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Abstract 

The purpose of this thesis is to develop a tool that uses machine learning techniques to 

make predictions about whether or not a given vulnerability will be exploited. Such a tool could 

help organizations such as electric utilities to prioritize their security patching operations. Three 

different models, based on a deep neural network, a random forest, and a support vector machine 

respectively, are designed and implemented. Training data for these models is compiled from a 

variety of sources, including the National Vulnerability Database published by NIST and the 

Exploit Database published by Offensive Security. Extensive experiments are conducted, 

including testing the accuracy of each model, dynamically training the models on a rolling 

window of training data, and filtering the training data by various features. Of the chosen 

models, the deep neural network and the support vector machine show the highest accuracy 

(approximately 94% and 93%, respectively), and could be developed by future researchers into 

an effective tool for vulnerability analysis. 

  



1 Introduction 

As computer systems grow increasingly complex, significantly more advanced 

techniques are needed to keep them secure. This becomes especially apparent at an enterprise 

level, where system administrators face the daunting challenge of securing a network of 

hundreds or thousands of connected devices. If a single one of these systems were to be 

compromised, it could spell disaster for the entire enterprise. 

One of the most obvious steps an administrator can take to secure their network is 

keeping their systems up-to-date with the most current patches from their software vendors. 

However, this is a much more complex task than it immediately appears. A large-scale enterprise 

can consist of hundreds or thousands of work stations, mobile devices, servers, storage devices, 

high-performance computers, and other infrastructure. Across these various types of devices, 

dozens or hundreds of distinct services are running: file transfer services, mail servers, web 

servers, databases, remote access tools, field devices, and more. Each of these services has the 

potential to contain one or more vulnerabilities that could be used to cause devastating harm to a 

system and potentially the entire organization. 

Although keeping these sprawling systems patched is a formidable challenge, it is one 

that cannot be neglected. A painfully obvious example of the consequences of such neglect is the 

2017 WannaCry ransomware attack. Over the course of only a few days, this malware spread to 

over 230,000 computers across 150 countries [3]. This attack caused incalculable damage, 

affecting multiple sectors: energy, transportation and logistics, communications, shipping, and 

most prominently, health care. Britain’s National Health Service reported outages in hospital 

computers, MRI equipment, cold-storage facilities, and more. Thousands of medical 



appointments, some urgent, had to be canceled or rescheduled; operations had to be postponed or 

relocated; patients were diverted away from affected facilities until order could be restored. 

This single vulnerability laid bare some of the nation’s most sensitive equipment for a 

devastating attack – but it was preventable. Only a few short months before, Microsoft had 

released a patch for the affected vulnerability, describing it as “critical” and recommending the 

affected parties update their software immediately [4]. Those who heeded the warning from 

Microsoft escaped the WannaCry attack unscathed; those who failed to listen suffered. The 

message is sobering, but simple: security patches cannot be ignored. 

Most patches are aimed at fixing one or more known vulnerabilities, flaws in software 

that cause a security risk. With almost 9,000 new and unique vulnerabilities reported in 2017 

alone, keeping these vulnerabilities patched becomes a daunting challenge [1]. However, not all 

vulnerabilities are created equal: some are much more likely to be used in an exploit, and these 

are the vulnerabilities that should be patched first. This is particularly important for organizations 

with limited resources that might struggle to handle vulnerabilities and patches quickly. For 

example, many mid-size and small electric utilities do not have sufficient security operators to 

address vulnerabilities and patches in a timely manner. System administrators need a tool that 

can accurately classify known vulnerabilities by their likelihood of being used in an exploit. 

But how should such a tool be created? Several requirements must be considered when 

designing this tool. It must be accurate: if the tool fails to provide reliable recommendations, it 

will not be trusted and will not help prevent future attacks. It must be adaptable: the landscape of 

threats facing large enterprises is constantly shifting, and any tool attempting to mitigate these 

threats needs to be able to adapt with them. With these considerations in mind, a learning-based 

approach is chosen for development. Using machine learning techniques allows the development 



of a tool that draws from the vast amount of already-available data in order to perform the most 

accurate analysis possible of new vulnerabilities. Furthermore, such a tool can be periodically 

retrained on new vulnerability data, ensuring it stays reliable as the types of threats evolve. 

