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ABSTRACT  

This dissertation presents a collection of studies that investigate the genetic and epigenetic 

associations to ascites phenotype in broiler chickens. Ascites is a significant metabolic disease 

associated with fast-growing meat-type chickens (broilers) and is a terminal result of pulmonary 

hypertension syndrome PHS. It is a multi-factorial syndrome caused by interactions between 

genetic, physiological, environmental, and managemental factors. It was estimated that ascites 

accounts for losses of about US$1 billion annually worldwide and for over 25% of broilers 

mortality. Although traditional and molecular genetic methods in the selection and in performance 

improvements, has greatly reduced ascites frequency, yet it has not eliminated its occurrence. 

Therefore, this dissertation aimed to 1) develop SNP assays for the gene region of HTR2B to 

examine the possible association with ascites phenotype and measure gene and allele specific 

expression in different tissues at different developmental age stages under hypoxic conditions, 2) 

investigate the association of mitochondrial prevalence in multiple tissues with ascites 

susceptibility and resistance in broilers, and genes known to regulate mitochondrial biogenesis 

were assessed, and 3) mapping genome-wide changes in chromatin accessibility for pulmonary 

artery tissue in ascites - susceptible and ascites- resistant lines under normal and hypoxic 

conditions using ATAC-seq technology (Assay for Transposase accessible Chromatin with high-

throughput sequencing). Altogether, this collection of studies provides new insights into the 

genetic and epigenetic basis of the ascites syndrome in chicken.  
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CHAPTER 1 

Literature Review 
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Domestication History of Chicken 

Chickens represent by far the most important poultry species that provides humans with a stable 

source of protein, including both meat and eggs (Eltanany & Distl 2010). Based on several 

molecular, historical and archeological studies, chicken was domesticated in Southeast Asia in 

5400 BC and then spread around the world (West & zhou, 1988; Crawford, 1990; Tixier-Boichard 

et al., 2011). Other studies suggest that northern China represents one region of the earliest chicken 

domestication, possibly dating as early as 10,000 y before present (Sawai et al., 2010). Combined 

phylogenetic analyses showed that red jungle fowl (RJF, Gallus gallus) is considered the main 

ancestor of modern-day chicken breeds (Fumihito et al., 1994; Hillel et al., 2003; Twito et al., 

2007). Nevertheless, based on several mitochondrial genome studies (categorized by common 

haplogroups), the matrilineal history of chickens should be extended to include more than 

one ancestor (Nishibori et al., 2005; Liu et al., 2006; Oka et al., 2007; Miao et al., 2013). 

Therefore, there is a controversial discussion whether domesticated chickens descend from a single 

ancestor; (RJF, Gallus gallus) in Southeast Asia or that multiple origins have contributed to the 

current chicken. Early domestication of chickens primarily focused on fulfilling various roles 

ranging from food and entertainment to religion and ornamentation. Various cultural practices 

spread them around the world over the course of thousands of years through trade, migration, and 

territorial conquests. In fact, the sport of cockfighting had tremendous influence not only in 

the domestication of the chicken but also on the distribution of fowl throughout the world. 

By progress of human culture and activities, chicken varieties have been developed, mostly for 

food consumption.  

Domestication and Industrial Commercialization of Chicken 

By the beginning of the 20th century, and continuing today, chickens were selected for specific 
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traits such as meat, and egg production especially in the United States and Europe. The 

breakthroughs that made today’s massive, industrial bird farms possible were improved 

management techniques, nutritional evaluation (antibiotics and vitamins), and implementing 

breeding schemes. Intensive selection programs started approximately 60 years ago in highly 

controlled environment (1 generation/year) for meat (broiler lines) and egg production (layer 

lines). Modern commercial broiler lines are highly specialized, produced by crossing elite 

pedigree (pure) lines over several generations for an intense selection of multiple beneficial 

traits associated with meat production (Griffin et al., 1994; Deeb et al., 2002; Paxton et al., 

2010). Nowadays, a commercial broiler chicken reaches the weight of 2 kg in 35 days, an egg 

layer reaches 2 kg at adulthood and lays 300 eggs/year, whereas the RJF does not reach the weight 

of 2 kg and does not lay more than 50 eggs/year. As illustrated in Figure 1.2.B, between 1925 to 

2012, the weight of an average broiler was more than doubled while the number of weeks needed 

to grow a marketable chicken fell by 56%, the pounds of feed required for each pound of chicken 

fell by 61%, and the percent mortality fell by 78% (Zhao et al, 2004). It takes less than two pounds 

of feed to produce one pound of chicken (live weight), less than half the feed/weight ratio in 1925. 

Additionally, selective breeding increased the yield of pectoralis major muscles (by 79% in males 

and 85% in females) and of pectoralis minor (by 30% in males and by 37% in females) (Zuidhof 

et al., 2014; Buzala & Janicki, 2016). Compared to layer hens, broilers have more muscle fibers 

of greater size and their breast muscles grow 8 times more than layers (Aberle & Stewart, 1983) 

whereas broilers growth rate is 2- to 3-fold greater than in layers (Zheng et al., 2009). This suggests 

that innovative technology and selective breeding programs have led to the production of bigger 

size chickens without compromising the amount of time and feed required to grow them. In 2014, 

it was estimated that Americans eat more than 80 pounds of chicken a year, more than pork or 
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beef (Figure 1.2.A).  Domestication processes tend to change animals’ phenotypes by releasing 

them from natural selection, and favoring traits desired by humans, such as food production. 

However, a side effect of such practices can cause changes in traits other than those targeted for 

selections due to genetic linkage with undesirable genes. The genome diversity of today’s domestic 

chickens is a result of the long-term domestication process, subsequent breed differentiation and 

intense selection for production. Altogether, this has yielded a dramatic phenotypic diversification 

of the chicken, both at the level of physiology and morphology.  

The Chicken Genome  

The chicken was the first bird, as well as the first domestic animal to have its genome sequenced 

and analyzed (Ellegren, 2005). The chicken genome provides a resource for researchers seeking 

to enhance the nutritional value of poultry and egg products, to benefit biomedical research, and 

to provide a key anchor species in which to understand the evolution of vertebrates.  In fact, the 

chicken genome fills an essential gap located somewhere between mammals and fish on the tree 

of life. This is because chicken shared a common ancestor with mammals millions of years ago 

not previously covered by other genome sequences in the phylogenetic tree (Burt, 2006). The 

initial draft of the chicken genome (Hillier et al., 2004) was based on DNA from a single inbred 

female RJF Gallus gallus. Although this draft covered almost 86% of the genome, yet sex 

chromosomes (Z and W chromosomes), as well as the major histocompatibility (MHC) region on 

chromosome 16 were poorly represented in the final assembly.  In 2006, subsequent re-sequencing 

of the chicken genome improved the final assembly to approximately 95% of the 1050 Mb genome 

(Burt, 2006). However, there was an area of 90 Mb not covered by any reads, suggested to be 

repetitive sequences.  Over the years, further improvements were made to the avian genome 

reference assembly and a new chicken genome assembly was released in 2015 (Gallus_gallus-5.0) 
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(Schmid et al., 2015).  The total length of chicken DNA is 1230.26 Mb, which is about one-third 

of human genome size, but approximately the same number of genes (Hillier et al., 2004; Schmutz 

& Grimwood, 2004) whereas the size of mitochondrial DNA (mtDNA) is 16,775bp (Desjardins & 

Morais, 1990). The chicken karyotype comprises 39 chromosome pairs as follows: 10 pairs of 

large autosomes (chromosomes 1–10), 28 pairs of microchromosomes (chromosomes 11–38), and 

a pair of sex chromosomes (chromosomes Z and W). Chromosome Z is a large chromosome and 

present as a pair in homogametic (ZZ) males whereas chromosome W is a microchromosome and 

present only in the heterogametic (ZW) females (Masabanda et al., 2004). 

Along with the chicken genome sequencing project, a consortium (Wong et al., 2004) generated 

2.8 million SNPs from a comparison of the RJF reference sequence and partial genome scans of 

three different breeds: silkie, broiler, and layer lines. The chicken genome exhibits a high rate of 

polymorphism. In fact, the small chicken genome produced six times more single nucleotide 

polymorphisms SNP (>7,000,000 SNPs) than human and mammalian genomes, as well as 

considerable microsatellite content (375,000) (Eltanany & Distl, 2010). Single nucleotide 

polymorphisms (SNPs) make up the most abundant source of genetic variation in the chicken 

genome followed by short-length insertions and deletions (Indels). Populations of domestic 

chickens differ from the RJF by a large phenotypic variability due to the accumulation of 

mutations. High density SNP genotyping indicate that about 50% or more of ancestral genetic 

diversity is lost in today’s commercial lines (Muir et al., 2008). Furthermore, it is estimated that 

there is about one SNP every 200 bp (Wong et al., 2004), where 70% of these SNPs are stable and 

common to all three breed lines (silkie, broiler, and layer). These genetic variants play an important 

role in driving genomic evolution. The estimated percentage of amino-acid altering SNPs ranged 

only between 0.3 and 1.2%. One of the major outcomes of the availability of a large database of 
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polymorphisms has been the development of SNP genotyping arrays to simplify screening of many 

individuals. Another major benefit of molecular markers has been in the detection of Quantitative 

Trait Loci (QTLs) associated with various phenotypes or diseases. Furthermore, genome wide 

association studies (GWAS) are important tools for identifying chromosomal regions of the 

genome associated with specific phenotype or trait. The combined analysis of SNP genotypes and 

performance data produces a list of QTLs. Till now, over 4,300 QTLs have been identified for 

chicken (http://www.animalgenome.org/cgi-bin/QTLdb/GG/index). However, GWAS often fall 

short in identify important genes or causal SNPs. This is because the genotyping arrays only search 

for association between pre-defined panels of markers, which mostly includes common SNPs 

leaving out the low-frequency causative alleles or mutations (Gheyas & Burt, 2013). Therefore, 

generally most regions detected through GWAS often explain only a small part of the genetic 

variance of a phenotype or trait (Maher, 2008). With the current development of next generation 

sequencing (NGS) technologies and data processing capabilities it is now possible to perform 

association analysis on all the variants detected from the whole-genome as it is also becoming 

relatively simple, fast and inexpensive procedure.  

Genomic Selection in Poultry Industry 

Since 1950, genetic selection in poultry has shown significant improvements, resulting in 

specialized egg laying breeds and fast-growing meat yield breeds. This extreme success has been 

achieved by selecting and breeding above-average birds using estimated breeding values without 

much knowledge about the number and nature of genes involved (Dekkers, 2005). This results in 

increasing the frequency of superior alleles in the next generation. After releasing the sequencing 

of the chicken genome in 2004, and as the technology and computing capacity developed, major 
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poultry breeding companies were actively interesting in investigating the use of genomic 

information to improve their breeding programs and selection strategies. This relationship between 

genotype and phenotype is of fundamental biological interest since Mendel postulated the 

existence of ‘internal factors’ that are passed on to the next generation. In the last decade, 

tremendous improvements have occurred in the methods available for the identification of DNA 

variation and in our understanding of how this DNA variation can influence phenotypes or traits. 

This has led to several technologies successively improved methodologies and strategies to 

enhance breeding programs. In this dissertation we will review some of the technologies and 

methods in genomic selection and their use in commercial breeding programs. 

Restriction Fragment Length Polymorphisms  

Restriction fragment length polymorphisms, or RFLPs, were the first molecular method of genetic-

mapping that allows individuals to be identified based on unique patterns of restriction enzyme-

digested DNA and probes for either specific genes or genomic dispersed repetitive element 

(Fulton, 2012). It was used to identify large insertions, deletions, and single base changes that 

occurred within the restriction enzyme digestion site that was found to influence traits of 

commercial importance. However, the main drawbacks of RFLPs were the relatively tedious and 

expense to develop and use, thus limiting the number of individuals that could be genotyped 

(Siegel, 2006). 
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Microsatellites 

Microsatellites (MS), or Simple Sequence Repeats (SSRs) are short tandem repetitive sequences 

of short length (1 to 10 nucleotides) detected using the polymerase chain reaction (PCR) procedure 

(Vieira et al., 2016). Amplified PCR products from different individuals are then resolved on 

agarose gel electrophoresis (AGE) or polyacrylamide gel electrophoresis (PAGE), to reveal length 

variations (Powell et al., 1996). Microsatellites are presumably considered to be selectively neutral 

(not influenced by natural selection), and well-dispersed throughout the genome, and they are 

instead influenced by gene flow, genetic drift, and mutation. Therefore, these features are useful 

for estimating population differences and selection programs (Fulton, 2012). Although this method 

enhanced the identification of genomic regions that influenced traits, yet these regions were very 

large, containing potentially hundreds of genes. 

Quantitative Trait Loci 

Quantitative trait locus (QTL) analysis is a statistical method that links together phenotypic (trait 

measurements) and genotypic data (usually molecular markers) to explain the genetic basis of 

variation in multifactorial or quantitative traits (Miles & Wayne, 2008). QTL mapping is a 

powerful method to identify regions of the genome that co-segregate with a given phenotype in F2 

populations. Generally, quantitative traits are complex and multifactorial influenced by many 

genes and environmental conditions (i.e., one or many QTLs can influence a trait or a phenotype). 

The animal genome QTL database (http://www.animalgenome.org) reported 125 publications 

identifying more than 2,400 QTL for 248 traits. Those traits include many aspects such as traits 

that influence egg quality, growth rate, behavior, specific disease resistance, and numerous 

metabolic disorders in chickens (Fulton, 2012). Mostly, these QTL searches were done using MS 
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markers and crosses between very diverse breeds, such as lines created by divergent artificial 

selection. Although QTL mapping provides valuable contributions, bridging the gap between 

genes and the phenotypic, yet QTL analysis is not without limitations. First, QTL studies require 

very large sample sizes and can only map allelic differences that segregates between the parents 

of the F2 cross. Another limitation of QTL mapping is that the DNA regions identified as QTLs 

are still so large that they likely contain hundreds of genes (Miles & Wayne, 2008; Majumder & 

Ghosh, 2005). There are other issues that can limit success of trait values determination in QTL 

analysis, such as the extent of gene-gene interaction (epistasis) and genotype-environment 

interaction (Majumder & Ghosh, 2005). However, there are many refinements and novel statistical 

approaches that help in overcoming these limitations enabling greater successes with QTL 

mapping and provides a significant advance in elucidating the genetic bases of economic 

importance traits.  

Marker-Assisted Selection 

In poultry, multiple QTL regions associated with specific phenotypic traits of economic 

importance were discovered using markers randomly distributed in the genome (microsatellites) 

(Wolc, 2015; Pértille et al., 2017). The goal was that, as important genomic regions associated 

with traits of commercial importance were identified, this information could be then used for 

marker-assisted selection (MAS). Selection could be done at an early age using DNA markers to 

identify those individuals that had superior performance. Currently, the industry is already using 

MAS to some extent, in their breeding programs. This can be used to increase the frequency of 

alleles of economic interest or to eliminate unfavorable alleles (Siegel, 2006). This is a successful 

practice but only to a limited extent. This is because most quantitative traits such as body weight 
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are influenced by many chromosomal regions in the genome, each with a small effect to the 

variation. Additionally, If the DNA marker was not close enough to the region to be selected for 

breeding, after a few next generations, recombination events would occur such that the positive 

association between a specific marker allele and commercially important trait is no longer present. 

Another major problem with MAS is the existence of negative associations with other traits of 

economic importance. For instance, selection for a specific marker that results in rapid growth rate 

could have an undesirable impact on other traits, such as egg size, shell strength, or feed efficiency 

(Fulton, 2012). 

Genome-Wide Association Studies  

Genome-wide association studies (GWAS) are an excellent and powerful complement tool to QTL 

mapping. GWAS compare common genetic variants in large numbers of affected subjects to those 

in unaffected controls (case-control design) to determine whether an association with a trait or 

phenotype exists. GWAS have been made possible by the identification of millions of genetic 

variations across the genome and the realization that a subset of these variations can capture 

common alleles via linkage disequilibrium (Witte, 2010). GWAS overcome the main limitations 

of QTL analysis but introduce several other drawbacks, but when conducted together, they 

compensate each other’s limitations. Since QTLs contain up to hundreds of linked genes scattered 

thorough out the genome, which are then considered challenging to separate, GWAS produce 

many unlinked individual genes or even nucleotides. Although GWAS remain limited to 

organisms with genomic resources, combining the two techniques can increase the statistical 

power with fine mapping of associated genes. However, for many of the GWAS results, the 

findings explain only a limited amount of heritability which may reflects the small effect for most 

genetic variations identified by GWAS (Korte & Farlow, 2013). These issues can be overcome by 
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more detailed examinations that include analyses of less common variants with small effect size, 

use extremely large sample sizes, and well-characterized environmental exposures. In fact, sample 

sizes in the thousands and hundreds of thousands are typically required for GWAS to have 

sufficient statistical power to be able to detect the expected modest associations while examining 

hundreds of thousands of SNPs.  

Single Nucleotide Polymorphisms and SNP Chips 

Simultaneously with the release of the chicken genome sequence in 2004, The International 

Chicken Polymorphism Map Consortium detected and released about 2.8 million single nucleotide 

polymorphisms, or SNPs (∼1 every 400 base pairs) to the public domain (Wong et al., 2004). They 

were identified by comparing the RJF genome sequence with partial sequence information from 

three different domestic chicken strains: one Silkie (Chinese breed), two commercial broilers (meat 

type- broilers), and one inbred laboratory White Leghorn (egg-layer type).  The mean rate was 

about five SNPs per kilobase (Wong et al., 2004). These identified SNPs have established the basis 

for all the large SNP genotyping platforms developed to date. SNPs are single nucleotide variants 

within the DNA sequence. They can be homozygous, heterozygous, or insertions/deletions 

(indels), and can occur within coding genes, non-coding regions of genes or in intergenic regions. 

Coding SNPs can exist in three main types 1) synonymous as (does not change amino acid) within 

coding regions, 2) nonsynonymous (changes amino-acid sequence), and 3) stop-gain/loss (causing 

the gain or loss of stop codons). Most identified SNPs convey no biological consequence when 

they occur within the non-coding regions of the DNA or occur as synonymous SNPs that cause no 

change in the amino acid sequence of a protein. In humans, 99.9% of the DNA sequence is identical 

between individuals within the same population. The remaining 0.1% is significant because it 

contains approximately 80-90% of all genetic variations as SNPs. SNP mutation mechanisms 
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include either transitions: purine-purine (A<>G) or pyrimidine-pyrimidine (C<>T) exchange, or 

transversions: purine-pyrimidine/pyrimidine-purine exchanges (A<>C, A<>T, G<>C, G<>T). 

Investigators can link a SNP with a phenotype by using GWAS where hundreds of thousands of 

SNPs can be scanned per sample. 

Genomic selection in poultry would not be possible without development of high-density SNP 

chips. They provide genome-wide coverage and high throughput nature for rapid, massive, and 

relatively inexpensive genotyping. The first chicken SNP chip had only 3,000 (3K) SNPs (Muir et 

al., 2008), and was soon considered insufficient. After that medium-sized chips were developed 

that made a tremendous impact on genomic selection research and its implementation: a 60K chip 

developed with USDA funding and used by the Cobb and Hendrix groups (Groenen et al., 2011). 

In 2013, a high-density genotyping array (600 K) for chicken was commercially released for public 

use that allows for more complete identification of variation across the genome. (Kranis et al., 

2013). Current methods are based on SNP variation and its influence on traits of interest. However, 

some studies suggest that other types of genetic variation such as copy number variation CNV and 

RNA splicing variants are reported in multiple species and may be important for trait determination 

and are worth exploring for selection (Zhang et al., 2014). 

Next Generation Sequencing  

Next Generation Sequencing (NGS) technology is a DNA sequencing technology which has 

revolutionized genomic research (Behjati & Tarpey, 2013). It is a cost-effective and viable 

alternative or replacement to current SNP genotyping methods, which has the potential to 

improve whole-genome selection (WGS), and GWAS in chicken meat and egg production. NGS 

can be used to sequence whole genome or targeted-region genomic sequence, gene expression 
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profiles (e.g. RNA-seq), and protein-DNA/RNA interactions (e.g. ChIP-seq) (Levy & Myers, 

2016). Whole genome sequencing is by far the most all-encompassing method for identifying 

elements causing developmental defects in any organism. This method can detect any possible 

genetic variation in a genome related to functional alterations such as: SNPs, CNVs, large and 

small Indels, and chromosome rearrangements (Yan et al., 2014). Once the data is sorted and 

possible causative elements are identified, various techniques can be used to confirm or eliminate 

variants such as: qRT-PCR, in situ hybridization, microarrays, RNA-seq, siRNA, protein analysis, 

ChIP-seq etc., (Schmid et al., 2015). The continued development of low-cost, high performance 

sequencing will keep expanding the diversity of genomics applications.  

Epigenetics in Poultry  

Most economically important traits in poultry production exhibit sustained phenotypic variability 

due to polygenic and environmental factors. Many GWAS have been conducted, and many QTL 

have been identified to be associated with commercially important traits, yet the variability of 

complex traits is only partially explained by genetic variation. It is now clear that the epigenome 

plays a significant role in directing and regulating gene expression due to environmental factors, 

and therefore, resulting in genetic variations across individuals (Frésard et al., 2013) The 

epigenome is considered as the second dimension to the genome, and it provides crucial insights 

to gene regulation besides the genomic sequence (Rivera & Ren, 2013). Epigenetics can explain 

how gene expression might be changed and stably maintained without affecting the genome 

sequence. Moreover, epigenetic marks could be transmitted to subsequent generations and 

influence offspring traits that occur either via epigenetic changes acquired during embryonic 

development, or through the inheritance of epigenetic marks via the gametes (Jablonka & Raz, 

2009; Daxinger & Whitelaw, 2012). The epigenetic machinery includes chromatin accessibility, 
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packaging of DNA in nucleosomes, covalent modifications of histone proteins, DNA methylation, 

and regulatory non-coding RNA (such as: lncRNA, miRNA, and snoRNA), and higher-order 

chromatin architecture (such as: nucleosome positioning and occupancy, 3D chromatin 

structure).  (Bernstein et al., 2007; Berger et al., 2009; Bonasio et al., 2010). Moreover, several 

studies revealed that epigenetic marks can actively contribute to the determination of patterns of 

gene activation or silencing, and influence lineage development and tissue-specific expression of 

genes (Youngson, & Whitelaw 2008; Mazzio, & Soliman, 2012; Feil & Fraga, 2012). With the 

current rapid development of NGS technologies and the significant drop of costs, the rate of growth 

in studies and publications of epigenomics have increased dramatically in several model 

organisms. Unfortunately, little is known about epigenetic mechanisms in chickens, although such 

mechanisms could contribute significantly to trait or phenotype variability. Understanding the 

epigenetic regulation of gene expression (when, where, and how much) in chickens remains to be 

elucidated. However, it is expected that in the next few years we will see an increase in epigenome 

data release and publications that will greatly contribute to our understanding of the genome-

phenome relationship.   

