf & Lory 2002). Thermal sensors have been used to measure crop 

canopy temperature and to detect water stress of crops in agricultural fields (Wanjura et al. 2004). 

Evaporation can cool plant leaves close to air temperature, and sometimes below air temperature, 

as the crop transpires through stomata, resulting in plant canopy temperatures correlating with 

water stress of the crop (Luquet et al. 2003). However, the adoption of remote sensing by growers 

is limited by the lack of data collection and the understanding of data management. Furthermore, 

satellites are often linked with high costs and medocare resolution not sufficient for site-specific 

management, and UAS platforms are restricted by battery endurance and knowledge of data 

collection.  

Increasing crop yields are crucial for creating a sustainable, economical, and environmental 

industry that will adequately solve the food demand of the world’s popultaion now and in the 

future. Realtime and accurate prediction of crop yield can assist producers in making informed 

decisions regarding crop and nutrient management, yield estimation, marketing, storage, and 

transportation (Hammer et al. 2001; Kantanantha et al. 2010). Tucker et al. (1980) found that grain 

yields were highly correlated with normalized difference vegetation index (NDVI), and Das et al. 

(1993) used greenness and transformed vegetation indices to predict wheat yields at 85–110 days 

before harvest. These early studies led to crop yield estimation in several countries using satellite 

imagery. Ideally, satellite imagery could be used to predict accurate yield estimatations for any 

given field each year, regardless of the crop being grown. Providing yield prediction at a field level 

remains a challenge, because of limitations caused by the complicated relationships between 

remotely measurable parameters, crop productivity, and by the lack of data collected there of. 

Several models have been used to create yield predictions, but many current applications of these 
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models are only for large-scale production systems (Varela et al. 2017). Because commidties have 

leveled off at less profitable prices, farm management practices have shifted to more site-specific 

methods by evaluating in field varabilities, meaning more accurate yield predictions should be 

pursured. 

Spatial regression examines, explores, and models geographical data, and it explains the 

factors that contribute to clustered distributions. Predictive modeling can also be derived from 

spatial regressions. Ordinary least squares (OLS) linear regression can be used to estimate the 

relationship between a dependent variable (y) and one or more independent variables (x) 

(Brusilovskiy 2010). Ordinary least squares regression generates predictions or models a 

dependent variable in terms of its relationships to a set of explanatory variables. The closer the 

data points are to the line, the more the variables are correlated with each other. Correlation is a 

statistical technique that can show if and how strongly variables are related. Probability-values (p-

values) and coefficients in a regression analysis demonstrate which relationships in the model are 

statistically significant and the nature of those relationships. The coefficients describe the 

mathematical relationship between each independent variable and the dependent variable. The p-

values for the coefficients indicate whether these relationships are statistically significant (Frost 

2014). Recently these techniques have been used for more practical applications in pest 

management, specifically with M. incognita, and understanding losses (Liu et al. 2014). 

Geographically weighted regression (GWR) can be used when modeling spatial heterogeneity or 

uneven distributions across a study area. Unlike other regression models, GWR produces a 

separate equation for every feature and generates a set of location-specific parameters that can be 

mapped and analyzed (Matthews & Yang 2012). This technique can be used to predict spatial 

variability of a given variable. The Modifiable Areal Unit Problem (MAUP) impacts the results of 
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univariate and multivariate regressions and arises from errors that are created when data are 

grouped together for analysis (Openshaw 1984). The Modifiable Areal Unit Problem is associated 

with the use of scaling or zoning data related to geographical areas (Ervin 2012). The scale effect 

refers to how changing the number of areal units on a map can influence the interpretation, and the 

zoning effect refers to how changing the space within a map, while maintaining the same number 

of areal units, can also influence the interpretation (Jones 2011). 

The objective of this work was to determine if a spatial predictive approach using GWR 

can be used to identify the value associated with nematode damage and field variability on a 

soybean farm.  If successful, the technique could be used to determine the value of satellite imagery 

to help manage farms site-specifically and provide more accurate yield predictions. 

Materials and Methods 

Soybean fields were then planted with Armor 46-D08, which is tolerant to dicamba and 

glyphosate herbicides and susceptible to M. incognita, according to company data. The trials were 

harvested from 16 September 2017 to 19 September 2017 by a John Deere 9770 combine (Deere 

& Company, Moline, IL), using a John Deere 635F draper header (Deere & Company, Moline, 

IL), with John Deere GreenStar™ 3 2630 Display (Deere & Company, Moline, IL). Aerial imagery 

was captured by the Sentinel-2 satellite at 10-meter resolution and from an airplane mounted with 

a visual and near infrared (NIR) sensor at 20-centimeter resolution throughout the growing season 

(24 April 2017 until harvest) for observation of differences and treatment effects. Historical aerial 

imagery was also recovered with the Sentinel-2 satellite of prior years for comparison of 

normalized difference vegetation index (NDVI) and color infrared (CIR) variability throughout 

the field.  Yield data was scaled and averaged, at 8-meter radii, to each centroid of the satellite 

image using the spatial join tool in ArcMap 10.4 (Esri, Carlsbad, CA). All data was projected to 



 

68 
 

WGS 1984 Web Mercator Auxiliary Sphere in order to align and merge data from different 

sources. 

Verification Strips 

In 2017, three fields with areas of sandy soil and known populations of M. incognita were 

chosen in Desha County, Arkansas, all bordering the Oakwood Bayou. The fields are informally 

named King Lee (33°55'40.26"N, 91°26'41.34"W), Lee East and West (33°55'13.66"N, 

91°27'10.38"W), and Front (33°54'47.89"N, 91°26'53.48"W) (Figure 1). In each field, three 

verification strips of 1,3-dichloropropene (1,3-D) at a rate of 27.98 L/ha and a depth of 

approximately 10.16 cm were applied with a modified liquid manure applicator three weeks prior 

to planting, 12 rows wide measuring 96.52 cm per row, that extended the length of the field. Each 

coulter furrow was immediately sealed using press wheels mounted on the application rig and was 

left undisturbed until planting. Additionally, seven untreated strips were added to each field for 

adequate representation, and the strips were spaced in such a way to exhaust logical space and 

satisfy the MAUP. Point arrangement was based on the aggregation of observed nematode damage 

from previous seasons, existing within, across, and outside of damaged aggregated areas.  

In each of the ten strips, ten georeferenced points were marked with a Yuma 2 (Trimble 

Inc., Sunnyvale, CA). Data were collected from each point in each field. Initially, a composite 

nematode sample was collected from the 1,3-D treated strips, as well as the untreated strips, and 

sent to the Plant Nematode Diagnostic Laboratory in Hope, Arkansas for analysis.  During the 

growing season, at approximately the fifth reproductive growth stage, ten plants per point were 

collected, within a 3-meter radius, and rated for root galling and root health on a 0-9 percentage 

scale (Figure 2).  At harvest, soil samples were collected and split with an appropriate amount of 

soil sent to the University of Arkansas Soil Testing Laboratory in Marianna, Arkansas for soil 
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chemical and fertility testing, and the other portion of the sample sent to the Plant Nematode 

Diagnostic Laboratory in Hope, Arkansas.  This experimental design is consistent with the “strips 

and anchors” method developed by Dr. Terry Spurlock (Spurlock & Kirkpatrick 2017). The strips 

were used to determine treatment differences at specific areas of interest within a field as well as 

analyze data layers collected at different resolutions.  Data were subjected to analysis of variance 

(ANOVA) and means of treatment effects and were separated using Fischer’s least significant 

difference test in ARM 2016 (Gylling Data Management, INC., Brookings, SD). Treatment 

differences of 1,3-D versus the untreated adjacent points was determined using a two-sample t-test 

comparing data points within zones of the interpolated variables.  

Remote Cluster 

Also, in 2017, six fields near Backgate, Arkansas were chosen for yield prediction, which 

was determined by in-season crop health (captured by Sentinel-2) and actual yield recorded with 

a yield monitor. The fields are informally named Backgate (33°56'48.05"N, 91°23'57.34"W), 

Crossplace (33°57'3.01"N, 91°24'4.66"W), Robert 1 (33°57'11.52"N, 91°24'28.62"W), Robert 2 

(33°57'3.24"N, 91°24'28.91"W), Robert 3 (33°56'56.19"N, 91°24'29.28"W), Glendon 2 

(33°56'43.48"N, 91°24'52.83"W), Glendon 4 (33°56'31.06"N, 91°25'14.28"W), and Glendon 5 

(33°56'30.31"N, 91°25'0.88"W) (Figures 3). 