The objective of this thesis is to use machine learning techniques to create a tool that 

analyzes known vulnerabilities and classifies them according to their exploitability. In order to 

ensure the greatest possible accuracy, several different machine learning models (specifically, a 

deep neural network, a random forest classifier, and a support vector machine) will be 

implemented and compared. The most accurate model will be built into a tool which can later be 

integrated into an enterprise-wide patch management system that keeps track of all current 

vulnerabilities present in an enterprise and ranks them according to their exploitability. This will 

allow system administrators and security specialists to determine which vulnerabilities are most 

likely to be used in an exploit and consequently, which ones to patch first. By allowing 

administrators to intelligently patch their systems, successful exploits can be kept to a minimum 

and attacks such as the WannaCry ransomware attack can be prevented. 

In addition to describing the design and implementation of a learning-based tool for 

vulnerability analysis, this report will cover some important background on the topic, including 

the core concepts behind security patch management and the underlying structure of several 

learning-based models. Furthermore, this report contains a discussion on related work, including 

conventional vulnerability analysis techniques and other implementations of various learning-

based vulnerability analysis tools. 



2 Background 

2.1 Related Work 

Using machine learning techniques to create advanced security tools is not a new 

concept. Learning-based systems have been proposed for everything from spam detection to 

network intrusion detection [2]. If sufficient training data exists, these algorithms can spot 

patterns and trends too subtle for human analysts, potentially giving security technicians a much-

needed edge against sophisticated attackers. But before these learning-based approaches are 

discussed, this report will review conventional techniques for vulnerability analysis. 

2.1.1 Conventional Vulnerability Analysis 

Conventional vulnerability analysis can be broadly broken down into three main 

methods: (1) static analysis, (2) dynamic analysis, and (3) hybrid analysis [6]. A discussion of 

each of these methods follows: 

(1) Static analysis: a program’s source code is directly analyzed, without executing any part 

of the program. 

(2) Dynamic analysis: a program is executed and the runtime behavior is monitored and 

analyzed. 

(3) Hybrid analysis: a program is analyzed with a mixture of static and dynamic analysis 

techniques. 

Each of these methods have their respective strengths and weaknesses. Static analysis uses a 

generalized abstraction to analyze the properties of the program, which has the potential to be 

sound (i.e., potentially no missed vulnerabilities), but also a possibility of generating false 

positives. In contrast, dynamic analysis is at best complete (i.e., no false vulnerabilities), but 

cannot be sound, because the potentially infinite amount of possible inputs to a program mean 



that there is always a possibility for vulnerabilities to exist in an unseen program state. Hybrid 

analysis combines the strength of both these approaches, but combines their weaknesses as well. 

Typically, a hybrid analysis is either a static analysis system that utilizes dynamic analysis to 

help identify and reduce false positives, or a dynamic analysis system that uses static analysis 

techniques to help reach hidden program states and potentially uncover missed vulnerabilities. 

In addition to these conventional program analysis techniques, several so-called 

discovery approaches exist: (1) software penetration testing, (2) fuzz testing, and (3) static data-

flow analysis. 

(1) Software penetration testing: a team of software security experts manually test and 

probe a program for exploitable vulnerabilities [7]. 

(2) Fuzz testing: similar to dynamic analysis, manual program inputs are created. These are 

then randomly mutated and fed into the program on a large scale in an attempt to reach 

hidden program states [8]. 

(3) Static data-flow analysis: untrusted data from input sources is marked as tainted and its 

flow to program states known as sinks is monitored as a potential indicator of 

vulnerabilities [9, 10]. 

Together, these program analysis and discovery methods make up the bulk of the methodology 

for conventional vulnerability analysis. In the next section, the currently accepted techniques for 

machine learning-based analysis are discussed. 

2.1.2 Learning-based Analysis 

In recent years, researchers have been exploring a new approach to vulnerability analysis: 

machine learning and data mining. Arthur Samuel, the scientist who coined the term “machine 

learning” in 1959, defined it as the development of computational techniques and algorithms that 



enable computer systems to gain new abilities without being explicitly programmed [11]. This 

ability to develop behavior without being explicitly programmed ahead of time is of obvious 

value in the field of data mining, defined as the computational process of extracting actionable 

knowledge from large amounts of data, including data extraction, data cleansing, data selection, 

knowledge extraction, and visualization [12]. Machine learning can be extremely useful in the 

data extraction, cleansing, and selection stages of the data mining process, as the ability to 

“train” a model on a vast data set allows the machine to detect patterns and trends not visible to 

human analysts. 

Machine learning techniques can be grouped into three main methods: (1) supervised 

learning, (2) unsupervised learning, and (3) reinforcement learning [5].  

(1) Supervised learning: requires a set of labeled training data, which consists of a set of 

records, where each record contain some input data (usually in a vector format) and a 

desired corresponding output label. The model is trained on this data, and uses the 

provided labels for validation and testing. 

