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Abstract
This report presents and discusses the basic statistical models

and methods which are useful to researchers in the field of water
resources research, as well as in other fields. These models and
methods are presented from the standpoint of type (parametric and
nonparametric - or distribution free) and purpose (e.g., simul-
taneous comparison of several means, comparison of two or more
variances, establishment of a difference between two means with a
specified confidence, etc.). The material is presented with em-
phasis primarily upon methodology, including the necessary assump-
tions upon which each model is based. No derivations or proofs
are given, since these are found in numerous textbooks on statis-
tics readily accessible to the reader. Emphasis is also placed

upon the need for the researcher to determine before obtaining

data the type of statistical model and analysis required, so that
he can use that model or method which is most powerful, and so

that he will have the proper data to permit the most efficient
analysis. Failure to carry out such preliminary planning relevant
to the selection and application of a statistical model will almost
always result in either a lack of sufficient relevant data or in
the gathering of extraneous data, either of which is unnecessarily
costly. Each method is illustrated by an example, together with

an interpretation of the result.
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RESEARCH FOR THE DEVELOPMENT OF GUIDELINES
FOR CONDUCTING AND ANALYZING AN ENVIRONMENTAL
WATER QUALITY STUDY TO DETERMINE STATISTICALLY

MEANINGFUL RESULTS

I. IDENTIFYING THE STATISTICAL PROBLEM AND SELECTING THE
APPROPRIATE MODEL

Almost all water research projects require the collection
and analysis of data. The type and amount of data required
depend upon the objectives of the research, the method of
analysis, the desired conclusions, and the confidence with which
one wishes to assert that said conclusions are correct.

The mere collection, classification, and inspection of
data in itself is at best suggestive, and may lead to erroneous
conclusions unless subjected to a valid statistical analysis. An
important capability which should be present in any water
research project involving data collection and analysis is the
ability to extract as much as possible--ideally, all--of the
information which is inherent in the data, thereby promoting
efficiency and cost reduction. The researcher needs a certain
amount of information--no more and no less--to reach a specific
conclusion with a stated confidence. That is, when he states a
conclusion, he must--to be convincing--be able to state what odds
he is willing to give that this conclusion is correct. If he
wishes to wager with nine-to-one odds (90 percent confidence)
that his conclusion is correct, he needs a certain amount of
information--more data than if he is content to wager with eight

to-two odds (80 percent confidence). Also, the amount of data



("sample size") depends upon both the type of conclusion and the
confidence to be attached to the conclusion. For example, if one
wishes to establish, with 95 percent confidence, that the average
concentration (density) of algae differs at two depth strata in a
particular river during a given time period, the amount of data
needed differs from the amount required to show that the variation
in concentration differs in the two strata.

When, as is frequently the case, there is a choice among
several statistical procedures ("statistical models") for data
analysis in a particular water research project, it is important
to choose the one which will provide the most powerful results.
The choice depends upon whether the data satisfy the necessary
assumptions underlying the model. An intelligent choice requires
both a knowledge of available statistical models and their
associated assumptions. Selection of the most appropriate
statistical model will result in improved efficiency in the
required analysis and a corresponding reduction in cost.

In short, there are many factors which must be taken into
consideration if a water research project involving data analysis
is to yield maximum results per dollar expended. Moreover, it is
imperative to take these factors into consideration during the
planning stage of the research study before data collection
begins, if conclusions are to be established at a desired
confidence level. Necessarily included in the planning stage are:

(1) a statement of specific objectives of the research

project

(2) identification of the relevant variables

(3) selection of the appropriate statistical model



(4) specification of the confidence to be attached
to each conélusion
(5) determination of the amount of data (sample size)

required to achieve this confidence.

Too often the data are collected with little or no thought given
to these factors. The result is that frequently a considerable
amount of the data gathered is not statistically useful, while

at the same time some of the data required to obtain statistically
meaningful results are not obtained. Most scientists engaged in
water research need guidelines for obtaining and analyzing data
so that the conclusions reached are statistically meaningful and
defensible. Without such guidelines, a research study may reduce
to nothing more than a large-scale data collection project
leading to general comparisons and statistically indefensible--
and often erroneous--conclusions.

The main function of such guidelines is that of guiding the
researcher in the proper planning of the research project prior
to obtaining the necessary data and the subsequent methods of
analysis after the data have been obtained. The various
statistical models (tests, procedure, etc.) which are available,
as well as their purpose, must be known to the researcher so that
he can choose that statistical model which will best serve his
objectives. He should know (before any data are actually
collected) what data and how much data (sample size) are needed
in order that a conclusion can be reached at a specified
confidence level when the appropriate model is used. When there

is a choice among several possible models, the most appropriate



one should be chosen. The selection of the model involves
trade-offs between the use of a "parametric" statistical
model based on rather strong assumptions and the use of the
weaker "nonparametric" statistical models which make
virtually no assumptions. The nature, use, advantages, and
disadvantages of various types of sampling (e.g., simple
random, stratified, systematic) should be understood.

Accordingly, this project is one of information dissemi-
nation, rather than research per se. It presents the various
statistical models which are freguently required in research,
and explains their use in the analysis of data. Specifically,
the various types of models and their variations are presented
and discussed.

First, the well-known t-test for comparing two means is
presented and discussed. There are two forms of this test:
the parametric and nonparametric forms. The first requires
rather strong assumptions (which nevertheless are quite
often met); the second, a very weak assumption, which in
reality is practically always satisfied. There are, of course,
trade-offs involved, which are also mentioned. Similarly, one
must often compare two sample variances or two sample propor-
tions to determine whether they are significantly different.
Appropriate methods for implementing this comparison--either
from the standpoint of confidence intervals or hypothesis
testing--are presented.

The extension of this model to one which permits the

simultaneous comparison of a set of means (more than two) is

also presented and discussed; namely, the Analysis of Variance



Model which may have many forms (randomized block, Latin square,
factorial designs, etc.). Each is adapted to particular
situations as explained. Parametric and nonparametric versions
of these models are discussed.

Modification of some of these models, when some data are
lost, invalidated, or otherwise unavailable, is also included.
This situation sometimes arises in the analysis of real world
problems. For instance, in a project involving algae at various
water depths,>the data obtained at a given time or location may
be invalidated by malfunctioning of fhe equipment at that time or
location.

Somewhat less traumatic--but nonetheless important--conse-
quences ensue when complete data are obtained but under differing
conditions. For example, the experiment may involve sevefal
different laboratories; or several different locations; or several
different brands of equipment; etc. This introduces an element
of confounding, which can bias the results unless the usual
designs are properly modified. A method for accomplishing this
modification is discussed under the term "confounding." Related
to the problem of confounding is that of "fractional replication"
which‘enables one to reduce the size (and, hence, the cost) of
the experiment. This is particularly pertinent in the case of
complex experiments involving many combinations of factors.

It is not uncommon, for example, to have ten factors at two
levels entering into a research experiment, giving rise to a

total of 2lo

= 1024 possible cases to be examined. There are
ways of reducing the size of such an experiment without hindering

the analyst in reaching the correct decision. Specifically, in



the case of a 2lo = 1024 factorial experiment, it is not

unusual to reduce the size of the experiment to 26 = 64 cases
or even less, by properly selecting the 64 cases. The
procedure for making the proper choice of 64 out of 1024
cases is discussed under the heading "fractional factorial
designs."

In problems of estimation and prediction, the method of
regression and correlation analysis is often useful, which
method is discussed in this document.

The problem of bracketing the central 95 percent
(or more generally, the 100(l1 -a)% portion of a population
is at times an important one. Methods for obtaining such limits
(frequently referred to as "tolerance limits") are discussed.

Finally, it is possible that a particular problem may be
more efficiently solved by the use of stratified or systematic
sampling techniques rather than by random sampling. Some
comments are made relative to the effect of such a change in
sampling methods. However, for the most part, random sampling
techniques are appropriate. This is particularly fortuitous,
since much of the theory of statistical inference appropriate
when random sampling obtains is not directly applicable to
situations in which stratified, systematic, or other types of
sampling methods are used. The methods of analysis for these
situations are considerably more complicated and are beyond

the scope of this document.



II. ESTIMATING A POPULATION MEAN: POINT AND INTERVAL ESTIMATES

One of the most common problems confronting researchers, en-
gineers, and businessmen is that of estimating the true value of a
"population" mean. Thus, in water research, the researcher may
have to decide what is the value of the concentration of algae at
a particular water depth in a stream or lake. Or an engineer may
have to determine the length of time which the guidance unit of a
space system will perform before failure. Again, a canner must
determine whether the correct amount of fruit juice is being packed
in his 20 ounce cans. Since the label reads "20 ounces", the canner
cannot afford to pack much less than 20 ounces for fear of losing
customer acceptance or running afoul of the law, while at the same
time he cannot afford to pack much more than 20 ounces for fear of
losing a substantial part of his profit. In all such problems,
one cannot expect a specific value to obtain in each of the above
situations. Thus, the concentration of algae will not be the same
in samples taken at a specified depth from the same general area
because of differences due to random factors beyond human control,
such as environmental factors. Similarly, because of imperfect
quality control, it would be unrealistic to expect several guidance
units to have their first failure occurring at identical times, even
though the units were produced by the same manufacturer, installed
by the same mechanic, and operated by the same operator. All that
one can reasonably require is that the true mean (average) lie
within a satisfactory range.

A. Point Estimate

Consider, then, the problem of estimating the true mean u of



a given population with a single estimate; i.e., a point estimate.
Several types of point estimates could be used (e.g., the sample
mean, median, geometric mean, harmonic mean, etc.) but whatever
point estimate is used, it must be based on sample data. It can
be shown that the best point estimate is given by the sample mean
(rather than, say, the sample median or some other sample statistic).
It is '"best" from the following standpoints:

(a) It "zeros in" on the true but unknown population mean p as

the sample size increases

(b) It is less variable than other estimates

(c) It extracts all the relevant information from the sample
Thus, for a single estimate (point estimate) of a population mean y,

one uses the sample estimate

|

]

=N
il e B =]
4

where n denotes the sample size.

Usually, one is more interested in obtaining an interval
estimate than a point estimate of yu, since he realizes that the sample
meanlf, though the best estimate of u, will never coincide with k.
It is preferable, therefore, to determine an interval estimate'i:t c,
such that one can assert with a specified confidence that the true
mean p lies within this interval. Thus, if X + C is a 95% confidence
interval for yu, one can wager 95 to 5 odds that the true mean
is within this range; and if he did so many times, he would be
correct in 957 of the cases.