Genetic Selection Effects on Broiler Welfare  

Intensive genetic selection of broiler breeders for commercial traits along with management, and 

nutritional improvements conducted by the poultry breeding programs have been successfully 

employed at an unprecedented magnitude over the recent decades. Consequently, several changes 

in production efficiency have greatly increased such as: growth rate while reducing the age to 

slaughter and feed conversion of the commercial birds. (Hunton, 1990). In fact, broiler body 

weights increased by over 400% where feed conversion improved by 50% when compared to 

chickens 60 years ago. (Zuidhof et al., 2014; Buzala & Janicki, 2016).  Despite the success in the 
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beneficial effects of selection for economic important traits, it has been accompanied by 

undesirable side effects that include several behavioral, endocrinological, physiological, and 

immunological disorders. Long- term genetic selection for fast growth and high production 

efficiency often results in correlated responses in other traits where the selection response varies 

with the environment in which the selection takes place. In this review, some examples of 

undesirable side effects of intensive genetic selection for high production efficiency in poultry will 

be described.  For instance, intense selection for rapid growth rate in broiler breeders has led to 

hyperphagic behavior or overconsumption due to aberrant hypothalamic satiety mechanisms 

(Rauw et al., 1998). Moreover, Broilers under intense selection pressure for increased body weight 

have increased deposition of excessive fat because of decreased lipolysis rates (Calabotta et al., 

1985), and increased glucagon and insulin concentrations in the plasma (Sinsigalli et al., 1987). 

Fast growth and heavy body weight have been implicated in musculoskeletal disorders in meat-

type poultry (Julian, 1998). Sanotra et al. (2001) estimated that about 30% of broilers have high to 

moderate leg problems. This results from heavy body weights producing stress on the bones, 

tendons and ligaments of poor structural quality (Whitehead et al., 2003). Fast growth rate 

selection has also resulted in negative correlation for several reproduction traits. Fertility is a trait 

of major interest in the broiler industry, and selection for growth alone for multiple generations is 

likely to result in a decline in fertility or in males natural mating ability (Wolc et al., 2009).  In the 

event of uncontrolled growth, male’s ability to successively mate with the hens efficiently can be 

affected by their high body weight or leg problems. Both male and female influence egg 

fertilization and embryo development, and the contribution of each sex is influenced by genetic 

and non-genetic factors (Rauw et al., 1998). Factors that affect male fertility are: sperm motility, 

quality, metabolism, concentration, and percentage of abnormal or dead sperm cells (Wilson et al., 
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1979).  On the other hand, factors originating from broiler females include egg quality, and 

reproductive behavioral and physiological factors (Brillard, 2003). Subsequently, decreases in 

fertility cause reduction in the hatchability percentage, which indirectly limits the overall success 

of the poultry industry. It is estimated that economic losses are about 1 billion egg/year due to 

infertile eggs (Wolc et al., 2009). Anthony et al. (1989) showed that number of eggs produced 

from broiler breeders selected for high body weight was higher than broilers selected for low body 

weight, but there was a higher percentage of defective eggs. In addition to fertility problems, 

selection for growth rate also has a correlated negative effect on several health traits and immune 

performance. Broilers selected for high body weight showed lower antibody responses than a low 

body weight line when challenged with sheep erythrocytes (Miller et al., 1992). Havenstein et al. 

(1994) reported higher mortality rates at 42 days of age in a commercial broiler strain (9.7%) 

compared with random bred population (2.2%), primarily attributed to sudden death syndrome, 

ascites, and leg problems. Broilers selected for high body weight showed various leg- related 

problems such as: femoral head necrosis, valgus-varus deformities, rickets, and tibial 

dyschondroplasia; estimated to cause losses of about $120 million annually in poultry industry 

(Cook, 2000). In general, skeletal system integrity is affected by many factors including: 

managemental, environmental, and nutritional factors, along with  aging, toxins, and, infectious 

diseases (Rath et al., 2000). Moreover, intense selection for rapid growth rate results in increased 

workload on the cardiovascular system predisposing birds to metabolic disorders such as right 

ventricular failure, cardiac arrythmias, ascites syndrome, and sudden death (Julian, 2005; Cherian, 

2007).  One of these important metabolic problems is ascites syndrome or pulmonary hypertension 

syndrome (PHS).  Ascites is characterized by the accumulation of edematous fluid in one or more 
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of the peritoneal cavities of broilers, a condition known as “water belly” (Figure 1.2). The current 

dissertation aims to investigate some of the genetic and epigenetic aspects of PHS in broilers.   

PHS in Chicken 

PHS or ascites syndrome in broiler chickens is a negative result of selection for rapid growth in 

modern poultry. In the 1950s, PHS was first recognized as a problematic disease at high altitudes, 

under hypoxic conditions and colder weather (Smith, et al.,1954). However, since approximately 

1980, PHS in broilers was also observed at lower altitudes even at sea level, and its incidence 

paralleled rapid growth rate, increased metabolic rate, and improved feed conversion (Scheele, 

1996; Julian, 1998). PHS is caused by several processes all related to the need to ensure a high 

level of oxygen in the tissues. Nevertheless, the primary cause of PHS in broilers is the rapid 

growth rate along with insufficient pulmonary vascular capacity (Julian, 1998). Modern broilers 

can achieve market weight in 60% less time than broilers of 40 years ago (Baghbanzadeh & 

Decuypere, 2008). Selection for fast growth and increased muscle mass in broilers has not resulted 

in a proportionate increase in cardiopulmonary systems (Julian, 1989; 2007; Decuypere et al., 

2000). In fact, the cardiopulmonary capacity of modern broilers is very similar to the old broiler 

strains (Lubritz et al., 1995). As a result, the heart and lungs are required to work very close to 

their physiological limit to meet the high oxygen demands required for metabolic processes. 

However, the cardiovascular and the respiratory systems capacity does not always meet the oxygen 

demands necessary for rapid growth, thus, leading to the development of PHS in broilers. Schmidt 

et al. (2009) have demonstrated that growth rate of the heart has decreased in modern broilers 

when compared to a heritage unselected line since 1950s. It is probable that this decrease in relative 

heart size contributes to the decrease in the cardiac capacity of modern broilers, and therefore 

results in higher incidence in heart related problems, such as PHS. There are a variety of additional 



18 

factors or secondary causes that can increase the incidence of PHS (Julian, 1993; Maxwell et al, 

1997). Several environmental factors and management practices can prompt the development of 

PHS in broilers such as: poor ventilation, high altitude, cool temperatures, high feed intake, dietary 

energy content, continuous lighting, or poor air quality (Julian, 2000). Furthermore, some studies 

have shown that some microorganisms can cause respiratory damage or obstruct the pulmonary 

airways leading to greater resistance to blood flow and thus, PHS development. For instance, gram 

negative bacteria such as: Escherichia, Salmonella, and Campylobacter, produce a 

lipopolysaccharide (LPS) which can trigger pulmonary vasoconstriction leading to pulmonary 

hypertension in broiler chickens (Chapman et al., 2005). In the 1990s, PHS had become a leading 

cause of illness, death and carcass condemnation in the broiler industry and It has been estimated 

that ascites accounts for losses of about US$1 billion annually around the world (Maxwell & 

Robertson, 1997; Navarro et al., 2002). Mortality due to ascites could reach 25% in broiler flocks, 

and it was estimated to cost about 26 million dollars/year (Anthony & Balog, 2003). Nowadays, 

PHS is less an issue because of genetic research, improved management strategies, and intense 

selection against this problem by commercial breeder companies (Druyan & Cahaner, 2007; 

Pavilidis et al., 2007; Druyan et al., 2008).  

PHS Physiology & Etiology 

PHS is a multifactorial disease mediated by environmental, nutritional, genetic, physiological, and 

management factors that all seem to interact together to produce a series of events that culminate 

in ascites syndrome. (Decuypere et al., 2000; Balog, 2003; Julian, 2005). The general pathogenesis 

for this syndrome (Figure 1) has been extensively studied (Julian, 1993, 2000; Scheele, 1996; 

Hassanzadeh et al., 1997; Decuypere et al., 2000; Wideman, 2000; Druyan, 2012). The etiology 

of PHS in broilers is initiated with the increased metabolic rate induced by several factors such as 



19 

cold, moderate heat, air quality, elevated muscle mass, overeating, etc. This leads to an increased 

requirement for oxygen to meet the body’s rapid growth. The architecture of modern broilers such 

as: small, rigid, and fixed lungs in the thoracic cavity, and heavy breast muscle can also increase 

the incidence of PHS. Since broilers have more genetic potential for rapid growth than for oxygen 

supply for that growth, the resultant physiological hypoxia causes an increased cardiac output and 

consequently elevated pressure in the pulmonary arteries. This increase in work load results in an 

enhanced pressure load on the right ventricle, to pump more deoxygenated blood to the lungs 

against the increased pressure. However, the increased blood flow rate through the lungs may not 

allow the red blood cells (RBC) to pick up a full load of oxygen. Thus, the hemoglobin oxygen 

saturation is not complete, leading to lower partial pressure of O2 (hypoxemia) and higher partial 

pressure of CO2 (hypercapnia) (Wideman & Kirby, 1995). Hypoxemia signals the body to produce 

more RBCs to elevate the blood's oxygen carrying capacity to the tissue, which increases blood 

viscosity and volume. This in turn raises the pressure required to move blood through the lung, 

and therefore worsens the pulmonary arteries pressure overload (Diaz et al., 1994; Julian, 2007). 

Cardiac muscle cells respond to chronic hypoxia by causing dilation and thickening (hypertrophy) 

of the right ventricular wall (Figure 1.3). Meanwhile, the valves between the right ventricle and 

the right atrium thicken and start to leak blood back into the atrium as the right ventricle gets more 

enlarged and dilated. Once valvular insufficiency occurs, a drop in cardiac output and pulmonary 

hypertension results, but at the same time marked pressure increases in the right atrium, sinus 

venosus, vena cava and portal vein, and eventually leads to right ventricle failure (RVF). The 

increased blood pressure in the veins, liver, and abdominal vessels forces the leakage plasma fluid 

(edema) out of the vessels, particularly the sinusoids of the liver, into the peritoneal spaces, which 
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is the most apparent sign of ascites. (Figure 1.2). (Wilson et al., 1988; Julian, 1993; Balog, 2003; 

Druyan, 2012; Wideman et al., 2013).  

Experimental Methods of Inducing PHS In Broilers 

Chickens are not only major livestock animals but also excellent model organisms for studying the 

genetic basis of phenotypic traits, like PHS. There are several methods that have been used for 

inducing PHS in broilers that include both invasive and noninvasive techniques for research 

purposes. One of the surgical techniques includes clamping the left pulmonary artery that results 

in immediate increase in cardiac output and pulmonary pressure leading to PHS development. 

Birds that underwent the surgery showed 90% ascites incidence compared to 8 % non-surgery 

control birds (Wideman & Kirby, 1995a).  Although this method was highly effective in inducing 

PHS, yet it requires time and skill to perform, which restricted application to large scale 

commercial selection. A less invasive method was developed that involves intravenous injection 

of micro-particles into the systemic circulatory system (Wideman et al., 2002; Wideman & Erf, 

2002). Micro-particles are then carried to the lungs where they become trapped in the pulmonary 

arterioles and block subsequent blood flow leading to the development of PHS. Non-invasive 

methods to induce PHS in broilers include cold stress (Lubritz & McPherson, 1994; Wideman et 

al., 1998; Sato et al., 2002), long photoperiods (Hassanzadeh et al., 2000; Julian, 1990), high 

elevation (Balog et al., 2000a), and dietary supplementation (Decuypere et al., 1994). Out of these 

listed techniques, high elevation was found to be superior to other methods in term of inducing 

PHS and has been used to develop excellent resource populations for many generations for several 

PHS related studies (Owen, et al., 1990; Balog et al., 2000a; Balog et al., 2000b; Anthony et al., 

2001; los Santos et al., 2005; Pavlidis et al., 2007). This dissertation utilized a hypobaric model to 
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simulate a set elevation above sea level creating a hypoxic environment for PHS induction in 

broilers (Figure 1.5).  

Divergent Selection for PHS 

Since ascites was first observed in birds raised at high altitude, the use of natural or simulated 

high-altitude conditions was one of the first and simplest experimental techniques to be used (Hall 

& Machicao, 1968; Balog, 2003). Dr. Nicholas Anthony, (University of Arkansas, Poultry 

Science) has successfully developed divergently selected PHS-susceptible (SUS) and PHS-

resistant (RES) lines of broiler chickens reared in a hypobaric chamber (2,900 m above sea level) 

to induce the disease (Anthony, 1998; Anthony and Balog, 2003; 2013; Pavlidis et al., 2007, 

Wideman et al., 2013). The hypobaric chamber simulated high altitude conditions via a partial 

vacuum. With the increase in altitude, the partial pressure of O2 drops significantly resulting in 

hypoxia (Figure 1.5). Three separate groups of chicks from a commercial pedigree elite line which 

had experienced one generation of relaxed selection were transported to the poultry research 

facility at University of Arkansas in 1995, to serve as the base population. Those birds were placed 

in the hypobaric chamber and for the next six weeks information was collected such as: mortality, 

probable cause of death, ascites symptoms, total body weight, heart shape, right and total ventricle 

weight, and gender.  At the end of the six-week trial, all remaining birds were euthanized by 

cervical dislocation and phenotyped as PHS-resistant or PHS-susceptible based on apparent 

symptoms. Subsequent breeding was performed using siblings of the birds challenged in the 

hypobaric chambers based on their ascites mortality records. Therefore, susceptible and resistant 

lines were generated based on long–term divergent selection in the hypobaric chamber. A separate 

group was randomly mated and maintained across all generations of selection under typical 

management and environmental conditions to serve as the control population, known as the relaxed 
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line (REL line).  The line selection showed an average incidence of ascites of 98% in the SUS line, 

and 7% in the RES line by the 14th generation, while the REL line was approximately 66% (Figure 

1.6) (Anthony et al., 2001; Balog et al., 2003; Pavlidis et al., 2007, Wideman et al., 2013). 

Genetics of PHS 

PHS has both genetic and environmental components with estimates of heritability ranging from 

0.1 to 0.7 (Lubritz et al., 1995; de Greef et al., 2001; Moghadam et al., 2001). A cross of the SUS 

and RES lines was used to generate an F2 population. GWAS of the F2 population used a 3,072 

SNP panel and identified several chromosomal regions that were associated with ascites phenotype 

(Krishnamoorthy et al., 2014). Further genetic and statistical analysis identified a total of 7 regions 

on 4 chromosomes that might contain potential candidate genes for resistance/susceptibility to 

PHS: Three regions on Gga1: 0.6-1.1, 18.3-21.5, and 127.0-128.3 Mbp; two regions on Gga9: 

13.5-14.8, and 15.5-16.3 Mbp; one region on Gga27: 2.0-2.3 Mbp; and three regions on 

GgaZ:31.2-34, 47.1-48.9, and 65.0-66.0 Mbp on GgaZ (according to Galgal 4 assembly, 2011).  

The most statistically significant regions were the two on Gga9 that included three potential 

candidate genes: AGTR1 (Angiotensin II Type 1 Receptor), UTS2D, (Urotensin 2 Domain 

Containing protein located on Gga9, and HTR2B, (serotonin receptor/transporter type 2B) 

(Wideman et al., 2013; Krishnamoorthy et al., 2014, Dey et al., 2016).  These genes have all been 

shown to be involved in the development of PAH in humans and mice PAH (Cuffe et al., 2014; 

Palatini et al., 2009, Chassagne et al., 2000; Pousada et al., 2015 Ong et al., 2008, Ullmer et al., 

1995, Launay et al., 2002, West et al., 2016).  This dissertation is the result of extensive analysis 

of the region encompassing the HTR2B gene.  Separately, others have investigated the region 

encompassing AGTR1 and UTS2D.  Dey et al (2016) showed that AGTR1 and UTS2D genes are 

only marginally associated with ascites when extended to additional experimental and commercial 
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populations. Subsequent multi-generational GWAS using a 60k SNP panel in the REL line 

identified regions on Gga2 around 70 Mbp, and on Gga Z around 60 Mbp as candidates for 

association with PHS. The region on Gga 2 was found to be associated with resistance in male 

broilers and contained the genes for melanocortin-4 receptor (MC4R) and cadherin 6 (CDH6). 

Within the Gga Z region was the gene for myocyte enhancer factor 2C (MEF2c).  This region was 

putatively associated with PHS resistance in males and females (Tarrant et al., 2017). However, 

attempts to use these two regions for Marker-Assisted-Selection (MAS) in breeding showed that 

it was not reliable for selection for PHS.  Recently, our research group has used whole genome 

resequencing (WGR) in the REL line to identify 31 candidate QTLs for ascites phenotype. These 

regions are under further investigation.  One of these regions was validated by Dey et al (2018) 

and identified the carboxypeptidase Q (CPQ) gene on chromosome 2 (near 127 Mbp) to be 

associated with PHS resistance in male birds (Dey et al., 2018).  

 SYNOPSIS 

The current dissertation deals primarily with the genetic and epigenetic investigations of PHS in 

broiler chickens. The first study (chapter 2) was designed to investigate the association of HTR2B 

with PHS in broilers. HTR2B gene located on chromosome 9 (Gga9:15 Mbp) was one of the 

candidate genes that showed association to PHS phenotype based on the F2 cross of the RES and 

SUS lines. SNP assays were developed for the gene region of HTR2B to examine the possible 

association with ascites phenotype. Moreover, expression of HTR2B gene, and allele specific 

expression (ASE) using SNP located in exon 3 of the HTR2B gene (T>C rs315854205) were 

determined in different tissues at different developmental age stages under normal and hypoxic 

conditions. The second study (chapter 3) was an extended investigation to our previous survey 

of the association of mitochondrial prevalence in multiple tissues with ascites susceptibility and 
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resistance in broilers. Previously we reported that for a small sample set of breast muscle at 22 

weeks of age for RES and SUS males, the samples from SUS males had approximately twice the 

ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nucDNA), and that this difference 

correlated with a difference in the level of expression of PPARGC1A.  This dissertation has further 

investigated this apparent difference and extended the analyses to both genders, multiple tissues, 

and different developmental stages. Furthermore, the relative expression of five genes known to 

regulate mitochondrial biogenesis were assessed. The aim of third study (chapter 4) was to map 

genome-wide changes in chromatin accessibility resulting from hypoxic challenge.  The analysis 

used ATAC-seq technology (Assay for Transposase accessible Chromatin with high-throughput 

sequencing) to identify changes in promoter accessibility for pulmonary artery tissue in PHS- 

susceptible and PHS- resistant lines. This is the first attempt to examine epigenetic modifications 

associated with hypoxic relative to ambient conditions in broilers. Finally, chapter 5 discusses the 

results and highlights concluding remarks of this dissertation and its importance to poultry 

industry.   
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FIGURES 

 

 

 

 

Figure 1. 1 Progress in broiler performance. A) U.S per capita consumption of various types 
of meat between 1965 and 2014. B) Trends in Broiler Performance from 1925 till 2012. Adapted 
by Georgia Poultry Federation, University of Georgia.  
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Figure 1. 2 Broiler with ascites symptoms. Accumulation of fluid in the abdominal cavity of an 
ascites affected bird. (Source: studyblue.com; http://neospark.com/ascites-kcp.html) 

  



38 

 

Figure 1. 3 Cross-sectional slice through ventricles of two broiler hearts. (a) a section of 
healthy heart; (b) Ascitic heart marked ventricular dilation (Olkowski et al.,2001). 
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Figure 1. 4 Flow chart showing the physiological and pathophysiological factors that contribute 
to the development of ascites syndrome in broilers. (Decuypere et al., 2008).   
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Figure 1. 5 Hypobaric chamber model for PHS induction in broilers.  
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Figure 1. 6 Ascites Cumulative % mortality data for SUS, RES and REL lines at 

generation 14 (Wideman et al., 2013). 
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CHAPTER 2 

Polymorphism Detection and Allele- Specific Expression for the HTR2B Gene associated with 

Pulmonary Hypertension Syndrome in Broilers 
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ABSTRACT 

The aim of this study was to investigate the association of HTR2B polymorphisms with pulmonary 

hypertension syndrome (PHS) in broilers, and to determine total gene and allele -specific 

differences in expression levels. PHS, or ascites is a terminal result of pulmonary hypertension, 

and is a significant metabolic disease of fast growing meat-type chickens. PHS results from a 

constant increase in pulmonary artery pressure as an immediate response to hypobaric hypoxia. A 

Previous genome wide association study (GWAS) had shown the association of a region on 

chromosome 9 (Gga9:15 Mbp) with PHS phenotype in broilers. We identified a candidate gene, 

HTR2B within this chromosomal region that might mediate the quantitative effect. A heterozygous 

(T>C rs315854205) single nucleotide polymorphism SNP located in the 3rd exon of the HTR2B 

gene was found be associated with PHS resistance (P=0.008) in one of three commercial broiler 

lines but not in our experimental lines. The results suggested that HTR2B polymorphisms are 

partially associated with PHS, but not a universal marker for genetic predisposition to ascites 

syndrome. The exonic SNP was used as a marker to measure allele specific expression (ASE) in a 

variety of tissues at different developmental ages. Two bird groups were used: 2 weeks and 6 

weeks of age challenged in hypobaric hypoxic conditions (n=3 each). Total and allele specific gene 

expression was analyzed in heterozygous (T>C rs315854205) birds. We observed a statistically 

significant higher expression level of the C-allele vs the T-allele in hypoxic birds at 6 weeks of 

age in all tissues when compared with hypoxic birds at 2 weeks of age. However, the overall 

expression of HTR2B was reduced in hypoxic birds at 6 weeks of age as compared to hypoxic 

birds at 2 weeks of age.  

Thus, we conclude that the hypoxia-induced decrease in HTR2B gene expression at 6 weeks of 

age vs 2 weeks of age results from preferential down-regulation of the T-allele. Our findings are 



44 

important for understanding the mechanisms that underlie the patterns of HTR2B expression and 

its potential impact on the phenotypic variation of PHS syndrome in broilers.  
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INTRODUCTION 

Ascites, or pulmonary hypertension syndrome (PHS), is a metabolic disorder frequently observed 

in meat- type chickens (broilers), which is initiated when the body is insufficiently oxygenated 

(Julian,1993, 2000). Due to intense selection for many years for productive traits, modern broilers 

seem to be more prone to develop ascites. Environmental, nutritional, physiological and genetic 

factors affect the incidence of PHS (Decuypere et al., 2000; Balog, 2003; Julian, 2005). Such 

triggering factors of PHS lead to a series of pathophysiological changes which begins with 

pulmonary hypertension and ultimately leads to right ventricular failure and death. Affected birds 

can be identified through the presence of one or more of these symptoms: fluid in the abdominal 

cavity, an enlarged flaccid heart, and occasional liver changes (Decuypere et al., 2000; Julian, 

2007). This metabolic disorder causes an estimated economic loss to the poultry industry of $100 

million/year as recently as 2015 (M. Cooper and S. Gustin, personal communication, Cobb-

Vantress, Inc.). In humans, idiopathic pulmonary arterial hypertension (IPAH) is a severe and 

progressive disease of unknown cause usually culminating in right heart failure, significant 

morbidity and early mortality (Firth et al., 2010). Despite significant advancement in the 

management of IPAH, yet there is no cure and it stills considered as a worldwide health burden 

(Taichman & Mandel, 2013). Animal models in IPAH research have contributed significantly to the 

current understanding of the disease pathogenesis. Broiler chickens are often used for genetic 

research studies for reasons such as: 1) relatively short generation interval, 2) breeding feasibility, 

3) and distinct phenotypes. Our group at the University of Arkansas was able to identify a unique 

and a common disease characteristic in PHS broiler chickens. Dr. Wideman and others, identified 

the spontaneous development of complex plexiform lesions in the lungs of broiler chickens that 

had been genetically selected for susceptibility to PHS (Wideman et al., 2011). Thus, broiler 
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chicken model of susceptibility to IPAH provides an important experimental model to investigate 

the molecular and physiological mechanisms of disease pathogenesis (Wideman & Hamal, 2011). 