Satellite Imagery 

Sentinel-2 is part of a fleet of satellites owned by the European Space Agency (ESA 

Headquarters, Paris, France) that was designed specifically for monitoring environmental aspects. 

The mission of Sentinel-2 is to provide information for agricultural practices by using the images 

to determine various plant indices, such as leaf area chlorophyll and water content indexes 

(Introducing Sentinel-2 2015). Sentinel-2 carries a high-resolution multispectral sensor with a span 
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of 13 spectral bands, from the visible and the near infrared to the shortwave infrared at different 

spatial resolutions, ranging from 10 to 60 meters (Table 1). The infrared spectrum is just outside 

of visible light, and multispectral sensors can capture what the human eye cannot see. These 

cameras capture near infrared (NIR) frequencies to help determine crop health and densities. 

Normalized difference vegetation index (NDVI) quantifies crop health by measuring the difference 

between NIR (B8) and visible red light (B4). To create NDVI maps, the normalized difference was 

taken from B8 and B4, and longitude and latitude were also added using a centroid placement to 

each pixel. Processing NIR maps included selecting B8 from each Sentinel-2 snapshot, and 

longitude and latitude were added using a centroid placement to each pixel. The values in each 

map were extracted as a Comma Separated Value (CSV) file and modified in Microsoft Excel 

(Microsoft Corporation, Redmond, WA) to separate the values by column.  

Data Analysis 

Aggregation of each variable was determined by univariate Moran’s I in GeoDa 1.12 

(GeoDa Center, University of Illinois-Chicago).  Variables of interest were interpolated in ArcMap 

using ordinary kriging of spatially modeled semi-variograms. All variables were regressed with 

yield in GeoDa with univariate and multivariate models to determine biological phenomena 

driving yield differences using ordinary least squares (OLS) regression. Two models were 

determined and used for a few observations to adjust for spatial autocorrelation by using four 

Lagrange Multiplier (LM) tests, which are reported in the regression diagnostic output. The first 

two tests (LM-Lag and Robust LM-Lag) relate to the spatial lag model as the alternative. The next 

two tests (LM-Error and Robust LM-Error) refer to the spatial error model as the alternative. To 

determine a spatial regression specification, the results can be interpreted by using a flow chart 

(Figure 4). Quantifying spatial spillovers is a major advantage of spatial regression models. The 
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spatial error process can be characterized by the autoregressive or the moving average error process 

resulting in global and local spillovers, while spatial lag results in global spillovers (Liu et al. 

2015). 

Prediction 

 Predicted yield values were determined by using the Geographically Weighted Regression 

(GWR) tool in ArcMap. For each cluster, the observations with the highest R2 and lowest P-values 

were used as the dependent and explanatory variables, as well as for the prediction location and 

prediction explanatory variables. Furthermore, a separate GWR model for every field in the cluster 

was determined by using the specific field as the dependent and explanatory variables and the 

prediction location and prediction explanatory variables were represented by the entire cluster 

(including the specific field). The predicted yield values were compared to actual yield values by 

using a joint hypothesis test in R.  

Results 

Verification Strips 

The results of the two-sample t-test indicated that there were no differences in treatments 

in any fields, but NDVI imagery showed minor differences on 10 June 2017 (Figure 5). 

Furthermore, one field was thrown out, because yield data was not collected by a yield monitor.   

Since verification strips were not different, whole field satellite imagery was compared to yield. 

Spatial autocorrelation was observed by positive values of Moran’s I, meaning that all observations 

were clustered. Of 15 NDVI and 15 NIR observations, 13 NDVI and 14 NIR images correlated 

with actual yield; the highest R2 values being in the month July (P<0.001) (Tables 2 and 3; Figures 

6 and 7, respectively). Furthermore, six and nine spatial models were used to adjust for spatial 

dependence in the NDVI and NIR images, relatively speaking, and all parameters but one tested 
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were highly significant (P<0.01) (Tables 4 and 5). Yield prediction using 25 July 2017 

(NDVI0725; NIR0725) images of NDVI and NIR showed a significant correlation between the 

actual and predicted yeild (Tables 6 and 7; Figures 8 and 9 ). 

Remote Cluster 

 Spatial autocorrelation was also observed by positive Moran’s I values. Furthermore, 

86.27% of 51 NDVI images and 84.31% of 51 NIR images correlated with actual yield (P<0.05) 

(Tables 8–15). Both NDVI and NIR images for the months of June and July significantly correlated 

with actual yield and average R2 values for all fields were between 0.33 to 0.45 (P<0.0001) 

(Figures 10 and 11). Furthermore, six and nine spatial models were used to adjust for spatial 

dependence in the NDVI and NIR images, relatively speaking, and all parameters but one tested 

were highly significant (P<0.01) (Tables 16–23). Yield prediction using 10 June 2017 

(NDVI0610; NIR0610) and 20 July 2017 (NDVI0720; NIR0720) images of NDVI and NIR shows 

a significant correlation between the actual and predicted yield (Tables 24–31; Figures 12–25). 

Discussion 

Yield prediction from early or even mid-season parameters can help assist growers in 

making informed decisions regarding marketing, storage and transportation. Furthermore, creating 

a yield prediction model based on historical data would help growers make future production 

decisions based on commodity prices and profitability. With the growing need of site-specific farm 

management, adequate understanding and interpretation of spatial analysis reports and production 

recommendations are crucial. Agronomists must be able to combine data from different sources, 

using different sample designs. 

Spatial statistical techniques offer an opportunity to develop more precise yield estimates 

by exploiting spatial structures of explanatory variables (Liu et al. 2014). Aspatial standard, spatial 
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autoregressive error, and spatial autoregressive lag models were used to predict crop yield by using 

in-season crop health imagery. Of ten fields and 66 observations, 84.85% of NDVI and 86.36% of 

NIR images highly correlated with yield, suggesting that crop health can be used to determine 

yield variability within fields. Furthermore, 45 observations were spatially autocorrelated with 

yield. Both NDVI and NIR images resulted in higher R2 values during the summer months of June 

and July, being the critical growth stages of reproduction and grain-fill for these fields. Using only 

the observations from June and July, yield was predicted with 17 NDVI and 17 NIR images and 

compared to actual yield. All the predicted values significantly correlated with yield (P<0.0001), 

but only 13 observations were spatial dependent. With this being said, crop health should be the 

main component of every yield prediction model, because it directly reflects yield in all ten fields. 

Precision agriculture can generate a tremendous amount of data, and each practice can have 

thousands of associated data points with many different properties for each one. Manipulating and 

analysis of this huge quantity of data requires the use of complex software and high computation 

power.  Most often synthesis and analysis of this data are beyond the capabilities of farmers, 

consultants, and retail agriculture professionals. In addition, outputs from many applications may 

not be universally compatible due to software proprietary concerns, making it impossible to 

exchange data.  Because the concepts and technology that are associated with precision agriculture 

are relatively recent developments, not enough data has been collected to determine exactly what 

the results mean in certain scenarios.  The adoption of precision agriculture and site-specific 

management will be reliant on trained agronomists and will require more data to determine its true 

value.    



 

74 
 

Literature Cited 

2016. Arkansas Acreage Report. National Agricultural Statistics Service. Little Rock, Arkansas: 
United States Department of Agriculture. 

Introducing Sentinel-2. 2015, April 23. Retrieved from European Space Agency: 
https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-
2/Introducing_Sentinel-2 

Sentinel-2 User Handbook. 2015, 07 24. Retrieved from European Space Agency: 
https://earth.esa.int/documents/247904/685211/Sentinel-2_User_Handbook 

Allen, T. W., Bradley, C. A., Damicone, J. P., Dufault, N. S., Faske, T. R., Hollier, C. A., . . . 
Young, H. 2017. Southern United States Soybean Disease Loss Estimates for 2016. 
Proceedings of the Southern Soybean Disease Workers, forty-fourth Annual Meeting. 
Pensacola, FL: Southern Soybean Disease Workers. 