(2) Unsupervised learning: primarily used in situations where labeled training data is not 

available. Rather than iteratively train and refine itself, the learning system attempts to 

identify patterns and trends in the provided dataset. 

(3) Reinforcement learning: the learning system is trained in the optimal method of 

achieving a certain goal by a system of receiving rewards and penalties for its actions in a 

dynamic environment. 

These are all approaches for machine learning in general, not specific to vulnerability analysis. 

Several specialized techniques have been pioneered to apply these machine learning techniques 

to more intelligently analyze vulnerabilities. These techniques include: (1) vulnerability 



prediction models based on software metrics, (2) anomaly detection approaches, and (3) 

vulnerable code pattern recognition. The first method is most closely related to the work 

described in this report, and will be the focus of the remainder of this section. 

This method involves utilizing a supervised machine learning approach to build a 

prediction model based on well-known software metrics as the feature set [5]. Essentially, this 

type of analysis attempts to predict vulnerable software components (such as binary components, 

object-oriented classes, source code files, etc.) based on common software engineering metrics. 

By compiling a set of training data from various programs, a model can be trained to identify 

which software components are most likely to contain a vulnerability. This is similar to the work 

described in this thesis, which focuses on an entire set of vulnerabilities rather than a specific 

software suite. By compiling a set of training data from open-source repositories, a model can be 

trained that recognizes which vulnerabilities are more open to exploitation so that system 

administrators can patch the affected software systems and prevent a damaging breach of the 

system. 

3 Design 

The goal for this thesis is to predict the exploitability of vulnerabilities. In this case, a 

prediction is defined as a binary decision: will a given vulnerability ever be used in an exploit or 

not? Although this is a rather simplified answer to a very nuanced question, the models designed 

and implemented in this thesis provides a foundation for future researchers to develop a tool that 

provides a more sophisticated answer to this question.  

The basic intuition behind the learning-based approach to this thesis is that similar 

vulnerabilities would have similar exploitability. Therefore, if a model is trained on past 

vulnerabilities, it might be able to recognize similar vulnerabilities based on the selected features 



and use this similarity to make a prediction on the exploitability. The process of selecting and 

curating these features is discussed in section 3.1. 

As previously mentioned, several different models are implemented as part of this thesis. 

These models (specifically, a deep neural network, a random forest classifier, and a support 

vector machine) will be discussed in greater detail in section 3.2. The architecture of the deep 

neural network requires several additional design decisions, and these will be discussed in 

section 3.3. 

3.1 Data Sources 

One of the most important elements of this thesis is the process of selecting and curating 

a comprehensive set of training data from multiple open-access sources. A machine learning 

model is only as good as the data used to train it; therefore, compiling a useful set of data is 

critical. Several online databases are used for the creation of the training data, and are chosen for 

both the relevance and accessibility of their data. Both databases make their data available in an 

easily-accessible XML data feed, making them particularly easy to parse into a single set of 

training data. The two sources chosen are the National Vulnerability Database and the Public 

Exploit Database, and the structure and content of the data from these sources is explained in the 

following subsections. 

3.1.1 National Vulnerability Database and Feature Selection 

The National Vulnerability Database (NVD), published by the Information Technology 

Laboratory of the United States National Institute of Standards and Technology (NIST), is the 

official U. S. government repository of standards-based vulnerability management data [13]. The 

data is represented using the Security Content Automation Protocol, which allows the data to be 

used in automation of vulnerability management, security measurement, and compliance. It 



contains a wealth of data on tens of thousands of discrete vulnerabilities, including impact 

assessments, attack vectors, classifications, affected software, and more. The fields chosen as 

features for the dataset are listed below: 

• Access Vector: the vector through which the vulnerability allows access to the system. 

Possible values: Network, Adjacent, Local, Physical. 

• Access Complexity: the complexity of the access allowed by the vulnerability. Possible 

values: Low, High. 

• Confidentiality Impact: potential impact of the vulnerability on the confidentiality of 

the system. Possible values: None, Low, High. 

• Integrity Impact: potential impact of the vulnerability on the integrity of the system. 

Possible values: None, Low, High. 

• Availability Impact: potential impact of the vulnerability on the availability of the 

system. Possible values: None, Low, High. 

• CVSS Score: Common Vulnerability Scoring System score, a common framework for 

ranking potential impact of vulnerabilities. Possible values: 0.0-10.0. 