Several studies have indicated the involvement of serotonin (5-hydroxytryptamine, 5-HT) and its 

receptors in the etiology of PAH (Esteve et al., 2007; MacLean & Dempsie, 2009). Serotoninergic 

appetite suppressant drugs have been associated with an increased risk of developing PAH. A 

sustained elevation in 5-HT levels was found in the plasma of pulmonary hypertension PAH 

patients (Kéreveur et al., 2000). Isolated smooth muscle and endothelial cells from pulmonary 

arteries of PAH patient’s express mRNAs for several serotonin receptors including HTR2B 

(Ullmer et al., 1995).  Furthermore, using the chronic-hypoxic-mouse model of PH, HTR2B was 

found to play a role in PAH in response to hypoxia (Launay et al., 2002). Subsequent treatment 

with HTR2B antagonists completely prevented the development of the hypoxia induced PH. 

Additionally, mice with knockout for HTR2B serotonin receptor were protected against hypoxic 

PH (Launay et al., 2002). In one study, HTR2B antagonism prevent the onset of heritable PAH in 

BMPR2 mutant mice by inhibiting the translocation and downstream activity of phosphorylated 

tyrosine kinase SRC, thus prevent the development of PAH (West et al., 2016).  In broilers, 5-HT 

is a potent pulmonary vasoconstrictor that triggered pulmonary hypertension (PH) by activating 

receptors expressed on pulmonary artery smooth muscle cells PASMC (Chapman & Wideman, 

2002).  High levels of 5-HT have been induced in broilers using various methods such as 

intravenous micro-particles injection, diets containing high levels of tryptophan (a serotonin 

precursor) or serotonin intra venous infusion (Chapman & Wideman, 2002; Hamal et al., 2010; 

Wideman et al., 2013). In response to hypoxia, 5-HT is released from PASMC causing cell 

proliferation and irreversible vascular remodeling (Chapman et al., 2008). Dr. Wideman and 

coworkers recorded a high expression of HTR2B receptors in the lungs of broilers from a PAH-
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susceptible line compared to PAH- resistant line when microparticles were injected in doses 

sufficient to obstruct ≥15% of the pulmonary arterioles suggesting their key role in pulmonary 

vasoconstriction and PASMCs proliferation (Chapman & Wideman, 2002, 2006a, 2006b). 

However, pretreatment with methiothepin (serotonin receptor blocker) eliminates the increase in 

pulmonary vascular resistance PVR and reduce pulmonary arterial pressure PAP (Hamal et al., 

2010; Wideman et al., 2013). Altogether, these observations are consistent with the important role 

of the serotonin and serotonin receptors overexpression to susceptibility to PAH. Our lab 

conducted several studies to map chromosomal regions contributing to ascites susceptibility or 

resistance. One of the earliest studies involved a cross between an ascites resistant line (RES) with 

ascites susceptible line (SUS) to generate an F2 population where the birds were phenotyped as 

resistant or susceptible using a hypobaric chamber challenge (Pavlidis et al., 2007). The genome 

wide association study GWAS of the F2 population used a 3,072 SNP panel (Krishnamoorthy et 

al., 2014). This study identified several chromosomal regions that were associated with ascites 

phenotype. Further genetic analysis identified a QTL on Chromosome 9 (Gga9) around 15 Mbp 

(2015 genome assembly coordinates) that showed association with ascites and cardiac hypertrophy 

in several different broiler lines (Krishnamoorthy et al., 2014).  A candidate gene, HTR2B was 

located within this QTL as a possible mediator for PHS phenotype (Figure 2.1). The objectives of 

the current study were to develop SNP assays for the gene region of HTR2B to examine the 

possible association with ascites phenotype, to analyze the expression of the HTR2B gene, and to 

examine allele specific expression (ASE) using a single nucleotide polymorphism (SNP) located 

in exon 3 of the HTR2B gene (T>C rs315854205) in different tissues at different developmental 

age stages under hypoxic conditions.  
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MATERIALS AND METHODS 

Genomic Data 

All genome positions indicated in this study are according to the December 2015 assembly of the 

Gallus gallus genome GenBank accession ID: GCF_000002315.4. Genomic sequences for 

specific chromosomal regions or genes were downloaded using UCSC genome browser 

(https://genome.ucsc.edu/). 

Chicken Lines 

All animal procedures were preapproved by the University of Arkansas Institutional Animal Care 

and Use Committee (under protocol 12039 and 15040). Birds used for this study were taken from 

an ongoing, multigenerational ascites selection study at the University of Arkansas (Pavlidis, et 

al., 2007). Three experimental lines were used in this study; the ascites- resistance (RES), ascites- 

susceptible (SUS), and relaxed (REL) lines were produced through 18 generation of divergent 

selection from a broiler elite line using sibling selection based on ascites phenotype as determined 

in a hypobaric challenge (Pavlidis, et al., 2007). Three commercial lines were used in this study. 

Lines W and Y represent male elite lines selected mainly for growth, yield and feed conversion, 

whereas line Z is a female elite line selected primarily for growth traits and reproduction.  

DNA Isolation 

Genomic DNAs were previously isolated from blood from phenotyped birds and stored frozen 

(Krishnamoorthy et al., 2014) using a rapid method (Bailes et al., 2007). 
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Primer Design and PCR Sequencing 

The DNA region for the HTR2B gene on Gga9 at 15205069-15214131 was downloaded using the 

UCSC genome browser.  Primer3 (http://frodo.wi.mit.edu/) was used to design PCR primers and 

probes, which were synthesized by Integrated DNA Technologies (IDT; Coralville, IA, USA). 

Primer and probe information are listed in Table 2.1. PCR was performed using either an MJ 

Research PTC-100 thermocycler (BioRad Laboraotories, Hercules, CA) or an Eppendorf 

Mastercycler Gradient (Eppendrof North America, Hauppauge, NY). PCR mixtures (40 μL) 

contained: 1X Taq Buffer (50 mMTris-Cl pH 8.3, 1 mM MgCl2, 30 µg/ml BSA), 0.2 mM dNTPs, 

0.5 μM of reverse and forward primers, 4 U of Taq polymerase and 2 μL (approximately 100 ng) 

of target DNA. Cycle parameters were 90°C for 30s, 40 cycles of 90°C for 15s, primer-specific 

soak for 30s (Table 2.1), 72°C for 60s, followed by a final extension at 72°C for 3 minutes. PCR 

conditions were optimized for each primer pair and used to amplify specific regions of the HTR2B 

gene or mRNA. PCR products were evaluated for quality on agarose gel, purified for sequencing 

using RapidTip pipettes tips according to the manufacturer’s instructions (Diffinity Genomics, 

West Chester, Pennsylvania), then quantified using a TKO 100 Fluorometer (Hoefer Scientific 

Instruments, Livonia, Michigan). DNA samples were then mixed with single primers and 

submitted for capillary sequencing (Eurofins Genomics, Louisville, KY) for confirmation. The 

sequences ab1 files were aligned and analyzed using SeqMan Pro software (DNAStar, Madison, 

WI). SNPs were identified from the sequence data through comparison to the Jungle Fowl 

sequence.  
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SNP Genotyping 

Primers and probes for Taqman/exonuclease assays were developed to genotype for specific SNPs 

of the HTR2B gene listed in Table 1. SNP genotypes were determined by quantitative-PCR 

(qPCR) in 96 well plates using a CFX96 real-time thermocycler (Bio-Rad Laboratories, Inc., 

Hercules, California). Exonuclease assays were optimized for soak temperature for genotype 

discrimination. Reactions (20 μL) were as for standard PCRs (see above with addition of the two 

probes at 0.25 μM. The cycling protocol was: 1) 90°C for 30s, 2) 90°C for 15s, 3) 64°C for 30s, 

4) repeat steps 2 and 3 for 10 times, 5) 90°C for 15s, 6) 64°C for 30s + plate read, 7) Repeat steps 

5 and 6 for 30 times. Amplification profiles were visually inspected to score for homozygous for 

either SNP pattern or heterozygous. 

Statistical Methods 

Genotype data (SNPlotypes) for each sample were compiled and statistically analyzed in Microsoft 

Excel (Microsoft Corporation, Redmond, WA).  Expected allele and genotype frequencies were 

calculated using observed allele frequencies in the entire population. Expected genotype counts 

were also computed based on standard Hardy-Weinberg Equilibrium HWE (p2+2pq+q2) to assess 

whether the assay was performing adequately. For each allele and genotype, we calculated P- 

values using the ChiTest in Excel comparing the observed counts to the expected counts for the 

resistant and susceptible subpopulations. P-values for each genotype were corrected using a simple 

Bonferroni correction for multiple genotype assays. Significant deviation was assumed for P<0.05. 
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HTR2B gene and allele specific expression 

Genotyping for Exon3 Heterozygous SNP9093 

Genotyping for SNP9093 was performed on REL line birds (18th generation) by TaqMan 5’-

exonuclease assays using qPCR in 96 well plates using a CFX96 real-time thermocycler (Bio-Rad 

Laboratories, Inc., Hercules, California). Primers and probes for these assays are shown in Table 

1. Genotyping reactions (20 μL) were as for standard PCRs (see above with addition of the two 

probes at 0.25 μM). Cycle parameters were as indicated above. Some PCR products were purified, 

quantified, and submitted for sequence verification, as indicated above. Sequence ab1 files were 

aligned using SeqMan Pro 14 (DNASTAR Lasergene Suite 14) for editing and scoring sequence 

data.  

Tissue Collection 

For RNA expression analyses, genotyped REL line birds were raised under hypoxic challenge 

(simulated 9000 ft altitude in hypobaric chamber).  At particular time points (2 weeks & 6 weeks) 

birds were euthanized by cervical dislocation.  Tissues were rapidly collected and immediately 

placed in RNAlaterTM, then stored at -20 oC.  

RNA Extraction and cDNA synthesis 

Total RNA was purified from tissues using the standard acid guanidinum thiocyanate-phenol- 

chloroform extraction method (Chomczynski & Sacchi, 1987). The extracted RNA was assessed 

for quantity and purity (A260/280) using NanoVue spectrophotometry (GE Healthcare Bio-

Sciences, MA, USA). RNA integrity was evaluated by electrophoresis in 1.5% agarose gel in 

0.5×TBE buffer (50 mM Tris, 1 mM Na2EDTA, and 25 mM Borate, pH 8.3), stained by 0.5 µg/ml 
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ethidium bromide. Samples that did not show 3 strong and distinct bands (28S, 18S, and 5S rRNA) 

were discarded. Total RNA samples were further verified to be free of contaminating genomic 

DNA by the absence of PCR products from RNA samples using primers for genomic DNA. 

Chicken TATA-binding protein (TBP) was used as the reference gene (Radonic et al., 2004). First 

strand cDNA (Gubler & Hoffman, 1983) was PCR amplified in a 40 μL reaction for ASE in an 

Eppendorf Mastercycler Gradient (Eppendrof North America, Hauppauge, NY) using conditions 

specified above. Products were evaluated for quality on agarose gel and purified for sequencing 

using RapidTip pipettes tips (Chiral Technologies, West Chester, PA). Quantity was assessed by 

fluorimetry with Hoechst 33258 (GLOMAX Multi Jr, Promega Corp., Madison, WI) and purity 

(A260/280) by spectrophotometry (NanoVue, GE Healthcare Bio-Sciences, MA, USA). 

Expression of HTR2B and TBP was measured in parallel for each sample using RT-qPCR, CFX96 

real-time thermocycler (Bio-Rad Laboratories, Inc., Hercules, California). Data from HTR2B 

mRNA expression were then adjusted for relative gene expression using the 2-ΔΔCt method (Livak 

& Schmittgen, 2001). For ASE analysis, cleaned cDNA amplicon samples were then submitted 

for capillary sequencing as above and sequence ab1 files were aligned using SeqMan Pro 14 

(DNASTAR Lasergene Suite 14). Using sequence scanner v1.0, the relative mRNA expression 

ratios between the two alleles of the heterozygous SNP9093 were estimated by dividing the peak 

height of the “major” (i.e., highest) peak by the sum of both alleles.  

ASE statistical analysis 

Allele specific expression was performed in cDNA from heterozygous individuals. The PCR was 

performed in triplicate for each sample and the expression of allelic transcripts was assessed 

directly by dividing the ratio of the major allele by the sum of both alleles from the sequence 

histogram in the ab1 file. Data are expressed as means ± SD where least square means were 



53 

separated using protected least significant difference procedure (LSD) at 5% level of significance. 

Two-tailed student T-test was performed to compare the ASE for the 2 weeks and 6 weeks of 

hypoxic challenged birds. The analysis was carried out using GLIMMIX procedure in SAS 

(version 9.4). 

RESULTS 

HTR2B gene is composed of two short non-coding exons followed by exon 3 which encodes a 

predicted protein of 462 aa residues. For this study, we designed multiple primers to PCR amplify 

and sequence segments of the HTR2B gene from six RES and nine SUS samples (Table 2.1) to 

detect SNPs that are segregating in our research lines. We sequenced the three exonic regions of 

HTR2B with flanking intronic sequences. In addition, we sequenced approximately 1000 bases 

upstream of exon 1 to identify SNPs in possible regulatory elements and transcription factor 

binding sites. All sequences were aligned with the sequence for this same region of the HTR2B 

gene from the 2015 genome assembly for Gallus gallus, the Red Jungle Fowl (JF). A total of 19 

SNPs were identified including of SNP875A>G (Gga9:1521455) in the 5' untranslated region 

(UTR), SNP6958A>G (Gga9:15208073) in intron 2, and two SNPs in exon 3 (SNP9093T>C 

(Gga9:15205937) and SNP9240C>A (Gga9:15205790). Based on our sequence data SNP9093 is 

in complete linkage with SNP9240 which is 147 bases downstream. SNP9093 is a silent, the third 

base substitution in a GAY codon for Asp255, whereas SNP9240 is a silent, third base substitution 

of a TCM codon for Ser304.  The other 15 SNPs were in the 5’ flanking region of the gene, 

upstream of the predicted transcription start site of the HTR2B gene (Table 2.2). Five SNPs 

spanned an 18-base region span at 496 C>T (Gga9: 15214543), 505, 507 and 510 CCT>del3 

(Gga9: 15214526, 15214524, 15214521), and 515 T>C (Gga9: 15214516).  Using the GeneQuest 

search tool in DNAStar these SNPs affect potential binding sites for multiple transcription factors 
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(NFAT5, NFATc3, NF-κB, and Myb) and thus could affect expression of the HTR2B gene, and 

ascites susceptibility or resistance.  Examination of the sequence reads determined that all “non-

reference” SNPs were in complete linkage and thus define two alternative alleles.  Therefore, this 

region was targeted for genotyping a larger collection of DNA samples using exonuclease qPCR 

tests (TaqMan assay). However, to avoid problems with design of exonuclease probes to this 

highly polymorphic region we chose to target a single SNP 71 bases downstream that was also in 

complete linkage, SNP586A>C (Gga9:15214444). Thus, genotype determinations were for both 

the promoter SNP586, and exon3 SNP9093. We then used these assays on a collection of DNAs 

from our ascites research lines (SUS, RES, and REL lines) and three commercial lines (Y, Z and 

W).  All birds had been phenotyped for ascites resistance or susceptibility in the hypobaric chamber 

(simulated ~ 9000 ft) (Pavlidis et al., 2007; Krishnamoorthy et al., 2014).  

We analyzed two generations of the REL line, generation 14 (n=192) and 18 (n=235) for both 

SNP586 and SNP9093. Analysis of SNP586 genotypes in both generations revealed roughly 

similar frequencies of all three genotypes with similar patterns of both. The CC homozygote was 

most frequent at 63% and 50% in generation 14, and 18 respectively.  The AA homozygote was 

10% and 23% in generation 14, and 18 respectively, while the AC heterozygote was 27% and 28% 

in generation 14, and 18 respectively (Table 2.3). All three genotypes showed similar frequency 

with respect to gender and phenotype. However, a significant deviation from HWE was observed 

in both generations because of high homozygosity for this SNP. This could signify the presence of 

null alleles (unidentified SNPs in the primer and/or probe regions). Since the deviation was 

observed consistently in two different generations, we discounted the possibility of the existence 

of artifacts of the PCR assay. Sequence analysis of multiple randomly selected PCR products from 

the genotype assays failed to identify any null alleles and confirmed the observed genotypes. 
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Evaluation of allele and genotype frequencies for SNP586 in both generations showed no 

association with resistance or susceptible phenotype in the REL line chickens for both or either 

gender. In the research SUS and RES (n=96 for each) lines, the genotype data for SNP586 was 

consistent with HWE expectations for both lines (Table 2.3).  The SUS line is segregating for both 

alleles with nearly equal numbers of homozygotes alleles (25% CC homozygote, 29% AA 

homozygote, and 46% heterozygote).  In RES line birds, the AA homozygote was the major allele 

at 49%, and the CC homozygote was the minor allele at 11%, and only 37% for AC heterozygote 

allele. Selection for ascites resistance was associated with an increase in the A allele in RES line 

birds.  

The same two generations of REL line samples were genotyped for SNP9093.  The genotype data 

for generation 14 did not confirm with HWE because of reduced heterozygosity at this locus 

(observed=31% vs expected 45%) but generation 18 genotype data was consistent with HWE 

(Table 2.3). A shift in genotype frequencies from generation 14 to generation 18 was observed in 

REL line where the TT homozygotes had a lower frequency in generation 18 (21%) compared 

with generation 14 (50%). On the other hand, the CT heterozygote allele was observed at greater 

frequency in generation 18 (53%) than in 14 (31%). The CC homozygotes were equally distributed 

in both generations (20% and 26% in generation 14 and 18 respectively). However, allele and 

genotype frequencies for SNP9093 showed no association with resistance or susceptible phenotype 

in the REL line birds for both or either gender in both generations (Table 2.3). In the research RES 

and SUS lines, the TT homozygote was more frequent in the SUS (30%) than the RES line (11%). 

Alternately, the CC allele was observed more frequent in RES line (56%) than the SUS line (23%). 

Therefore, selection for ascites resistance was associated with an increase in allele C in the RES 

line.  
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Analysis of three commercial lines (line W, Y, and Z) for the two SNP loci showed that these two 

SNPs are present at different frequencies in each line (Table 2.4, and Table 2.5). For SNP586, lines 

W, Y, and Z genotypes conformed with HWE. In line W, allele A was the major allele where allele 

C was the minor allele (84% vs 16%). The low minor allele frequency at this locus in line W may 

preclude detecting any association with respect to phenotype or gender. Analysis of line Y samples 

for the 586SNP identified the A allele at 72% while the frequency for the C allele was 28%.  The 

CC homozygote was overrepresented in resistant females 21% and underrepresented in susceptible 

females 5% with statistically significant deviation (P=0.025). Thus, there might be an association 

to ascites in females for this line but would require analysis of additional phenotyped samples for 

confirmation. In line Z, there were no significant differences detected between frequencies of the 

resistant and susceptible birds and no association for any genotype for either gender in respect to 

ascites phenotype (Table 2.4).  

For SNP9093, genotype data confirmed with HWE in all three commercial lines. We saw little or 

no association of SNP9093 with ascites phenotype in line W since this line was predominantly 

homozygous CC (91%). Thus, no clear association with ascites phenotype although there is one 

intriguing difference for the heterozygous CT; where 13% of resistant birds vs. 4% of susceptible 

birds were heterozygotes (P=0.008).  Unfortunately, because the CT heterozygote is only 9 % of 

all genotypes, the counts in females and males were low (CT males: 11 resistant, 3 susceptible and 

CT females: 16 susceptible, 5 resistant) with no significant difference. In Line Y and line Z, 

genotypes data were all nearly equal in frequency. Moreover, there were no statistical associations 

with any allele, or genotype, for either gender with respect to ascites phenotype. Thus, in general, 

there was no strong statistical correlation for any genotype with phenotype for either gender in any 

of the three commercial lines for this locus (Table 2.5). 
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Next, we combined the genotype data for promoter SNP586 and exon 3 SNP9093 to generate 

haplotypes for further ascites association analyses. There was no association with ascites 

phenotype observed for either gender for any haplotype in any of the research or commercial lines 

(Tables 2.6, 2.7, 2.8, 2.9). In general, SNPlotype data for HTR2B gene is not consistent with this 

region being a QTL for ascites in different research or commercial lines. 

Then, we decided to take a further step and analyze the possible effect of exon 3 SNP9093 (T>C 

rs315854205) on mRNA expression in two different REL line bird groups all heterozygotes for 

SNP9093 and across various tissues. Birds represented 2 developmental age stages: 2 weeks old 

hypoxic challenged (n=3), and 6 weeks old hypoxic challenged (n=3). PCR was used to quantitate 

relative expression levels of mRNA produced from the C-allele versus the T-allele in individuals 

heterozygous for SNP9093. PCR products covering the 3rd exonic SNP9093 of HTR2B were 

analyzed by direct sequencing to compare the expression levels between alleles. Sequences were 

aligned with reference T-allele or alternate C-allele and the relative mRNA expression levels 

between the two alleles were estimated by dividing the signal intensity of the major allele by the 

sum of both alleles. The results showed that this heterozygous SNP9093 can be transcribed at 

different ratios during different developmental ages in tissue-specific manner. First, we compared 

the ASE of SNP9093 between the 2 weeks and 6 weeks of age hypoxic challenged birds using 

two-tailed student’ t-test (null hypothesis that allele fraction = 0.50) across three experimental 

replicates. We observed a statistically significant increase in the expression levels of the C non-

reference allele vs the T reference allele at 6 weeks of age in all tissues in contrast to 2 weeks of 

age (Figure 2.2 & Table 2.10- 2.11). Based on the ontological shift in ASE for the heterozygotes, 

we used RT-qPCR to assess overall expression of the HTR2B gene for hypoxic challenged birds 

at 2 and 6 weeks of age. The relative expression at 6 weeks of age was determined using the TBP 
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gene as the reference (Radonic et al., 2004) and ΔΔCt computed using expression at 2 weeks of 

age as the calibrator. We found that HTR2B expression was almost always lower in tissues from 

birds of 6 weeks of age as compared with 2 weeks of age with the reduction being statistically 

significant in kidneys (Table 2.12). Thus, we conclude that in hypoxic birds the HTR2B gene 

expression is decreased from 2 to 6 weeks of age reflecting a decrease in the expression of the T 

reference- allele and increased expression of the C non-reference allele. In general, quantitative 

differences in expression patterns observed in HTR2B gene and ASE of heterozygous SNP9093 

seems to play only a partial role in phenotypic variation between birds, such as susceptibility or 

resistance to ascites.  