Anselin, L. 2005. Exploring spatial data with GeoDa: A workbook. Retrieved from Spatial 
Analysis Laboratory, Department of Geography, University of Illinois: 
http://www.unc.edu/~emch/gisph/geodaworkbook.pdf 

Brusilovskiy, E. 2010. Spatial Regression: A Brief Introduciton. Philadelphia, PA: Business 
Intelligence Solutions. Retrieved from http://www.bisolutions.us/A-Brief-Introduction-to-
Spatial-Regression.php 

Chitwood, D. J., & Perry, R. N. 2009. Reproduction, Physiology and Biochemistry. In R. N. Perry, 
M. Moens, & J. L. Starr, Root-knot Nematodes (pp. 182-200). Cambridge, MA: CABI. 

Choi, I., Subramanian, P., Shim, D., Oh, B.-J., & Hahn, B.-S. 2017. RNA-Seq of Plant-Parasitic 
Nematode Meloidogyne incognita at Various Stages of Its Development. Frontiers in 
Genetics, https://doi.org/10.3389/fgene.2017.00190. 

Coats, R., & Ashlock, L. 2000. The Arkansas Soybean Industry. Arkansas Soybean Handbook, 1-
6. 

Das, D., Mishra, K., & Kalra, N. 1993. Assessing growth and yield of wheat using remotely-sensed 
canopy temperature and spectral indices. International Journal of Remote Sensing, 3081-
3092. 

Daughtry, C., Walthall, C. L., Kim, M. S., de Brown Colstoun, E., & McMurtrey, J. E. 2000. 
Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote 
Sensing of Environment, 229–239. 

Ervin, D. 2012. MAUP. Santa Barbara, CA: Advanced Spatial Analysis in the Population Sciences 
and Spatial Demography. Retrieved from http://gispopsci.org/maup/ 

Evans, A., & Perry, R. N. 2009. Survival Mechanisms. In R. Perry, M. Moens, & J. L. Starr, Root-
knot Nematodes (pp. 201-222). Cambridge, MA: CABI. 



 

75 
 

Favery, B., Quentin, M., Jaubert-Possamai, S., & Abad, P. 2016. Gall-forming root-knot 
nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied 
feeding cells. Journal of Insect Physiology, 60-69. 

Frost, J. 2014. How to Correctly Interpret P Values. The Minitab Blog. Retrieved from 
http://blog.minitab.com/blog/adventures-in-statistics-2/how-to-correctly-interpret-p-
values 

Hammer, G. L., Hansen, J. W., Phillips, J. G., Mjelde, J. W., Hill, H., Love, A., & Potgieter, A. 
2001. Advances in application of climate prediction in agriculture. Agricultural Systems, 
515-553. 

Hunt Jr, E. R., Cavigelli, M., Daughtry, C., McMurtrey III, J., & Walthall, C. L. 2005. Evaluation 
of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and 
Nitrogen Status. Precision Agriculture, 359–378. 

Hussey, R. S. 1989. Disease-inducing secretions of plant-parasitic nematodes. Annual Review of 
Phytopathology, 123-141. 

Jones, R. 2011. The Modifiable Areal Unit Problem in GIS. Cartographica. Retrieved from 
https://blog.cartographica.com/blog/2011/5/19/the-modifiable-areal-unit-problem-in-
gis.html 

Kantanantha, N., Serban, N., & Griffin, P. 2010. Yield and price forecasting for stochastic crop 
decision planning. Journal of Agricultural, Biological, and Environmental Statistics, 362-
380. 

Kikrpatrick, T. L., Robinson, J., & Sullivan, K. 2016. A Survey of Arkansas Soybean Nematodes. 
Proceedings of the 43rd Meeting of the Southern Soybean Disease Workers, 35. 

Liu, Z., Griffin, T., & Kirkpatrick, T. L. 2014. Statistical and Economic Techniques for Site-
specific Nematode Managment. Journal of Nematology, 46, 12-17. 

Liu, Z., Griffin, T., Kirkpatrick, T. L., & Monfort, W. S. 2015. Spatial econometric approaches to 
developing site-specific nematode management strategies in cotton production. Precision 
Agriculture, 587-600 

Luquet, D., Begue, A., Vidal, A., Clouvel, P., Dauzat, J., Olioso, A., . . . Tao, Y. 2003. Using 
multidirectional thermography to characterize water status of cotton. Remote Sensing of 
Environment, 411–421. 

Matthews, S., & Yang, T.-C. 2012. Mapping the results of local statistics: Using geographically 
weighted regression. Demographic Research, 151-166. 

Mitkowski, N. A., & Abawi, G. S. 2003. Root-knot nematodes. The Plant Health Instructor, doi: 
10.1094/PHI-I-2003-0917-01. 



 

76 
 

Monfort, W. S., Kirkpatrick, T. L., Rothrock, C. S., & Mauromoustakos, A. 2007. Potential for 
site-specific management of Meloidogyne incognita in cotton using soil textural zones. 
Journal of Nematology, 39, 1-8. 

Mueller, T. G., Hartsock, N. J., Stombaugh, T. S., Shearer, S. A., Cornelius, P. L., & Barnhisel, R. 
I. 2003. Soil electrical conductivity map variability in limestone soils overlain by loess. 
Agronomy Journal, 496-507. 

Openshaw, S. 1984. The Modifiable Areal Unit Problem. Geo Books. 

Ortiz, B. V., Sullivan, D. G., Perry, C., & Vellidis, G. 2011. Delineation of Management Zones 
for Southern Root-Knot Nematode using Fuzzy Clustering of Terrain and Edaphic Field 
Characteristics. Communications in Soil Science and Plant Analysis 42, 1972–1994. 

Prot, J.-C., & Van Gundy, S. D. 1981. Effect of Soil Texture and the Clay Component on Migration 
of Meloidogyne incognita Second-stage Juveniles. Jouranl of Nematology, 213-217. 

Scharf, P. C., & Lory, J. A. 2002. Calibrating corn color from aerial photographs to predict 
sidedress nitrogen need. Agronomy Journal, 397–404. 

Spurlock, T., & Kirkpatrick, T. L. 2017. Proceedings of the Southern Soybean Disease Workers 
44th Annual Meeting. Southern Soybean Disease Workers. Pensacola, FL: Southern 
Soybean Disease Workers. 

Sugiura, R., Noguchi, N., & Ishii, K. 2007. Correction of low-altitude thermal images applied to 
estimating of soil water status. Biosystems Engineering, 301–313. 

Torres-Sanchez, J., Lopez-Granados, F., Isabel De Castro, A., & Manuel Pena-Barragan, J. 2013. 
Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site 
Specific Weed Management. PLoS One, e58210. 

Tucker, C. J., Holben, B. N., Elgin Jr, J. H., & McMurtrey III, J. E. 1980. Relationship of spectral 
data to grain yield variation. Photogrammetric Engineering and Remote Sensing, 657–666. 

Varela, S., Assefa, Y., Vara Prasad, P. V., Peralta, N. R., Griffin, T. W., Sharda, A., . . . Ciampitti, 
I. A. 2017. Spatio-temporal evaluation of plant height in corn via unmanned aerial systems. 
Journal of Applied Remote Sensing, 036013. 

Wanjura, D. F., Maas, S. J., Winslow, J. C., & Upchurch, D. R. 2004. Scanned and spot measured 
canopy temperatures of cotton and corn. Computers and Electronics in Agriculture, 33-48. 

Wheeler, T. A., Baugh, B., Kaufman, H., Schuster, G., & Siders, K. 2000. Variability in Time and 
Space of Meloidogyne incognita Fall Population Density in Cotton Fields. Journal of 
Nematology 32(3), 258–264. 

Wrather, J. A., Stevens, W. E., Kirkpatrick, T. L., & Kitchen, N. R. 2002. Effects of Site-specific 
Application of Aldicarb on Cotton in a Meloidogyne incognita-infested Field. Journal of 
Nematology 34(2), 115–119. 



 

77 
 

Tables 

Table 1. The spatial resolution of Sentinel-2 is dependent on each spectral band (Sentinel-2 User 
Handbook, 2015). 
 