These fields were primarily chosen for the ease of encoding them as numerical values that could 

be used as features for the model (this encoding is described in section 4.1.1). The possibility of 

adding more features from the database is discussed in the ‘Future Work’ section of the 

conclusion. As previously mentioned, all of the records in the database are available for 

downloading as an XML data feed, which makes it ideal for locally mirroring and processing 

into a format suitable for training a machine learning model. 



3.1.2 Offensive Security Exploit Database 

The second database used in the compilation of the training data is the Exploit Database 

(Exploit-DB) published by Offensive Security, an information security training company that 

provides information security certifications as well as penetration testing services [14]. Unlike 

the NVD, the Exploit-DB does not provide features for use of training the model – it supplies the 

labels used to curate a set of training data suitable for supervised learning. Without the labels 

provided by the Exploit-DB, a supervised learning approach (such as a DNN) would not be 

possible. The NVD provides the information on the vulnerability, but that information is not 

useful unless it can be correlated with the existence (or lack of existence) of an exploit using that 

vulnerability. By providing a method to cross-reference the vulnerability from the NVD with a 

known exploit from the Exploit-DB, a training set can be created that contains, for each 

vulnerability, the information on that vulnerability and whether or not that vulnerability has 

appeared in a known exploit. This provides a complete set of labeled training data that can then 

be used in a supervised learning approach. 

3.1.3 CVE Reference Map for Exploit-DB 

The method for correlating the two databases is actually provided by the same 

organization that provides the NVD. NIST maintains a framework for identifying vulnerabilities 

known as the Common Vulnerabilities and Exposures (CVE) list. This framework is used to 

provide each discrete vulnerability with an ID number, beginning with “CVE-XXXX-YYYY”, 

where XXXX is the year the vulnerability was recorded and YYYY is the number of the specific 

vulnerability [15]. CVE also provides a set of reference maps, which correlates CVE ID numbers 

to ID numbers from other well-known services. One of the reference maps is for the Exploit-DB, 

which provides a framework for matching known vulnerabilities with known exploits to create 



the training data. Unfortunately, the reference map is not available in XML format, so a Python 

script was written (using the libraries Requests and BeautifulSoup) to scrape and parse the 

reference map into a usable format. Once this was done, a second script was used to iterate the 

contents of the NVD data feed, parse the relevant features (discussed in detail in section 4.1.1), 

and check the saved reference map for the existence of a correlated exploit. Although the 

reference map was sorted prior to being mirrored locally, this is still a computation-expensive 

process. However, runtime is not a pressing concern, as this process only has to be done when 

additional training data is required. 

3.2 Machine Learning Models 

As previously mentioned, several different types of machine learning models will be 

implemented as part of this thesis. The three models selected for experimentation are: deep 

neural networks (DNN), random forest classifiers, and support vector machines (SVM).  These 

models are selected because of their applicability to this type of problem; specifically, all three of 

these models are considered suitable for a classification problem (grouping observations into 

sub-groups) [24]. The following subsections contain a discussion of each of the three models 

selected, including their structure, function, and weaknesses. 

3.2.1 Deep Neural Networks 

A deep neural network is a specialized form of an artificial neural network (ANN), a type 

of computing system designed to roughly emulate the biological neural networks present in 

animal brains [21]. An ANN is composed of connected nodes (neurons), where each connection 

can transmit a signal from one node to another. The receiving neuron can then process the signal 

and transmit the revised signal to another neuron. Each neuron and connection (edge) has a 

weight, a value which is adjusted as the model is trained. The neurons are typically arrayed in a 



series of layers, with the signal traveling from the first layer (input layer) to the last layer (output 

layer). A DNN is a specific form of an ANN which contains multiple hidden layers, layers 

between the input and output layers. 

DNNs are well-suited for classification problems, due to their ability to classify nonlinear 

input [25]. However, DNNs are not perfect: potential drawbacks include overfitting on the 

training data and computation time. Overfitting is an issue where the model fits too closely to the 

provided training data, and fails to model a real-world scenario (performance drops significantly 

when introduced to new data) [19]. Measures can be taken to prevent overfitting, including 

limiting the number of hidden layers and manipulating the training data, but it remains a present 

concern for DNN usage. Second, training a DNN is a time- and computation-heavy process, 

especially when using hundreds of thousands of data points (as recommended for higher 

accuracy) [26]. Several techniques can be used to reduce this time, such as batching (computing 

the gradient on several records at once rather than individually), but it is still a concern, 

especially in scenarios where limited computation resources are available. 