B. Confidence Interval for the Population Mean u.

In the following discussion concerning the determination of an



interval estimate for the population mean p it will be assumed
that the population is normal; i.e., that the distribution of items

in the population is characterized by the probability density function

1Xu,2

£(X) aen s

where p, 9, and 02 denote, respectively, ‘the population mean, stan-

- o< X < o

dard deviation, and variance. The method for estimating the constant
C for the confidence interval'i_t C depends upon whether one knows

(at least approximately) the value of 0, perhaps from past experience.
If he does, then he can utilize the fact that the variable

_ Xy
2= 9

has a standardized normal distribution with mean zero and standard
deviation one. Hence, if the sample has actually been drawn from a
normal population with mean y and standard deviation o, the probability

that

-1.96 < Z < 1.96

is 0.95. Or more generally, the probability that the variable % will

be between the values + Za/zis,ba,Where 20/2 satisfies the relation-

ship
Zy 2
1773 —— dz=1-a
V2T, ©
—zg
2 e g a
For this reason, the interval (X -2 =, X+ 2 ::) covers the
‘ 2 vn o vn
2 2
unknown population mean | with a probability of 1-a. Or equivalently,
X-2 2 <u<x+z g
o /h — .vn
2 2

is a 100 (1-0)% confidence interval for u.
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Example 1. 1In a laboratory exzperimen:, SU euglieering students
separately measured the specific heat of aluminum, obtaining a mean
of 0.2210 calories per centigrade degree ver gram. It is known
from past experience that this type of measurement has a normal
distribution with 0 = 0.0240. Find a 95% confidence interval for

the true specific heat (population meanyu ) of aluminum.

3

From the foregoing discussion, it is clear that 2 = 925 =

£ Q

1.96, so that

0.2210 - 228 (0.0240) < y < 0.2210 + 228 (0.0240)
50 50

or

0.2144 < y < 0.2276
which is the desired 95% confidence interval.

Now suppose that it is known that a population is normal, but
one has no knowledge of the population standard deviation o. Then
the best that one can do is to estimate 0 from sample data. An

unbiased estimate of O is obtainable from the sample standard deviatiom,

provided it is calculated from the formula

n n
nz xi - (3 xi)2
_ 1 1
'v n(n-1) ’
Then one knows that
t = i—u

has the so-called t distribution
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In other words, the variable % = (i—u)ﬁgs‘no longer obtains, but is
replaced by the variable t defined above. The reason that the
variable t does not have a standardized normal distribution as did

2, 1s because the constant 0 is now replaced with the sample statistic
s, which varies from sample to sample. Now a 100(1-o )% confidence

interval for u is given by

—_ S —
X—ta/z ﬁ.l..<1.l<X+ta/

where ta/2 satisfies the relationship

E s

2

t

Q
2
f(t)dt = 1-a.

-t

Nl R

Unfortunately, this integral cannot be evaluated in closed form. For

this reason, values of t have been evaluated and tabulated (1] the
specific values a = 0.005, 0.01, 0.025, 0.05, 0.10 and for the degrees

of freedomn - 1 N 29. (When n - 1 z 29, the t distribution may

for all practical purposes be considered as identical with the

normal distribution, so that one can use the & variable instead of

t.) These values, together with a knowledge of the sample size n

and sample standard deviation s, enabie one to determine the corresponding
confidence limits, as the following example shows.

Example 2. A random sample of 25 measurements of the coefficient
of thermal expansion of nickel have a mean of 12.81 and a standard
deviation of 0.04. Construct a 957 confidence interval for the actual
coefficient of expansion. Assume that the 25 measurements constitute
a random sample from a normal population.

Using the t distribution, since the population variance is unknown,



one has

X - X s
X t‘025:5 <qu < X + t.OZS“f;-

where t 025 = 2.064 corresponds to n - 1 = 24 degrees of freedom. Thus,

04y ¢ 4 < 12.81 + 2.064 (22

= )

12.81 - 2.064 (Qé

or
12,793 <y < 12.827
That is, one is 95% confident that the true value of the coefficient
of expansion of nickel lies between 12.793 and 12.827. Or, equivalently,
he can wager with 95 to 5 odds that such is the case.

C. Determination of Sample Size Required for a Specified Confidence

When one uses a sample mean to estimate the mean of a population,
he knows that although he is using a method of estimation which has
certain desirable properties, the probability is essentially zero
that the estimate is equal to the mean p. Hence, it would seem
desirable to accompany such a point estimate of y with some statement
as to how close one might reasonably expect the estimate to be. To
examine this error, one makes use of the fact that for large n

X -u

o/vﬁ

is a value of a random variable having approximately the standard

Z. =

normal distribution. (If the sample is taken from a normal population,
Z is normally distributed regardless of sample size.) Consequently,

as previously pointed out, one can assert with probability 1 - a that

- X-yp .
22 < oivw G2

or equivalently,

| X - u
6/ < Z<>t/2’

where Za/Z is such that the normal curve area to its right equals a/2

12



(which is equivalent to the integral definition of a/2 given previously).
Since | X - u| 4is the numerical error E which results from estimating

u with the sample mean X, one can write the above inequality as
E< 2,0/

with probability 1 - a. That is, if one estimates y by means of a
random sample of size n, he can assert with a probability of 1 - q
that the error E = Ili - ﬁ |. is less than Za/2 o/vn, at least if n
is not too small (say at least 30, as a rule of thumb). Conversely,
one can solve the last inequality for n, obtaining

n < %3/2 02/E2.
This inequality states that if one selects a sample of size n such that

n = %3/2 02/E2,
one can assert with probability 1 - a that the error of estimating u
by means of X will be less than E. To be able to use this formula for
computing the sample size needed to estimate p in a given situation,
it is necessary to specify a, o, and E. Thus, one mast give not only
the maximum tolerable error E and the'population standard deviation g,
but also the probability 1 - ¢ with which one wishes to assert that
the maximum error will be less than E. (Note that one cannot determine
%/2 until ¢ - or equivalently 1 - a - is specified.). The population
standard deviation is usually estimated with prior data of a similar

kind, and sometimes a good guess will have to do. The following

examples are illustrative.

13
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Example 3. Suppose a utilities company estimates the mean
amount of its past-due accounts by taking a random sample of 81
bills. If the mean is $9.87 and the standard deviation is $5.14,
what is the probability that an error of not more than $1.00 is
made when estimating the mean delinquent account to be $9.87?
Solution: Use the inequality

E <Za/2 o/ ,
and note that E = 1,00, 0= 5.14, n = 81.

This inequality will be satisfied if
Z <1.00 _

o/2 " 0.57 = 173
From a standardized normal table one notes that for Za/z = 1.75,
the right tail of the normal curve is — = 0.040l, so that 1 - @ =

2
0.92. That is, the probability that an error of no more than 1.00

results is 0.92.

Example 4. The mean of a sample of n "O gauge'" wires is used
to check the mean diameter of an incoming shipment of a large number
of such wires. How large a sample is necessary if one wishes to be
95% confident that the error in estimating the mean of the shipment
is to be less than 0.006? Assume that it is known that the diameters
of "O guage'" wires are normally distributed with standard deviation
of 0.006 inch.

Solution: Use the aforémentioned formula

2
of2

where E = 0.006, o= 0.012,a /2 = 0.025. Then

n==2 02/E2

(1.96)% (0.012)2
(0.006)2

n

(3.8416) (4)

15.37

= 16,
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Thus, one can be 957 confident that the mean of a sample of 16
measurements will differ from the shipment mean by not more than
0.006 inch.

D. Hypothesis Testing

Closely related to the problem of interval estimation is that
of hypothesis testing. Thus, one may wish to know whether a
sample of size n and with variance s2 came from a normal population
whose mean is M and whose variance is unknown. This question can

be answered by utilizing the fact that
- X -y
s/ya

has a t distribution with n-1 degrees of freedom. The following

t

example is illustrative.

Example 5. A random sample of boots worn by 50 soldiers in
a desert region showed an average life of 1.24 years with a standard
deviation of 0.55 years. Under standard conditions, such boots
are known to have an average life of 1.40 years. 1Is there reason
to assert at the 57 level of significance that use in the desert
causes the average life of such boots to decrease? In other words,
does this sample come from a normal population with known mean but
unknown variance?

The answer to this question involves testing a '"null" hypothesis
H0 (i.e., a hypothesis to be either accepted or rejected) against
an alternative hypothesis Hl' Specifically:

H = 1.24

o ¥
Hyp W< 1.24

where U denotes the mean life of boots worn in the desert.

X -y

To reach a decision, one must compute t = o e



where p =1.24, s = 0.55, n = 50. If t > ta/2 , Where ta/z is
the critical value of t obtained from a t table, corresponding to
a confidence level o and n-1 degrees of freedom, one rejects Ho

In this particular case, let @ = 0.05. .Then

1.24 - '1.50 0.16
t = 0.55 = 0.0778 = 2.057

From the t table, t.)25 = 1.96 for 49 degrees of freedom. Hence,
t = 2.057 > t_g25 = 1.96, so one rejects Hy. That is, ome

concludes that the average life of boots worn in desert regions is

different from the average life under standard conditioms.

III. ESTIMATING A POPULATION VARIANCE: POINT AND INTERVAL ESTIMATES

Of somewhat less importance than the estimation of the mean -
but nevertheless often necessitated - is the estimation of the
variance. For while the mean is an estimate of central tendency,
the variance about the mean indicates the variation of the items
about the mean. In problems of estimation, the accuracy of a
predicted value of a population statistic, such as the population
mean depends heavily upon the population variance. Estimation of
that variance is, therefore, of considerable importance in such a
situation - and many others.

A. Point Estimate of the Population Variance (;

Just as the sample mean can be used to estimate the population
mean, so the sample variance can be used to estimate the population

variance. However, unlike the sample mean, the sample variance

2_ 2

=N

S ‘2 X; - X
1

=1
. , . . 2 .
is not an unbiased estimate of the population variance 0. This

means that if many sample variances 62 (as just defined) were averaged,



their average (mean) would not approach 02 as the number of samples

increased.
In fact, N 9
g2 o lm 11s”
Mo ¥ § =91
- n- 1 O2
n

However,-;%i-sz is an unbiased estimate of 02. For this reason the

sample variance is sometimes defined as

it is an unbiased estimate of 02.

B. 1Interval Estimate of the Population Variance 02

In order to determine an interval estimate (Qi, oﬁ) which
covers the unknown value 02 with a specified confidence, one must

know the sampling distribution of the variance; or equivalently,

2

the sampling distribution of Eé%z
o

which is merely the sample variance S2 multiplied by a constant n/oz.