Sentinel-2 Bands Central Wavelength (nm) Resolution (m) Bandwidth (nm) 

Band 1 - Coastal aerosol 443 60 20 
Band 2 - Blue 490 10 65 
Band 3 - Green 560 10 35 
Band 4 - Red 665 10 30 
Band 5 - Vegetation Red Edge 705 20 15 
Band 6 - Vegetation Red Edge 740 20 15 
Band 7 - Vegetation Red Edge 783 20 20 
Band 8 - NIR 842 10 115 
Band 8B - Narrow NIR 865 20 20 
Band 9 - Water vapour 945 60 20 
Band 10 - SWIR - Cirrus 1375 60 30 
Band 11 - SWIR 1610 20 90 
Band 12 - SWIR 2190 20 180 
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Table 2. Satellite imagery of in-season crop health were regressed with actual yield to determine 
correlation by using classical OLS for the King Lee field. 
 

Covariate R-squared Adjusted 
R-squared Coefficient Std Error  t-Statistic Probability 

NDVI0424 0.0128 0.0120 49.6708 11.8871  4.1785 < 0.0001 
NDVI0501 0.0152 0.0145 49.9521 10.9345  4.5683 < 0.0001 
NDVI0514 0.0436 0.0429 62.8643 8.0106  7.8477 < 0.0001 
NDVI0610 0.2578 0.2573 87.4690 4.0359  21.6727 < 0.0001 
NDVI0720 0.5441 0.5438 248.8000 6.1932  40.1732 < 0.0001 
NDVI0725 0.5506 0.5502 276.0770 6.7839  40.6960 < 0.0001 
NDVI0822 0.1828 0.1822 126.4970 7.2741  17.3901 < 0.0001 
NDVI0906 0.1418 0.1412 -71.7509 4.8004  -14.9468 < 0.0001 
NIR0424 0.0999 0.0992 0.0156 0.0013  12.2488 < 0.0001 
NIR0501 0.1433 0.1427 0.0280 0.0019  15.0389 < 0.0001 
NIR0514 0.1485 0.1479 0.0171 0.0011  15.3577 < 0.0001 
NIR0610 0.2540 0.2535 0.0146 0.0007  21.4558 < 0.0001 
NIR0720 0.4876 0.4872 0.0259 0.0007  35.8661 < 0.0001 
NIR0725 0.4888 0.4884 0.0300 0.0008  35.9554 < 0.0001 
NIR0822 0.1195 0.1188 0.0348 0.0026  13.5447 < 0.0001 
NIR0906 0.0765 0.0758 -0.0191 0.0018  -10.5825 < 0.0001 
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Table 3. Satellite imagery of in-season crop health were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Lee field. 
 

Covariate R-squared Adjusted 
R-squared Coefficient Std Error t-Statistic Probability 

NDVI0424 0.0064 0.0058 -45.1447 13.4855 -3.3477 0.0008 
NDVI0501 0.0003 -0.0003 -8.1031 11.8014 -0.6866 0.4924 
NDVI0514 0.0000 -0.0005 -2.0705 9.0146 -0.2297 0.8184 
NDVI0610 0.2107 0.2103 106.9020 4.9473 21.6081 < 0.0001 
NDVI0725 0.5007 0.5004 189.6450 4.5288 41.8755 < 0.0001 
NDVI0903 0.0115 0.0110 22.1947 4.9159 4.5149 < 0.0001 
NDVI0906 0.0073 0.0067 -17.8605 4.9777 -3.5881 0.0003 
NIR0424 0.0329 0.0324 -0.0074 0.0010 -7.7165 < 0.0001 
NIR0501 0.0294 0.0288 -0.0082 0.0011 -7.2764 < 0.0001 
NIR0514 0.0151 0.0146 -0.0036 0.0007 -5.1848 < 0.0001 
NIR0610 0.0005 -0.0001 -0.0004 0.0005 -0.8922 0.3724 
NIR0725 0.3431 0.3427 0.0296 0.0010 30.2229 < 0.0001 
NIR0903 0.0897 0.0892 -0.0218 0.0017 -13.1295 < 0.0001 
NIR0906 0.1621 0.1616 -0.0254 0.0014 -18.3950 < 0.0001 
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Table 4. Spatial Lag and spatial error models were determined and used for a few observations to 
adjust for spatial autocorrelation for the King Lee field. 
 

CovariateY R-Square Coefficient Std Error Z-Value Probability Spatial 
ModelZ 

NDVI0424 0.7816 3.3711 5.5913 0.6029 0.5466 Lag 
NDVI0501       
NDVI0514 0.7815 10.4519 3.8899 2.6869 0.0072 Lag 
NDVI0610 0.7917 88.3343 7.4277 11.8926 < 0.0001 Error 
NDVI0720       
NDVI0725       
NDVI0822 0.7816 87.8451 13.4091 6.5512 < 0.0001 Error 
NDVI0906 0.7908 -86.7601 9.3043 -9.3248 < 0.0001 Error 
NIR0424 0.7817 0.0030 0.0007 4.6057 < 0.0001 Lag 
NIR0501 0.7809 0.0050 0.0010 5.0101 < 0.0001 Lag 
NIR0514 0.7816 0.0035 0.0006 5.6604 < 0.0001 Lag 
NIR0610       
NIR0720 0.7963 0.0253 0.0013 18.8415 < 0.0001 Error 
NIR0725 0.7978 0.0295 0.0016 18.9996 < 0.0001 Error 
NIR0822 0.7808 0.0057 0.0013 4.3331 < 0.0001 Lag 
NIR0906 0.7852 -0.0184 0.0030 -6.1156 < 0.0001 Error 

 
Y Indicates that blank rows were not spatially dependent and classical ordinary least squares 
regression was sufficient for these snapshots. 
Z Two spatial models were determined and used for a few observations to adjust for spatial 
autocorrelation by using the Lagrange Multiplier (LM) tests, which are reported in the regression 
diagnostic output.  
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Table 5. Spatial Lag and spatial error models were determined and used for a few observations to 
adjust for spatial autocorrelation for the Lee field. 

CovariateY R-Square Coefficient Std Error Z-Value Probability Spatial 
ModelZ 

NDVI0501 
     

 
NDVI0514       
NDVI0610 0.8028 67.4038 6.7296 10.0160 < 0.0001 Error 
NDVI0725       
NDVI0903       
NDVI0906       
NIR0424       
NIR0501       
NIR0514       
NIR0610       
NIR0725 0.8008 0.0073 0.0006 11.5984 < 0.0001 Lag 
NIR0903 0.8006 -0.0143 0.0023 -6.1006 < 0.0001 Error 
NIR0906       

 

Y Indicates that blank rows were not spatially dependent and classical ordinary least squares 
regression was sufficient for these snapshots.  
Z Two spatial models were determined and used for a few observations to adjust for spatial 
autocorrelation by using the Lagrange Multiplier (LM) tests, which are reported in the regression 
diagnostic output.  
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Table 6. Satellite imagery of in-season crop health for the month of July were used to determine 
predicted yield and the predicted values were regressed with actual yield to determine correlation 
by using classical ordinary least squares for the King Lee field. 
 

Observation Variable Residual 
Df RSS Sum of 

Sq F Pr(>F) Probability 

NDVI0725 Actual 3085 306131    
 Predicted 3083 304670 1461.3 7.394 6.26E-04 <0.0001 
NIR0725 Actual 3084 550354     
 Predicted 3082 404563 145791 555.3 < 2.2E-16 <0.0001 
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Table 7. Satellite imagery of in-season crop health for the month of July were used to determine 
predicted yield and the predicted values were regressed with actual yield to determine correlation 
by using classical ordinary least squares for the Lee field. 
 
Observatio
n Variable Residual 

Df RSS Sum of 
Sq F Pr(>F) Probability 

NDVI0725 Actual 3088 580166       
 Predicted 3086 502772 77394 237.5 < 2.2E-16 <0.0001 
NIR0725 Actual 3077 791081        
 Predicted 3075 454190 336891 1140 < 2E-16 <0.0001 
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Table 8. Satellite imagery of in-season crop health were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Backgate field. 
 