3.2.2 Random Forest Classifiers 

A random forest (or random decision forest) is a method of ensemble learning (a type of 

learning that uses multiple algorithms to obtain more accurate predictions) that utilizes multiple 

decision trees and randomly samples them in order to obtain a majority “consensus” [22]. This 

random sampling helps to correct decision trees’ issue of overfitting to their training set. A 

decision tree is a tree-like model of predicting a target value based off observations about the 

target, where the observations are represented in the possible branches of the tree and the 

predictions are represented by the leaves [27].  



Random forest classifiers have several notable advantages, including their accuracy with 

even a limited set of training data, low computational cost of training, and their good 

performance on non-linear problems. However, there are drawbacks, including the decreasing 

efficacy of adding additional training data (in contrast to a DNN, where more data almost always 

improves the accuracy), and overfitting is still a possibility, even with the random sampling of 

the decision trees [28]. 

3.2.3 Support Vector Machines 

A support vector machine is a type of supervised learning model designed specifically for 

binary classification problems (classifying records into one of two subgroups) [23]. The SVM 

algorithm builds a model that represents the training data records as points in space, and attempts 

to plot them in such a way that a clear gap exists between the two subgroups. Then, when new 

records are received, a prediction is made by plotting the new record and determining which 

subgroup it belongs to based on which side of the gap it falls [29]. SVMs are natively able to 

perform linear classification, as well as being able to perform non-linear classification using the 

kernel method, where they implicitly map their inputs to high-dimensional feature spaces [30]. 

There are several advantages of SVM classification, most prominently being the ability to 

apply expert knowledge to the engineering of the kernel and achieve high accuracy [31]. 

However, this can also be a downside, as modifying the kernel can easily lead to over or 

underfitting [32]. In addition, SVM classification suffers from the same long training times as 

other deep learning methods. 

 



3.3 Neural Network Architecture 

Once the dataset is selected, the next step in the design process is architecting the 

structure of the neural network used for training and evaluating the data. Because neural 

networks are heuristic by nature, there is no single straightforward answer on which architecture 

will work best – it requires experimentation and refinement. However, there are several basic 

design decisions that have to be made prior to the implementation of the network. 

The first high-level decision is whether or not the network should be recurrent 

(information traveling in both directions through the network) or feed-forward (information only 

traveling from input to output). Recurrent networks are primarily used when the network needs 

to retain information about what it has learned in the past, which is not a concern in this 

implementation [16]. Furthermore, the use of feed-forward networks allows for the use of back 

propagation error checking, a process where the network computes the error at the output layer 

and distributes it backwards through the network in order to correct the layer weights [17]. Feed-

forward networks are considered generally acceptable for this type of classification problem, so 

this design is used in the network implementation. 

The second decision concerns the number of hidden layers. All neural networks contain 

at least two layers: one input and one output. The defining feature of a deep neural network (the 

type selected for this thesis) is the existence of additional layers between the input and output, 

known as hidden layers [18]. The number and structure of these layers is often a matter of 

experimentation rather than design, but the current consensus is that the vast majority of 

problems obtain sufficient performance with a single hidden layer, and adding more layers only 

increases the potential for overfitting (an error where the model fits too closely to the set of 



training data and fails to accurately model the real word scenario) [19]. Therefore, the decision is 

made to start with a single hidden layer and refine the model as necessary. 

Once this basic structure is determined, an exact number of nodes and an activation 

function needed to be selected for each layer. Although again this number is open to 

experimentation, there are a few commonly accepted guidelines for choosing the correct number 

of nodes. Generally, the size of the hidden layer should be between the size of the input and 

output layers (those sizes are determined by the data set, which will be discussed more in section 

4). Additionally, the number of hidden nodes should be around 2/3 the size of the input layer, 

plus the size of the output layer. Finally, the number of hidden neurons should be less than twice 

the size of the input layer [20]. All of these guidelines are closer to suggestions than rules, but 

they provide a convenient starting point for the trial-and-error process that is building an accurate 

deep neural network. For the input layer, the number of nodes is equivalent to the number of 

features in the training data, 6 in this case. For the output layer, only a single node is needed for a 

binary classification problem. For the hidden layer, the decision is made to use 4 modes, which 

could then be refined through experimentation. 

Finally, an activation function needs to be chosen for each layer. This is a function that 

calculates the weights of each node and edge after each training epoch, and is another facet of the 

DNN that can be adjusted. For a non-linear binary classification problem such as this, the 

rectified linear unit function (ReLU) is considered the appropriate choice [34]. In addition, a loss 

function (function to calculate the loss of the model after each epoch) and accuracy metric 

(metric for calculating the validation accuracy of each epoch) have to be chosen; for a binary 

classification problem, the user guide for the framework used in the implementation (discussed 



further in section 4.2) suggests the ‘binary_crossentropy’ and ‘binary_accuracy’ functions, 

respectively [36]. 