DISCUSSION 

 

Genetic, epigenetic, and environmental factors determine phenotypic variation and disease risk 

(Cazaly et al., 2015). From several GWAS studies, it is becoming very clear that common traits 

and complex diseases are influenced by large numbers of alleles that individually have small 

effects (Manolio et al., 2009). It is also becoming apparent that most complex trait alleles can 

influence gene expression by modulating transcription level or transcript stability (Lo et al., 2003). 

Our previous GWAS study used a F2 cross of the resistant and susceptible lines, which were 

divergently selected from the predecessor of the REL line and identified a region on chromosome 

9 that contains candidate gene, HTR2B for PHS incidence (Figure 2.1). (Krishnamoorthy et al., 

2014). In the present study, we have investigated the association of two SNPs in HTR2B gene 

(promoter SNP586 and exon 3 SNP9093) with PHS phenotype. The allele frequencies and 

combinations present in our research lines differ from those in the commercial lines for both 

chosen SNPs. Both SNPs were conformed with HW equilibrium in all commercial lines but not 
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with the REL line. Failure to conform with HWE in the REL line for SNP586 in generation 14 and 

18, and generation 14 for SNP9093, led us to question the reliability of our assays. However, 

sequence data from 10-20 PCR products representing different genotypes and randomly selected 

for each SNP confirmed the reliability of our assays. Therefore, the error rate of genotype mis-

calls appears fairly low. In general, our genotype data for HTR2B gene appears to be only partially 

associated with PHS, but not a universal marker for genetic predisposition to the ascites 

syndrome.  Bioinformatic analysis identified a cluster of SNPs within potential transcription factor 

(TF) binding sites in the promoter region of HTR2B gene that may affect regulatory mechanism(s) 

of its expression, and consequently affect the phenotype characteristics. Some of these identified 

transcription factors were 1) Nuclear factor of activated T-cells (NFAT5) is a transcription factor, 

activated under hypoxic conditions and could be a protective factor against ischemic damage 

(Villanueva et al., 2012; Dobierzewska et al., 2015). 2) Nuclear factor of activated T cells isoform 

c3 (NFATc3), which is a Ca2+-dependent transcription factor plays an important role in the chronic 

hypoxia-induced vascular remodeling that underlie pulmonary hypertension (De Frutos et al., 

2007; Bierer et al., 2011). 3) Nuclear Factor-κB (NF-κB) is a major transcription factor responding 

to cellular stress, and activated by hypoxia, or decreased oxygen availability in a cell (D’Ignazio 

& Rocha, 2016). 4) Myb avian myeloblastosis viral oncogene homolog-like 2 (MYBL2) is a 

transcription factor plays an essential role as a physiological regulator of cell cycle progression, 

survival and differentiation (Musa et al., 2017). Those TFs are important proteins as they have key 

roles in regulation of HTR2B gene expression in responses to hypoxia, including hypoxic 

pulmonary vascular remodeling and pulmonary hypertension.  

In this study, we used 3,072 SNP panel for GWAS of F2 cross between SUS and RES lines for 

PHS association on Gga9, which represent only a few percent of the SNPs that are segregating 
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within the population (Figure 2.1). Subsequent GWAS on REL line samples have failed to show 

any association for ascites with HTR2B gene region on Gga9 but have identified regions on 

Chromosomes 2 and Z (Tarrant et al., 2016). Nevertheless, since the region on Gga9 showed 

association in an experimental cross, this region may still have limited utility for further 

investigations of ascites susceptibility. Furthermore, our recent high throughput whole genome 

resequencing study WGR was used to analyze Gga9 for ascites association (Dey et al., 2018). 

Unfortunately, we did not find any regions with clear difference in the SNP frequencies based on 

ascites phenotype, even for the HTR2B gene region that we had identified earlier in our GWAS 

(Figure 2.3). Despite this, using WGR approach, significant associations were detectable because 

causative variants are often in sufficient linkage disequilibrium (LD) with genotyped markers (not 

published). Although GWAS is a powerful tool to reconnect complex trait back to its underlying 

genetics, there are some important limitations that must be considered which may be drawbacks 

to a GWAS. Several important considerations including sample size, missing genotyping, and 

genetic heterogeneity to improve statistical powers and recover meaningful associations. The PHS 

phenotype possess a complex architecture where variants are either at low frequency or have a 

small effect size and even larger sample sizes may fail to discover them. Taking together, WGR 

approach seems to be more efficient method to identify genomic regions contributing to complex 

traits and diseases.  

ASE (also known as allelic expression imbalance- AEI) refers to the differential abundance of the 

allelic copies of a transcript in heterozygous individuals (Buckland, 2004). Unequal output of 

allelic transcripts is a common phenomenon that may underlie disease risk influenced by disease-

associated SNPs (Lo et al., 2003). AEI could be the outcome of the presence of at least one cis-

regulatory element in the regulatory sequences of a gene (Campbell et al., 2008). This cis-acting 
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variant is likely not the transcribed SNP itself but might be in a transcription factor binding site or 

region that determines transcript stability. Therefore, AEI is one of the possible mechanisms 

underlying the effect of causative genetic variations that are not located on the translated region of 

a gene expression. The SNP586 is located in the HTR2B promoter region and thus cannot be used 

to assess differential expression of the transcribed alleles. To identify any possible SNPs in the 

transcribed region that can serve as a proxy for this polymorphism, we used the heterozygous T>C 

rs315854205 or SNP90093 located at the 3rd exon despite their imperfect linkage. We measured 

the allelic imbalance of this SNP in different tissues at different developmental age stages under 

hypoxic conditions. Although our SNPs analyses in the HTR2B gene did not establish a strong 

association to ascites phenotype, yet the SNP9093 can alter the mRNA structure, but not the amino 

acid codded for. In addition, the CT heterozygous SNP9093 was found to be partially associated 

with ascites resistance in one of the commercial lines, Line W (Table 2.5). Line W is the modern 

descendant from what was the original source from which the SUS, REL, and RES lines were 

originally derived (Pavlidis et al., 2007). Our results revealed that ASE was common and was not 

restricted to a specific tissue type or age. Estimations of ASE frequency vary from 5% to 80%, 

depending on tissue type, and developmental stage. Substantial bias in ASE ratio towards non-

reference allele- C was observed in all tissues of hypoxic birds from 2 to 6 weeks of age. It was 

more likely as global phenomenon observed across tissues in 6 vs 2 weeks of age in hypoxic 

challenged birds. We subsequently looked at the overall expression of HTR2B gene in multiple 

tissues at 2 and 6 weeks old of hypoxic birds. Results revealed that HTR2B expression is decreased 

from 2 to 6 weeks of age of hypoxic birds in most tissues. Interestingly, the HTR2B overall mRNA 

expression is reduced corresponding to the preferential down-regulation of the T-allele from 2 to 

6 weeks of hypoxic birds. It is likely that the T>C rs315854205 allele influences HTR2B 
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expression by reducing its transcriptional activity as the bird develops in age, yet the precise 

mechanism is not known. Serotonin 5-HT promotes pulmonary vasoconstriction, platelet 

aggregation, and pulmonary arterial smooth muscle cell proliferation, via serotonin receptors. Of 

the 14 different 5-HT receptors, only HTR1B, HTR2A, and HTR2B receptors show definite 

evidence in playing a role in the pathobiology of PAH (MacLean, 2007). Several studies have 

demonstrated that HTR2B receptor antagonists prevent the progression of PAH, vascular 

remodeling, and right ventricle hypertrophy in rat, mouse, and chicken models (Launay et al., 

2002; Chapman & Wideman, 2002, 2006a, 2006b; Porvasnik et al., 2010; Dumitrascu et al., 2011; 

Wideman & Hamal, 2011; Zopf et al., 2011). Our data demonstrate downregulation of HTR2B 

expression as the hypoxic birds develop in age which might prevent the increase in pulmonary 

arteries pressure and attenuate blood vessels vasoconstriction.  

Recently, our group has analyzed gene expression using transcriptomics (RNA-seq) for right 

ventricles of normal and hypoxic birds after 2 weeks of exposure (T. Licknack, unpublished). 

Analysis of the RNA-seq data for HTR2B showed higher expression levels in hypoxic birds 

relative to the normal birds (Figure 2.4). Therefore, the RNA-seq data confirmed our qPCR 

assessment of changes in HTR2B gene expression pattern in broilers under hypoxic conditions. 

Interestingly, the transcriptome analyses also revealed significant transcription of the region 

upstream of the predicted exon 1 of the HTR2B gene (Figure 2.4). We confirmed transcription of 

the predicted upstream regions using different primers to the promoter region of HTR2B for RT-

PCR and agarose gel electrophoresis. Our data do not reveal whether these “promoter transcripts” 

are contiguous with the HTR2B mRNA or represent separate non-coding RNAs.  Considering that 

they are transcribed around potential transcription factor binding sites, it is possible that these 

RNAs play an essential role in gene regulation.  Recently, it has been demonstrated in mouse and 
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yeast that ncRNA transcription around gene regulatory elements can enhance the binding of 

transcription factors (TFs) to their target sites (Sigova et al., 2015; Takemata et al., 2016). As the 

transcription of the upstream region relative to that for exon 1 differs between hypoxia-challenged 

and non-challenged right ventricles, the upstream transcription may regulate the local recruitment 

of TFs to their target sites in response to certain stimuli such as hypoxic conditions. 

The present study has some limitations. First, the present approach does not allow us to exclude 

other gene polymorphisms for involvement in HTR2B expression that may be in LD with the 

promoter SNP586. However, when we sequenced the proximal promoter, exons, and intron 

flanking regions, we did not identify any other linked SNPs that affect coding sequences or putative 

transcription factor binding sites, which makes this scenario less likely. Second, the coding 

SNP9093 is not in complete LD with the promoter SNP586. Third, this study investigates the 

allele-specific effect on HTR2B mRNA expression levels and not protein. Finally, the limited 

number of replicates used in this study to measure total and ASE of HTR2B gene. However, this 

work is one of the first to have investigated the association of HTR2B gene polymorphisms with 

PHS phenotype in broilers.  

In summary, ascites syndrome occurs due to the manifestation of multiple symptoms (Olkowski 

et al., 1999). Therefore, this is a complex disease whose incidence is attributed to many genetic 

factors. Although our study does not strongly support the association of the HTR2B 

polymorphisms with ascites phenotype, this gene remains as a candidate gene for future 

investigation of relevance for this disease and may have multiple epistatic interactions. Our 

findings provide important clues to understand the mechanisms that underlie the patterns of 

HTR2B expression and its potential impact on the phenotypic variation of PHS in broilers. Future 
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direction may continue searching for additional PHS common variants of small effect size but 

using much larger cohorts in the tens or hundreds of thousands.  
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TABLES AND FIGURES 

 

Table 2. 1. Primers, Probes, and conditions for standard q-PCR. For each HTR2B SNP locus: position is the base-pair position on 

chromosome 9 according to the 2011 genome assembly; Primers are 5’-3’ for forward (F-) and reverse (R-); Probes are 5’-3’ with 

SNP586 allele A (tmA) labeled with FAM and allele C (tmC) labeled with HEX. SNP9093 allele C (tmC) labeled with FAM and allele 

T (tmT) labeled with HEX. The soak temperature (°C) used in the qPCR assay. Bold case letters indicate loci specific for SNP. 

Assay Locus Position bp Primers/Probes1 (5’>3’) Soak 

HTR2B  
promoter 
SNP586 
genotyping 
 

SNP586F 
 

Chr9: 15214547-571 AGCTAGAGGGAAACAACTGGCATCC 
 

64 

SNP586R 
 

Chr9: 15214322-346 ATCCTGTGCCTTACTGGGTGTGATG 
 

HTR2BtmA 
 

Chr9: 15214422-446 ATAATCTTCTGAGAGCTGAACCTCA 
 

HTR2BtmC 
 

Chr9: 15214421-446 ATCATCTTCTGAGAGCTGAACCTCAC 
 

HTR2B 
Exon3 SNP9093 
genotyping 

SNP9093F 
 

Chr9: 15205981-6005 GCCTATTTGATCAACAAGCCACCTC 
 

68 

SNP9093R 
 

Chr9: 15205731-755 GTTATGAAGAATGGGCACCACATCA 
 

SERT9093tmC 
 

Chr9: 15205917-936 CGCCACACCTGCCTGCTCACC 

SERT9093tmT Chr9: 15205917-936 TGCCACACCTGCCTGCTCACC 
 

 

1 Nucleotides in bold italics in the probes are the SNPs being assayed 
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Table 2. 2. SNPs identified in the upstream promoter region of HTR2B in selected chicken DNAs. Sequences were aligned for 
DNAs from the RES and SUS lines (RES or SUS), White Leghorn (WL) and the published sequence for Jungle Fowl (JF).  SNP positions 
are presented relative to the predicted transcription start site at Gga9:15214131 in the 2015 chicken assembly (GCA_000002315.3). 
Underscore indicates that the base is missing relative to the JF reference, and H indicates where an individual was heterozygous for the 
deleted base.  Standard IUPAC base nomenclature is used for heterozygous SNPs 

 

.  

DNAs Promoter SNPs  

Exon 3 SNP 

496 505 507 510 515 586 9093 

15214534 15214526 15214524 15214521 15214516 15214444 15205937 

JF T C C T T A T 

WL Y C C T T A C 

RES-1 C C C T T M C 

RES-2 T C C T T A T 

RES-3 T C C T T A C 

RES-4 Y H H H Y M C 

RES-5 Y H H H Y M Y 

RES-6 Y H H H Y M Y 

SUS-1 C _ _ _ C C C 

SUS-2 Y H H H Y M C 

SUS-3 C _ _ _ C C C 

SUS-4 Y H H H Y M Y 

SUS-5 Y H H H Y M Y 

SUS-6 Y H H H Y M Y 

SUS-7 Y H H H Y M Y 

SUS-8 Y H H H Y M Y 

SUS-9 C _ _ _ C C C 
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Table 2. 3. Genotype data for HTR2B promoter SNP586 and Exon3 SNP9093 for our ascites research lines. The SUS line, RES 
line and generation 18 REL line genotype frequencies (freq) were determined for the entire line (All) or for the ascites resistant (R) or 
susceptible (S) subpopulations based on phenotype in a hypobaric challenge.  The total number of genotypes (Count) is indicated below 
the frequencies.  The REL samples were also analyzed according to gender. P-values for a simple Bonnferoni correction (see Materials 
and Methods) of chi square test for observed vs. expected (Adj Pval) are presented for genotypes with frequency ≥0.10. 

 SUS  RES                     REL  REL-Male          REL-Female 

Genotype All freq  All freq  All freq R freq S freq Adj 

Pval 

 R freq S freq Adj 

Pval 

 R 

freq 

S freq Adj 

Pval 

SNP586                 

AA 0.30  0.49  0.23 0.23 0.25 1.000  0.18 0.22 1.000  0.31 0.29 0.454 

AC 0.46  0.38  0.28 0.27 0.28 1.000  0.31 0.32 1.000  0.21 0.23 0.915 

CC 

 

0.25  0.12  0.50 0.50 0.48 1.000  0.51 0.46 1.000  0.48 0.48 1.000 

Count 96  95  225 135 69   83 37   52 31  

SNP9093                 

CC 0.23  0.56  0.26 0.26 0.25 1.000  0.24 0.26 1.000  0.28 0.24 1.000 

CT 0.47  0.32  0.53 0.50 0.56 1.000  0.55 0.54 1.000  0.43 0.58 0.915 

TT 

 

0.30  0.12  0.21 0.24 0.19 1.000  0.21 0.21 1.000  0.28 0.18 0.736 

Count 77  96  234 139 37   86 39   53 33  
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Table 2. 4. Genotype data for HTR2B prompter SNP586 for the commercial lines. Column and row designations areas for Tables  
3.  
 

 

  

Genotype All 

freq 

All R 

freq 

All S 

freq 

Adj 

Pval 

 Male-R 

freq 

Male-S 

freq 

Male 

Adj 

Pval 

 Female-

R freq 

Female-S 

freq 

Female 

Adj Pval 

Line W             

AA 0.70 0.70 0.71 1.000  0.64 0.69 1.000  0.77 0.71 1.000 

AC 0.27 0.25 0.29 1.000  0.26 0.31 1.000  0.23 0.29 1.000 

CC 

 

0.03 0.05 0.00 0.081  0.09 0.00 0.004  0.00 0.00 0.320 

Count 192 97 95   53 39   44 56  

Line Y             

AA 0.53 0.50 0.59 1.000  0.54 0.55 1.000  0.44 0.62 0.738 

AC 0.37 0.37 0.36 1.000  0.39 0.39 1.000  0.24 0.32 1.000 

CC 

 

0.10 0.1 0.05 0.26  0.06 0.05 0.620  0.21 0.05 0.025 

Count 186 111 75   59 38   52 37  

Line Z             

AA 0.33 0.35 0.29 1.000  0.35 0.39 1.000  0.33 0.20 0.556 

AC 0.46 0.45 0.48 1.000  0.47 0.46 1.000  0.42 0.49 1.000 

CC 

 

0.21 0.20 0.23 1.000  0.18 0.14 0.939  0.24 0.31 0.516 

Count 192 126 65   77 28   45 35  
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Table 2. 5. Genotype data for HTR2B Exon 3 SNP9093 for the commercial lines. Column and row designations are as for Tables 3. 

Genotype All 

freq 

All R 

freq 

All S 

freq 

Adj 

Pval 

 Male-R 

freq 

Male-S 

freq 

Male 

Adj 

Pval 

 Female-

R freq 

Female-S 

freq 

Female 

Adj Pval 

Line W             

CC 0.91 0.86 0.96 0.462  0.89 0.97 1.000  0.82 0.95 0.980 

CT 0.09 0.13 0.04 0.008  0.11 0.03 0.440  0.16 0.05 0.143 

TT 

 

0.01 0.01 0.00 0.000  0.00 0.00 0.000  0.02 0.00 0.000 

Count 192 97 95   47 38   36 53  

Line Y             

CC 0.12 0.15 0.08 1.000  0.18 0.08 0.396  0.09 0.10 1.000 

CT 0.49 0.49 0.49 1.000  0.41 0.51 1.000  0.52 0.54 1.000 

TT 

 

0.39 0.36 0.43 1.000  0.40 0.40 1.000  0.38 0.35 1.000 

Count 186 112 74   60 37   52 37  

Line Z             

CC 0.32 0.29 0.35 0.127  0.32 0.36 1.000  0.18 0.43 0.127 

CT 0.49 0.51 0.48 1.000  0.45 0.46 1.000  0.56 0.51 1.000 

TT 

 

0.19 0.20 0.17 0.058  0.22 0.18 1.000  0.27 0.06 0.092 

Count 192 126 65   77 28   45 35  



 

 

7
5 

Table 2. 6. Haplotype data combining SNP586 and SNP9093 genotypes for generation 18 REL line. Haplotypes were imputed 
where possible, as described in materials and methods. All lines were genotyped using each assay where Genotype 1 is homozygous for 
allele 1, 2 is heterozygous, and 3 is homozygous for allele 2, for both SNPs. Column and row designations are as for Tables 3. 

 All Freq All-R 

Freq 

All-S 

Freq 

Adj Pval Male-R 

Freq 

Male-S 

Freq 

Male 

Adj Pval 

Female-R 

Freq 

Female-S 

Freq 

Female 

Adj Pval 

REL Line            

11 0.01 0.01 0.01 5.421 0.00 0.03 1.327 0.02 0.00 3.018 

12 0.09 0.09 0.10 7.138 0.07 0.05 2.792 0.12 0.16 1.597 

13 0.12 0.13 0.13 6.760 0.11 0.14 6.151 0.16 0.13 4.028 

21 0.03 0.01 0.04 2.024 0.01 0.08 0.430 0.02 0.00 2.478 

22 0.18 0.18 0.20 6.202 0.23 0.24 1.746 0.10 0.16 1.332 

23 0.07 0.08 0.04 2.800 0.07 0.03 3.046 0.10 0.06 3.512 

31 0.21 0.23 0.20 5.726 0.23 0.16 4.117 0.24 0.26 4.827 

32 0.25 0.24 0.25 6.314 0.24 0.24 7.023 0.24 0.23 6.092 

33 0.03 0.03 0.01 4.580 0.04 0.03 5.421 0.02 0.00 3.017 

Count  224 134 69  83 37  51 31  
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Table 2. 7. Haplotype data combining SNP586 and SNP9093 genotypes for the commercial line W. Haplotypes were imputed 
where possible, as described in materials and methods. Column and row designations are as for Tables 3. 

 All Freq All-R 

Freq 

All-S 

Freq 

Adj Pval Male-R 

Freq 

Male-S 

Freq 

Male 

Adj Pval 

Female-R 

Freq 

Female-S 

Freq 

Female 

Adj Pval 

Line W            

11 0.63 0.59 0.66 3.556 0.57 0.67 3.678 0.61 0.66 5.078 

12 0.07 0.10 0.04 0.824 0.08 0.03 1.913 0.14 0.05 0.695 

13 0.01 0.01 0.00 2.256 0.00 0.00 3.422 0.02 0.00 0.626 

21 0.26 0.23 0.29 2.495 0.25 0.31 3.758 0.20 0.29 2.903 

22 0.01 0.02 0.00 1.132 0.02 0.00 2.662 0.02 0.00 1.881 

23 0.00 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 

31 0.02 0.04 0.00 0.334 0.08 0.00 0.026 0.00 0.00 1.042 

32 0.01 0.01 0.00 2.256 0.02 0.00 1.030 0.00 0.00 3.293 

33 0.00 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 

Count  192 97 95  53 39  44 56  
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Table 2. 8. Haplotype data combining SNP586 and SNP9093 genotypes for the commercial line Z. Haplotypes were imputed where 
possible, as described in materials and methods. Column and row designations are as for Tables 3. 

 All Freq All-R 

Freq 

All-S 

Freq 

Adj Pval Male-R 

Freq 

Male-S 

Freq 

Male 

Adj Pval 

Female-R 

Freq 

Female-S 

Freq 

Female 

Adj Pval 

Line Z            

11 0.08 0.08 0.09 6.917 0.08 0.11 5.768 0.07 0.06 4.572 

12 0.11 0.13 0.09 4.519 0.10 0.11 6.874 0.18 0.09 1.593 

13 0.06 0.08 0.02 0.720 0.06 0.04 5.221 0.11 0.00 0.347 

21 0.13 0.12 0.15 4.746 0.17 0.18 2.153 0.02 0.14 0.392 

22 0.23 0.23 0.25 7.439 0.19 0.18 3.118 0.29 0.29 2.935 

23 0.09 0.10 0.08 5.168 0.10 0.11 6.391 0.11 0.06 3.797 

31 0.10 0.08 0.15 1.176 0.08 0.07 3.347 0.09 0.23 0.192 

32 0.15 0.13 0.15 6.452 0.16 0.18 5.499 0.09 0.14 2.850 

33 0.04 0.05 0.02 2.420 0.05 0.04 4.287 0.04 0.00 2.200 

Count  192 126 65  77 28  45 35  
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Table 2. 9. Haplotype data combining SNP586 and SNP9093 genotypes for the commercial line Y. Haplotypes were imputed where 
possible, as described in materials and methods. Column and row designations are as for Tables 3. 