Covariate R-squared Adjusted 
R-squared Coefficient Std Error t-Statistic Probability 

NDVI0501 0.1050 0.1032 -185.5330 24.3705 -7.6130 < 0.0001 
NDVI0514 0.0895 0.0877 -198.1080 28.4246 -6.9696 < 0.0001 
NDVI0610 0.2888 0.2874 164.8000 11.6349 14.1643 < 0.0001 
NDVI0720 0.1878 0.1862 88.8582 8.3128 10.6893 < 0.0001 
NDVI0817 0.2652 0.2637 236.8050 17.7347 13.3526 < 0.0001 
NDVI0822 0.0252 0.0232 36.4586 10.2025 3.5735 0.0004 
NDVI0906 0.0623 0.0604 -51.8788 9.0525 -5.7309 < 0.0001 
NIR0424 0.0166 0.0146 -0.0226 0.0078 -2.8884 0.0040 
NIR0501 0.0320 0.0300 -0.0304 0.0075 -4.0394 < 0.0001 
NIR0514 0.0489 0.0469 -0.0427 0.0085 -5.0375 < 0.0001 
NIR0610 0.4146 0.4134 0.0489 0.0026 18.7028 < 0.0001 
NIR0720 0.4578 0.4567 0.0454 0.0022 20.4248 < 0.0001 
NIR0817 0.3265 0.3251 0.1144 0.0074 15.4745 < 0.0001 
NIR0822 0.0014 -0.0006 0.0028 0.0033 0.8384 0.4022 
NIR0906 0.1851 0.1835 -0.0296 0.0028 -10.5943 < 0.0001 
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Table 9. Satellite imagery of in-season crop health were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Crossplace field. 
 

Covariate R-squared Adjusted 
R-squared Coefficient Std Error t-Statistic Probability 

NDVI0501 0.1014 0.1011 643.0430 34.8055 18.4753 < 0.0001 
NDVI0514 0.3378 0.3376 451.2260 11.4867 39.2826 < 0.0001 
NDVI0610 0.4529 0.4527 165.6270 3.3099 50.0397 < 0.0001 
NDVI0817 0.2321 0.2319 323.7290 10.7059 30.2383 < 0.0001 
NDVI0906 0.1053 0.1050 92.7425 4.9162 18.8647 < 0.0001 
NIR0424 0.1852 0.1850 -0.0634 0.0024 -26.2235 < 0.0001 
NIR0501 0.0650 0.0647 -0.0762 0.0053 -14.4966 < 0.0001 
NIR0514 0.0227 0.0223 0.0266 0.0032 8.3732 < 0.0001 
NIR0610 0.4179 0.4177 0.0337 0.0007 46.5974 < 0.0001 
NIR0817 0.2841 0.2839 0.0948 0.0027 34.6496 < 0.0001 
NIR0906 0.0008 0.0004 0.0030 0.0020 1.5222 0.1281 
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Table 10. Satellite imagery of in-season crop health were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Glendon 2 field. 
 

Covariate R-squared Adjusted 
R-squared Coefficient Std Error t-Statistic Probability 

NDVI0501 0.0002 -0.0006 -11.1243 21.4610 -0.5184 0.6043 
NDVI0514 0.0289 0.0282 67.4454 10.9008 6.1872 < 0.0001 
NDVI0610 0.4160 0.4155 179.3130 5.9250 30.2639 < 0.0001 
NDVI0720 0.3908 0.3903 148.9140 5.1846 28.7225 < 0.0001 
NDVI0906 0.0873 0.0866 -94.8391 8.5496 -11.0928 < 0.0001 
NIR0424 0.0502 0.0494 0.0156 0.0019 8.2413 < 0.0001 
NIR0501 0.0474 0.0467 -0.0393 0.0049 -7.9997 < 0.0001 
NIR0514 0.0000 -0.0007 0.0004 0.0022 0.1980 0.8431 
NIR0610 0.3321 0.3315 0.0302 0.0012 25.2847 < 0.0001 
NIR0720 0.4664 0.4660 0.0379 0.0011 33.5272 < 0.0001 
NIR0906 0.2837 0.2832 -0.0410 0.0018 -22.5703 < 0.0001 
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Table 11. Satellite imagery of in-season crop health were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Glendon 4 field. 
 

Covariate R-squared Adjusted 
R-squared Coefficient Std Error t-Statistic Probability 

NDVI0501 0.1648 0.1636 -247.2240 21.1686 -11.6788 < 0.0001 
NDVI0514 0.0010 -0.0005 19.9742 24.2811 0.8226 0.4110 
NDVI0610 0.4624 0.4616 151.0190 6.1945 24.3794 < 0.0001 
NDVI0720 0.4625 0.4618 201.2800 8.2541 24.3854 < 0.0001 
NDVI0906 0.1410 0.1397 -101.1280 9.4972 -10.6483 < 0.0001 
NIR0424 0.0285 0.0271 0.0126 0.0028 4.5046 < 0.0001 
NIR0501 0.2675 0.2664 -0.0906 0.0057 -15.8844 < 0.0001 
NIR0514 0.0027 0.0013 0.0042 0.0030 1.3693 0.1714 
NIR0610 0.3990 0.3981 0.0234 0.0011 21.4166 < 0.0001 
NIR0720 0.5104 0.5097 0.0401 0.0015 26.8381 < 0.0001 
NIR0906 0.0392 0.0378 -0.0289 0.0054 -5.3092 < 0.0001 
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Table 12. Satellite imagery of in-season crop health were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Glendon 5 field. 
 

Covariate R-squared Adjusted 
R-squared Coefficient Std Error t-Statistic Probability 

NDVI0501 0.0008 -0.0008 -15.8914 22.4478 -0.7079 0.4792 
NDVI0514 0.0001 -0.0014 -3.8093 14.9148 -0.2554 0.7985 
NDVI0610 0.2920 0.2909 122.9850 7.4541 16.4990 < 0.0001 
NDVI0720 0.2457 0.2446 145.5190 9.9240 14.6633 < 0.0001 
NDVI0906 0.0128 0.0114 50.2416 17.1413 2.9310 0.0035 
NIR0424 0.0828 0.0814 0.0146 0.0019 7.7169 < 0.0001 
NIR0501 0.0346 0.0331 -0.0331 0.0068 -4.8612 < 0.0001 
NIR0514 0.0679 0.0665 0.0146 0.0021 6.9340 < 0.0001 
NIR0610 0.2743 0.2732 0.0190 0.0012 15.7949 < 0.0001 
NIR0720 0.1806 0.1793 0.0156 0.0013 12.0590 < 0.0001 
NIR0906 0.0000 -0.0015 0.0003 0.0059 0.0427 0.9661 
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Table 13. Satellite imagery of in-season crop health were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Robert 1 field. 
 

Covariate R-squared Adjusted 
R-squared Coefficient Std Error t-Statistic Probability 

NDVI0501 0.1019 0.1002 -194.3360 24.7638 -7.8476 < 0.0001 
NDVI0514 0.0026 0.0008 -18.7485 15.6144 -1.2007 0.2304 
NDVI0610 0.2407 0.2393 119.0160 9.0714 13.1199 < 0.0001 
NDVI0822 0.1908 0.1893 142.4430 12.5875 11.3162 < 0.0001 
NDVI0906 0.0008 -0.0011 9.7778 15.0459 0.6499 0.5161 
NIR0424 0.0514 0.0497 -0.0160 0.0029 -5.4252 < 0.0001 
NIR0501 0.1957 0.1942 -0.0724 0.0063 -11.4935 < 0.0001 
NIR0514 0.2199 0.2185 -0.0382 0.0031 -12.3731 < 0.0001 
NIR0610 0.1159 0.1142 0.0195 0.0023 8.4352 < 0.0001 
NIR0822 0.0037 0.0019 -0.0067 0.0047 -1.4284 0.1537 
NIR0906 0.0490 0.0472 -0.0211 0.0040 -5.2871 < 0.0001 
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Table 14. Satellite imagery of in-season crop health were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Robert 2 field. 
 