4 Implementation 

4.1 Data Processing 

The first step in implementing the chosen models is collecting the data from the two 

sources and curating it into a unified set of training data. The process used to collect the data 

from each source is described in the two following subsections. 

4.1.1 National Vulnerability Database Parsing 

For the NVD, data collection is rather straightforward: the NVD provides the data feeds 

from each year in the form of downloadable XML files, which contain the information on all 

discovered vulnerabilities for that year. In order to collect this data, the XML files from the years 

2012-2017 were downloaded, and the relevant fields were extracted from them using 

BeaultifulSoup, a Python library for parsing HTML and XML files. Once these fields were 

parsed out for a given record, they were stored locally while the CVE reference table was 

checked (discussed in the next subsection). Because the values for all of these features (except 

the CVSS score) were a string, a simple encoding was implemented to convert these string 

values to integers (shown in Table 1). 

  



 

Feature String Integer 

Access Vector Network 1 

 Adjacent 2 

 Local 3 

 Physical 4 

   

Complexity Low 1 

 High 2 

 None 1 

 Low 2 

 High 3 

   

Integrity None 1 

 Low 2 

 High 3 

   

Availability None 1 

 Low 2 

 High 3 

Table 1. String to integer feature encoding. 

4.1.2 CVE Reference Table 

In order to apply the labels to the training data, the CVE reference map discussed in 

subsection 3.1.3 was downloaded (using Requests) and parsed (using BeautifulSoup). This 

reference table provided a method for determining whether or not a given vulnerability from the 

NVD data feeds had been used in a publicly-known exploit. Once a record was parsed from the 

NVD file, the CVE ID number was extracted and checked against the reference table. If a match 

was found (indicating the existence of an exploit using that vulnerability), the label 1 was 

appended to the list of features for the current record. Otherwise, the label 0 was appended, 

indicating the lack of an existing exploit. Then, this list of features (including the binary label) 

was written to a CSV file, and the process was started over for the next record. 



4.2 Model Creation 

The next step in the implementation involves creating the various models that would be 

tested. The libraries, parameters, and structure of these models are discussed in the following 

subsections. Unless otherwise specified, Python was used in the implementation of these models. 

4.2.1 Deep Neural Network 

For the deep neural network, the library Keras was chosen for its simplicity and ease of 

use. Keras is a wrapper around the commonly-used Tensorflow library, a powerful open-source 

machine learning library published by Google. Keras abstracts many of the lower-level aspects 

of creating a neural network, and breaks the construction down into a few simple steps. Keras 

contains a set of pre-built model classes, and the Sequential model class was selected for this 

thesis, as it models a linear stack of layers, a very traditional DNN implementation. Once a 

Sequential model was instantiated, layers can be added individually to flesh out a full 

implementation. 

As mentioned in the design section, the DNN used in this thesis has three main layers: an 

input layer, a single hidden layer, and an output layer. In addition, dropout layers were added 

before and after the hidden layer.  A dropout layer is a specialized layer used to prevent 

overfitting of the model, which it does by deactivating a set percentage of randomly selected 

nodes during each training epoch. This forces the network to use different nodes on each epoch, 

and reduces the likelihood of the network simply “memorizing” the training data and overfitting 

[33]. 

4.2.2 Random Forest Classifier 

Creating a random forest classifier is much less involved than the deep neural network. In 

order to create the classifier, the ‘scikit-learn’ library was used, which provides support for a 



variety of machine learning models, as well as functions for data processing and analysis. The 

only decision that had to be made was the number of estimators: generally, more is better, but 

performance can become asymptotic (reach a point where adding more decision trees results in 

only a marginal increase in accuracy) and computationally intensive [27]. For this case, 1000 

decision trees were selected, with more to be added if performance was not satisfactory. 

4.2.3 Support Vector Machine 

Creating a support vector machine is similarly much simpler than a DNN, thanks to the 

ready-made model available from scikit-learn. The model accepts several parameters, but for this 

problem, the default values were deemed appropriate and used. 

4.3 Training 

To train the models, the first step was loading the data from the CSV file in which it was 

stored, which was accomplished using the data processing library Pandas. Pandas was also used 

to split the data into the feature set and corresponding labels, and a function from scikit-learn 

was used to split the data into training and testing data (80% training, 20% testing). There were 

approximately 50,000 total records (ranging from 2012 to 2017), leaving approximately 40,000 

records for training and the remaining 10,000 for testing. This training data was then fed into the 

three models, each of which have a function that accepts a set of training data and returns a fitted 

model. In the case of the DNN, several additional parameters are required with the training 

function: number of epochs (iterations of the training and validation process), batch size (number 

of samples propagated through the network), and validation split (percentage of training data to 

hold back for validation after each epoch). These parameters are also subject to tuning as 

experimentation continues, but as a starting point, a set of 200 epochs, a batch size of 128, and a 

validation split of 20% were chosen. 