The reason for utilizing the statistic nS.2/02 is the fact that its
sampling distribution is the well-known chi-square (xz) distribution

with (n-1) degress of freedom, namely,

n-1
—_ =1 2
2, _1 2, 2 -X /2
f(x)—n_l X)

2 2 Esh

It is assumed, of course, that the sample of size n, from which X2

’Oix2<oo

(

is computed, was drawn from a normal population. Then
2

2 -

17.



is a chi-square variable with n-1 degrees of freedom. Solving this

formula foro 2 in terms of 52 and x2, one obtains

2 n52
g =——-z'
X

Then a 100 (1 -a )% confidence interval foro - is given by
. 2
n < g < n
Xa/2 X1.-a
2

where xc%/Z andxi -a )2 are read from a X 2_ table, but satisfy the

lati 2
t !
relations Xa/z i
2 2
[ oD ad -t
0 2
x 2
1- o
] /23, .2
/ £ (x%) dx“ = a/2.
2 n52 2
A lower 100 (1-u)% confidence limit on O is TR where X, 1is de-
o

termined from the relation _
fxal £ &%) dl=1-a
Similarly, an upper 100 (1 ;-Oa)% confidence limit on o2 is Xl—a
determined from the equation
-
0 £ (xz) dx2 =q
Example - The diametefs_of random sample of 12 bolts have a

variance of 52 = 0.000050. Assuming that the diameters of such

bolts constitute a normal population with variance 02, find 95%

confidence limits for 02.

As was previously stated, a 100 (1-a)% confidence interval for

02 is given by



2 2 2
ng_¢ 0 . no
2

2
xa/2 X1 -G
2

In the present problem, @« = 0,05 and XO%/Z , as well as X%,OL_ , has

eleven degrees of freedom. Using a x2 table, one finds that X2975 =

3.816 and X2025 = 21.920, so that the desired confidence interval is

12(0.00005) < a?< 12(0.00005)
21.920 2.816
2

or -.000027 < o~ < 0,000157
Or equivalently,

0.0052 < 0 < 0.0125

C. Hypothesis Testing

Instead of bracketing the unknown population variance, one
might choose to view the problem as one of hypothesis testing.
That is, he may wish to test the null hypothesis

Hg: o2 = oo2
against the alternative hypothesis
Hg: o? $ ooz
particularly if he wants to know whether 02 differs significantly -
in either direction - from some desired value 002. Or, if he is
primarily concerned that the (normal) population variance not
exceed some critical valuetﬂf, he would test the null hypothesis
Hyge 02 = c(f
against the alternative hypothesis
Hi 02 > 002,
Similarly, he might test the null hypothesis
Ho. o2 =OO2

against the alternative hypothesis



The following examples illustrate the procedure. It should be
remembered that one necessarily assumes that the sample has come

from a normal population.

Example 6. Past data indicate that the variance of measurements
made on sheet metal stampings by experienced quality control inspectors
is 0.16 square inches. Such measurements made by an inexperienced
inspector could have too large a variance (perhaps because of
inability to read the instruments properly) or too small a variance
(perhaps because unusually high or low measurements are discarded).
If a new inspector measures 15 stampings with a variance of 0.11
square inches, test at the a = 0.05 level of significance whether
the inspector is making satisfactory measurements.

Solution. The null and alternative hypothesis are, respectively,

2

H.: o = 0.11

0
. 2
Hy: o # 0.11.
2 .
To test HO one computes n:;/c , which, as stated previously, has
a chi-square distribution with n-1 = 14 degrees of freedom. If the

2 2 _ 2
value of nj?/o is less than X0.975 = 5.629 or greater than X 025 26.119,

one rejects Ho. In this particular case,

2 15(0.16
ag’/o" = 15o.(11 ;

25.818 26.119

20
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and one concludes, therefore, that the new inspector is not making
satisfactory measurements. Specifically, they are in general too
large.

If one were only concerned with the measurements being too
large, he could sharpen the procedure by carrying out a one-tail

test at the o level of significance:

HO: 02 = 0.11

H: 02 >0.11 , a = 0.05.

Since a = 0.05, one notes that the critical value of x2 is XZOS =

23.685

ns%  15(0.16)

and that 02 = (0.1

= 25.818> 23.685

Thus, the hypothesis Hy is rejected as before. Note, however,

nS

2
(o}

in order to reject Hj; specifically, the critical value is now 23.685

that the value of does not have to be quite as large as before
as compared with 26.J19. This results in a sharper test.

IV COMPARISON OF TWO SAMPLE MEANS, VARIANCES, OR PROPORTIONS

In many real world problems, one needs to determine whether
two sample means are significantly different. That is, one must
frequently decide whether two particular samples come from two
populations with identical means, or with different means. For
example, it may be necessary for the army to determine whether boots
worn by soldiers in a desert region have an average life which is
less than the average life of boots worn in Arctic regions. The
conclusion in such a case is based on comparing the mean life of

a sample of boots worn in the desert region with that of a sample



of boots worn in Arctic regionms.

Similarly, it may be necessary to determine whether the length
of life of boots worn in a desert region is more variable than that
of boots worn in Arctic regions. That is, are the variances of
the two populations (life under desert wear and life under Arctic
conditions) significantly different? Again, such a conclusion must
be reached by comparing the sample variances of two samples, one
from each population. |

Actually, the procedure utilized depends upon whether one
knows what mathematical function (probability density function)
characterizes the distribution of the items in a population. For
example, can one assume that the life of boots both in a desert and
in an Arctic enviromment is characterized by a normal distribution?
If so, one has a parametric problem which is solved by using the
t-test. If one can only assume that the life distribution is
characterized by a continuous mathematical function (probability
density function), then a nonparametric analysis is used; namely,

a nonparametric t-test. For a comparison of variances, the same
situation exists. That is, if the populations are normal, a (para-
metric) F-test is used; if not, a nonparametric or distribution-free

F test is used.

A. Parametric Analvsis

1. Parametric t-test

This test is designed to determine whether two samples came
from two normal populations with identical means; or equivalently,
to determine whether the means of two samples from normal populations

are significantly different. This test requires that the two normal

22



populations have identical variances - a rather strong assumption.
The use of the test is best explained by an example.

Example 7. Members of an army evaluation team are attempting
to evaluate the relative merits of two designs of antitank projectiles.
A sample of 10 projectiles of Type A are fired at maximum range,
with a mean target error of 24 feet and a variance of 16 feet. A
sample of 8 projectiles of Type B are fired, with a mean target error
of 30 feet and a variance of 25 feet. Is there a significant dif-
ference between the mean target errors of the two kinds of projec-
tiles at the a = 0.01 level of significance?

Solution.

It is well-known that the statistic

R |
t = n,n, (n; + n,-2)
(a,-D57 + <n2-1>5§=«) Lz .2

+n
b

2
where § = Ul - uz is the difference between the two population means,
has a t distribution. Hence, the problem reduces to testing the null
hypothesis Hy against the alternative hypothesis Hj:

Hyt U, -, =0

Hy: B o= Hy $+0

on the basis of the t value obtained by substituting the relevant

sample data into the above t formula. If t > t , where t is
a/2 a/2

obtained from the t-table [1l, ». 399] with ny +n, - 2 degrees of freedom

the hypothesis HO is rejected; otherwise, it is accepted. In the

problem at hand, n) +n, - 2 = 16, d'=0, a/2 =0.005, £ /2

and t =24-30 \J10(8) (16)

= 2.120,

Yo(16) + 7(25) 18

=2.833 > 2.120

23
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Thus, one rejects HO.
If one wished to test the hypothesis Hj: Ul - uz = 0 against the

alternative Hl: vl

t =2.833 with the critical value to 05 = 1.746. Since t = 2.833;

1.746, HO would be rejected. It is assumed, of course, that both

- u2 < 0, one would compare the computed value

samples came from normal populations.

2. Parametric F test for comparing two variances-

The parametric F test is designed to determine whether two
samples came from two normal populations with identical variances.

Thus, for the two samples in Example 6, one might wish to test the

hypothesis
2 2
HO’ ol =0,
against the alternative hypothesis
2 2
Hl. 01 * 02
where oi and og denote the variances of the normal populations from

which the two samples were taken; namely, the variances of all pro-
jectiles of Types A and B which would ever be produced. In words,
one wishes to know whether the variability in the magnitude of the
error differs for the two types of rounds. To answer this question,
one utilizes the fact that the ratio.Sf/sg of two sample variances
has an F distribution with n, - 1 and n, - 1 degrees of freedom, pro-
vided that the samples were drawn from normal populations. Critical
values of the F distribution corresponding to a = 0.01 and a = 0.05
levels of significance have been tabulated for various degrees of
freedomil,p.401] Since the entries in the F tables are all equal to
or greater than 1, it is necessary to place the larger variance in

the numerator of the F ratio. Then, in determining the critical
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value of F, the degrees of freedom corresponding to the numerator
are located at the top of the F table and those corresponding to
the denominator are located at the side of the F table. If the F
ratio exceeds this critical value, the hypothesis
2 2 .
HO. 0L = 0y is rejected

To illustrate the procedure, consider testing the hypothesis

2 2
Ho. 9, =0,
against the alternative
2 2
Hl‘ 9 < 9y
with a = 0.05 for the data of Example 7. Then
_ 2,2
= 25/16
= 1.562 .

Entering the F table with n, = 1 = 7 degrees of freedom at the

0.05 2
top and n, - 1 = 9 degrees of freedom at the side, one finds the

critical value F* to be F* = 3,29, Since F = 1.562 £ 3.29, one

accepts Ho.
Now suppose one wishes to know whether ci was different from
o% either larger or smaller. That is, one wishes to test the hypothesis
2 2
HO' g, = 9,

against the alternative hypothesis
2 2
Hy: o] # a,
using the F 05 table. Again one calculates the value

F =532/5§

25/16

1.562

as before, by placing the larger variance in the numerator of the F



ratio. Also, as before, the critical value F* = 3,29 is obtained

and one accepts HO' But now the level of significance is no longer

a = 0.05 but a = 0.10; i.e., the level has doubled. This is due

to the fact that the critical values in the F table make no allowance
for F ratios which are less than one, and there is a probability of

Y% that if one constructs the F ratio as

_ variance of first sample
variance of second sample

the value of F will be less than one.

B. Nonparametric Analysis

1. Nonparametric t test.

Nonparametric t tests.are designed to determine whether two
samples came from populations with different means, in which it
is not required that the populations be normal. In fact, no assump-
tion is placed on the distribution of the items in the population,
other than the weak condition that the distribution be described
by a continuous mathematical function. While several such tests
are available, only the Mann-Whitney U test will be considered
here. It is based on rank-order statistics, as is indicated by
the following example.

Example 8.