Covariate R-squared Adjusted 
R-squared Coefficient Std Error t-Statistic Probability 

NDVI0501 0.1738 0.1722 -383.3760 37.4525 -10.2363 < 0.0001 
NDVI0514 0.0010 -0.0010 20.9899 30.0386 0.6988 0.4850 
NDVI0610 0.4530 0.4519 317.6110 15.6396 20.3081 < 0.0001 
NDVI0720 0.5125 0.5115 331.8820 14.5041 22.8820 < 0.0001 
NDVI0822 0.0102 0.0082 44.2579 19.5265 2.2666 0.0239 
NDVI0906 0.3991 0.3979 -165.6560 9.1079 -18.1882 < 0.0001 
NIR0424 0.0252 0.0232 0.0140 0.0039 3.5875 0.0004 
NIR0501 0.0241 0.0221 -0.0351 0.0100 -3.5062 0.0005 
NIR0514 0.0015 -0.0005 0.0038 0.0044 0.8680 0.3858 
NIR0610 0.4144 0.4132 0.0459 0.0024 18.7724 < 0.0001 
NIR0720 0.5569 0.5560 0.0455 0.0018 25.0172 < 0.0001 
NIR0822 0.0664 0.0645 -0.0345 0.0058 -5.9517 < 0.0001 
NIR0906 0.4518 0.4507 -0.0444 0.0022 -20.2589 < 0.0001 
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Table 15. Satellite imagery of in-season crop health were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Robert 3 field. 
 

Covariate R-squared Adjusted 
R-squared Coefficient Std Error t-Statistic Probability 

NDVI0501 0.1213 0.1204 190.1130 16.6169 11.4409 < 0.0001 
NDVI0514 0.2127 0.2119 128.1440 8.0074 16.0033 < 0.0001 
NDVI0610 0.4564 0.4559 135.8490 4.8149 28.2145 < 0.0001 
NDVI0720 0.4490 0.4484 154.4820 5.5579 27.7953 < 0.0001 
NDVI0906 0.0319 0.0309 -36.2294 6.4784 -5.5924 < 0.0001 
NIR0424 0.0006 -0.0005 0.0011 0.0016 0.7313 0.4648 
NIR0501 0.1660 0.1652 -0.0461 0.0034 -13.7388 < 0.0001 
NIR0514 0.0149 0.0138 -0.0062 0.0016 -3.7832 0.0002 
NIR0610 0.2545 0.2537 0.0193 0.0011 17.9886 < 0.0001 
NIR0720 0.5171 0.5166 0.0489 0.0015 31.8623 < 0.0001 
NIR0906 0.0572 0.0562 -0.0109 0.0014 -7.5851 < 0.0001 
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Table 16. Spatial Lag and spatial error models were determined and used for a few observations 
to adjust for spatial autocorrelation for the Backgate field. 
 

CovariateY R-Square Coefficient Std Error Z-Value Probability Spatial 
ModelZ 

NDVI0501 0.8140 -37.8426 11.5251 -3.2835 0.0010 Lag 
NDVI0514 0.8137 -38.8731 13.0776 -2.9725 0.0030 Lag 
NDVI0610 0.8186 42.9342 6.7297 6.3798 < 0.0001 Lag 
NDVI0720 0.8189 24.0857 4.2994 5.6021 < 0.0001 Lag 
NDVI0817 0.8175 59.2811 10.2548 5.7808 < 0.0001 Lag 
NDVI0822       
NDVI0906 0.8127 -6.1081 4.1015 -1.4892 0.1364 Lag 
NIR0424 0.8153 -0.0193 0.0069 -2.7876 0.0053 Error 
NIR0501 0.8156 -0.0206 0.0066 -3.1168 0.0018 Error 
NIR0514 0.8143 -0.0176 0.0067 -2.6435 0.0082 Error 
NIR0610       
NIR0720 0.8157 0.0120 0.0017 7.2430 < 0.0001 Lag 
NIR0817 0.8166 0.0282 0.0046 6.0729 < 0.0001 Lag 
NIR0822       
NIR0906       

 

Y Indicates that blank rows were not spatially dependent and classical ordinary least squares 
regression was sufficient for these snapshots.  
Z Two spatial models were determined and used for a few observations to adjust for spatial 
autocorrelation by using the Lagrange Multiplier (LM) tests, which are reported in the regression 
diagnostic output.  
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Table 17. Spatial Lag and spatial error models were determined and used for a few observations 
to adjust for spatial autocorrelation for the Crossplace field. 
 

CovariateY R-Square Coefficient Std Error Z-Value Probability Spatial 
ModelZ 

NDVI0501 0.8649 83.4637 13.9727 5.9734 < 0.0001 Lag 
NDVI0514       
NDVI0610       
NDVI0817       
NDVI0906 0.8649 11.9954 2.0046 5.9839 < 0.0001 Lag 
NIR0424 0.8645 -0.0083 0.0011 -7.7627 < 0.0001 Lag 
NIR0501 0.8649 -0.0085 0.0020 -4.2083 < 0.0001 Lag 
NIR0514       
NIR0610 0.8720 0.0327 0.0016 20.2717 < 0.0001 Error 
NIR0817       
NIR0906       

 
Y Indicates that blank rows were not spatially dependent and classical ordinary least squares 
regression was sufficient for these snapshots.  
Z Two spatial models were determined and used for a few observations to adjust for spatial 
autocorrelation by using the Lagrange Multiplier (LM) tests, which are reported in the regression 
diagnostic output.  



 

94 
 

Table 18. Spatial Lag and spatial error models were determined and used for a few observations 
to adjust for spatial autocorrelation for the Glendon 2 field. 
 

CovariateY R-Square Coefficient Std Error Z-Value Probability Spatial 
ModelZ 

NDVI0501            
NDVI0514            
NDVI0610            
NDVI0720 0.5349 95.3453 5.5240 17.2603 < 0.0001 Lag 
NDVI0906 0.4747 -46.2537 6.7736 -6.8286 < 0.0001 Lag 
NIR0424            
NIR0501            
NIR0514            
NIR0610 0.5326 0.0308 0.0017 18.3785 < 0.0001 Error 
NIR0720 0.5623 0.0383 0.0015 25.2920 < 0.0001 Error 
NIR0906 0.5037 -0.0405 0.0026 -15.3240 < 0.0001 Error 

 
Y Indicates that blank rows were not spatially dependent and classical ordinary least squares 
regression was sufficient for these snapshots.  
Z Two spatial models were determined and used for a few observations to adjust for spatial 
autocorrelation by using the Lagrange Multiplier (LM) tests, which are reported in the regression 
diagnostic output.  
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Table 19. Spatial Lag and spatial error models were determined and used for a few observations 
to adjust for spatial autocorrelation for the Glendon 4 field. 
 

CovariateY R-Square Coefficient Std Error Z-Value Probability Spatial 
ModelZ 

NDVI0501            
NDVI0514            
NDVI0610            
NDVI0720 0.6965 98.3380 7.6741 12.8142 < 0.0001 Lag 
NDVI0906 0.6568 -84.9822 17.8949 -4.7490 < 0.0001 Error 
NIR0424            
NIR0501 0.6611 -0.0311 0.0044 -7.1083 < 0.0001 Lag 
NIR0514            
NIR0610            
NIR0720            
NIR0906            

 
Y Indicates that blank rows were not spatially dependent and classical ordinary least squares 
regression was sufficient for these snapshots.  
Z Two spatial models were determined and used for a few observations to adjust for spatial 
autocorrelation by using the Lagrange Multiplier (LM) tests, which are reported in the regression 
diagnostic output.  
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Table 20. Spatial Lag and spatial error models were determined and used for a few observations 
to adjust for spatial autocorrelation for the Glendon 5 field. 
 

CovariateY R-Square Coefficient Std Error Z-Value Probability Spatial 
ModelZ 

NDVI0501            
NDVI0514            
NDVI0610            
NDVI0720 0.3636 144.3750 11.8421 12.1917 < 0.0001 Error 
NDVI0906            
NIR0424            
NIR0501            
NIR0514            
NIR0610            
NIR0720            
NIR0906            

 
Y Indicates that blank rows were not spatially dependent and classical ordinary least squares 
regression was sufficient for these snapshots.  
Z Two spatial models were determined and used for a few observations to adjust for spatial 
autocorrelation by using the Lagrange Multiplier (LM) tests, which are reported in the regression 
diagnostic output.  
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Table 21. Spatial Lag and spatial error models were determined and used for a few observations 
to adjust for spatial autocorrelation for the Robert 1 field. 
 