4.4 Evaluation 

The fitted models were then passed to another function for evaluation. This was also a 

very simple operation. The libraries in use require only a single function call (with the testing 

data and labels as parameters) in order to generate an accuracy score. Those model-specific 

evaluation functions were called inside another function, which repeats the evaluation process a 

user-specified number of times and returns an average of the scores. These are the scores that are 

discussed in detail in the next section. 

5 Results 

After the models were trained and ready to be evaluated, several different tests were run 

to compare performance. The first set of tests was a simple comparison of the three different 

models, using the starting parameters and an average of ten different evaluation scores. Once 

those tests were completed, several refinements were made to the models, and the new scores 

were recorded. After that, a single model was selected for further experimentation, including 

dynamic training of the model and refinement of the features used in training. 

5.1 Algorithm Comparison 

As previously mentioned, the first experiment involved evaluating each model ten times 

using the starting parameters discussed in the Implementation section. The averages of those 

evaluation scores are reported in Table 2. 

Model Avg. Score 

Deep Neural Network 0.9405 

Random Forest Classifier 0.1091 

Support Vector Machine 0.9342 

Table 2. Average of ten accuracy scores for each of the three implemented models. 



The scores are given as decimals between 0 and 1, representing the percentage of 

accurate predictions of the testing data. From this data, it is immediately obvious that the deep 

neural network and the support vector machine vastly outperform the random forest classifier in 

accuracy. Although several refinements can be made to the random forest model to improve 

accuracy, which are discussed in the next subsection, it is clear that it is not well suited for this 

problem. 

As previously mentioned, a single model was to be selected to use in the remainder of the 

experiments. Although the DNN and SVM both performed similarly, the SVM was selected for 

use in the remainder of the thesis, as the much higher computation time required for training the 

DNN (on the order of several hours, rather than minutes for the SVM) made it impractical to 

train multiple times on the various data sets. Therefore, the support vector machine was the 

model selected for use in the rest of the experimentation. 

5.1.1 Model Refinements 

Although all three models have room for improvement, tuning the parameters of the 

DNN and SVM models was left as potential future work, because the current accuracy was 

acceptable for experimentation. However, an attempt was made to improve the accuracy of the 

random forest model, namely by increasing the number of decision trees used. As mentioned 

previously, adding more decision trees generally results in higher accuracy, although it can 

become asymptotic (a point is reached where adding more trees results in only marginal increase 

in accuracy) and can vastly increase computation time. 

For experimentation, the number of trees was increased several times, with the number of 

trees and accuracy being reported in Table 3. 

  



Number of Trees Avg. Score 

5000 0.1263 

10000 0.1432 

25000 0.1372 

50000 0.2729 

Table 3. Accuracy of random forest models with increasing number of decision trees. 

Although the accuracy does increase with the greater number of trees, it still falls well short of 

the accuracy displayed by the other two models. This reinforced the decision to select the SVM 

as the model with which to continue experimentation. 

5.2 Dynamic Model Training 

The next set of experiments involved dynamic training of the model: using a rolling 

window of training data. In this case, a window of one year was selected. The experiment was 

conducted by training the model only on the vulnerabilities from a given year, then evaluating 

the trained model against the vulnerabilities from the following year. This is in contrast to the 

typical static method of randomly selecting training and testing data from the same set of 

records. This method allows the model to be evaluated in a situation that models the real world: 

if the model was trained on a single recent year of data, how accurately would it perform on the 

next years’ vulnerabilities? The graph below (Figure 1) shows the accuracy of the SVM when 

trained on a single year of data and evaluated on the following year.  



 

Figure 1. Accuracy of SVM when trained on single year and evaluated against the following 

year. 

Although the model trained on 2015 data is an exception, the general trend is that the models 

become less accurate as the training data becomes more recent. This trend is somewhat expected, 

as fewer exploits have been discovered and catalogued for the more recent vulnerabilities. This 

makes the training data from recent years less useful, as it provides fewer examples of what an 

exploitable vulnerability looks like. However, even with the accuracy diminishing from year to 

year, the model still performed at greater than 90% accuracy for all tested years. This indicates 

that this model has the potential to be a useful tool for predicting the exploitability of new 

vulnerabilities. 