An experiment designed to compare the tensile strength of
two kinds of yarn produced the following results (in pounds):

Yarn A: 143.6, 144.8, 145.2, 144.8, 145.6, 146.0,
143.0, 147.4, 144.0, 145.6, 145.5, 144.8

Yarn B: 146.6, 147.8, l44.4, 140.8, 143.0, 148.8,
153.0, 142.4, 146.8, 143.2, 140.9, 150.6

Use the U-test at the a = 0.05 level of significance to test the



null hypothesis

+ H =1
Byt "1 7 %2

against the alternative hypothesis
H: Wt

To reach a decision, one first jointly arranges the 24 ob-

servations according to size, retaining the sample identity of each

observation. Then one assigns the ranks 1, 2, 3, . . ., 24 as

shown in the following table:
Yarn B B B B A B A
Observation 140.8 140.9 142.4 143.0 143.0 143.2 143.6
Rank 1 2 3 4.5 4.5 6 7
Yarn A B A A A A A
Observation 144.0 144.4 144.8 144.8 144.8 145.2 145.5
Rank 8 9 11 11 11 13 14
Yarn A A A B B A B
Observation 145.6 145.6 146.0 146.6 146.8 147.4 147.8
Rank 15.5 15.5 17 18 19 20 21
Yarn B B B
Observation 148.8 150.6 153.0
Rank 22 23 24

Note that if two or more observations are tied in rank, one assigns
to each of the observations the mean of the ranks they jointly
occupy.

Construct the statistic

- n,(n, + 1) _
U= nn, + 1YL R1

2

g
=2
o
[a)
1]
=]
(]

size of sample #1

size of sample #2

==}
"

the sum of the ranks occupied by the first sample,
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It can be shown that if both ny and n, are greater than 8, the

distribution of the U statistic is approximately normal with mean

Ho= 0y
2

and variance
2 _ nlnz(n1 + n, + 1)

12

2

Thus,

has approximately the standardized normal distribution. In this

example
H =72
u
o= 300
u
= 17.32,
Rl =4,5+7+8+ 11+ 11 + 11 + 13 + 14
+ 15.5 + 15.5 + 17 + 20
= 147.5
U = 144 + 78 - 147.5
= 74.5
Thus,
% = u- Llu
o
u
74.5 - 72
17.32
= 0.14
Since 3 is (approximately) normally distributed, Za = ZO 025 = 1.96.

Thus, 2 = 0.14 < 1.96, so H. is accepted and it iszconcluded that

0

the population means are identical.

If ny and n, are not both greater than 8, the critical value of

28
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is no longer & , but can be obtained from a special table [13]
If the sample value of U is greater than this critical value,

Ho is rejected. Otherwise, H, is accepted.

0

2. Nonparametric F test for comparing two variances

If the ranks are assigned in a somewhat different manner
than that used in Example 8, the U statistic can also be used to
test the null hypothesis of identical populations against the
alternative hypothesis that the populations have unequal variances.
The ranks are assigned "from both ends toward the middle" by
assigning Rank 1 to the smallest observation, Ranks 2 and 3 to
the largest and second largest observations, Ranks 4 and 5 to the
second and third smallest, ranks 6 and 7 to the third and fourth
largest, and so on. All other aspects are identical with those
of the Mann-Whitney U test discussed in Example §. The example
below illustrates the use of the U-test as a nonparametric F test.

Example 9.

Use the U-test to determine whether the two populations

from which the samples in Example 8 were taken have equal variances.

2 2

H@. ol = 02

Hy: oi $ cg
Yarn B B B B A B A A B
Observation 140.8 140.9 142.4 143.0 143.0 143.2 143.6 144.0 144.4
Rank 1 4 5 8.5 8.5 12 13 16 17
Yarn A A A A A A A A B
Observation 144.8 144.8 _144.8 145.2 145.5 145.6 145.6 146.0 146.6
Rank 21.67 21.67 21.67 23 22 18.5 18.5 15 14
Yarn B A B B B B

Observation 146.8 147.4 147.8 148.8 150.6 153.0
Rank 11 10 7 6 3 2



The ranking was carried out as explained above - differently from

the ranking method used in the nonparametric t test. Then, as in

Example 8,
n, = n2 =12
n =72
u
2 _ 300
u
H = 17.32
u
a = 0.05
Rl = 8.5+ 13 + 16 + 21.67 + 21.67 + 21.67
+ 23 + 22 + 18.5 + 18.5 + 15 + 10
= 209.51
U=n1,n, + n1(n1 +1) - R
12 —— 1
2
= 144 + 6(13) - 209.51
= 12.49
_ U = Hu
A= —?;:r————
- 12.49 - 72
17.32
==3_ 44,

SinceiZ!= 3.44 > 2 = 1,96, the hypothesis HO is rejected.

0.025

That is, one concludes that the population variances are different.

3. A nonparametric test for comparing two proportions

There are frequently situations in which one wishes to know
if two proportions are siénificantly different. For example, it

may be desired to know if the proportion m of voters in the state

who favor a piece of legislation is significantly different from
the proportion Ty who are opposed. Or it may be necessary to

determine whether the population proportion m, of patients res-

1
ponding to drug A is different from the population proportion ﬂz
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of patients responding to drug B. As before, the decision must be

1 =.§l and P =‘§Z .
M zZ M,

The question is whether these two sample proportions are significantly

based upon a comparison of two sample proportions P

different.

If the samples utilized are large - say 50 or greater - then
if the two population proportions are identical, the standardized
difference of the two corresponding sample proportions is normally

distributed. More specifically, if two samples of sizes n, and n,

yield proportions P, = Xl/n1 and P, = Xz/nz, and if the corresponding
population proportions nl and “2 are identical, then
X
I N
n n
Zp(l-.v) 1 ., 1)
™

has, approximately, a standardized normal distribution with mean

zero and standard deviation one, where

Xl + X2
p= n, +n
1 2
is a pooled estimate of the (assumed) common proportion T. = T_ .

1 2

To illustrate the procedure for determining whether two sample
proportions are significantly different, consider the following
problem. A manufacturer of electronic equipment wishes to subject
two competing brands of transistors to an accelerated environmental
test. Of the 80 transistors from the first manufacturer, 25 failed
the test, whereas of the 50 transistors from the second manufacturer,
21 failed the test. Using the level of significance a = 0.05,
test whether there is a difference between the two products.

In essence, one must test the null hypothesis



o T =T
HO' 1 2

against the.alternative hypothesis

s T T
By ™4

2
where ﬂl and “2 denote, respectively, the true proportions of failures

for the two brands of equipment. Thus,

_25+21
P 80 + 50
o 46
130
= 0.3538
P =§_£§=
1 == 55 = 0.3125
1
X
2 _ 21 _
Py 5, ~ 50 0.42
g o 2L _ 25

fJﬂL;;Eﬁ__ 1 1

ﬂ0.3538(0.6462) (§b + ?b)

= 1.247

Since & = 1.247 < 2.025 = 1.96, one accepts HO i.e., he concludes
that there is no difference between the two products.

There are some instances in which we are interested in determining
whether it 1is reasonable to conclude that a population proportion has
a specified value ™, For example, in acceptance sampling one is
concerned with the proportion of defectives in a lot. Or in life
testing one is concerned with the percentage of certain components
which will perform'satisfactorily during a stated period of time.
This type of problem can again be treated as a problem in hypothesis

testing:

(T
o
-
=)
[an]
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For example, suppose a medical research worker wants to know whether
a new muscle relaxant will produce beneficial results in a higher
proportion of patients suffering from a neurological disorder than
the 0.70 receiving beneficial results from standard treatment. How
should he interpret an experiment (at thea = 0.05 level of signifi-
cance) if 156 of 200 patients obtained beneficial results with the
new relaxant?

To answer this question, we test the hypothesis

HO: P =M= 0.70

against the alternative hypothesis

H: p > 0.70
1
by computing
x - nT
Z = @
n (=)
- - 200 (0.70
00 (0.70) (0.30)
= 2.468
and comparing the value with 2Z 025 = 1.96. Since 2 = 2.468 > 1.96,

one rejects HO and concludes that the new muscle relaxant is more
beneficial than the old.
One could also obtain a 100 (1 - a)% confidence interval for a

population proportion T, namely,

For example, in the muscle relaxant problem just considered, a 957%
confidence interval for the new muscle relaxant would be

156 156 V156

156
156 200% ~ 200 156 * 200 )

(1 - 350

- 1.96 < T< 5—+ 1.96 300

200 200 200

°T  0.7226 < 7 < 0.8374 .
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Such confidence intervals on can also be obtained graphically from
specially constructed charts [14] , which do not require that n be
large.

One final point regarding proportions. The magnitude of the
error one incurs by using~§ as an estimate of T depends upon n.
For n large (say 50 or greater), the maximum error which one risks

with a probability of 1 - a is

_ zw(l - )
E = Z0L/2 n .

However, since one does not know the value ofTT the value of E
cannot really be obtained from this formula unless he has some

approximate estimate of M. 1In the absence of such an estimate,

E E-za/i(%;

since (1 - W).i-%. Conversely, if one wishes the estimate~§ to
differ from ™ by not more than E, with a probability of 1 - a, he

must utilize a sample of size

P 2
né'ﬂ'(l—'ﬂ')fu/Z} s
[
or if no estimate of T is available,
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V. THE PROBLEM OF ESTIMATION AND COMPARISON OF SEVERAL MEANS
A. Introduction

Analysts, researchers, and engineers dealing with real
world problems are frequently faced with the necessity of
deciding which means (averages) in a set of means are different
and which are identical. Thus, in determining whether the mean
(average) concentration of algae differs for five depth strata,
one must decide whether all five means in the set of five
depth strata are identical. 1If they are not all identical,
which ones differ--some, or all five? Similarly, in evaluating
the effectiveness of, say, three different drugs in the treat-
ment of a disease, one wishes to decide whether all three are
or are not equally effective by comparing the mean response of
the patients to each drug.

B. Selection of the Model

There are basically two types of models from‘which to
choose the test: parametric and distribution-free (nonpara-
metric). Parametric models require a knowledge of the distri-
bution of the observed values of the relevant variable, whereas
distribution-free models only require that the distribution of
the relevant variable be (mathematically) continuous, without
the necessity of specifying its mathematical form. In many
cases the parametric model requires that the variable be
normally distributed, which is often approximately true.

One might well wonder, then, why the distribution-free
test is not always used, since one would then never run the

risk of violating assumptions which, when not satisfied, could
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cause wrong conclusions with serious resultant consequences.