CovariateY R-Square Coefficient Std Error Z-Value Probability Spatial 
ModelZ 

NDVI0501 0.8437 29.5848 11.0159 -2.6857 0.0072 Lag 

NDVI0514            
NDVI0610 0.8551 82.4373 9.8671 8.3548 < 0.0001 Error 
NDVI0822 0.8531 123.8050 16.7107 7.4087 < 0.0001 Error 
NDVI0906            
NIR0424            
NIR0501            
NIR0514            
NIR0610            
NIR0822 0.8439 0.0013 0.0019 0.6938 0.4878 Lag 
NIR0906            

 
Y Indicates that blank rows were not spatially dependent and classical ordinary least squares 
regression was sufficient for these snapshots.  
Z Two spatial models were determined and used for a few observations to adjust for spatial 
autocorrelation by using the Lagrange Multiplier (LM) tests, which are reported in the regression 
diagnostic output.  
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Table 22. Spatial Lag and spatial error models were determined and used for a few observations 
to adjust for spatial autocorrelation for the Robert 2 field. 
 

CovariateY R-Square Coefficient Std Error Z-Value Probability Spatial 
ModelZ 

NDVI0501            
NDVI0514            
NDVI0610            
NDVI0720 0.7944 138.1970 12.8606 10.7458 < 0.0001 Lag 
NDVI0822            
NDVI0906            
NIR0424            
NIR0501            
NIR0514            
NIR0610            
NIR0720 0.7871 0.0439 0.0031 14.0361 < 0.0001 Error 
NIR0822 0.7680 -0.0309 0.0072 -4.3060 < 0.0001 Error 
NIR0906            

 
Y Indicates that blank rows were not spatially dependent and classical ordinary least squares 
regression was sufficient for these snapshots.  
Z Two spatial models were determined and used for a few observations to adjust for spatial 
autocorrelation by using the Lagrange Multiplier (LM) tests, which are reported in the regression 
diagnostic output.  
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Table 23. Spatial Lag and spatial error models were determined and used for a few observations 
to adjust for spatial autocorrelation for the Robert 3 field. 
 

CovariateY R-Square Coefficient Std Error Z-Value Probability Spatial 
ModelZ 

NDVI0501            
NDVI0514            
NDVI0610 0.7387 124.6160 7.8966 15.7810 < 0.0001 Error 
NDVI0720 0.7364 62.5065 4.9291 12.6811 < 0.0001 Lag 
NDVI0906            
NIR0424            
NIR0501 0.7272 -0.0387 0.0044 -8.8650 < 0.0001 Error 
NIR0514            
NIR0610            
NIR0720            
NIR0906            

 
Y Indicates that blank rows were not spatially dependent and classical ordinary least squares 
regression was sufficient for these snapshots.  
Z Two spatial models were determined and used for a few observations to adjust for spatial 
autocorrelation by using the Lagrange Multiplier (LM) tests, which are reported in the regression 
diagnostic output.  
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Table 24. Satellite imagery of in-season crop health for the months June and July were used to 
determine predicted yield and the predicted values were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Backgate field. 
 

Observation Variable Residual 
Df RSS Sum of Sq F Pr(>F) Probability 

NDVI0610 Actual 8105 8225952    
 Predicted 8103 3668708 4557244 5032.7 < 2.20E-16 < 0.0001 
NIR0610 Actual 6684 3521673     
 Predicted 6682 2913624 608048 697.24 < 2.20E-16 < 0.0001 
NDVI0720 Actual 7981 23900771     
 Predicted 7979 5048031 18852739 14899 < 2.20E-16 < 0.0001 
NIR0720 Actual 6659 5395172     
 Predicted 6657 3836071 1559101 1352.8 < 2.20E-16 < 0.0001 
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Table 25. Satellite imagery of in-season crop health for the months June and July were used to 
determine predicted yield and the predicted values were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Crossplace field. 
 

Observation Variable Residual 
Df RSS Sum of Sq F Pr(>F) Probability 

NDVI0610 Actual 7953 8238599      
 Predicted 7951 3972986 4265613 4268.3 < 2.20E-16 < 0.0001 
NIR0610 Actual 7912 17041908       
 Predicted 6682 2913624 11957548 9301.5 < 2.20E-16 < 0.0001 
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Table 26. Satellite imagery of in-season crop health for the months June and July were used to 
determine predicted yield and the predicted values were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Glendon 2 field. 
 

Observation Variable Residual 
Df RSS Sum of Sq F Pr(>F) Probability 

NDVI0610 Actual 8105 4434075      
 Predicted 8103 3448384 985690 1158.1 < 2.20E-16 < 0.0001 
NIR0610 Actual 6637 3872976       
 Predicted 6635 3077761 795215 857.16 < 2.20E-16 < 0.0001 
NDVI0720 Actual 8105 9695954       
 Predicted 8103 5012221 4683733 3786 < 2.20E-16 < 0.0001 
NIR0720 Actual 6684 4880095       
 Predicted 6682 3784462 1095633 967.25 < 2.20E-16 < 0.0001 
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Table 27. Satellite imagery of in-season crop health for the months June and July were used to 
determine predicted yield and the predicted values were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Glendon 4 field. 
 

Observation Variable Residual 
Df RSS Sum of Sq F Pr(>F) Probability 

NDVI0610 Actual 8079 5058257      
 Predicted 8077 3395868 1662389 1977 < 2.20E-16 < 0.0001 
NIR0610 Actual 6654 4242544       
 Predicted 6652 3219911 1022634 1056.3 < 2.20E-16 < 0.0001 
NDVI0720 Actual 8105 11780350       
 Predicted 8103 4861569 6918781 5765.9 < 2.20E-16 < 0.0001 
NIR0720 Actual 6654 5894736       
 Predicted 6652 3543688 2351048 2206.6 < 2.20E-16 < 0.0001 
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Table 28. Satellite imagery of in-season crop health for the months June and July were used to 
determine predicted yield and the predicted values were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Glendon 5 field. 
 

Observation Variable Residual 
Df RSS Sum of Sq F Pr(>F) Probability 

NDVI0610 Actual 8104 5851024      
 Predicted 8102 3455614 2395410 2808.1 < 2.20E-16 < 0.0001 
NIR0610 Actual 6521 3023713       
 Predicted 6519 2296499 727214 1032.2 < 2.20E-16 < 0.0001 
NDVI0720 Actual 8105 11289669       
 Predicted 8103 4843257 6446412 5392.6 < 2.20E-16 < 0.0001 
NIR0720 Actual 6684 5123278       
 Predicted 6682 3191104 1932174 2022.9 < 2.20E-16 < 0.0001 
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Table 29. Satellite imagery of in-season crop health for the months June and July were used to 
determine predicted yield and the predicted values were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Robert 1 field. 
 

Observation Variable Residual 
Df RSS Sum of Sq F Pr(>F) Probability 

NDVI0610 Actual 7571 9042899      
 Predicted 7569 3371048 5671851 6367.5 < 2.20E-16 < 0.0001 
NIR0610 Actual 8104 10603748       
 Predicted 8102 5104882 5498866 4363.6 < 2.20E-16 < 0.0001 
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Table 30. Satellite imagery of in-season crop health for the months June and July were used to 
determine predicted yield and the predicted values were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Robert 2 field. 
 

Observation Variable Residual 
Df RSS Sum of Sq F Pr(>F) Probability 

NDVI0610 Actual 7272 10523209      
 Predicted 7270 2846070 7677140 9805.2 < 2.20E-16 < 0.0001 
NIR0610 Actual 6644 3425835       
 Predicted 6642 2752018 673817 813.13 < 2.20E-16 < 0.0001 
NDVI0720 Actual 7702 13378367       
 Predicted 7700 4920573 8457793 6617.6 < 2.20E-16 < 0.0001 
NIR0720 Actual 6613 4675479       
 Predicted 6611 3090742 1584737 1694.9 < 2.20E-16 < 0.0001 
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Table 31. Satellite imagery of in-season crop health for the months June and July were used to 
determine predicted yield and the predicted values were regressed with actual yield to determine 
correlation by using classical ordinary least squares for the Robert 3 field. 
 