5.3 Feature Comparison 

The next set of experiments involved filtering the training data by certain features and 

comparing the accuracy. For each of the five discrete features (CVSS score was not considered, 

as its continuous nature is not well suited for filtering), the SVM model was retrained on only 

data matching each possible value, and then the average of ten scores was computed again and 
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recorded. This was repeated with each of the five features, so that a correlation of features values 

and accuracy could be determined. The results are plotted in Figures 2-6. 

 

Figure 2. Effect of access vector on 

accuracy score. Note: no training data 

collected for Adjacent and Physical access 

vectors. 

 

Figure 4. Effect of access complexity on 

accuracy score. 

 

Figure 3. Effect of confidentiality impact on 

accuracy score. 

 

 

 

Figure 5. Effect of integrity impact on 

accuracy score. 
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Figure 6. Effect of availability impact on accuracy score.  

The above graphs demonstrate the efficacy of training the SVM model on the various features. 

Filtering by the various feature values does not appear to have a large impact on the accuracy, as 

the average difference between each potential value is only 1.6%. It does appear that filtering by 

availability impact increases accuracy, but more training data is required to confirm.  

6 Conclusion 

6.1 Summary 

The purpose of this thesis was to explore methods for creating a learning-based tool to 

predict the exploitability of a given vulnerability based on its features. Several different machine 

learning models were implemented in order to test their effectiveness, including a deep neural 

network (DNN), a random forest classifier, and a support vector machine (SVM). In order to 

build a set of training data for the models, information was drawn from both the National 

Vulnerability Database and the Offensive Security Exploit Database. Once this information was 

collected and formatted, features were chosen to provide the most accurate information to the 
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models. The chosen features included information such as the access vector of the vulnerability, 

the access complexity, and the CVSS score. In conjunction with these features, a CVE reference 

table was used to match known vulnerabilities with known exploits, which provided the target 

labels for the training data (binary labels – exploit or not an exploit). These features and labels 

were then used to train and test the various models, which were then compared for accuracy. 

Out of the three chosen models, the deep neural network and support vector machine 

showed the highest accuracy (~ 93%). Refinements were made to the random forest model, 

which served to improve the accuracy, but it still fell well short of the other two models. 

Although the DNN showed a slightly higher accuracy (an average of 10 trials), the much longer 

time required for training a neural network led to the selection of the SVM to continue 

experimentation. Several more tests were conducted, including dynamic training of the model 

(using a single year of data to train, then testing the model on data from the following year) and 

filtering the training data by the various features. Several trends were discovered through these 

tests, while the accuracy remained high throughout (~ 80% - 90%). This suggests that this model 

could be developed into a usable tool that provides system administrators and other security 

professionals valuable insight into the exploitability of their systems. 

6.2 Future Work 

Although this work establishes a solid foundation, there are several improvements that 

can be made. The simplest improvement involves collecting more training data. The script used 

to parse the data feeds used in this thesis is easily extensible to cover a longer time period (and 

more records), but computation time was one limiting factor in choosing to restrict the data to the 

previous five years. Given more time, more records could be added to the training data, which 

has the potential to further boost the accuracy of all models. This additional data would 



specifically benefit the training of the DNN, which has the potential to become more accurate 

than the SVM and should certainly be considered for further experimentation. Additionally, 

because the SVM was selected for the more extensive testing in this thesis, it is possible that 

tuning the hyperparameters of the DNN (such as the learning rate, optimizer parameters, dropout 

rate, and activation function) could produce higher accuracy, even without additional training 

data. 

After more data points are added to the training data, the next step should be to seek out 

additional sources of data. The current data sources only provide six features for use in training 

data, and it is very possible that building a more comprehensive feature set could boost the 

accuracy further. Other open source databases should be considered, and information such as the 

software vendor, required privileges, and any other potentially relevant features should be 

considered. 

Finally, it could be useful for future researchers to update the data collection script to 

gather information about the timeline of the exploit: how long after the vulnerability was 

published did the exploit appear? Currently, the model provides no information about when a 

given vulnerability is likely to be exploited, only that an exploit is likely to be found. If this 

timeline information was collected from the NVD and Exploit-DB, this would allow researchers 

to consider time between publication of the vulnerability and exploit as a feature, and provide 

more detailed information about when an exploit could be expected to appear. 

Once these further steps are taken, these rudimentary models can be implemented in 

highly advanced tools that provide the information needed for computer security professionals to 

protect their systems and help ensure the security of our digital world. 
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