The reason is that the distribution-free test is, in statistical
jargon, less powerful than its parametric counterpart. This
means, for example, that the differences between means in a

set of population means must be large in order to be detected
by a distribution-free F test. Thus, with a distribution-free
F test, we are more apt to conclude that the mean density of
algae is the same for n different depth strata, when in fact

it is not. What this means is that a parametric test should

be used when the underlying assumptions are not seriously vio-
lated. If there is a serious violation of assumptions, then the
ideal approach is to apply both the parametric and distribution-
free tests. If they lead to the same conclusion at the desired
significance level, then the analyst knows that he has a bona
fide conclusion at the stated confidence level. If the two
tests lead to different conclusions, one would abide by the
conclusion from the distribution-free test, if he felt the
assumptions of the parametric test were seriously violated.

If he had no indication as to such violations, he would prob-
ably strike a compromise. Thus, if the parametric F test indi-
cated tﬁat the algae concentration means were significantly
different at the 5% level of significance, but the distribution-
free F test indicated a significant difference at the 15% level,
the researcher or analyst would probably conclude that the
difference was significant at the 10% level. What this means

is that the researcher would conclude that the true mean algae

concentrations are not the same for all depth strata; the
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probability that this conclusion is incorrect is, in the com-
promise approach, 0.10. An example along this line will be
given later.

Basically there is one parametric model for testing

a set of means: the conventional analysis of variance or F
test. Actually, the purpose of this model is threefold:

(1) To determine whether treatment differences that are
of interest exist, and if so, to estimate these
treatment differences. 1In this statement both the
words "treatment" and "difference" are used in a
rather loose sense; e.g., a treatment difference
might be the difference between the mean yields of
any two of five varieties in a plant-breeding
trial, or the relative toxicity of an unknown to a
standard poison in a dosage mortality experiment.
One wants such estimates to be efficient. That is,
roughly speaking, one wants the difference between
the estimate and the true value to have as small a
variance as can be attained from the data that are
being analyzed.

(2) To obtain some idea of the accuracy of our esti-
mates, e.g., by attaching to them confidence limits.

(3) To perform tests of significance with the parametric
model. This consists of carrying out the conventional
F test (which will be explained later) to test the
hypothesis that a set of population means all have

the same value. We should like this test to have



the property that if one attaches a confidence co-
efficient of 0.05 to the conclusion that the means
are not all identical, the probaility of getting
the observed result (F value) or a more discordant
one (larger F value) when in fact the population
means are identical, is equal to or less than 0.05.

C. Elements Involved In the Conventional Parametric
Analysis of Variance Model

When using an analysis of variance model, one generally

recognizes three types of effects:

(1) treatment effects--the effects deliberately intro-
duced by the experimenter--e.g., five strata depths
at which the algae concentration will be measured.

(2) environmental effects--these are certain features
of the environment which the analysis enables one
to measure--e.g., the effect of speed, driver,
make of car, etc. on gasoline mileage when one is
determining whether some brands of gasoline are
superior to others insofar as average mileage is
concerned.

(3) experimental errors--this term includes all ele-
ments of variation not taken into account in (1) or
(2).

D. Underlying Assumptions in Parametric Analysis of
Variance Model

The assumptions required in the analysis of variance
model in order for the foregoing properties to hold are as

follows:

38



1.

2.

The numbers in each category are random variables
which are distributed about the true population

mean for that category. For example, the algae
concentration values for a given depth stratum are
random variables which are distributed about the

true mean for that depth stratum.

Additivity. For example, in a two way classification

involving rows and columns,

Mg =@ty om ) m oy -m )
where
mij = element in the ithe row and j column of
the population
m = mean of the entire population
m. = mean of ith row of population
m . = mean of jth column of population

Homogeneity of variances. The variance of the items
is assumed to be the same for each class or category.
The items are also assumed to be mutually uncorre-
lated.

The items in the population are normally distributed
-- or for the most general case, have a multivariate
normal distribution. In the algae example, the
concentration values for a given depth stratum are
assumed to be normally distributed about the mean

concentration for that depth stratum.

39



40

It has been found that the»(conventional) parametric
analysis of variance model is quite robust with regard to all
of the above assumptions except that of homogeneity of
variances. What this means is that primarily one needs to be
most concerned about the homogeneity of variance assumption--
the others are relatively less important. Lack of homogeneity
of variances has a serious effect on the efficiency of the
test, and will tend to indicate significant differences among
population category means when there is no difference. The
analysis of variance is not much affected by a moderate lack
of normality. The same is true of nonadditivity effects. The
assumption of mutual independence among the items is important,

but is usuallv reasonably well satisfied.



VI. VARIATIONS IN THE CONVENTIONAL PARAMETRIC ANALYSIS OF

VARIANCE MODEL

There are many variations in the parametric analysis
of variance model, all of which are based on the conventional
parametric F test. Each one has its particular place and
enables one to reach certain decisions (or in statistical
vernacular, to test certain hypotheses) with a particular
degree of efficiency. The basic variations in this model
will now be illustrated.

A. Completely Randomized Design (One-Way Classification)

In a completely randomized design, or one-way classi-
fication, a set of sample or treatment means is compared, with
no attempt to remove the effects of extraneous sources of
variability. The effects of these extraneous sources are
randomized over the entire experiment so that it will not bias
the conclusions. It will, however, inflate the unit of
measure (namely, the error variance) for detecting differences
between treatment population means. For example, one may wish
to test four hull designs of motorboats to determine whether
one is superior to another insofar as top speed is concerned.
To make such a determination, suppose that four boats, each
with a different hull design, were run on a marked course in
random sequence, and the time required (in minutes) to cover
the course was observed. The sequence was chosen in a random
manner so as to "average out" the effects from extraneous
sources such as condition of the water (e.g., calm, moderate,

or choppy). The results are shown in Table 1.
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Day
1 2 3 Totals
Design A 45 46 51 142
Design B 42 44 50 136
Design C 36 41 48 125
Design D 49 47 54 150
172 178 203 553

Table 1. Specific Results in the

Completely Randomized Design

The means for designs A, B, C, and D, are, respectively,
47.333, 45.333, 41.667, and 50. The question is whether these four
samples came from normal populations whose means ui, i=1, 2, 3, 4 are
all identical, or whether some are different.

To answer this question, we set up the so-called null

hypothesis

to be tested against the alternative hypothesis

H,: the ui are not all identical.

(The term '"'null hypothesis' merely means that a hypothesis is to be

tested for acceptance or rejection.) The evaluation



is carried out with the usual analysis of variance computa-

tions, which are readily available in text books of experi-

mental design and will not be elaborated upon here.

SST

SS (Tr)

(Z X x.. 2
_ij (45 + 42 + ... + 48 + 54)
rc (4) (3)
2
(553) _ r = number of rows
12 = 25,484.08 c = number of columns

Total sum of squares
45)2 + (42)2 + ... + (54)2 - 25,484.08

264.92

Sum of squares for treatments

SSR (Sum of squares between row means)

(142)2 + (136)2 +(125)2 + (150)2

: - 25,484.08
17161 + 21025 ; 18496 + 19881 _ .o 404 0g
Z§%§§ - 25,484.08

25595 - 25484.08

110.92
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SSE = Error sum of squares = 264.92 - 110.92 = 154

The results are summarized below in the usual analysis of

variance format.

Source of Degrees of Sums of Mean Csiiical
Variation Freedom Squares Square F atue

of F

.05
Hull designs 3 110.92 36.97 1.921 4.07
Error 8 154 19.25
Total 11 264.92
Table 2.

Since the computed value F = 1.921 1is less than the
critical value of F.OS = 4.07 for 3 and 8 degrees of free-
dom, one accepts the null hypothesis Ho. That is, one concludes
that the three hull designs are not significantly different
insofar as their effort on top speed of the boat is concerned.

The probability that one is wrong in this conclusion and that at
least two of the hull designs are significantly different in their
effect upon average speed is 0.05.

In the above design, one assumes that the items in the
ith row come from a normal population with mean Hy and

variance o2, i =1, 2, 3. One further assumes that the
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population element for Design i and Day Jj 1is expressible

in the form

iy =W F (uy - w) + Géj

i=1,2, 3, 4, j=1, 2, 3; i.e., as a linear additive

function of the population grand mean m and the population

hull design mean m, . The eij are standardized normal random variables.
Ninety-five percent confidence limits on the mean

speed for each hull design are:

) )
> S b S
X3 = to2s \/3 SHp X3t E o2 \/;

where s =‘/19525 = 2.533, t 025 = 2.306, for 8 degrees of

freedom. Specifically

41.492 < 53.174

39.492 < < 51.174
35.826 < sy < 47.508

44,159 . < < 55.841
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B. Randamized Block Design--Two-Way Classification

In the example of Table 1, no attempt was made to

remove the effect of extraneous sources upon boat speed, such
as the condition of the water (e.g., calm, moderate, chppy).
Now the effect of these water conditions was randomized over
the experiment (since the sequence of experiments was random-
ized) and did not bias or otherwise invalidate the experiment--
it merely made it more difficult to pick up an actual difference
among hull designs by inflating the unit of measure for any such
difference (namely, the SSE or error variance). One can,
however, deflate the unit of mearusre or error variance by
removing the effect of extraneous factors by using other designs.
In particular, the effect of one such factor can be removed by
using a randomized block design.

To illustrate the removal of an extraneous factor,
suppose the four hull designs were tested under water conditions
characterized as calm, moderate, or choppy, and which occurred,
respectively, on days 1, 2, and 3. Thus, columns 1, 2, and
3 are now labeled calm, moderate, and choppv.

The additional element in the two-way analysis of
variance is the removal of the effect of observed differences
in column (water condition) means upon the unit of measure
(error variance). 1In this particular example, it is of
sufficient magnitude to change the conclusion, namely, to
reach the decision that the population means (speeds for the
three different hull designs) are significantly different. This

conclusion was not reached with the completely
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randomized design because the differences among treatment means

were masked by the effect of water condition differences on

the error variance (which was increased).

shown in Table 3.

The results are

SSC = Sum of squares between (water condition) means

172)% + (178)% + (203)2

4

(142)2 + (136)2 + (125)2 + (150)2

- 25,484 =

SS(Tr)
‘ 3

SSE = SST - SS(Tr) - SsC

265 - 111 - 135 = 19

~&

135

- 25,484 = 111

Critical
Source of Degrees of Sum of Mean Value
Variation Freedom Squares Square F F 05
Hull designs 3 111 37.0 11.6 4.76
Water Conditions 2 135 67.5 21.1 9.55
Error 6 : 19 3.2

Total 11 265

Téble 3. Analysis of Variance Summary

Since F > F 05 for both hull designs and days, one

concludes that:
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14 The condition of the water has a significant
effect on the top speed for the three hull designs.