Observation Variable Residual 
Df RSS Sum of Sq F Pr(>F) Probability 

NDVI0610 Actual 8104 3094978      
 Predicted 8102 3071528 23450 30.928 4.16E-14 < 0.0001 
NIR0610 Actual 6684 4238493       
 Predicted 6682 4020300 218193 181.33 < 2.20E-16 < 0.0001 
NDVI0720 Actual 8105 5236339       
 Predicted 8103 4900621 335718 277.55 < 2.20E-16 < 0.0001 
NIR0720 Actual 6666 4420647       
 Predicted 6664 2969883 1450764 1627.7 < 2.20E-16 < 0.0001 
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Figures 

Figure 1.  The yellow pins designate the middle of the fields studied in the Verification Strip 
cluster near Dumas, Arkansas.
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Figure 2. This representation indicates the 0-9 scale that the soybean roots were rated for 
Meloidogyne incognita galling and overall root health. 
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Figure 3. The yellow pins designate the middle of the fields studied in the Remote Cluster near 
Backgate, Arkansas. 
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Figure 4. Determining whether to use a spatial regression model can be overwhelming, but a flow 
chart was created to help with the decision process (Anselin, 2005). 
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Figure 5. Normalized difference vegetation index (NDVI) on 10 June 2017 shows the three 1,3-
D strips in both King Lee (top) and Lee E&W (bottom) fields. King Lee rows lay lengthwise east 
and west, while Lee rows lay northeast and southwest.  
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Figure 6. Ordinary least square regression resulted in the highest average R2 values for all fields 
in the Verification Strip cluster being in the month of July (n=30).
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Figure 7. Ordinary least square regression resulted in NDVI and NIR images for all fields in the 
Verification Strip cluster being significantly correlated with yield in the month of July (P<0.001) 
(n=30). 
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Figure 8. Interpolation of predicted yield prediction using satellite normalized difference 
vegetation index (NDVI0725) and near infrared (NIR0725) images on 25 July 2017 of King Lee 
showed a significant correlation between the actual and predicted yield.  
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Figure 9. Interpolation of predicted yield prediction using satellite normalized difference 
vegetation index (NDVI0725) and near infrared (NIR0725) images on 25 July 2017 of Lee showed 
a significant correlation between the actual and predicted yield.  
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Figure 10. Ordinary least square regression resulted in the highest average R2 values for all fields 
in the Remote Cluster being in the June and July months (n=102).  
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Figure 11. Ordinary least square regression resulted in NDVI and NIR images for all fields in the 
Remote Cluster being significantly correlated with yield in the months of June and July (P<0.001) 
(n=102).  
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Figure 12. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0610) and near infrared (NIR0610) images on 10 June 2017 of Backgate showed a 
significant correlation between the actual and predicted yield.  
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Figure 13. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0720) and near infrared (NIR0720) images on 20 July 2017 of Backgate showed a 
significant correlation between the actual and predicted yield.  
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Figure 14. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0610) and near infrared (NIR0610) images on 10 June 2017 of Crossplace showed a 
significant correlation between the actual and predicted yield.  
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Figure 15. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0610) and near infrared (NIR0610) images on 10 June 2017 of Glendon 2 showed a 
significant correlation between the actual and predicted yield.  
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Figure 16. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0720) and near infrared (NIR0720) images on 20 July 2017 of Glendon 2 showed a 
significant correlation between the actual and predicted yield.  
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Figure 17. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0610) and near infrared (NIR0610) images on 10 June 2017 of Glendon 4 showed a 
significant correlation between the actual and predicted yield.  
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Figure 18. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0720) and near infrared (NIR0720) images on 20 July 2017 of Glendon 4 showed a 
significant correlation between the actual and predicted yield.  
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Figure 19. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0610) and near infrared (NIR0610) images on 10 June 2017 of Glendon 5 showed a 
significant correlation between the actual and predicted yield Glendon.  
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Figure 20. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0720) and near infrared (NIR0720) images on 20 July 2017 of Glendon 5 showed a 
significant correlation between the actual and predicted yield.  
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Figure 21. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0610) and near infrared (NIR0610) images on 10 June 2017 of Robert 1 showed a 
significant correlation between the actual and predicted yield.  
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Figure 22. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0610) and near infrared (NIR0610) images on 10 June 2017 of Robert 2 showed a 
significant correlation between the actual and predicted yield.  
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Figure 23. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0720) and near infrared (NIR0720) images on 20 July 2017 of Robert 2 showed a significant 
correlation between the actual and predicted yield.  
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Figure 24. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0610) and near infrared (NIR0610) images on 10 June 2017 of Robert 3 showed a 
significant correlation between the actual and predicted yield.  
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Figure 25. Interpolation of predicted yield using satellite normalized difference vegetation index 
(NDVI0720) and near infrared (NIR0720) images on 20 July 2017 of Robert 3 showed a significant 
correlation between the actual and predicted yield. 
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Conclusion 

Site-specific management of Meloidogyne incognita using management zones and 

predicting crop damage areas using EC may offer grower and environmental, as well as economic, 

benefits when compared to field-wide 1,3-D fumigation applications. Meloidogyne incognita 

management strategies are limited for crop protection. Therefore, site-specific management 

strategies may be crucial for sustained and profitable soybean production in the Mid-South. With 

the average size of farms growing in the United states, field sampling may not adequately 

characterize spatial distributions of M. incognita in individual fields, because sampling can be 

labor-intensive and (or) cost-prohibitive. Accurate spatial and temporal detection of M. incognita 

can be questionable with classical sampling methods, while soil textural variability within fields 

can be estimated relatively accurately and easily by calculating EC with soil mapping equipment. 

The use of EC mapping technologies to predict soil texture variability within fields has been 

suggested to be an effective management tool for nematodes in cotton in the Mid-South. The use 

of EC values to establish management zones does not eliminate the need for understanding the 

spatial and temporal distribution of M. incognita. The use of verification strips should be an 

essential component in understanding the intensity of damage and should be extensively used by 

growers during each growing season to improve the efficiency of their pesticide program. Spatial 

data equipment, such as that of the Veris EC Mapping sensors, can be combined with aerial 

imagery, in relation to crop health, to allow growers to implement better management decisions. 

By utilizing this technology along with other spatial data layers, such as yield and aerial imagery, 

growers can make more economical and efficient management decisions. 

Yield prediction from early or even mid-season parameters can help assist growers in 

making informed decisions regarding marketing, storage and transportation. Furthermore, creating 
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a yield prediction model based on historical data would help growers make future production 

decisions based on commodity prices and profitability. With the growing need of site-specific farm 

management, adequate understanding and interpretation of spatial analysis reports and production 

recommendations are crucial. Agronomists must be able to combine data from different sources, 

using different sample designs. 

Precision agriculture can generate a tremendous amount of data, and each practice can have 

thousands of associated data points with many different properties for each one. Manipulating and 

analysis of this huge quantity of data requires the use of complex software and high computation 

power.  Most often synthesis and analysis of this data are beyond the capabilities of most farmers, 

consultants, and retail agriculture professionals. In addition, outputs from many applications may 

not be universally compatible due to software proprietary concerns, making it impossible to 

exchange data.  Because the concepts and technology that are associated with precision agriculture 

are relatively recent developments, not enough data has been collected to determine exactly what 

the results mean in certain scenarios. 

The Food and Agriculture Organization predicts there will be 9.6 billion people in the 

world by the year 2050, which means food production needs to increase 70% despite the limited 

availability of arable land. To resolve the issue of future food demands, current production systems 

need to dramatically increase yields per hectare. Computer software will soon be able to create 

and perform management decisions based on field performance with little to no human 

intervention.  However, this technological based farming will generate a tremendous amount of 

data. Often data management is complex, and each aspect will create thousands of data points that 

could include many different properties for each one. This huge amount of data requires the use of 

complex software and great computational power to manipulate and analyze the data. Further, the 
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outputs from specific software are likely not to be compatible with other software. The 

incompatibleness makes it impossible to exchange and share data, which makes the process even 

that much more complicated. Because of the complexity, the adoption of precision agriculture and 

site-specific management will be reliant on technologically trained agronomists and more data 

collection to determine its true value. 
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