 All Freq All-R 

Freq 

All-S 

Freq 

Adj Pval Male-R 

Freq 

Male-S 

Freq 

Male 

Adj Pval 

Female-R 

Freq 

Female-S 

Freq 

Female 

Adj Pval 

Line Y            

11 0.05 0.06 0.04 4.628 0.07 0.03 3.529 0.06 0.06 8.146 

12 0.25 0.21 0.30 2.066 0.19 0.27 3.190 0.24 0.33 2.632 

13 0.23 0.21 0.25 6.448 0.28 0.24 4.177 0.16 0.25 2.347 

21 0.05 0.06 0.05 8.949 0.09 0.05 2.787 0.02 0.06 2.534 

22 0.19 0.19 0.18 7.412 0.21 0.22 5.275 0.18 0.14 4.429 

23 0.12 0.12 0.12 8.451 0.10 0.14 5.835 0.14 0.11 6.361 

31 0.01 0.02 0.00 2.224 0.02 0.00 3.903 0.02 0.00 3.506 

32 0.05 0.06 0.04 4.628 0.02 0.03 1.392 0.12 0.06 0.505 

33 0.04 0.06 0.01 1.470 0.03 0.03 6.290 0.08 0.00 0.551 

Count  182 109 73  58 37  51 36  
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Table 2. 10. Percent C- allele relative Expression. Comparing ASE of SNP9093 (non -reference 
C- allele) across multiple tissues in hypoxic challenged birds of 2 weeks of age and 6 weeks of age 
(n=3 each) using two-tailed student t-Test, P<0.05. Data presented as Avg ± SEM (average ± 
standard error of the mean).   

Tissue Type 
2 Weeks of Age 6 Weeks of Age 

P-value 
C allele SEM C allele SEM 

Right Ventricle 0.46 0.012 0.58 0.003 0.0058 

Aorta 0.45 0.005 0.64 0.01 0.0008 

Left Lung 0.43 0.012 0.61 0.51 0.0013 

Right Lung 0.43 0.009 0.62 0.31 0.0214 

Left Kidney 0.54 0.002 0.74 0.06 0.0856 

Right Kidney 0.53 0.016 0.64 0.02 0.012 

Liver 0.49 0.008 0.59 0.003 0.040 

Skeletal Muscle 0.55 0.013 0.63 0.03 0.038 
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Table 2. 11. Comparing ASE ratio of SNP9093 in tissues between 2 weeks and 6 weeks hypoxic challenged birds using two-

tailed student t-Test. Data presented as Avg ± SEM (average ± standard error of the mean). Differences were considered significant 
at P<0.05 

Tissue Type 2 Weeks Challenged Birds (n=3) 6 Weeks Challenged Birds (n=3) P value 

Major 

allele 

mean± SE Minor 

Allele 

mean± SE Major 

allele 

mean± SE Minor 

Allele 

mean± SE 

Right Ventricle T 0.54 ± 0.011 C 0.46 ± 0.012 C 0.58 ± 0.003 T 0.42 ± 0.004 0.0058 

Aorta T 0.55 ± 0.006 C 0.45 ± 0.005 C 0.64 ± 0.01 T 0.36 ± 0.02 0.0008 

Left Lung T 0.57± 0.011 C 0.43 ± 0.012 C 0.61 ± 0.51 T 0.39 ± 0.06 0.0013 

Right Lung T 0.57 ± 0.001 C 0.43 ± 0.009 C 0.62 ± 0.31 T 0.38 ± 0.04 0.0214 

Left Kidney C 0.54± 0.002 T 0.46 ± 0.005 C 0.74 ± 0.06 T 0.26± 0.06 0.0856 

Right Kidney C 0.53 ± 0.016 T 0.47 ± 0.012 C 0.64 ± 0.02 T 0.36 ± 0.01 0.0120 

Liver T 0.51 ± 0.006 C 0.49 ± 0.008 C 0.59 ± 0.003 T 0.41 ± 0.006 0.040 

Skeletal Muscle C-T 0.50 ± 0.013 C-T 0.50 ± 0.014 C 0.63 ± 0.03 T 0.37 ± 0.02 0.038 
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Table 2. 12. Relative expression of HTR2B gene in different tissues of birds from REL line 

challenged in hypobaric chamber. ↑↓ indicates the direction of the difference for the 6 weeks 
old birds relative to the 2 weeks old birds. The results are shown as n-fold change (2^-ΔΔCt) of 
mRNA levels for the 6 weeks’ birds relative to the calibrator, 2 weeks, from three birds each (n= 
3) run in triplicate and presented as Avg ± SEM (average ± standard error of the mean).  
Statistically different results were determined using Student's t test for unpaired samples, P<0.05. 

 

 

 

 

 

 

 

Tissue Type Expression Variance  Average ± SEM P-value 

Right Ventricle 0.47 ± 1.69 0.26 

Aorta 1.83 ± 2.12 0.27 

Skeletal Muscle 0.03 ± 0.02 0.19 

Liver 0.58 ± 0.43 0.28 

Left Kidney 0.47 ± 0.81 0.03 

Right Kidney 0.16 ± 3.54 0.03 

Left Lung 0.26 ± 3.09 0.18 

Right Lung 0.42 ± 0.57 0.18 
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Figure 2. 1: Sex-specific SNP association analysis of chicken chromosome 9 for ascites and cardiac hypertrophy. Samples for an 
F1 and F2 cross of the ascites-resistant (RES) and ascites-susceptible (SUS) lines were genotyped using a genome-wide panel of 3,072 
SNP. Chi-square P-values for observed vs. expected were plotted as 1 − logP for ascites phenotype (gray lines) or cardiac hypertrophy 
(black lines) for males (dashed lines) or females (solid lines). In this figure HTR2B is located within Gga9: 13.6-14.9 Mbp according to 
2011 genome assembly as reported in our previous publication (Krishnamoorthy et l., 2014). The black arrow indicates the HTR2B gene 
locus. 
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Figure 2. 2: Percent C- allele relative Expression. Comparing C non- reference allele percentage 
of SNP9093 across multiple tissues in hypoxic challenged birds of 2 weeks of age (2WOA, n=3) 
and 6 weeks of age (6WOA, n=3) using two-tailed student t-Test. Differences were considered 
significant at P<0.05. 
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Figure 2. 3: Scatterplot representing GBS analysis of SNP frequencies on Chromosome 9 in REL line male birds. SNP frequencies 
has been plotted as a difference of the average non-reference SNP frequencies of the two replicates of resistant and susceptible sample 
reads along Y-axis. Therefore, each dot represents the variation in SNP frequencies among resistant and susceptible reads. Thus, a 
positive value for the SNPs at the loci along Y-axis indicates that those SNPs favor resistance, whereas a negative Y value indicates that 
the SNP loci favor susceptibility for ascites. X axis represents locus along chromosome 9. (A): Scatterplot representing Difference in 
SNP frequency (Y-axis) along chromosome 9 loci (in Mbp, X-axis) in males. the scatterplot showing SNP cluster along positive Y axis 
within the HTR2Bgene (black arrows) indicating the variant SNPs are equally distributed in both susceptible and resistant males. The 
black arrow indicates the HTR2B gene locus. (B): A zoom in version of chromosome 9 region (2015 Assembly) as graphically depicted 
by the NCBI presents the negative strand of HTR2B gene.   
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Figure 2. 4: HTR2B gene expression analysis in right ventricle. Results were obtained from 
RNA-seq data to compare HTR2B gene expression pattern in right ventricles from two groups of 
REL line birds: 1) hypobaric chamber (hypoxic) challenged with no ascites symptoms, and 2) no 
challenge (control). Data were generated by plotting the sums of mapped reads that overlap (cover) 
each nucleotide position along the genomic coordinates (x-axis), where the y-axis represents the 
number of reads.  RNA-seq coverage and peak plots were compared between the two groups. The 
NCBI gene model for the HTR2B gene (3 exons and 2 introns) is shown below with exons (yellow 
arrows), and introns (gray lines). GeneVision Pro 14 tool (DNASTAR Lasergene Suite 14) was 
used for gene expression level visualization.  
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CHAPTER 3 

Further Investigation of Mitochondrial Biogenesis and Gene Expression of Key Regulators in 

Ascites- Susceptible and Ascites-Resistant Broiler Research Lines 
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ABSTRACT 

We have extended our previous survey of the association of mitochondrial prevalence in 

particular tissues with ascites susceptibility in broilers.  We previously reported that in breast 

muscle of 22 week old susceptible line male birds had significantly higher mtDNA copy number 

relative to nuclear copy number (mtDNA/nucDNA), compared to resistant line male birds.  The 

higher copy number correlated with higher expression of PPARGC1A mRNA gene. Ascites is a 

significant metabolic disease associated with fast-growing meat-type chickens (broilers) and is 

a terminal result of pulmonary hypertension syndrome. We now report the mtDNA/nucDNA 

ratio in lung, liver, heart, thigh, and breast of both genders at 3, and 20 weeks old. At 3 weeks the 

mtDNA/nucDNA ratio is significantly higher in lung, breast, and thigh for susceptible line males 

compared to the resistant line males. Conversely, we see the opposite for lung and breast in 

females. At 20 weeks of age the differences between males from the two lines is lost for lung, and 

thigh.  Although there is a significant reduction in the mtDNA/nucDNA ratio of breast from 3 

weeks to 20 weeks in the susceptible line males, the susceptible males remain higher than resistant 

line males for this specific tissue.  We assessed relative expression of five genes known to regulate 

mitochondrial biogenesis for lung, thigh and breast muscle from males and females of both lines 

with no consistent pattern to explain the marked gender and line differences for these tissues. Our 

results indicate clear sex differences in mitochondrial biogenesis establishing a strong association 

between the mtDNA quantity in a tissue-specific manner and correlated with ascites-phenotype. 

We propose that mtDNA/nucDNA levels could serve as a potential predictive marker in breeding 

programs to reduce ascites. 
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INTRODUCTION 

Ascites, Pulmonary hypertension syndrome PHS, or ‘water belly” is a cardiovascular, metabolic 

disease affecting fast-growing broilers. Ascites is a complex problem resulting from many 

interacting factors such as genetics, environment and management, but also occurs in normal 

conditions as a response to high metabolic rate (Iqbal et al., 2001; Owen et al., 1990; Lubritz et 

al., 1995; Wideman & French, 2000; Balog et al., 2003; Hassanzadeh et al., 2014). The high 

metabolic oxygen requirement of rapid growth, combined with insufficient capacity of the 

pulmonary capillaries appears to be the most important cause of ascites incidence in modern 

broilers (Peacock et al., 1990; Wideman, 2001). Inadequate oxygen levels trigger a series of 

events, including peripheral vasodilation, increased cardiac output, increased pulmonary arterial 

pressure, right ventricular hypertrophy (RVH; elevated right ventricular to total ventricular ratios- 

RV: TV), and ultimitly accumulation of fluid in the abdominal cavity and pericardium (Bottje et 

al,. 1995; Wideman, 2001; Balog, 2003; Pakdel et al., 2005; Wideman et al., 2013). Advances in 

management practices, rearing programs, and improved selection techniques have decreased 

ascites incidence in modern broilers.  However, ascites syndrome remains an economic concern 

throughout the world, causing estimated losses of $100 million annually in the US (Odom, 1993; 

Rossi personal communication 2004, Cooper personal communication 2018). The etiology of 

ascites in poultry has been classified into three categories: 1) mainly pulmonary hypertension, 2) 

various cardiac pathologies, and 3) cellular damage caused by reactive oxygen species ROS 

(Currie, 1999). Mitochondria are the powerhouses of the eukaryotic cell and are the major 

contributor to oxidative stress through the generation of reactive oxygen species (ROS).  

Mitochondria are the primary oxygen consumer for energy production to sustain rapid growth in 

broilers (Cawthon et al., 2001; Chance et al., 1979). Mitochondria are known to be involved in the 
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regulation of several fundamental cellular processes, including metabolism, apoptosis, 

intracellular signaling, and energy production in the form of ATP via the oxidative 

phosphorylation. Mitochondrial biogenesis can be defined as the process of growth and division 

of pre-existing mitochondria to increase ATP production in response to growing demand for 

energy or stress conditions (Jornayvaz & Shulman, 2010; Dominy & Puigserver, 2013). During 

times of environmental stress (e.g., hypoxia, cold temperature, etc.), ROS levels can increase 

dramatically which may result in significant damage to cell structures notably the mitochondria 

(Dawson et al., 1993). Ascites can be induced at early ages by several methods such as altering 

the environment’s temperature (Wideman et al., 1998; Sato et al., 2002), air quality (Chineme et 

al., 1995), and altitude (Balog et al., 2000). Researchers at the University of Arkansas established 

divergently selected ascites experimental lines derived from a former full pedigreed elite line 

beginning in the 1990s through sibling-selection based on a hypobaric challenge (Pavlidis et al., 

2007; Wideman et al., 2013). The lines are the ascites resistant (RES) line, ascites susceptible 

(SUS) line, and a relaxed (REL) unselected line.  

Previously we reported that for a small sample set of breast muscle at 22 weeks of age for RES 

and SUS males, the samples from SUS males had approximately twice the ratio of mitochondrial 

DNA (mtDNA) to nuclear DNA (nucDNA), and that this difference correlated with a difference 

in the level of expression of PPARGC1A (Emami et al., 2017). We have further investigated this 

apparent difference and extended our analysis to genders, multiple tissues, and additional 

developmental stages. We also assessed the relative expression of five genes known to regulate 

mitochondrial biogenesis only for those tissues that demonstrated significant sex-differences in 

mtDNA copy number. The results indicate a likely correlation between mtDNA/nucDNA ratios 

and ascites phenotype for particular tissues.  
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MATERIALS AND METHODS 

Birds Stocks 

All animal procedures were approved by the University of Arkansas Institutional Animal Care and 

Use Committee (under protocol 12039 and 15040). Birds used in this study represent the ascites-

resistant (RES), the ascites-susceptible (SUS), and the relaxed unselected (REL) lines at generation 

21 (Pavlidis et al., 2007).  

Tissue Collection 

Heart, lung, muscle iliotibialis (thigh), pectoralis major (breast), and liver, were collected from 

SUS and RES experimental lines. At three weeks of age, five male and female birds from each 

experimental line were randomly selected, euthanized by cervical dislocation, and samples were 

collected and immediately stored in RNAlater (Sigma Aldrich, St. Louis, MO). At 20 weeks of 

age we collected lung, thigh, and breast from five males of SUS and RES lines.  For the REL line 

we collected breast tissue from 12 males at 3 and 20 weeks of age.  

DNA Isolation 

Tissue samples were homogenized in 1 ml lysis buffer (10 mM TrisCl, 1 mM Na2EDTA pH 7.5) 

using a Bullet Blender homogenizer (Next Advance, Inc., Averill Park, NY) and overnight 

digested with 100 µg/ml pronase at 37°C. SDS was added to, then successively extracted by  

phenol:chloroform:isoamyl alcohol (25:24:1) and chloroform:isoamyl alcohol (24:1), followed by 

ethanol precipitation of DNA. DNAs were dissolved in 10 mM TrisCl 0.1 mM EDTA pH 7.5.  

DNA quantity was assessed by fluorimetry with Hoechst 33258 (GLOMAX Multi Jr, Promega 
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Corp., Madison, WI) and purity (A260/280) by spectrophotometry (NanoVue, GE Healthcare Bio-

Sciences, MA, USA). 

RT-qPCR for Mitochondrial Biogenesis 

Mitochondrial DNA content was measured by quantitative, real time PCR (qPCR) in 96 well 

format using a CFX96 Thermal Cycler (Bio-Rad Laboratories, Inc., Hercules, California, USA). 

The mitochondrial target was the gene for mt-tRNAARG, with the nuclear target a region of 5- 

Hydroxytryptamine receptor 2B (HTR2B). Specific primers (Table 1) were designed using 

Primer3 software (version 0.4.0; http://bioinfo.ut.ee/primer3-0.4.0/primer3/) and synthesized by 

Integrated DNA Technologies (Coralville, IA USA). Reactions (20 μl) were run in triplicate and 

consisted of 1X Taq Buffer (50 mM Tris-Cl, pH 8.3, 1 mM MgCl2, 30 µg/mL BSA), 1X EvaGreen 

dye (Biotium Inc., Hayward, California, USA), 0.25 mM MgCl2, 0.2 mM dNTP, 0.5µM each of 

the specific forward and reverse primers, 4 U of Taq polymerase, 2 µL of DNA (50-100ng).  The 

cycling protocol was an intial soak at 90°C for 30 s, followed by 40-cycles of 30 s at 95 °C, 15 s 

at 60°C and 30 s at 72 °C followed by a plate read.  Ct values from the exponential phase of the 

PCR were exported directly into Microsoft EXCEL worksheets for analysis. The ∆Ct of mtDNA 

relative to the nucDNA reference SUS samples were converted to ΔΔCt values calibrated based 

on the ∆Ct of RES samples (Livak & Schmittgen, 2001). The fold changes relative to the calibrator 

(RES line) was estimated as 2(-ΔΔCt).  

RNA Isolation and gene expression analyses 

Total RNA was isolated from lung, thigh, and breast tissues using TRIZOL reagent (Ambion, 

Thermo Fisher Scientific) according to the manufacturer’s instruction. The extracted RNA was 

assessed for quantity and purity (A260/280) using NanoVue spectrophotometry (GE Healthcare 
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Bio-Sciences, MA, USA). RNA integrity was evaluated by electrophoresis in 1.5% agarose gel in 

0.5×TBE buffer (50 mM Tris, 1 mM Na2EDTA, and 25 mM Borate, pH 8.3), stained by 0.5 µg/ml 

ethidium bromide. Samples that did not show 3 strong and distinct bands (28S, 18S, and 5S rRNA) 

were discarded. Gene expression for PPARGC1A, AMPK, OPA1, SIRT1, and DNM1L was 

performed using a two-step RT-qPCR method. RNA (up to 5µg) was combined with 2 µM CT23V, 

and 0.5 mM dNTP and denatured at 70°C for 5 mins, then added to a mastermix consisting of 1X 

First Strand buffer (Invitrogen), 5 mM MgCl2, 1 mM DTT, 20 U RNasin (Promega Corp, Madison, 

WI USA), and 200 U MMLV reverse transcriptase (Promega Corp) in a final volume of 20 µl. The 

reaction was incubated at 42°C for 60 minutes and then inactivated at 85°C for 5 minutes. Chicken 

TATA-binding protein (TBP) was used as the reference gene (Radonic et al., 2004). Primers (Table 

1) for each gene were designed to span an intron using Primer3 software and synthesized by 

Integrated DNA Technologies. Second step qPCR were performed in a 20μl volume were as above 

for qPCR except as target 2 µL of cDNA (50-100ng). The PCR cycling was initial denaturation at 

90°C for 3 mins, 10 cycles of 90°C for 15s, 60 °C for 15s, 72 °C for 1 min, followed by another 

30 cycles of 90°C for 15s, 60 °C for 15s, melt curve 70°C to 90°C, finally 72 °C for 1 min with 

plate read.  Ct values were analyzed as described above.  Relative gene expression was calculated 

using the 2(-ΔΔCt) method (Livak & Schmittgen, 2001) with both biological and technical replicates, 

and normalized to TBP as the reference gene. 

Statistical Analysis 

 Data are presented as means ± SEM. All statistical computations were performed using EXCEL, 

and significant difference between lines and gender means were assessed by the Student’s t-test.  

Probability level of P ≤ 0.05 was considered statistically significant. 
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RESULTS 

Previously we evaluated the mitochondrial biogenesis and PPARGC1A mRNA gene expression in 

male broiler chickens at 22 weeks of age (Emami et al., 2017). The analyses compared two 

experimental lines produced through divergent selection for ascites phenotype; the ascites-

susceptible (SUS) and ascites resistant (RES) broiler lines. The comparison was based on five 

males from each line and the evaluation was for right ventricle and breast. Results showed that 

birds from SUS had significantly higher mtDNA copy number (P = 0.038) and PPARGC1A RNA 

gene (P = 0.033) in breast muscle; with no difference in right ventricle. Thus, we suggested that 

mitochondrial biogenesis and PPARGC1A mRNA gene expression differ between male boilers 

from RES and SUS lines in a tissue-specific manner. The present report extends our previous 

analyses to additional muscles and other critical tissues at additional ages and for both genders.  

From each line, five birds of both sexes were sampled for right ventricle, breast, thigh, lung, and 

liver at 3 weeks of age. The mtDNA/nucDNA ratio was estimated by qPCR of mt-tRNAARG 

(mtDNA) and a single copy region of HTR2B (nucDNA). A higher mtDNA/nucDNA ratio was 

observed in lung (Figure 1.C), thigh (Figure 1.D), and breast (Figure 1.E) tissues of SUS line 

relative to the RES line in males. The breast tissue of SUS line males contained 4 times higher 

levels (P=0.048) of mtDNA copy number. The lung of SUS line males was 64 times higher 

(P=0.01) and the thigh was 16 times higher (P= 0.03). No differences were detected in 

mtDNA/nucDNA ratio between the males from the two lines for right ventricle (Figure 1.A), and 

liver (Figure 1.B). Although the right ventricle of SUS line males was higher than RES line males, 

the difference was not statistically significant.  Inspection of the mtDNA/nucDNA ratios across 

tissues for males from each line revealed that the RES line males were comparable (around 1000) 

for right ventricle, thigh, liver and breast, but only around 100 for lung.  The SUS males were 
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much more variable ranging from 100,000 for thigh and lung, to 5,000 to 10,000 for liver, right 

ventricle, and breast.  

In contrast to the males, the mtDNA/nucDNA ratio at 3 weeks of age for SUS line females were 

lower than RES line females for lung (Figure 1.C) and breast (Figure 1. E). The breast ratio for 

SUS line females was half that of the RES females (P=0.03), while for lung the SUS line was 

0.008x the value for the RES females (P= 0.004). No differences in mtDNA/nucDNA ratio were 

observed between the females for the two lines for liver (Figure 1.B), right ventricle (Figure 1.A), 

and thigh (Figure 1.D). Although the liver, and right ventricle of SUS line females was lower than 

RES line females, the difference was not statistically significant, and the RES line female values 

for liver were more variable. Examination of the mtDNA/nucDNA ratios across tissues for females 

for both lines revealed that the SUS line females were comparable (around 1000) for right 

ventricle, thigh, lung, and breast, and around 10,000 for liver.  Unlike for males the RES female 

samples showed the greatest tissue variation.  RES females’ ratios ranged from 100,000 for liver 

and lung, to 10,000 for right ventricle, and 1000 for thigh and breast.  