2. The hull design means (average boat speeds for the
hull designs) are not all identical.

In other words, one rejects the aforementioned null hypothesis
in favor of the alternative hypothesis
: the M, are not all identical.

For the factorial, two-way table, one has the follow-

ng confidence limits on the three means:

S—
= s = X .
X; " fo2s = M < Xt tos o 1T 1,2, 3, 4

where s = 1.789, n= 3, t 025 = 2-447 (for six degrees of

freedom), and t ,. s//n = 2.528, gpecifically,

44.805 < uy < 49.861
42.80§ < Uy < 47.861
39.139 < My < 44,195
47.472 < My < 52.528

Note that the widths of the confidence intervals are con-

siderably smaller for this factorial design than for the
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randomized block, simply because the effect of the water con-
ditions (days) on the error variance has been removed.

At this point, however, one does not know whether all
three hull design means are different, of whether two of the
three means are identical but different from the third. This
decision is made on the basis of what is called, in statisti-
cal jargon, a multiple comparisons test which is discussed in
the next section.

C. Multiple Comparisons Tests

Once a significant F-test has been obtained, there are
several methods available td determine which of the means are
significantly different. One of the more commonly used of such
tests is the Duncan Multiple Comparisons Test, which will be
applied here.

To apply this test, one proceeds through the following
steps:

1. Arrange the four means in order from low to high

2. Enter the analysis of variance table (Table 3)

and take the error mean square with its degrees
of freedom.

3. Obtain the standard error of the mean for each

treatment

error mean square
number of observations
upon which X, is based
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where the error mean square is the one used as
the denominator in the F test.

4, Enter a Studentized range table (e.g., [1]
Appendix, Table X) of significant ranges at the
o level desired (in our problem, o = 0.05),
using d.f. = degrees of freedom for error mean
square and o =2, 3, ..., k, and list these k
ranges (k = number of means; in our problem,
k = 4).

5. Multiply these ranges by the various Sii to
form a group of k - 1 least significant ranges.

6. Test the observed ranges between means, beginning
with the largest versus smallest, which is
compared with the least significant range for
p = K; then test largest versus second smallest
with the least significant range for p =k - 1;
and so on. Continue this for second largest versus
smallest, and so forth, until all k(k-1)/2
possible pairs have been tested. This procedure
results in various subsets of means, such that
no two means in the same subset can be declared

significantly different.

Following the steps given above, one has, for the fore-

going example, the following multiple comparison analysis:



(4) (3) (2)
k = 4 means are 41.667 44 47.333
for treatments C B A

(1)
50

D

From Table 3, error mean square is 3.2 with six

degrees of freedom.

Standard error of mean is

. yMS.E. _ 3.2 _1.789 _

Sx n 3 - 1.732

i.

1.033

From Appendix Table X [l1] , at the 5% level, the

significant ranges are, for 6 degrees of freedom,

p =2 3 4

ranges 3.46 3.59 3.A5

Multiplying by the standard error 0.894, the

least significant ranges are

p = 2 3 4

LSR 3.574 3.708 3.770

Largest versus smallest: 1 versus 4 = 8.333 >
Largest versus next smallest: 1 versus 3

=6 > 3.708

Largest versus next largest: 1 versus 2

= 2,667 < 3.574.

Second largest versus smallest: 2 versus 4

= 5.666 > 3.708 .

3.770
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Second largest versus next smallest: 2 versus 3
= 4.333 > 3.574.

Third largest versus smallest: 3 versus 4

= 2.333 < 3.574.

41.667 44 47.333 50
C B A D
(4) (3) (2) (1)

Here there is a significant difference between (1)
and (4), (1) and (3), (2) and (4), and (2) and (3) but not
between (1) and (2) or (3) and (4). Therefore, either design
A or D is preferable over C and B insofar as top speed is
concerned, but A is not significantly different from D, and
B is not significantly different from C.

D. Latin Square Design

Suppose one wishes to remove the effect of two
extraneous factors on the treatment means: what experimental
design can he use? One possible design, which is quite
efficient, is the Latin square design, which is discussed in
any basic textbook on experimental design, and is illustrated
by the following example.

- Three experimental fuels are tested to determine if
there is any difference in the length of time an engine will
operate on one gallon of the fuel. The number of minutes
three engines El' E3, and E3, tuned up by mechanics Ml’ M2,
and M3, operated with one gallon of fuel,'A, B, or C, is

observed and the results are recorded. The experimental
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design used is a so-called Latin square in which each fuel

(A, B, C) occurs once and only once in each row and each
column of a 3 x 3 Latin square (Figure 1). The experiment
was replicated three times, in order to obtain a smaller error
variance (based on more degrees of freedom) which will make
the F test more powerful. An n x n Latin square with no
replication has only (n - 1) (n - 2) degrees of freedom. Thus,
a Latin square of order 3, such as the one in this example,
has only two degrees of freedom, which does not provide a

very sensitive F test.

E; E, E, E; E, Eq
M A B C 51 M A B C 53
1 16 21 14 1 17 23 13
M B C A 66 M B C A 68
2 25 18 23 2 28 19 21
M C A B 63 M C A B 57
3 16 21 26 3 12 20 25
57 60 63 [180 57 62 59 {178
(a) (b)

Figure 1l(a) (b) (c). Three Replications of
a Third Order Latin Square Design.



1 2 3
Ml A B C 49
- 15 20 14
M2 B C A 66
26 16 24
M3 C A B 71
19 24 28
60 60 66 186

(c)

The basis for the analytical computations are given in
any basic experimental design textbook, and therefore will
not be discussed in detail here. Conceptually, the effect
of differences in row (mechanics) means and column (engine)
means on the error variance has been removed, thereby decreas-
ing the error variance and increasing the power of the F-

test. The necessary calculations are shown below.

2 ; 2 2
2 3{(9) 2

rn
h) z z Y?.- = 162 + ... + 262 + 172 + ...+
. . ijk
i j k

(rows) (cols) (Latin
letters)

2 2
257 + 157 + ... + 28" = 11536
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ssT=I1I1zY¥,. -C=11,536 - 10,960.593 = 575.407
A ijk
i3jk
n .
SSR== 17 -c=231512+ 2002 + (191)?)
rmm ,._,71i. 9
i=1
- 10,960.593
= 138.296 (for row effects)
(r = number of replicates)
n
SSC = 1 T T?, -C = l((l74)2 + (182)2 + (188)2)
rn j=1 j 9
- 10,960.593
= 10.963 (for column effects)
SS(Tr) = SS (Latin letters)
1 2 2
= —= ¥ T - C
rm (k)

= slasn? + (22202 + (141)%] - 10,960.593

11,325.111 - 10,960.593

= 364.518 (for treatment, i.e., fuel effects).

(The figure 181 is the sum of the nine values for A:

16 + 23 + 21 + 17 + 21 + 20 + 15 + 24 + 24 = 181.



Similarly, 222 is the sum of the nine values for B and

141 the sum of the nine values for C.)

—

SS (Rep)

ol
e

= -;'—((180)2 £ (178)2 + (186)2) - 10,960.593

56

= 10,965.444 - 10,960.593 = 4.851 (for replicates)

SSE = SST - SS(Tr)

- SSR - SSC - SS(Rep)

= 575.407 - 138.296 - 10,963 - 364.518 - 4.851

= 56.779
Degrees

Source of of Sum of Mean
Variation Freedom Squares Square F F 05 F 01
Fuel (Treat- 2 364.518 182.259 57.787 3.55 6.01
ments, i.e.,
Latin letters)
Mechanics 2 138.296 69.148 21.924
(Rows)
Engines 2 10.963 5.482 1.738
(Cols)
Replication 2 4.851 2.425 0.769
Error 18 56.779 3.154
Total 26 575.407

Table 4. Analysis of Variance Summary For Latin Square.



From an F table (see, for example, [l ], Table 6),

05
the F value for 2 and 18 degrees of freedom is 3.55. The
F.01 value for 2 and 18 degrees of freedom is 6.01. One con-
cludes, therefore, that the fuel means are significantly
different at both the 5% and 1% levels of significance. How-
ever, the fuel means may or may not all be different. To
reach a decision on this point, the Duncan test is

applied corresponding to a = .01 (i.e., the 1% level of sig-

nificance).

__ /M.S.E. _ /3.154 _ 1.7760 _
s = /= = /25— = 5 = 0.5920

C A B
(3) (2) (1)
15.67 20.11 24.67
a = 0.01 P | 2 3
q | 4.07 4.25
P | 2 3
q | 2.409 2.516
Largest vs. smallest: (1) vs. (3) = 9 > 2,516
Largest vs. next smallest: (1) vs. (2) = 4.56 > 2.409

Second largest vs. smallest: (2) vs. (3) = 4.34 > 2.409

c A B
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One concludes, therefore, that all three means are signifi-
cantly different from each other.

It might also be pointed out that the "mechanics"
means are not all identical, so that it was worthwhile to
remove the effects of this variable from the error variance.
Since one is not particularly interested in which "mechanics
means" are significantly different (or whether they all differ
from each other) the Duncan test is not applied. The
"engines means" are not significantly different, so that one
could have used a randomized block design and still reached
the correct decision. In other words, in hindsight one now
knows that the extraneous variable "engines" does not affect
the results, but it was necessary to use a Latin square design

to determine this fact.

Again, concerning the assumptions of normality and
homogeneity of variances, one assumes that the items in each
row and in each column have normal distributions with the
same variance 02. Similarly, the response (operation time)
for each fuel (A, B, C) has a normal distribution with

variance 02. In actuality, the null hypothesis

was tested against the alternate hypothesis

Hl: the “i’ i=1, 2, 3 are not all identical,
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with the result that H., was rejected in favor of H, at the

0 1

1% level of significance.

E. Graeco-Latin Squares

The use of a Latin square enables one to remove the
effect of two extraneous variables (rows and columns) upon
the error mean square. By using a Graeco-Latin square, the
effect of yet another extraneous variable on the error variance
can be removed. The method by which this is done will now be
illustrated by an example. A discussion of the Graeco-Latin
square can be found in any standard text on experimental
design. It will merely be pointed out here that in a Graeco-
Latin square, each Latin-letter (treatment) occurs once and
only once in each row and in each column; each Greek letter
occurs once and only once in each row and in each column; and
each Greek letter occurs in combination with each Latin letter
once and only once. The only additional calculation (beyond
those for the Latin square) is for the sum of squares between
"Greek letter means".

Consider, then, the following example of the appli-
cation of a Graeco-Latin square. A processor of breakfast
foods wishes to study the effectiveness of different kinds of-
packaging upon scales. He used a fifth order (n = 5) Graeco-
Latin square design, with the results shown in Table 5, where
&, B8, v, §, and € represent (in increasing order of magnitude)
the amount of money spent on newspaper ads for the product on
the day before the experiment, and the rows represent

different locations within identically designed supermarkets,
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which are represented in turn by the five columns. The
figures are the number of sales of breakfast food from 9

A.M. to 11 A.M.

Ao BB Cy D¢ Ee
50 51 53 55 56 265
By (o] De Ea AB
51 50 50 45 49 245
Ce Da EB Ay BS
45 37 39 40 41 202
DB Ey AS Be Ca
39 40 41 44 37 201
ES Ac Bo CB Dy
43 47 41 42 42 215
1128
Table 5. Graeco-Latin Square
T2 2
C = 'é' = (1128)7/25 = 50895.36
n
n
Latin SSL = £ 72 - ¢ = 234:500 _ 55 995,36 = 4.64
n._. (k) 5
k=1
n
Rws SSR=32 T2 - c=221:880 _ 50 895,36 = 640.64

k=1 l..



n
= l N 2 - = 25'4'1486 =
Columns SSC a j;lT'j' C = —5 - 50,895.36 = 1.84
: n NP '
Greek  SSG =2 3 To - c = 222:080 _ 50,895.36 = 112.64
(treatments) g=1 g
n n , .
S = ¥ . . - = - : =
ST jﬁl iilylj(k)(g) C 51,008 50,895.36 772.64
SSE = SST - SS(Tr) - SSR - SSC - SS6 22.88
. Sum of Mean '
Source d.f. Squares  Square F Fg.01(4/8)
(Latin) Treatments
(kinds of
packaging) 4 4.64 1.16 0.72 7.01
(Rows) Locations 4 640.64 160.16 99,5%% 7.01
(Columns) Supermarkets 4 1.84 0.46 0.28 7.01
(Greek) Money spent on
- advertising 4 112.64 28.16 17.5%** 7.01
Error 8 12.88 1.61
Total 24 572.64

Table 6. Analysis of Variance for Graeco-Latin Square

One concludes that the amount of money spent on advertising is

significant at the 1% level, as is the location within identi-

cally designed supermarkets.

The differences between identi-

cally designed supermarkets is not significant; neither are

the differences in packaging.

F. Factorial Designs

In the previous sections, one was primarily concerned

with the effects of one variable, whose values were referred to
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as "treatments". Extraneous values were accommodated by means
of blocks, replicates, or the rows and columns of Latin and
Graeco-Latin square designs, so that the effects of such ex-
traneous variables on the error variance were removed. This
section, however, will deal with the individual and joint
effects of several variables, and combinations of the values,
or levels, of these variables will play the roles of the
different treatments. Extraneous variables, if any, will be
handled as before; i.e., their effect on the error variance
will be removed by randomization , replication, etc.

The additional element of interest in a factorial
design is the interaction between the various factors. For
example, in a simple two-factor (two-variable) experiment,
it might be desired to determine the effects of the flue
temperature and oven width on the time required to make coke.
There may, however, be an interaction between oven-width and
flue temperature, and the result for one combination, say
T1W2, may be different than that for another combination
T2W3. In a factorial design, it is possible to determine,
at a stated significance level o, if such interactions exist.

It should be pointed out that the two factors whose
interaction is of interest here are "design variables" that
are "built in" to the experimental design structure, rather
than extraneous variables such as mild, moderate, or choppy
water conditions in the hull design problem. Of course,
factorial designs could also be used to determine whether
there are interactions between extraneous variables, but this

is not usually necessary. Usually the F-test is sufficiently
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powerful when the effect of differences in factor (row, column,
Latin letter) means is removed from the error variance, without
removing the effect of interaction.

Of course, higher order factorial designs permit the
analysis of higher order interactions. For example, a three-
factor factorial with replication permits one to test the sig-
nificance of two-factor and three factor interactions. Usually,
however, one is not concerned--from a practical standpoint--
with interactions beyond three-factor interactions; and in the
great majority of real-world problems, one is primarily interest-
ed in one-factor (main e ffects) and two-factor interactions.

1. Two-Factor Factorial Design

To illustrate the analysis of a two-factor factori-
al design, consider a specific example.* Suppose it is desired
to learn the effects of two kinds of soil treatments on the
yield of wheat. One kind of soil treatment is chemical, while
the other is a "humus and fertilizer" type of treatment. There
are four variations (levels) of chemical treatments: None,

N + 0 (nitrogen plus oxygen), CO2 gas, and carbonic acid.
There are also four variations (levels) in the humus and fer-
tilizer treatments: None, straw, straw + PO4, straw + PO4 +
lime. Thus, one has a two-factor factorial design in which
each factor consists of four levels. It is desired to deter-
mine whether:

(1) the chemical treatment means are significantly
different

(2) the humus and fertilizer treatment means are
- significantly different

*See Ref. [15], p. 276.
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(3) whether there is interaction between chemical
treatment and humus and fertilizer treatment.

The effects of chemical levels‘or humus and fertilizer levels
are called "main effects"; i.e., main effect for chemicals
and main effects for fertilizer. The interaction between the
two factors (chemical and fertilizer) is called a two-factor
interaction or a first-order interaction.

This was a greenhouse experiment involving three repli-
cations. That is, three pots of wheat were treated with the
same combination of chemical and fertilizer levels. For ex-
ample, "soil plus straw" with "carbon dioxide gas" was laid
down in three pots. To eliminate the possibility that position
might affect the pots differentially, the 48 pots were placed
at random in the greenhouse. This randomization element is an
important precaution. If one places together three pots con-
taining one combination of treatments, and in a second place
those with another combination, the effects of position and
treatment will be confounded (mixed or intertwined) and the
three pots may be worth no more than a single determination.

The results of the experiment are shown below in
Table 7. The formulas used to determine the various sums of
squares are derived in any basic text on the design of experi-

ments, and will not be derived here.
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2
| 2
— Tc.o — (71107) — .
c=Teee = AT - 90,552.44
SST = (21.4)2 + (21.2)2 + (20.1)2 + (12.0)% + ... + (14.0)°
= 367.15
(230.2)2 + + (164.6)2
SSH (humus) = ~230- s . - 10,552.44 = 306.24
(180.1)2 + + (172.6)2
SSC (chemical) = - ié’ - 10,552.44 = 9.17
| (62.7)2 + (38.3)2 + s (40.6) 2 )
SS (Subclasses) '= - - 3 - 10,552.44
= 340.87
SS (HC) = Interaction Sum of Squares

340.87 - (306.24 - 9.17) = 25.46

SSE = 367.15 - 340.87 = 26.28

From the results summarized in Table 7a, one notes that the
difference in humus treatment means, chemical treatment means,
and interaction means are significant at the 5% level of signi-
ficance® under the aforementioned assumptions upon which the

F test is based. The most critical of these assumptions, the
homogeneity or equality of variances, will now be subjected

to an appropriate test.

*Actually, the humus and interaction treatment means are
significant at the 1% level also.



YIELD OF WHEAT IN 48 POTS.

Table 7.

GREENHOUSE EXPERIMENT WITH TWO SERIES OF SOIL
TREATMENTS, THREE POTS FOR EACH COMBINATION

Grams

Chemical Treatment

Humus and co Sum, Yield
Fertilizer 2 Carbonid 12 per
Treatment Pot None N + 0 Gas Acid Pots Pot
None 1 21.4 20.9 19.6 17.6
2 21.2 20.3 18.8 16.6
3 20.1 19.8 16.4 17.5
Sum 62.7 61.0 54.8 51.7 230.2 19.2
Straw 1 12.0 13.6 13.0 13.3
2 14.2 13.3 13.7 14.0
3 12.1 11.6 12.0 13.9
Sum 38.3 38.5 38.7 41.2 156.7 13.1
Straw + PO4 1 13.5 14.0 12.9 12.4
2 11.9 15.6 12.9 13.7
3 13.4 13.8 13.1 13.0
Sum 38.8 43.4 38.9 39.1 160.2 13.4
Straw + PO 1 12.8 14.1 14.2 12.0
+ lime 2 13.8 13.2 13.6 14.6
3 13.7 15.3 13.3 14.0
Sum 40.3 42.6 41.1 40.6 164.6 13.7
Sum, 12 pots 180.1 185.5 173.5 172.6 711.7
Yield per pot 15.0 15.5 14.5 14.4
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Degrees

Source of of Sum of Mean F F 05 F 01

Variation Freedom Squares Square ) *
Humus Treatments 3 306.24 102.08 124,49*%* 2.90 4.47
Chemical Treatments 3 9.17 3.06 3.73% 2.90 4.47
Interaction 9 25.46 2.83 3.452** 2,19 3,03
Error 32 26.28 0.82
Total 47 367.15

Table 7 a.

Analysis of Variance For A Two-Factor Factorial Design

L9
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2. Test For Homogeneity of Variances

One of the assumptions-— in fact, by far the most important one -
underlying the parametric (conventional) analysis of variance model
is that of homogeneity of variance - i.e., that the distributions of
the items in all classes (rows, columns, interaction cells, etc.)
are normal distributions with identical variances 02. There are
several tests for checking this assumption; e.g., tests by Hartley,
Cochran, and Bartlett. Bartlett's test has the advantage that it
does not require the sample size nj in each of the treatment classes
to be the same, but it is more complex than Hartley's or Cochran's
tests and does require that no nj be smaller than 3 and preferably
not smaller than 5. Cochran's test is somewhat stronger (more
sensitive than Hartley's), and will be used in the present analysis.
The requirement in Cochran's test that the nj be equal.is not really
a serious limitation, since in most analysis of variance problems
the nj values are the same. In the event that they are not the same,
Bartlett's test (which is readily available [3, p. 95] can be used.

It will now be shown that the row variances are significantly
different at the a = 0.05 level, which is sufficient to (theoretically)
invalidate the conventional analysis of variance (F) test, since the
latter assumes that the variances are identical for all classes. The
application of Cochran's C test to the row variances is basically
very simple. Specifically, one evaluates the ratio of the largest

of the row variances to the sum of the row variances:
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For Table 7
¥, = 230.2/12 = 19.2 si = 2.87
X, = 156.7/12 = 13.1 sg = 0.72
X, = 160.2/12 = 13.4 s‘:’; = 0.75
X, = 164.6/12 = 13.7 SZ = 0.63
- 2 _
largest variance S1 2.87
Thus,
c - 2.87
7.87 +0.72 + 0.75 ¥ 0.63
= 2.87
4,97
= 0.58.