Comparison of mtDNA copy number between genders within each line at 3 weeks of age shows 

significant differences for some tissues. Females from the RES line had higher mtDNA copy 

number than males from the RES line for lung (P=0.001) and breast (P=0.006). In contrast, males 

from the SUS line had a relatively higher mtDNA copy number than SUS line females for lung 

(P= 0.05) and thigh (P=0.03). In this study, lung tissue demonstrated the most significant 

mtDNA/nucDNA ratio differences in respect to both gender and line.  

Since only lung, thigh and breast showed differences at 3 weeks of age, we examined 

mtDNA/nucDNA ratios for those same tissues at 20 weeks of age. We restricted our investigation 
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to males since ascites mortality is consistently higher for males than for females in our research 

lines. This is also consistent with reports from other researchers on commercial broilers 

(Decuypere et al., 2000; Moghadam et al., 2001; Baghbanzadeh et al., 2008; Movassagh, et al., 

2008). Five males of both lines from the same generation were assessed for ontological changes 

in mtDNA copy number. As shown in Figure 3.1, we observed a decrease in mtDNA/nucDNA 

ratio in 20-week SUS line males compared to 3 week SUS line males for lung (P= 0.019) and thigh 

(P= 0.045).  The reduction at 20 weeks of age results in the SUS and RES line males have 

comparable levels of mtDNA for lung and thigh.  However, as for 3 weeks of age we continue to 

see a higher ratio of mtDNA/nucDNA in the breast muscle for the SUS line males compared to 

the RES line males.  The difference between the lines for the breast decreases from 6-fold at 3 

weeks of age to approximately 2-fold at 20 weeks of age but remains statistically different between 

the lines (P=0.02).  Furthermore, consistent with our finding at a younger age, the 

mtDNA/nucDNA ratio in breast muscle of 20 weeks old of SUS line males was 2 times higher (P= 

0.02) compared to RES line. No differences between young and old birds in mtDNA/nucDNA 

ratio were detected for breast tissues of SUS line males (P=0.3) indicating the consistent elevation 

of mtDNA/nucDNA ratio. However, we observed an increase in mtDNA/nucDNA ratio in breast 

tissues (P=0.03) between young and old birds of the of RES line. Thus at 20 weeks of age we see 

the SUS line male mtDNA copy number reduced to comparable levels as the RES line males for 

lung and thigh but the breast mtDNA copy number remains elevated in the SUS line compared to 

the RES line. 

Since the REL line represents the founder population for our SUS and RES experimental lines, we 

decided to examine the mtDNA/nucDNA ratio in breast muscle of male birds from the REL line 

at 3 and 20 weeks of age. As shown in Figure 3.2, we observed an increase in mtDNA/nucDNA 
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ratio in 20-week REL line males compared to 3-week REL line males (P=0.03). In this study, both 

REL and RES line male birds had the same mtDNA/nucDNA ratio at both 3 and 20 weeks of age. 

Unlike the SUS male birds that have always higher mtDNA/nucDNA ratio at both ages than the 

RES and REL males (Figure 3.2). 

A number of genes have been associated with regulation of mitochondrial biogenesis. We selected 

five of these genes to examine their expression levels using RT-qPCR for the tissues showing the 

greatest differences for gender or line. The five genes were: AMP-activated protein kinase α1 

(AMPKα1), peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PPARGC1A), 

Sirtuin 1 (SIRT1), optic atrophy 1 (OPA1), and Dynamin-1 like (DNM1L). The expression of these 

genes were assessed in lung, thigh, and breast of both lines and genders at 3 weeks of age, and 

breast and lung for males at 20 weeks of age. In all cases the relative expression was determined 

and calibrated against the expression in the RES line.   

In males at 3 weeks of age, expression of all five genes were reduced in all three tissues (Table 

3.2), with the reduction being statistically significant for AMPKα1, OPA1, and DNM1L in lung 

and breast ranging to half the expression in SUS relative to RES. There were no differences in the 

level of expression PPARGC1A and SIRT1 genes in lung and breast between the two lines at this 

age. In thigh, there were no differences in expression levels for any of these five genes. 

Interestingly, an increase in the level of expression of PPARGC1A, SIRT1, and OPA1 genes in 

breast of SUS males at 20 weeks of age relative to RES males was observed. No differences in the 

expression of DNM1L gene in breast while the expression of AMPKα1 gene remained low. In the 

lungs of SUS males at 20 weeks of age, a reduction in the expression of all genes was observed 
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relative to RES males (Table 3.3), with the reduction being significant for AMPKα1 (P=0.016), 

and OPA1 (P= 0.0009). No significant differences in PPARGC1A expression was observed.  

In females at 3 weeks of age, the expression of AMPKα1 gene in lung was reduced (0.5x; P=0.05) 

in SUS line compared to RES line, while SIRT1 mRNA expression increased by approximately 

29% (Table 3.4).  For thigh, only OPA1 and DNM1L were reduced to 80% and 60%, respectively, 

in SUS vs RES females. In breast, none of the five genes were found to differ between the lines. 

No gene expression analyses were performed for females at 20 weeks of age.  

None of these key mitobiogenesis regulators appeared to correlate with the differences in 

mtDNA/nucDNA ratios we observed for both genders between the two lines. However, in males, 

we observed a reduction in the mtDNA copy number for SUS males from 3 weeks of age to 20 

weeks of age in lung, thigh, and breast, although the levels remained relatively higher in breast of 

the SUS males than the RES males. Consistent with that difference at 3 weeks of age we saw a 

decreased expression for OPA1, and DNM1L genes in lung and breast SUS males relative to RES 

males whereas at 20 weeks of age we observed a higher expression for PPARGC1A, SIRT1, and 

OPA1 in only breast of SUS males relative to RES males. Additionally, AMPKα1 gene was always 

expressed at lower levels in the breast and lung tissues of SUS males compared to RES males at 

both ages. In general, we found no consistent gene expression pattern to explain the marked gender 

and line differences in mtDNA copy number for these tissues. 

DISCUSSION 

Mitochondrial dysfunction is well documented in a wide array of diseases and conditions, such 

as Alzheimer's disease, cancer, and aging (Brown et al.,2001, Parr et al.,2006, Barazzoni et al, 

2000). Mitochondria are central to ATP synthesis, heat production, radical oxygen species (ROS) 
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generation, fatty acid and steroid metabolism, cell proliferation, and apoptosis (Jornayvaz & 

Shulman, 2010; Ploumi et al., 2017). Alterations in mtDNA sequence or copy number may 

contribute to mitochondrial dysfunction (Malik & Czajka, 2012). Thus, it is likely that imbalances 

within the cell concerning mitochondria-centered metabolic pathways may contribute to ascites 

syndrome. Our observations indicate that variations in mtDNA copy number could be an important 

component in the pathoetiology of ascites syndrome in broilers. Using different tissues, we have 

demonstrated that mtDNA copy number can be an important biomarker during early 

developmental age for ascites syndrome susceptibility. Our results showed sizable tissue-specific, 

and gender differences in the mtDNA/nucDNA ratio at early ages of broilers. The possible 

existence of gender-specific differences in energy metabolism for particular tissues might be a 

consequence of interplay between maternally inherited mitochondria and sex chromosomes or 

differences in endocrine responses. In males, mtDNA/nucDNA ratio was significantly higher in 

lung, thigh, and breast tissues from SUS line males at 3 weeks of age in comparison with RES line 

males. Conversely, mtDNA levels were significantly lower in lung and breast tissues of SUS line 

females as compared to RES line females. The gender differences may impact ascites phenotype 

considering that males are documented to have higher ascites mortality than females (Decuypere 

et al., 2000; Moghadam et al., 2001; Baghbanzadeh et al., 2008; Movassagh, et al., 2008). The 

observed elevation in the amount of mtDNA in lung, thigh and breast muscle of SUS line males 

might be attributable to a compensatory response to the decline in the respiratory function of 

mitochondria or a response to other metabolic regulatory processes. An alternate explanation is 

needed for the reduced mtDNA copy number in lung and breast muscle of SUS line females. One 

possible explanation is that differences in mtDNA content of different sexes can be attributed to 

imbalances in oxidative stress due to higher female estrogen levels. Previous work found that 
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oxidative damage to mtDNA is 4-fold higher in males than in females (Borras et al., 2003; 

2010). The lower oxidative damage in females may be attributable to the protective effect of 

estrogens by upregulating the expression of antioxidant enzymes in mitochondria via intracellular 

signaling pathways, thus decreasing oxidative damage and increasing antioxidants defenses 

(Borras et al., 2003; 2010). Moreover, fundamental sex differences in metabolism under stressful 

conditions have long been observed in several organisms and may also be influenced by intrinsic 

differences in genomic maintenance (Demarest & McCarthy, 2015). Absent from our analysis is 

any determination of whether the differences in mtDNA content is associated with functional or 

non-functional (defective) mitochondria.  Future work could involve fluorescent detection systems 

for visualizing mitochondria in SUS vs RES tissues to assess relative mitochondrial abundance 

and functional state.  

Bottje and Wideman hypothesized that mitochondrial dysfunction contributes to systemic hypoxia 

that leads to ascites in broilers (Bottje & Wideman, 1995). They reported that mitochondrial 

function is defective in a variety of tissues (lung, liver, heart, and skeletal muscles) in male broilers 

with ascites where oxygen utilization is less efficient than in male broilers without ascites 

(Cawthon et al., 1999, 2001; Iqbal, et al., 2001a; Tang et al., 2002). They assessed the 

mitochondria function for both the respiratory control ratio (RCR); for electron transport chain 

coupling, and for the adenosine diphosphate to oxygen ratio (ADP:O); for oxidative 

phosphorylation. A decline in RCR and ADP:O ratio was detected in ascites mitochondria relative 

to the non-ascites control. This may indicate functional impairment of mitochondrial oxidative 

phosphorylation and less efficient utilization of oxygen than in control.  On the other hand, more 

efficient oxidative phosphorylation and lower oxidative stress were observed in mitochondria 

obtained from broilers selected for genetic resistance to ascites. Accumulation of hydrogen 
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peroxide was observed in heart and skeletal mitochondria in broilers with ascites and of oxygen 

radical production in ascites liver and lung mitochondria. Therefore, there is no doubt that 

mitochondrial function is defective in broilers with ascites which leads to increased production of 

ROS.  It is possible that the observed significantly lower mitochondrial biogenesis in male RES 

and REL lines is indicative of lower oxygen demand or ROS production. However, it is yet not 

clear if increased levels of ROS are a secondary effect of development of ascites or are associated 

with genetic susceptibility. Cisar et al. (2004) used immunoblots to quantify cardiac mitochondrial 

electron transport chain (ETC) protein levels in the RES and SUS lines under hypoxic challenge. 

ETC protein levels were similar in RES and SUS at ambient oxygen pressure but were significantly 

elevated only in RES under hypoxic conditions.  Our data is for ambient oxygen levels only and 

based on mitochondrial DNA and not mitochondrial proteins sugessting the possible involvment 

of mitochondrial proteins with ascites phenotype. 

Imbalance in mitochondrial biogenesis may only affect broilers at a young age when ascites is 

most likely to develop. Contrary to 3 weeks of age, at 20 weeks of age males from the RES and 

SUS lines showed no differences in mtDNA copy number for lung and thigh. One additional 

potentially confounding aspect is that the 20 week samples were from birds that had been feed 

restricted since 5 week post hatch. Despite this, the difference in breast mtDNA copy number was 

still higher for SUS males compared to RES males. Future investigations should examine females 

for a similar ontological shift in mitochondrial biogenesis, as well as assess the impact of feed 

restriction. Apparently, the consistent increase in mtDNA/nucDNA ratio between young and old 

birds of the two lines is restricted to breast muscle which may reflect increased energy demands 

or a compensatory amplification to overcome the loss of mitochondrial function or oxidative stress.  
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Examination of mtDNA/nucDNA ratio in breast muscle from the REL line of male birds at 3 and 

20 weeks of age indicate a similar pattern as the RES line. This was surprising since our research 

lines, SUS and RES, were originally developed from the REL line.  We expected to see a wider 

range of mtDNA abundance in the REL line reflecting a composite of the SUS and RES patterns. 

This may be the result of imbalance between the rate of biogenesis and clearance of dysfunctional 

or old mitochondria in SUS vs REL and RES males. Alternatively, this may be due to imbalance 

in mitochondrial-nuclear crosstalk is SUS vs REL and RES males.  Our study strongly supports a 

potential decrease in the mitochondrial function with oxidative stress, yet overall mtDNA quantity 

increases by a feedback mechanism to compensate for general mitochondrial dysfunction and 

damage in ascites-SUS male birds.  However, the detailed mechanism remains unclear.  

We analyzed gene expression of some of the key regulators of the mitochondrial biogenesis in 

ascites- susceptible and ascites- resistance lines of both genders.  PPARGC1A is the master 

regulator of mitochondrial biogenesis. This transcriptional coactivator coordinates the actions of 

several transcription factors that involved in the basic functions of the mitochondrion as well as its 

rate of biogenesis (Puigserver & Spiegelman 2003; Dominy & Puigserver, 2013). No changes in 

the PPARGC1A expression were detected in lung, thigh, and breast tissues of both genders and 

lines at 3 weeks of age. However, consistent with the observed increased mitochondrial biogenesis 

in in breast tissue of the SUS males at 20 weeks old, the levels of PPARGC1A mRNA gene 

expression were almost 2-fold change higher relative to the RES birds.  Probably, the increased 

activity of PPARGC1A in breast muscle during sexual maturity could play a role in enhancing 

mitochondrial respiratory capacity which attenuates the development of ascites in SUS males. 

However, it has yet to be determined whether the enhanced activity of PPARGC1A is attributable 

to its promotion of mitochondrial function or its effects on nonmitochondrial gene expression.  
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AMPKα1 gene regulates intracellular energy metabolism in response to acute energy crises and is 

activated by an increase in AMP/ ATP ratio (energy depletion) and inhibited by the presence of 

glycogen. Thus, to maintain energy homoeostasis, AMPKα1 switches on catabolic pathways that 

generate ATP, while switching off anabolic pathways that consume ATP (Dominy & Puigserver, 

2013; Hardie, 2011). Interestingly, The AMPKα1 gene activity was notably down regulated in 

lung, and breast tissues at 3 and 20 weeks of age of SUS line males in comparison with RES line. 

In females, AMPKα1 gene was only downregulated in lung muscle of SUS line birds as compared 

to RES line at early age. Several studies indicate another important role of AMPKα1 in the disposal 

of dysfunctional and damaged mitochondria, process known as autophagy (Hardie, 2011). Any 

impairment of the mitochondrial autophagy process is often accompanied by accumulation of 

dysfunctional or damaged mitochondria that leads to increases in mtDNA content. Therefore, it is 

possible that the observed AMPKα1 downregulation in SUS line as compared with the RES line 

caused insufficient removal of the damaged mitochondria which may explain the increase mtDNA 

content in male birds of the SUS line as compared with the RES line.  

OPA1 gene plays an essential role in the inner mitochondrial fusion and maintenance of the 

mitochondrial network architecture, which is essential for mitochondrial activity and biogenesis. 

DNM1L is the master regulator of mitochondrial division in most eukaryotic organisms (Scott & 

Youle, 2010). Remarkably, at 3 weeks of age, both OPA1 and DNM1L mRNA expression were 

significantly decreased in lung, and breast tissue of SUS line males, and in thigh of SUS line 

females as compared with RES line. Downregulation of DNM1L and OPA1 genes in these tissues 

at this early age may reduce the efficiency of mitochondrial autophagy and causes accumulation 

of dysfunctional mitochondria. Consequently, the mitochondria are not able to re-fuse with the 

mitochondrial network after fission leading to increase in fragmented mitochondria and mtDNA 
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accumulation. Conversely, at 20 weeks old, the OPA1 was found to be significantly upregulated 

in breast tissue of SUS line males as compared with RES line which may reflects the enhanced 

activity in the mitochondrial biogenesis and the quick clearance of damaged mitochondria in breast 

muscle as birds advance in age.  

SIRT1, a metabolic sensor that belongs to the sirtuin (NAD+ –dependent deacetylases) family and 

its activity can increase when NAD+ levels are abundant, such as times of nutrient deprivation. 

SIRT1 stimulates mitochondrial biogenesis via deacetylation of a variety of proteins in response to 

metabolic stress (Dominy & Puigserver, 2013; Tang, 2016).  In our study, SIRT1 was 

overexpressed in breast tissue of SUS line males at 20 weeks old and in lungs of SUS line females 

at 3 weeks of old compared to RES birds.  

In summary, our findings indicate clear sex differences in mitochondrial biogenesis establishing a 

strong association between the mtDNA content and ascites-susceptibility and ascites-resistance in 

a tissue-specific manner. The mtDNA/nucDNA levels could serve as potential predictive markers 

to screen for ascites phenotype in birds at early developmental ages. Moreover, this study confirms 

that the consistent increase in the mtDNA/nucDNA ratio between young and old birds is only 

restricted to breast muscles. However, it is worth noting that mitochondrial biogenesis is tissue 

specific. This is because every type of cell and tissue has a specific transcriptional profile, and 

consequently unique features of metabolic pathways. Our study suggests the possible contribution 

of the lower expression of OPA1, and DNM1L genes in mitochondrial biogenesis defects in male 

SUS birds which leads to increase in mtDNA content in some tissues at early ages. Furthermore, 

our data is consistent with a possible role of PPARGC1A in breast tissue of SUS line males in 

controlling ascites syndrome progression and improved regulation of mitochondrial biogenesis at 

older ages. Nevertheless, we have no clear evidence for what genes or regulators are driving the 
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observed sizable sex-differences in mtDNA copy number at an early age. Despite our findings, the 

precise mechanism that explains the association between mtDNA copy number and ascites 

syndrome remains unknown. To address this further in the future, we need to test larger sample 

numbers, more tissues, and different populations/crosses. Our observations are based on a single 

experimental series and, although our results agreed with our previous data, we cannot wholly 

determine if this phenomenon is a cause or effect or limited to the tissues used in this study. 

Regardless of the limited number of replicates used, our study had sufficient statistical power to 

detect significant differences in mtDNA/nucDNA ratio and gene expression analysis. Future 

research should focus on finding mitochondrial biogenesis causal genetic regulators and exploring 

whether they are connected or unrelated to changes in the mtDNA. 
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TABLES AND FIGURES 

Table 3. 1:  Sequences of primer pairs used for RT-qPCR analysis of chicken target and reference genes. For each gene the primer 
sequence for forward (F) and reverse (R) are listed (5’-3’), genomic location, the annealing temperature in °C used (Ta), the amplicon 
product length (bp). All primer sequences were synthesized by Integrated DNA Technologies (IDT, Coralville, IA).  

Gene   Location Primer Sequences Ta Product length 

mt-tRNAARG (mtDNA) chrM Forward: GCTTCTTCCCCTTCCATGAGCCATCC 

Reverse: AGAGATGAGGTGTGTTCGGTGGAATGC 

60 288 

HTR2B (nucDNA) Chr9 Forward: GCCTATTTGATCAACAAGCCACCTC 

Reverse: GTTATGAAGAATGGGCACCACATCA 

60 226 

TBP Chr3 Forward: GAACCACGTACTACTGCGCT 

Reverse: CTGCTGAACTGCTGGTGTGT 

60 230 

PPARGCA1 Chr4 Forward: ACGCAAGCAGTTTTGCAAGT 

Reverse: TCCGCTGTGCCTCTTTAAGT 

60 271 

OPA1 Chr9 Forward: CCTAACTGGCAAAAGGGTCCA 

Reverse: GCTCCCCCAAAAGGTAAGACA 

60 206 

SIRT1 Chr6 Forward: CGATGAAGGAAAATGGAACCAAC 

 Reverse: CGCTCTCATCCTCCACATCT 

60 270 

MAPKαααα1 ChrZ Forward: CGACGGAAGAATCCAGTGAC 

Reverse: TTTCCTTGTGCATCACCATCTG 

60 206 

DNM1L Chr1 Forward:  ATCCTTGCTGTTGGATGACCTT Reverse:  
AGCGTGGCTGGTACAGTCTT 

60 218 
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Table 3. 2: Relative gene expression in lung, thigh, breast muscles of 3 weeks old male birds from SUS and RES lines divergently 
selected for ascites phenotype.  ↑↓ indicates the direction of the difference for the SUS line relative to the RES line. Avg ± SEM is the 
average ± standard error of the mean for the n-fold change (2^-ΔΔCt) for the SUS line relative to the calibrator, RES line, from five 
birds (n= 5) run in triplicate.  Statistically different results were determined using Student's t test for unpaired samples. 

Gene Lung 3 Weeks Thigh 3 Weeks Breast 3 Weeks 

↑↓ Avg ± SEM P value ↑↓ Avg ± SEM P value ↑↓ Avg ± SEM P value 

AMPKαααα1 ↓ 0.75 ± 0.23 0.04 ↑ 1.21 ± 0.27 0.15 ↓ 0.66 ± 0.07 0.02 

PPARGC1A ↓ 0.78 ± 0.10 0.12 ↓ 0.82± 0.21 0.23 ↓ 0.92 ± 0.11 0.32 

SIRT1 ↓ 0.84 ± 0.08 0.12 ↓ 0.58 ± 0.05 0.27 ↓ 0.91 ± 0.07 0.34 

OPA1 ↓ 0.65 ± 0.07 0.01 ↓ 0.93 ± 0.22 0.38 ↓ 0.70 ± 0.05 0.04 

DNM1L ↓ 0.49 ± 0.03 0.00004 ↓ 0.92 ± 0.14 0.29 ↓ 0.63 ± 0.05 0.018 
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Table 3. 3: Relative gene expression in lung, and breast muscles of 20 weeks old male birds from SUS and RES lines divergently 
selected for ascites phenotype.  Column headers and data representations are as described for Table 2. NC is no significant change. 

Gene Lung 20 Weeks Breast 20 Weeks 

↑↓ Avg ± SEM P value ↑↓ Avg ± SEM P value 

AMPKαααα1 ↓ 0.15 ± 0.13 0.01 ↓ 0.83 ± 0.29 0.02 

PPARGC1A NC 1.01 ± 2.05 0.16 ↑ 1.97 ± 0.09 0.000003 

SIRT1 ↓ 0.51 ± 0.08 0.10 ↑ 1.43 ± 0.11 0.004 

OPA1 ↓ 0.62 ± 0.05 0.0009 ↑ 1.18 ± 0.07 0.03 

DNM1L ↓ 0.81 ± 0.08 0.11 ↓ 0.92 ± 0.23 0.19 
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Table 3. 4: Relative gene expression in lung, thigh, breast muscles of 3 weeks old female birds from SUS and RES lines divergently 
selected for ascites phenotype.  Column headers and data representations are as described for Table 2. NC is no significant change. 