Since the critical value of Ci{3, Table B.8, p. 654] for k =4
variances and n-1 = 12-1 = 11 degrees of freedom for each of the row

variances is C* = 0.4831, one concludes at the o = 0.05 level that

the row variances are not all identical. This being the case, one would
tend to rely on the distribution-free analysis of variance test rather
than the conventional analysis of variance (F) test. However, in this
example, both methods (see Section VII) indicate that the row (humus-
fertilizer) means and column (chemical) means are significantly
.different at the 0.1% level of significance, so that one would not
question these conclusions. However, as can also be seen from the
results of Section VII, the two methods do not lead to the same
conclusion relative to the two factor interaction RC. In this case,

one would tend to rely on the distribution-free analysis (see Section VII),
which indicates that the two-factor interaction is significant at about

the o = 0.15 1level.
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3. Three-Factor Factorial Design

Frequently one encounters real world problems whose analysis
requires the use of factorial designs with more than two factors.
While the analysis of factorial designs with more than three factors
is in general quite complex (unless each factor involves only two levels),
the implementation of the analysis in the general multifactor case
can be deduced from a discussion of the three-factor factorial
design, which is the subject of this section.

To illustrate the analysis of a multifactor factorial design,
consider the following problem. To study the performance of three
detergents at different temperatures, a laboratory technician ﬁer—
formed a 2 x 2 x 3* factorial experiment with three replicates. The
results are shown below; the entries are 'whiteness" readings ob-
tained with specially designed equipment. Analyze the data to
determine whether:

a. The whiteness effect differs among the three detergents,
when the effects of washing time and water temperature have
been removed.

b. The whiteness effect differs for the various washing times,
when the effects of detergent and water temperature have
been removed.

c. The whiteness effect differs for the various water temperatures,
when the effects of detergents and washing time have been

removed.

*This means that factor A involves 2 levels; factor B, 2 levels; and
factor C, three levels.
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d. An interaction exists between detergent and washing time,
detergent and water temperature, or washing time and temperature.

e. A three-factor interaction exists.

First one needs to apply the Cochran C test (or a similar test)
to check the assumption that the variances within the various classes
are identical. Thus, one must determine whether the three variances
corresponding to the three classes Al’ Az, A3 are significantly
different. These variances are obtained from samples of size 12, i.e.,
the 12 entries in Table 8 corresponding to Al’ the 12 entries cor-

responding to A2, and the 12 corresponding to A Likewise, the

3
variances corresponding to the two classes B:land B2 must be compared

to see if they are significantly different. This entails comparing

the variances of two random samples of sizes 18. The variances

for C1 and C2 must be similarly compared, each variance again being
based upon 18 observations. For the interaction AB, one must compare
six variances (Table 8 a) each based on six observations. For the
interactions AC and BC, respectively, one must compare six variances
each based on six observations and four variances based on nine
observations. Finally, to determine whether the homogeneity of

variance condition is satisfied relative to the three-factor inter-
action ABC, one compares the twelve variances obtained from the

twelve rows in Table 8. Since an example illustrating this test as
applied to row variances is carried out in section G, no calculations
will be presented here. It will merely be stated that the homogeneity

of variance assumption is satisfied for all main effects and interactions

at the a = 0.05 level.

One can now proceed with the regular analysis. First, the



preliminary calculations shown below are carried out. The usual

notation is employed.

A B C Rep. 1 Rep. 2 Rep. 3 Total
(Detergent) (Washing (Water
Time) Temperature)

Al 10 hot 76 72 73 221
Al 10 warm 51 48 50 149
A 20 hot 77 74 79 230
A 20 warm 61 62 62 185
A, 10 hot 63 62 60 185
A, 10 warm 45 48 43 136
A, 20 hot 63 64 59 186
A, 20 warm 55 53 58 166
Ay 10 hot 64 60 63 187
A3 10 warm 47 42 49 138
A3 20 hot 65 66 62 193
A3 20 warm 56 54 54 164

Total 723 705 712 2,140

Table 8. Data for the Analysis of Detergents, Washing Time, and
Water Temperature.

T... = 76 + 51 + ... + 62 + 54 = 2,140
C=T...2/N = (2,140)%/36 - 127,211.11

SST = (76)% + (51)% + ... + (54)% - 127,211.11 = 3,305

SS(Rep) = 1/12 (723)% + (705)% + (712)% - 127,211.11 = 13.72

SS(Tr, A, B, C) = 1/3 (221)% + (149)% + . . . + (164)? - 127,211.11
3188. 22

SST - SS(Tr, A, B, C) - SSR

SSE

The quantity T... denotes the sum of all the whiteness entries in
Table 8, while C is a so-called correction factor used throughout
the analysis. The symbol SST refers to a sum of squares for the

entire table which is broken down into its various component sums

according to the Fundamental Theorem of Analysis of Variance, namely,

3305 - 3188.22 - 13.72 = 103.06 (1)
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SST = SS(Tr, A, B, C) + SS(Rep) + SSE

[

(Treatment Sum of Squares) + (Replication Sum of
Squares) + (Error Sum of Squares)

The most important element in this sum is SSE, which is the
denominator of each F test yet to be performed. The term SS(Rep)
removes the effects of differences in the replicates, while

SS(Tr, A, B, C) = SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC) +

SS(ABC) (2)
That-is, SS(Tr, A, B, C) consists of the combined sums of squares
for all main effects and interactions. These sums of squares will
noﬁ be determined.

Tables 8 a and the calculations following constitute the basis
for the analysis of the main effects A, B and the interaction AB.
Similarly, the basis for analyzing C and AC is Table 8b and the
subsequent calculations. The remaining two-factor interaction, AB,
requires the calculations following Table 8c. Finally the quantity
SS(ABC) can now be determined from equation (2).

The data necessary for carrying out the requisite F tests are
shown in Table 9. The table simply converts the various sums of
squares into the variances (Mean Square Values) required by the
relevant F tests. Each variance or mean square value is readily
determined by dividing the corresponding sum of squares by the proper
degrees of freedom. The degrees of freedom value for a main effect
is one less than the number of levels for that effect, whereas the
number of degrees of freedom for an interaction is the product of the
degrees of freedom for each component or factor entering into the
interaction. Also, the mean square for replicates is one less than

the number of replicates. Finally, the degrees of freedom for the



B, =10 B, = 20

1 2
Al : 370 415 785
A A2 , 321 352 673
A3 ’ 325 357 682
2016 1124 2140

Table 8a. Data For Analysis of AB Interaction

SS(Tr, A, B) = 1/6 (370)%2 + (321)% + ... + (357)3 - 127,211.11

= 979.56

ssa = 1/12 ((785)% + (673)% + (682)%) - 127,211.11
= 645.39

SSB = 1/18 ((1016)% + (1124)%) - 127,211.11

324.00

SS(AB) = SS(Tr, A, B) - SSA - SSB

979.56 - 645 - 324.00

= 10.17
c
C; ¢,
A 451 334 785
A A 371 302 673
A, 380 302 682
1202 938 2140

Table 8b. Data For Analysis of AC Interaction

SS(Tr, A, C) = 1/6 (4512 % (3712 + ... + (302)%) - 127,211.11

SSA = 645.39

ssc = 1/12 ((1202)% + (938)2) - 127,211.11

1936.00



SS(AC) = SS(Tr, A, C) - SSA - SSC
= 2685.89 - 645.39 - 1936.00
= 108.5
c
Cy ¢,
B By | 593 423 1016
B, | 609 515 1124
1202 938 2140
Table 8c. Déta for Analysis of BC Interaction
SS(Tr, B, C) = 1/9 {593)% + (609)2 + (423)% + (515)) - 127,211.11
= 2420.45
SSB = 324
SSC = 1936
SS(BC) = SS(Tr, B, C) - SSB - SSC
= 160.45
SS(ABC) = SS(Tr, A, B, C) - SSA - SSB - SSC - SS(AB) - SS(AC) - SS(BC)

3.71
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Degrees

Source of of Sum of Mean
Variation Freedom ' Squares ° Square F -~ F.05 F.01
Replicates 2 . 13.72 6.86 - 1.47 3.44 5.72

Main Effects

A 2 645.39 327.70 68.90%%* 3.44 5.72
B ‘ 1 324.00 324.00 69.23%% 4.30 7.95
C . 1 - 1936.00 1936.00 413.70%% 4.30 7.95
Two Factor

Interactions

AB 2 10.17 5.08 1.09 3.44 5.72
AC 2 108.5 54.25  11.59%% 3,44 5.72
BC 1 160.45 160.45 34.28%% 4.30 7.45
Three Factor

Interaction

ABC 2 3.71 1.85 0.39 3.44 5.72
Error 22 103.06 4.68

Total 35 3305

Table 9. Summary of Analysis of Variance Data

(A1l main effects as well as the AC and BC interactions are signifi-
cant at the a = 0.01 level. Results which are significant at the
a = 0.01 level are indicated by a double asterisk; those significant
at the a = 0.05 level, by a single asterisk.)



total efféct is N-1=36 -1 = 35, from which it follows that the
degrees of freedom for the "efror" or random effect is 35 -2 -2 -1 -1
- 2-2-1-2=22. This latter fact follows from the fact that the
-effects are "additive," as are also their degrees of freedom.

To determine the significance of any‘elemeﬁt, one evaluates the F
ratio obtained by dividing the mean square for the element by the error
mean square (MSE: in this case, MSE = 4.68). If the ratio so computed
is greater than the proper entry in the F tablé, the element is
significant. Any such element is, of course, a main effect, interaction,
or replicate.

Thus, to test the main effect A, one notes that

_327.70
A~ T4.68

(3)
68.90

F 01° where F 01 is the entry in the F-table found in

the cell determined by the column headed 2 and the row headed 22, the

i >
Since FA

main effect A 1is significant at the 1% level. The column heading is
always equal to the degrees of freedom associated with the variance in
the numerator of the F ratio - i.e., the variance being tested. The
row heading corresponds to the variance in the denominator of the F
ratio, namely, the "error'" or random variance.

The F test is based on a comparison of the ratio of the variance
between class means to a strictly random (error) variance. If the ratio
is significantly larger than one, it is because the variance between class
means is significantly larger than the random variance in the
denominator. This will be so only when the class means are not all
identical, since then the variance between class means contains
not only a random varianqe component but also a variance component

due to the separation of the class means. A class mean
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could, of course, be a "main effect" mean (e.g., a column mean) or
an interaction mean.

Clearly, from an examination of the results in Table 9, one
concludes that the two-factor interaction AB and the three-factor
interaction ABC are not significant at the 57 level but that all the
main effects and the interactions AC and BC are highly significant
(i.e., at better than the 0.1% level). 1In layman's<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>