Gene Lung 3 Weeks Thigh 3 Weeks Breast 3 Weeks 

↑↓ Avg ± SEM P value ↑↓ Avg ± SEM P value ↑↓ Avg ± SEM P value 

AMPKαααα1 ↓ 0.43 ± 0.50 0.05 ↓ 0.87 ± 0.28 0.19 NC 1.03 ± 0.24 0.47 

PPARGC1A ↓ 0.48 ± 0.18 0.12 NC 1.01 ± 0.13 0.49 ↓ 0.48 ± 0.16 0.08 

SIRT1 ↑ 1.29 ± 0.12 0.02 ↓ 0.98 ± 0.07 0.41 ↓ 0.92 ± 0.09 0.28 

OPA1 ↑ 1.16 ± 0.17 0.22 ↓ 0.80 ± 0.07 0.03 ↓ 0.86 ± 0.05 0.15 

DNM1L ↓ 0.60 ± 0.19 0.07 ↓ 0.60 ± 0.08 0.01 ↓ 0.79 ± 0.18 0.40 
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Figure 3. 1: Mean mtDNA relative to nucDNA in A, B, Heart, and Liver of the SUS and RES 
lines of both sexes at 3 weeks old, C, D, E, Lung, thigh, and breast muscle of the SUS and RES 
lines of both sexes at 3 and 20 weeks old (n=5 for each group). Error bars are SEM and P values 
determined by one-tailed t-test, *P >0.05, **P >0.01.  
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Figure 3. 2: Mean mtDNA relative to nucDNA in breast tissues of males from RES, SUS, and 
REL experimental lines at 3 weeks old, and 20 weeks old (n=5 for SUS and RES birds and n=12 
for REL line birds). Error bars are SEM and P values determined by one-tailed t-test, *P >0.05.  
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CHAPTER 4 

Differences in Promoter Accessibility Responses to Hypoxia in Pulmonary Arteries of Ascites-

Susceptible and Resistance Broiler Research Lines Detected using ATAC-seq Technology 
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ABSTRACT 

The aim of the current study was to map genome-wide changes in chromatin accessibility of 

ascites- susceptible and ascites- resistant bird lines during normal and hypoxic conditions. Ascites 

is a terminal result of pulmonary hypertension and is a significant metabolic disease of fast 

growing meat-type chickens. Pulmonary artery remodeling appears to be the main condition that 

leads to an increase of pulmonary vascular resistance, sustained arterial hypertension, right 

ventricular hypertrophy and ultimately death. Therefore, in this study, we investigated chromatin 

accessible regions in the pulmonary artery of two broiler experimental lines divergently selected 

for ascites phenotype of both genders via ATAC-seq technology under normal and hypoxic 

conditions. For the first time, transposition was completed on frozen pulmonary artery tissues. 

Libraries were sequenced to generate 50 million 2x150 PE reads. A total of 23,444 open 

chromatin regions (or peaks) were identified across all pulmonary artery samples. Our analysis 

showed that this method captures the tissue-specific chromatin activity of not only regulatory 

regions such as promoters, enhancers, and insulators, but also gene regions including exonic, 

intronic, and intergenic regions. Initial results demonstrate that there was a substantial increase in 

the chromatin accessibility throughout the genome of ascites- susceptible birds when challenged 

under hypoxic conditions in comparison with controls. Contrastingly, we observed reduced 

changes in chromatin accessibility regions in ascites-resistant birds when challenged. We focused 

on changes within 2 kb of transcription start sites. We identified 1324 regions that become 

differentially accessible. In conclusion, we showed that chromatin accessibility is a key epigenetic 

factor influencing transcriptional regulation and a straightforward approach to identify functional 

genomic regulatory regions controlling complex diseases such as ascites in birds.  
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INTRODUCTION 

Pulmonary hypertension syndrome (PHS), or ascites is a significant metabolic disease of fast 

growing meat-type, broiler chickens (Wideman et al., 2013). In the poultry industry, the 

economic impact on the worldwide broiler industry is measured in tens of millions of dollars 

lost per year (Odom, 1993). PHS is a multifactorial disease mediated by several nutritional, 

management, environmental, and genetic factors, all related to the need to ensure a high level of 

oxygen in the tissues (Iqbal et al., 2001; Owen et al., 1990; Lubritz et al., 1995; Wideman & 

French, 2000; Balog et al., 2003). However, many studies have confirmed that long- term intense 

selection for rapid growth and meat production is the primary cause for PHS in broilers (Julian, 

1993; Balog, 2003). The extremely rapid early growth performance of broilers imposes 

proportional challenges to their immature cardiopulmonary system. As a result, the heart and lungs 

are required to work very close to their physiological limit to meet the high oxygen demands 

required for metabolic processes. Unfortunately, cardiopulmonary system capacity cannot always 

meet the levels of oxygen needed for the rapid growth, which can result in internal hypoxemia and 

PHS development (Julian, 2000).  PHS-susceptible (SUS) broilers were found to have higher 

pulmonary artery pressure (PAP), and pulmonary vasculature resistance (PVR) to blood flow 

compared with PHS-resistant (RES) broilers (Wideman et al., 2010). Pulmonary arterial 

hypertension (PAH) occurs when the right ventricle is forced to elevate the PAP to overcome 

increased PVR to blood flow through restrictive pulmonary arterioles (Wideman et al., 2007). 

Sustained PAH leads to a series of pathophysiological events that include pulmonary arterial 

remodeling, right ventricular hypertrophy (RVH), valvular insufficiency, increased hematocrit 

value and blood viscosity, variable changes in the liver leading to the transudation of plasma from 

the liver into the abdominal cavity (ascites), eventually right ventricular failure (RVF) leading to 
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premature death (Wideman et al., 2013). Pulmonary artery structural remodeling appears to be the 

initial early key step characterized by vascular narrowing and thickening, leading to a progressive 

increase in PAP and PVR in response to hypoxia. Similar pathological changes manifest in 

humans, and experimental animals such as: rats, dogs, and cows, with chronic pulmonary 

hypertension (Van Suylen et al., 1998; Jeffery & Wanstall, 2001; Colvin & Yeager, 2014).  The 

pulmonary artery remodeling involves all three layers of the artery wall comprising an intima, a 

media, and an adventitia (Stenmark et al., 2006). Each layer exhibits specific functional, 

histological, and biochemical characteristics (Hislop & Reid, 1976; Reid, 1979; Stenmark & 

Mecham, 1997; Shimodao et al., 2013). In response to vascular stress or stimuli, each layer 

contributes in unique ways to regulate pulmonary arterial wall function and structure. In hypoxia-

induced PAH, the pulmonary arterial remodeling is characterized by thickening of all three layers 

of the blood vessel wall.  Such thickening is attributed to cell growth (hypertrophy) and/or 

proliferation (hyperplasia) of the predominant cell type within each of the layers, i.e., fibroblasts, 

smooth muscle cells, and endothelial cells, as well as increased production of extracellular matrix 

components including collagen, fibronectin, and elastin within the vessel wall (Gibbons & Dzau, 

1994; Stenmark et al., 2009; Sakao et al.,2010).  (Figure 4.1). As a result, the pulmonary artery 

lumen diameter and capacity for vasodilation are decreased causing obstruction to the blood flow, 

increased PVR, and sustained PAH. In spite of many years of genetic research, understanding the 

genetic underpinnings of PHS remains a major challenge, and there is still much work to be done. 

With recent advances in the techniques that allow us to sequence genomic DNA, genetics research 

has become more and more important over the past decades. Hundreds of genome-wide 

association studies (GWAS) have provided a wealth of information in which differences in the 

genome of individuals can be linked to various traits.  However, it is becoming very clear that 
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complex diseases and common disease traits, such as PHS, are influenced by large numbers of 

variants that individually have small effects (Manolio et al., 2009). Moreover, most of these loci 

lie outside of coding genes especially in regulatory regions such as: promoters, enhancers, and 

insulators and act by modifying gene expression (Li et al., 2016). Therefore, it is difficult to 

identify the molecular effects of noncoding variants on gene regulation. Recently, mapping of 

regulatory landscapes has received considerable attention as an essential component of gene 

expression regulation and genome stability. Open chromatin regions are correlated with active 

regulatory elements and changes in chromatin accessibility patterns are thought to play a critical 

role in several human diseases such as cancer, diabetes, heart diseases, kidney diseases and aging- 

related diseases (Gomez et al., 2016; Francis et al., 2006; Wilkins et al., 2015; Lewis et al., 1981; 

Reddy et al., 2015; Moskowitz et al., 2017; Wang et al., 2018). Therefore, chromatin accessibility 

can serve as a good indicator of gene transcription activity status. Recent technological advances, 

such as the Assay for Transposase-Accessible Chromatin by high- throughput sequencing (ATAC-

seq), have enabled genome-wide profiling of chromatin accessibility patterns, nucleosome 

positioning, and transcription factor footprints at base pair resolution (Buenrostro et al., 2013 & 

2015). Although ATAC-seq has only been reported to work with cultured cells, we aimed to adapt 

ATAC-seq for frozen tissues archived from prior experiments. ATAC-seq relies on the ability of 

hyperactive Tn5 transposase to fragment DNA and integrate into active regulatory genomic 

regions (Figure 4.2).  Since pulmonary artery remodeling plays a key early step in PHS progression 

in broilers, the objective of this study was to use ATAC-seq to investigate chromatin accessible 

patterns in the pulmonary artery of two broiler experimental lines divergently selected for PHS 

phenotype, the resistant line (RES) and susceptible line (SUS) under hypoxic and non- hypoxic 

conditions.   
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MATERIALS AND METHODS 

Genomic Data  

All genome positions indicated in this study are according to the December 2015 assembly of the 

Gallus gallus genome GenBank accession ID: GCF_000002315.4.  

Birds Stocks 

All animal procedures were approved by the University of Arkansas Institutional Animal Care and 

Use Committee (under protocol 12039 and 15040). Birds used in this study represent the ascites-

resistant (RES), and the ascites-susceptible (SUS) lines at generation 21 (Pavlidis et al., 2007). 

Soon after hatching, a total of 24 chicks from each line were randomly divided into a normal group 

(n = 12) and a hypoxic challenged group (n=12) with 6 from each gender in each group. All birds 

were reared at ambient pressure at room temperature (20-23°C) for 2 weeks.  Starting from the 

third week, birds in the normal group were maintained at ambient pressure, whereas broilers in the 

hypoxic challenged group were transferred to the hypobaric chamber at simulated high altitude 

(8000 ft) by operating under partial vacuum to lower the partial pressure of oxygen. Birds remained 

in the hypobaric chamber under hypoxic condition for one week. All birds were allowed to have 

free access to the same diet ad libitum and had a 24h lighting throughout the trial period. 

Pulmonary Arteries Collection 

At the end of the third week of the trial, all birds were killed by cervical dislocation and pulmonary 

artery tissues were rapidly collected from both groups and immediately frozen in dry ice and stored 

in a -80°C freezer for later use. 
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ATAC-Seq Libraries Preparation 

Pulmonary arteries from 2 birds of the same gender within each group were mixed together to 

generate a pooled sample. Thus, based on gender and phenotype, samples constituted 12 pooled 

samples from the control group and 12 pooled samples from the hypoxic challenged group (3 pools 

x 2 phenotypes x 2 genders). Nuclei were isolated from frozen pulmonary artery tissues (~ 10 mg) 

using the Omni-ATAC protocol as previously described (Corces et al., 2017). Tissue was 

homogenized gently with approximately 10 to 15 strokes with the loose ‘A’ pestle, followed by 

20 to 25 strokes with the tight ‘B’ pestle using 1-ml Dounce homogenizer. Approximately 10,000 

counted nuclei were tagged using Tn5 transposase (Nextera DNA sample prep kit; Illumina, San 

Diego, CA) for 30 min at 37°C as described previously (Buenrostro et al., 2013; 2015), with the 

modification that fragmented genomic DNA was recovered using Zymo DNA Clean and 

Concentrator 5 columns (Zymo Research, Irvine, CA). In order to enrich small tagmented DNA 

fragments, DNAs were initially amplified using custom-synthesized (Integrated DNA 

Technologies, Coralville, IA) index primers (Ad1_noMX and Ad2.1–2.24, Table 1) 

barcoded primers for 5 cycles of standard PCR. Analysis of the qPCR data allowed a rough 

estimate of the number of additional cycles needed to generate product prior to saturation. The 

additional number of cycles needed was determined by plotting the Relative Fluorescence (RFU) 

versus Cycle and then selecting the cycle number where the reaction transitioned one-third of the 

maximum RFU, also known as Cycle threshold (Ct). For most samples the Ct was 10 to 12 

additional PCR cycles added to the initial set of 5 cycles. After PCR amplification, libraries were 

purified using Zymo DNA Clean and Concentrator 5 columns. DNAs were gel separated and ~ 

800 bp fragments were collected using a QIAquick Gel Extraction Kit (Qiagen, Valencia, CA). 

The quality control (QC) checkpoints consist of morphological evaluation of nuclei, agarose gel 



 

122 

electrophoresis of libraries, and real-time qPCR to assess the enrichment of open-chromatin sites. 

The selected DNA fragments were then quantified using a KAPA Library Quant Kit for Illumina 

Sequencing Platforms (KAPA Biosystems, Wilmington, MA). Finally, all quantified libraries were 

pooled and sequenced using an Illumina HiSeq X with paired- end read length of 150 bases to a 

minimum depth of 50 million reads per sample at MedGenome, Inc. (Foster City, CA).  

ATAC-seq Data processing 

ATAC-seq reads that passed quality filtering and demultiplexing were aligned to the Galgal5 

assembly using NGen software (DNASTAR Lasergene Suite 15.2) with standard parameters and 

library insert size of 800. Alignments were analyzed using Arraystar software (DNASTAR 

Lasergene Suite 15.2). The relative RPM (reads per million) values for each pool were compared 

across libraries, genders, chicken line, and treatments. Peak calling was performed using MACs 

model-based implementation system in ArrayStar where the number of reads/peak was determined 

for each sample. Reads mapping to the mitochondrial genome were used to calculate the 

percentage of mitochondrial DNA in our libraries (Table 4.3). Peak-to-gene assignment were all 

based on RefSeq database, which was downloaded from UCSC table browser 

(https://genome.ucsc.edu/). Genes that were difficult to annotate via RefSeq database were 

annotated with non-RefSeq database. Visualizations of insertion tracks were done using 

GenVision Pro tool (DNASTAR Lasergene Suite 15.2). Peak classification was performed using 

an in-house script assigning peaks 2kb upstream to transcription start sites (TSS) as “promoter”. 

Transcription start site annotations were also made using RefSeq database.  
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RESULTS 

Optimization and Construction of ATAC-Seq Libraries 

ATAC-seq method is composed of three fundamental steps: isolation of nuclei, transposition, and 

amplification. After optimization, we found that the entire assay and library construction can be 

carried out in a few days. We followed the previously published ATAC-seq protocol (Buenrostro 

et al., 2013; 2015) with minor modifications. However, to isolate nuclei from frozen pulmonary 

arteries, we used an improved ATAC-seq method called Omni- ATAC protocol (Corces et al., 

2017). This is because standard ATAC-seq requires the transposition reaction to be performed on 

fresh cells and was found to perform poorly on snap-frozen samples. Omni-ATAC protocol 

improvements include 1:) the use of phosphate-buffered saline (PBS) in the transposition reaction, 

and 2) the use of multiple detergents (such as NP40, Tween-20, and digitonin). These 

improvements were reported to be important in increasing the signal-to-background ratio, 

improving cells permeabilization, removing mitochondria from the transposition reaction, and 

increasing the complexity of the library. We tested this protocol and found it suitable and broadly 

applicable for diverse tissue types (such as: liver, heart, lung) for samples archived by flash-

freezing or stored frozen at -20oC in RNAlater™. Frozen pulmonary artery samples were washed 

with cold PBS (pH 7.4) before use. We also note methods involving mechanical shearing such as 

a Bullet Blender homogenizer (Next Advance, Inc., Averill Park, NY) significantly reduced the 

quality of nuclei.  The optimal method we found was homogenization using a 1-ml Dounce 

homogenizer on ice, which produced high-quality intact nuclei, were tissue was homogenized 

gently with approximately 10 to 15 strokes with the loose ‘A’ pestle, followed by 20 to 25 strokes 

with the tight ‘B’ pestle. We also modified the Omni-ATAC protocol for the density gradient 

loading method. Briefly, the 35% Iodixanol solution was first slowly load at the bottom of pre-
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chilled 2-ml round bottom Lo-Bind Eppendorf tube. Then slowly released 29% Iodixanol solution 

onto the side of the tube above the 35%. Finally, the crude preparation of nuclei was carefully 

mixed with 50% Iodixanol solution to give a final concentration of 25% and slowly loaded onto 

the side of the tube above the 29%. After centrifugation, nuclei were collected at the 29% and 35% 

Iodixanol solutions interface. We found this method of loading technique improved the quality 

and definition of the interfaces between all three layers.  Nuclei were counted after addition of 

trypan blue (10:10), to stain all nuclei. About 10,000 counted nuclei were then used for 

transposition reaction. The remainder of the ATAC-seq library preparation was performed as 

described previously (Buenrostro et al., 2013; 2015) with some modifications. The ATAC-seq 

protocol works by randomly inserting sequencing adapters into open chromatin regions via a 

hyperactive tagmentation Tn5 enzyme (Figure 2). Unlike the original protocol, we used only Zymo 

DNA Clean and Concentrator 5 columns (Zymo Research, Irvine, CA) instead of Qiagen products 

to purify DNA fragments after transposition reaction and libraries PCR amplification. Moreover, 

although Buenrostro et al., 2013, chose to avoid a size selection step to maximize the library 

complexity, and to identify accessible locations and nucleosome positioning simultaneously, we 

included size selection prior to sequencing. This is because samples that contain an excess of long 

fragments (>1 kb) can be hard to quantify and may result in reduced clustering efficiencies upon 

sequencing. Thus, we excised a relatively large fragment size of 800 bp to eliminate potently 

confounding long fragments, and at the same time maintain high library complexity. Then, we 

used a qPCR-based method, the KAPA Library Quant Kit for Illumina Sequencing Platforms to 

quantify our ATAC-seq libraries as Qubit can potentially give misleading and inaccurate results 

(Buenrostro et al., 2015). Finally, we sent all 24 quantified libraries to MedGenome, where 
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libraries were pooled and sequenced using an Illumina HiSeq X with paired- end read length of 

150 bp to a minimum depth of 50 million reads per sample.  

Primary Data Analysis and Peak Calling 

We generated ATAC-seq data from 24 pulmonary artery libraries as follows: RFNC (resistant 

female non- challenged, n=3), RFC (resistant female challenged, n=3), SFC (susceptible female 

challenged, n=3), SFNC (susceptible female non- challenged, n=3), RMNC (resistant male non- 

challenged, n=3), RMC (resistant male challenged, n=3), SMC (susceptible male challenged, n=3), 

and SMNC (susceptible male non- challenged, n=3). For this preliminary analysis, we restricted 

our investigation primarily to males as they show the greatest susceptibility to ascites (Decuypere 

et al., 2000; Baghbanzadeh et al., 2008). The first step in ATAC-seq data analysis was the mapping 

of reads to Galgal5 reference genome. Average reads varied from 29.9 million to 177.4 million 

(Table 4.2). Then, we assessed the proportion of reads that mapped to the chicken mitochondrial 

genome, given reports of mitochondrial reads being a significant source of contamination 

(Montefiori et al., 2017). Interestingly, there was a low contamination with reads mapping to the 

mitochondrial DNA typically, which made up less than 2% of all mapped reads from our 

libraries (Table 4.3). Thus, Omni- ATAC protocol for isolation of nuclei from frozen tissues can 

reduce contamination of ATAC-seq libraries from mitochondrial DNA. We also noted that ATAC-

seq reads correlate well with the library concentrations (Table 4.2 & Figure 4.3). Libraries with 

low input tend to generate less ATAC-seq reads as they don’t efficiently cluster well during 

sequencing and vice versa. Next, we identified accessible regions throughout the chicken genome 

and then assigned each ATAC-seq peak to the nearest gene based on annotated transcription start 

sites (TSS). The peak calling software (ArrayStar) was used to transform raw sequence alignments 

into regions of enrichment and background considering the false discovery rate and noise. In total, 
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23,444 high-confidence open chromatin regions (or peaks) were identified across all pulmonary 

artery samples. Peak intensities were highly reproducible and similar between biological 

replicates. ArrayStar peak calling algorithms generally assigned enriched regions by absolute 

signal values (read counts) or by significance of reads enrichment (P-values). We could assign 

ATAC-seq peaks into five general types based on the distribution of accessible sites: promoter-

proximal, enhancer, exonic/intronic, 3′UTR, and intergenic. Promoter- proximal is defined as 

the region within 2 kb of the reference transcription start site (TSS), as determined by the UCSC 

genome browser which would also include peaks including the 5′UTR. Peaks located within 

2 kb of transcription end site were included with the 3′UTR peaks. Peaks that found 10kb 

upstream from TSS was considered as “enhancers”, and peaks that fall within the gene body as 

either “exon” or “intron”, and any remaining peaks as “intergenic”. In this study, we focused on 

detecting chromatin accessibility in promoter- proximal regions and used an in-house script/Excel 

formula assigning peaks 2kb from TSS as “promoter” where differential peaks were annotated to 

the nearest gene based on their distance to TSS. Overall, we identified 1324 gene regions out of 

the 23,444 (~ 5.6% of all peaks) that become differentially accessible within the TSS. Therefore, 

we conclude that most differentially accessible regions (94.4 %) were largely distal intergenic 

regions or located at gene intronic, and exonic regions, with relatively few promoter-proximal 

regions exhibiting differential accessibility. In general, we observed a nearly 

unidirectional substantial and intense increase in chromatin accessibility when comparing the 

SMC with SMNC, potentially reflecting the much greater response to hypoxic conditions 

(Figure 4.4). On the other hand, comparison of samples from the RMC vs. RMNC, showed 

decreased profiles of chromatin accessibility when challenged under hypoxic conditions (Figure 

4.5). Both RMNC and SMNC showed broadly similar profiles of chromatin accessibility 
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(Figure 4.6). To illustrate our results, a zoom out of chr 1 of 100 million bp window showed 

that SMC are clearly stimulated by hypoxic conditions and contain way more active/open 

chromatin regions in comparison to the RMC that seem to respond to the challenge by becoming 

inaccessible whereas RMNC and SMNC behave the same (Figure 4.7). Moreover, ATAC-seq 

reveals the presence of clusters of similarly affected genes within the same chromosomal region. 

For example, we found a large cluster of histone genes that includes the major histone 

components (H2A, H2B, H3 and H4) located on chr1 ranging from ~48091382 bp to 48201409 

bp (Figure 4.11). Interestingly, histone genes were stimulated by hypoxic challenge in SUS 

males compared to RES.   

The most challenging aspect of ATAC-seq is the analysis of the sequence data, since generalized 

methods and tools are limited and still under development. Moreover, definitive identification of 

enriched regions from ATAC-seq experiments can be challenging as peaks can differ in shape and 

span. For example, narrow/sharp peaks (~ 100 bp), broader peaks (> 1 kb), and mixed signals. 

Sharp peaks have been generally found for protein–DNA binding (i.e.; transcription factors 

binding sites) such as SP1 gene (Figure 4.8), whereas broad peak regions have been often 

associated with histone modifications that mark domains—for example, activated or repressed 

regions, such as the gene that codes for RN5S protein (Figure 4.9). Peaks that contain both narrow 

and broad shapes are still not very well understood such as RPS27A gene (Figure 4.10) (Sims et 

al., 2014). Additionally, the data revealed categories of peaks that are either specific to one gene 

or shared between a cluster of genes. For instance, a peak associated with USP5 is shared other 

gene CDCA3 (Figure 4.12), whereas a peak associated with SP1 is specific to the gene (Figure 

4.8). Furthermore, pathway- and network-level analysis were performed using KEGG Pathways 

tool to identify known and novel relationships among annotated genes. Top identified pathways 
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include: Metabolic pathways,  Endocytosis,  Ubiquitin mediated proteolysis, MAPK signaling 

pathway, Cell cycle, RNA transport, Tight junction, Cellular senescence,  Peroxisome, Protein 

processing in endoplasmic reticulum, Lysosome, Oxidative phosphorylation, spliceosome, 

Ribosome, Pyrimidine metabolism, Adrenergic signaling in cardiomyocytes, and FoxO singling 

pathway.  

Altogether, our ATAC-seq analysis provides a global landscape of high confidence open 

chromatin regions in chicken under hypoxic conditions. Finally, our data demonstrate that the 

Omni-ATAC protocol provides high quality intact nuclei from frozen tissues, and broadly 

applicable platform for the generation of chromatin- accessibility profiles in chicken.  

DISCUSSION 

Soon after the genome sequences of many organisms had been completed, it became clear that the 

epigenome would also be required. Based on hundreds of human GWAS studies, it was realized 

that 93% of the trait-associated variants were in non-coding regions, mostly within cis-regulatory 

elements (Maurano et al., 2012). Therefore, much remains to be answered about how genetic 

information is interpreted, and which genes are expressed by which cell type, and when. The 

epigenome represents a second dimension to the genome (Rivera & Ren, 2013), and plays a 

significant role in directing the unique gene expression programming in each cell type or tissue at 

different development stages together with its genome. (Sarda & Hannenhalli, 2014). The 

epigenome consists of chemical changes to the DNA such as DNA methylation at CpG 

dinucleotides, covalent modifications of histone proteins, noncoding RNAs (ncRNAs), chromatin 

accessibility, nuclear localization, and higher-order chromatin architecture (nucleosome 

positioning and occupancy, 3D chromatin structure) (Bernstein et al., 2007; Berger et al., 2009; 
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Bonasio et al., 2010). Epigenetic changes can be heritable through cell division. Importantly, 

epigenetic modification can behave similarly to genetic mutations in terms of stability, yet they 

are reversable, and therefore have the potential to be manipulated therapeutically (Bernstein et al., 

2007). With the rapid development of next-generation sequencing (NGS) technology and the 

significant drop of cost, the field of epigenomics is enjoying a substantial increase and the number 

of epigenomic publications and studies has grown exponentially.  

The development of the ATAC-seq method enabled the epigenomic profiling of precious or rare 

tissue samples to generate data from a low amount of biological sample (Buenrostro et al., 2015). 

Chromatin openness is a prerequisite for the binding of transcription factor proteins to specific 

active regulatory elements in the genome, and thereby control gene expression. In comparison to 

earlier established methods to study chromatin accessibility such as MNase-seq, FAIR-seq and 

DNase-seq, ATAC-seq enables rapid and efficient library construction as it is faster and easier to 

perform, does not require cross-linking or sensitive enzymatic digestions, has higher signal to noise 

ratio, and can be performed on few cell numbers. Therefore, we believe that ATAC-seq will soon 

become broadly applicable and the preferred method for the study of chromatin structure and 

nucleosome positioning. Nevertheless, to ensure a successful ATAC-seq experiment, optimizing 

every step and quality assurance procedures that include both wet lab and computer-based quality 

assessment are required. Moreover, compared with its easy-to-perform experiment, ATAC-seq 

data analysis may take considerable amount of time and effort. This is because tools and software 

necessary to process ATAC-seq data is still lacking. Currently, several software programs were 

developed that covers important aspects of analyzing ATAC-seq data especially for quality control 

assessment and downstream statistical analysis including peak calling, transcription factors 
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footprinting, nucleosome occupancy, and enrichment analysis such as esATAC, and ATACseqQC 

(Wei et al., 2018; Ou et al., 2018).  

In this study, we performed ATAC-seq to provide a chromatin accessibility map of pulmonary 

artery tissues’ regulatory elements genome wide in chicken. The unexpected finding is that there 

were tremendous changes in chromatin accessibility across activated promoters, body genes, and 

enhancers during a genome-wide change in response to hypoxic challenge. A total of 23,444 

differentially accessible regions were identified across all tested samples where 1324 gene regions 

fall within 2kb of TSSs as “promoters”. As expected, we observed no changes in chromatin 

accessibility in both non-hypoxic SUS and RES birds (RMNC & SMNC). However, our initial 

analysis reveals striking epigenetic differences between RES and SUS birds upon challenging 

under hypoxic conditions.  We observed a significant increase in accessibility of chromatin across 

the genomic regions of in the SUS male birds compared with the unchallenged control. Increased 

accessibility during hypoxic challenge is attributed to decreased nucleosomal occupancy 

corresponding to genes being potentially expressed or repressed. Thus, global widespread increase 

in chromatin openness could be a hallmark for PHS- progression in response to hypoxia. 

Conversely, reduced chromatin accessibility in RES male upon challenge relative to the non-

challenged control was observed. Unfortunately, we cannot determine if the decreased chromatin 

accessibility represents an adaptive response that may protect pulmonary arterial cells from 

going through vascular remodeling and therefore continue to function even in the face of 

hypoxia. Identifying the precise molecular mechanism that mediates the global changes in 

chromatin accessibility in RES vs SUS birds can provides valuable key information to 

understand PHS pathogenesis.    
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Future direction will continue to identify potential key regulatory factors responsible for 

differential chromatin accessibility in SMC vs SMNC and RMC vs RMNC. This can be done by 

searching for DNA sequence that were enriched in the peaks thorough TFs binding sites, motif 

enrichment, and gene ontology analysis tools. Additionally, future work may extend ATAC-seq 

investigations to other PHS- related tissues such as heart and lung as the epigenomic landscape 

of each cell can vary considerably, contributing to distinct gene expression regulations and 

biological functions. Moreover, our chromatin accessibility profiles can enable the interpretation 

of our previous GWAS and whole genome sequencing (WGS) results that have mapped PHS 

relevant polymorphisms to noncoding regions. In human, it was found that genetic variants 

associated with specific traits show epigenomic enrichments in trait-associated tissues (Roadmap 

Epigenomics Consortium, 2015). Therefore, simultaneous measurement of chromatin 

accessibility and genetic variants will need to be conducted to investigate the interplay between 

those two factors. Finally, our ATAC-seq dataset can be integrated with epigeneomic and 

transcriptomic information such as histone marks (Chip-seq), DNA methylation (MeDIP-seq), 

RNA expression (RNA-seq) to enhance interpretation of computational results, construct a 

regulatory network, and reveal potential key gene regulators of PHS in chicken. Integrative 

analysis of genomic and epigenomic regulation provides new insights into understanding gene 

regulation, cellular differentiation, and disease progression. There are several classes of 

mechanisms that might lead to increased or decreased accessibility of chromatin. To illustrate this, 

for example, reduced DNA methylation can cause increased chromatin accessibility, thereby 

allowing for TFs to associate with DNA in open regulatory regions and regulate gene expression. 

This would then predict that progressively increased chromatin accessibility should be associated 

with PHS progression.  
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Although, epigenetics is still an emerging science, the scientific community is now building new 

tools to study epigenetic alterations in the genome especially in human and mouse models. 

Unfortunately, progress in the avian epigenome is limited. However, recent international efforts 

on the functional annotation of animal genomes (FAANG) including chickens have been initiated 

(Andersson et al., 2015). It is expected that epigenome data generated in the next few years will 

greatly contribute to our understanding of gene expression regulation in chicken. In fact, the 

FAANG consortium is planning to use ATAC-seq as a standard for measuring chromatin 

accessibility. We also expect to share our ATAC-seq dataset from the pulmonary artery tissues of 

chicken with the FAANG consortium and database in the coming years. Collectively, this study 

provides the first initial insights into the in vivo gene regulatory network of PHS pathogenesis and 

should serve as a valuable resource for future studies. 
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TABLES AND FIGURES 

Table 4. 1 ATAC-seq Primer sequences. Adapted from Buenrostro et al., 2013 

Primer Sequence 

Ad1_noMX AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG 

Ad2.1_TAAGGCGA CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGGAGATGT 

Ad2.2_CGTACTAG CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGT 

Ad2.3_AGGCAGAA CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGT 

Ad2.4_TCCTGAGC CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGT 

Ad2.5_GGACTCCT CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGT 

Ad2.6_TAGGCATG CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGT 

Ad2.7_CTCTCTAC CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGGAGATGT 

Ad2.8_CAGAGAGG CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCTCGTGGGCTCGGAGATGT 

Ad2.9_GCTACGCT CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCTCGTGGGCTCGGAGATGT 

Ad2.10_CGAGGCTG CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTGGGCTCGGAGATGT 

Ad2.11_AAGAGGCA CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTCGTGGGCTCGGAGATGT 

Ad2.12_GTAGAGGA CAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTCGTGGGCTCGGAGATGT 

Ad2.13_GTCGTGAT CAAGCAGAAGACGGCATACGAGATATCACGACGTCTCGTGGGCTCGGAGATGT 

Ad2.14_ACCACTGT CAAGCAGAAGACGGCATACGAGATACAGTGGTGTCTCGTGGGCTCGGAGATGT 

Ad2.15_TGGATCTG CAAGCAGAAGACGGCATACGAGATCAGATCCAGTCTCGTGGGCTCGGAGATGT 

Ad2.16_CCGTTTGT CAAGCAGAAGACGGCATACGAGATACAAACGGGTCTCGTGGGCTCGGAGATGT 

Ad2.17_TGCTGGGT CAAGCAGAAGACGGCATACGAGATACCCAGCAGTCTCGTGGGCTCGGAGATGT 

Ad2.18_GAGGGGTT CAAGCAGAAGACGGCATACGAGATAACCCCTCGTCTCGTGGGCTCGGAGATGT 

Ad2.19_AGGTTGGG CAAGCAGAAGACGGCATACGAGATCCCAACCTGTCTCGTGGGCTCGGAGATGT 

Ad2.20_GTGTGGTG CAAGCAGAAGACGGCATACGAGATCACCACACGTCTCGTGGGCTCGGAGATGT 

Ad2.21_TGGGTTTC CAAGCAGAAGACGGCATACGAGATGAAACCCAGTCTCGTGGGCTCGGAGATGT 

Ad2.22_TGGTCACA CAAGCAGAAGACGGCATACGAGATTGTGACCAGTCTCGTGGGCTCGGAGATGT 

Ad2.23_TTGACCCT CAAGCAGAAGACGGCATACGAGATAGGGTCAAGTCTCGTGGGCTCGGAGATGT 

Ad2.24_CCACTCCT CAAGCAGAAGACGGCATACGAGATAGGAGTGGGTCTCGTGGGCTCGGAGATGT 



 

 

1
3
9
 

Table 4. 2 Samples and libraries submitted for ATAC-seq with read counts. 

Library 

Identifier Line Gender Treatment 
Replicate 

 Library ng/ul Number of reads 

RFNC1 RES Female NoChallenge 1 0.17 2,745,153 

RFNC2 RES Female NoChallenge 2 6.64 80,047,438 

RFNC3 RES Female NoChallenge 3 5.59 55,009,857 

RFC1 RES Female Challenge 1 6.18 105,386,567 

RFC2 RES Female Challenge 2 9.14 87,294,716 

RFC3 RES Female Challenge 3 5.38 92,319,717 

SFNC1 SUS Female NoChallenge 1 3.67 88,057,108 

SFNC2 SUS Female NoChallenge 2 2.76 80,488,368 

SFNC3 SUS Female NoChallenge 3 2.14 58,712,101 

SFC1 SUS Female Challenge 1 6.71 102,231,416 

SFC2 SUS Female Challenge 2 4.07 115,570,137 

SFC3 SUS Female Challenge 3 4.51 179,490,405 

RMNC1 RES Male NoChallenge 1 2.9 72,040,415 

RMNC2 RES Male NoChallenge 2 1.39 46,853,650 

RMNC3 RES Male NoChallenge 3 1.7 42,000,034 

RMC1 RES Male Challenge 1 1.07 28,879,877 

RMC2 RES Male Challenge 2 1.15 43,287,040 

RMC3 RES Male Challenge 3 0.56 17,572,541 

SMNC1 SUS Male NoChallenge 1 1.36 48,023,812 

SMNC2 SUS Male NoChallenge 2 2.51 77,509,760 

SMNC3 SUS Male NoChallenge 3 4.02 66,427,471 

SMC1 SUS Male Challenge 1 5.52 222,911,333 

SMC2 SUS Male Challenge 2 6.95 160,560,907 

SMC3 SUS Male Challenge 3 5.03 148,931,645 
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Table 4. 3 Proportion of ATAC-Seq reads mapped to the chicken mitochondrial genome 

pooling biological replicates. 

Line Gender Treatment Avg Reads 

Total mapped 

reads 

Total 

mitochondrial 

mapped reads 

% 

Mitochondrial 

RES Female NoChallenge 45,934,149 137,802,447 1,428,344 1.0 

RES Female Challenge 95,000,333 285,001,000 3,625,428 1.3 

SUS Female NoChallenge 75,752,526 227,257,577 743,974 0.3 

SUS Female Challenge 132,430,653 397,291,958 3,194,105 0.8 

RES Male NoChallenge 53,631,366 160,894,099 1,426,604 0.9 

RES Male Challenge 29,913,153 89,739,458 394,439 0.4 

SUS Male NoChallenge 63,987,015 191,961,044 2,048,357 1.1 

SUS Male Challenge 177,467,961 532,403,884 10,589,523 2.0 
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Figure 4. 1: A cross -section of normal and hypertensive chicken arteriole. A) Non-
hypertensive chicken’s arteriole with the thin smooth muscle (stained in red and indicated by black 
lines) and adventitial (dark blue) layers. B) Hypertensive chicken´s arteriole with thick smooth 
muscle (stained in red and indicated by black lines) and surrounding adventitial (stained in dark 
blue) layers. Adapted from Hernández & De Sandino (2007). 

A 
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Figure 4. 2: Assaying accessible chromatin with Tn5 transposase. ATAC-seq (Assay for 
Transposase Accessible Chromatin with high-throughput sequencing), a method for mapping 
chromatin accessibility regions genome-wide. This method uses the hyperactive Tn5 transposase, 
which inserts sequencing adapters (red and blue) into open chromatin regions and generates 
sequencing library fragment followed by PCR amplification and sequencing. Adapted from 
Buenrostro et al., 2015. 
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Figure 4. 3: Correlation between library concentration and total reads for each ATAC-

seq library. Data from Table 1.  
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Figure 4. 4: Scatterplot of ATAC-seq reads demonstrating changes of chromatin accessibility 

in SMC vs SMNC where each dot represents one ATAC-Seq peak 
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Figure 4. 5: Scatterplot of ATAC-seq reads demonstrating changes of chromatin accessibility 
in RMC vs RMNC where each dot represents one ATAC-Seq peak.  
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Figure 4. 6: Scatterplot of ATAC-seq reads demonstrating changes of chromatin accessibility 
in RMNC vs SMNC where each dot represents one ATAC-Seq peak.  
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Figure 4. 7: Representative ATAC-seq differential open chromatin regions (peaks) among tested 
groups for a 100 MB window of Chr 1. ATAC-Seq tracks were visualized with the GenVision 
Pro tool (DNASTAR).  
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Figure 4. 8: Genomic region upstream TSS of the SP1 gene shows a sharp peak such as sequence- 
specific transcription factor binding site. The position of SP1 gene, direction of transcription, and 
exon locations are indicated.  
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Figure 4. 9: Genomic region of RN5S gene shows a broad peak indicative of a large open 
chromatin region, possibly associated with histone modifications. The position of RN5S gene, 
direction of transcription, and exon locations are indicated. 
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 Figure 4. 10: Genomic region for RPS27A gene show overlapping/mixed peaks. The position of 
RPS27A gene, direction of transcription, and exon locations are indicated.   
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Figure 4. 5: Genome browser view of a large cluster of histone genes located on Chr1. ATAC-
Seq tracks were visualized with the GenVision Pro tool (DNASTAR).  
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Figure 4. 6: Genomic region of USP5 and CDCA3 genes show an example of shared open 
chromatin site between the two genes. The positions of the two genes, direction of transcription, 
and exon locations are indicated.   
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CHAPTER 5 

Summary & Conclusions 

  



 

154 

The increasing importance of chicken products has led to intensive selection on traits relevant to 

the consumer market such as rapid growth rate, higher feed conversion rate, and higher muscle 

mass. (Havenstein et al. 1994; Julian 2000; Decuypere et al., 2000; Zhao et al, 2004). This 

continues practice has brought different broiler than the broiler being marketed in the 1950s in the 

size and performance. However, selection for production traits has led to an increase in various 

metabolic disorders and diseases including pulmonary hypertension syndrome PHS, or ascites 

(Julian, 1998).  PHS is not a disease but is a cascade of events caused by environmental, nutritional, 

genetic, physiological, and management factors all related to the need to ensure a high level of 

oxygen in the tissues (Decuypere et al., 2000; Balog, 2003; Julian, 2005). Although proper housing 

and management techniques can considerably reduce the incidence of PHS, the key to disease 

prevention lies in the availability of a genetic test for some of the major genetic components that 

confer resistance to PHS. Selection against the incidence of the PHS disease has not been 

implemented in commercial breeding since PHS was difficult and expensive to measure in 

practical breeding programs. Based on these considerations we attempted to investigate and 

elucidate some of the genetic and epigenetic components of the disease to gain a better 

understanding and identify major biological markers to reduce PHS incidence. 

Our lab conducted several studies to map chromosomal regions contributing to PHS using large 

experimental broiler populations. One of the earliest GWAS used a F2 cross of the resistant (RES) 

and susceptible (SUS) lines had shown the association of a region on chromosome 9 (Gga9:15 

Mbp) with PHS phenotype in broilers (Krishnamoorthy et al., 2014). HTR2B gene was then 

identified within this chromosomal region that might mediate the quantitative effect. Therefore, 

chapter 2 of this dissertation considered HTR2B gene as a potential candidate for contributing to 

the PHS disease due to their functional relevance with pulmonary hypertension especially in 
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human and mouse model as a potent vasoconstrictor (Ullmer et al., 1995; Launay et al., 2002) 

However, our SNP and haplotype- based analyses results suggested that HTR2B polymorphisms 

are partially associated with PHS, but not a universal marker for genetic predisposition to PHS. 

Overall HTR2B gene expression was assessed and a heterozygous (T>C rs315854205) SNP 

located in the 3rd exon was also used as a marker to measure allele specific expression (ASE) in a 

variety of tissues at different developmental ages. We observed a statistically significant higher 

expression level of the non- reference C-allele vs the reference T-allele in hypoxic birds as they 

develop in age in all tissues when compared with younger birds. However, the overall expression 

of HTR2B was reduced. Therefore, we concluded that the downregulation of HTR2B expression 

as the bird develop in age might prevent the increase in pulmonary arteries pressure and attenuate 

blood vessels vasoconstriction. Our findings are important for understanding the mechanisms that 

underlie the patterns of HTR2B expression and its potential impact on the phenotypic variation of 

PHS syndrome in broilers.  

Chapter 3 was an extended investigation to our previous survey of the association of 

mitochondrial prevalence in multiple tissues with ascites susceptibility and resistance in 

broilers. Previously we reported that for a small sample set of breast muscle at 22 weeks of age 

for RES and SUS males, the samples from SUS males had approximately twice the ratio of 

mitochondrial DNA (mtDNA) to nuclear DNA (nucDNA), and that this difference correlated with 

a difference in the level of expression of PPARGC1A.  Here, we further investigated this apparent 

difference and extended the analyses to both genders, multiple tissues, and different developmental 

stages. The mtDNA/nucDNA ratio in lung, liver, heart, thigh, and breast of both genders at 3, and 

20 weeks old. At 3 weeks the mtDNA/nucDNA ratio is significantly higher in lung, breast, and 

thigh for susceptible line males compared to the resistant line males. Conversely, we see the 
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opposite for lung and breast in females. At 20 weeks of age the differences between males from 

the two lines is lost for lung, and thigh. Although there is a significant reduction in the 

mtDNA/nucDNA ratio of breast from 3 weeks to 20 weeks in the susceptible line males, the 

susceptible males remain higher than resistant line males for this specific tissue.  Furthermore, the 

relative expression of five genes known to regulate mitochondrial biogenesis were assessed for 

lung, thigh and breast muscle from males and females of both lines with no consistent pattern to 

explain the marked gender and line differences for these tissues. Our results indicate clear sex 

differences in mitochondrial biogenesis establishing a strong association between the mtDNA 

quantity in a tissue-specific manner and correlated with ascites-phenotype. Therefore, we propose 

that mtDNA/nucDNA levels could serve as a potential predictive marker in breeding programs to 

reduce ascites incidence in poultry. 

The aim of chapter 4 was designed to map genome-wide changes in chromatin accessibility 

associated with hypoxic relative to ambient conditions in broilers. The analysis used ATAC-seq 

technology (Assay for Transposase accessible Chromatin with high-throughput sequencing) to 

identify changes in promoter accessibility for pulmonary artery tissue in PHS- susceptible and 

PHS- resistant lines. Our initial analysis identified a total of 23,444 open chromatin regions (or 

peaks) across all pulmonary artery samples. We further identified 1324 regions that become 

differentially accessible within 2 kb of transcription start sites. Tissue-specific chromatin activity 

was captured not only in the regulatory regions such as promoters, and enhancers, but also gene 

regions including exonic, intronic, and intergenic regions. There was a substantial increase in the 

chromatin accessibility throughout the genome of ascites- susceptible birds when challenged under 

hypoxic conditions in comparison with controls. Conversely, we observed reduced changes in 

chromatin accessibility regions in ascites-resistant birds when challenged.  In conclusion, we 
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showed that chromatin accessibility is a key epigenetic factor influencing transcriptional regulation 

and a straightforward approach to identify functional genomic regulatory regions controlling 

complex diseases such as ascites in birds.  

The findings described in this dissertation could provide important clues to discern the genetics 

and epigenetics of PHS in broilers. Global poultry meat production is rapidly increasing with the 

continues growth in the world population. In fact, global poultry production is expected to grow 

at 2.4% per year over the next 20 years (Services, 2013). Therefore, efficient poultry production 

will be possible by better balance in selection programmed between welfare and broiler production 

traits to minimize the losses afflicted by disease-related traits. We know now that understanding 

the genetic aspect of the trait controlling the incidence of the disease is not enough. There will be 

a need to better understand how the interactions of genes, proteins, mechanisms, and the external 

environment to produce the phenotype of an animal. The results from our studies not only unravel 

essential components of ascites metabolic, genomics and epigenomics aspects in broilers but may 

also have some usefulness in pulmonary hypertension in humans. 
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Appendix 
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All animal work was through approved IACUC protocols for Dr. Nicholas Anthony.  Any 

collections by Khaloud Al-Zahrani were tissues from deceased animals from the approved 

protocols (15039 and 15040). 
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