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SUMMARY

Consolidation studies show that, over time, memory
recall becomes independent of the medial temporal
lobes. Multiple lines of research show that the medial
frontal cortex, including the anterior cingulate cortex
(ACC), is involved with contextual information pro-
cessing and remote recall. We hypothesize that inter-
actions between the ACC and hippocampal area CA1
will change as memories became more remote.
Animals are re-exposed to multiple environments at
different retention intervals. During remote recall,
ACC-CA1 theta coherence increases, with the ACC
leading area CA1. ACC theta regulates unit spike
timing, gamma oscillations, and ensemble and
single-neuron information coding in CA1. Over the
course of consolidation, the strength and prevalence
of ACC theta modulation grow, leading to richer envi-
ronmental context representations in CA1. These
data are consistent with the transference of contex-
tual memory dependence to the ACC and indicate
that remote memories are retrieved via ACC-driven
oscillatory coupling with CA1.

INTRODUCTION

Few neural processes are as important to survival as contextual

memory formation and retrieval. The ability to associate a context

with stimuli and events is essential for evading predation and

other dangerous situations, foraging, hunting, and social interac-

tion. In some way every one of these behavioral processes is

contingent upon one’s milieu. Contextual memory information

is dependent on the hippocampus (HC) during initial encoding

and for successful memory recall in the days following (recent

recall; Scoville and Milner, 1957; Squire and Alvarez, 1995;

Squire et al., 2001; Varela et al., 2016). However, after enough

time has passed from encoding (i.e., remote recall), the HC is

no longer needed for successful memory retrieval (McClelland

et al., 1995; Maviel et al., 2004; Frankland et al., 2006). This pro-

cess wherebymemory dependence is transferred from the HC to

other neural areas for long-term storage is known as consolida-

tion (McGaugh, 2000; Dudai, 2004). Although there is still great

debate about this process (i.e., standard consolidation model,

standard consolidation model with schemas, multiple trace hy-

pothesis), much data have shown that the ability to retrievemem-

ories is dependent on different neural areas as time passes (for

review, see Squire et al., 2015).

Memories are thought to be stored as a loose connection of

distributed networks spread out in many brain regions, with indi-

vidual features reliant on different areas (Mishkin, 1982; Rissman

and Wagner, 2012). For instance, visual information is stored in

visual areas (Mishkin, 1979), auditory in auditory areas (Alain

et al., 1998), olfactory in olfactory areas (Slotnick et al., 1991),

fear in the amygdala (Phelps et al., 1998), and reward in the

ventral tegmental area (VTA; Adcock et al., 2006) and orbital

frontal cortex (Rolls, 2000). Contextual information is unique

because it is by definition more global than these other exam-

ples, encompassing both local and distal spatial cues, along

with emotional, cognitive, social, and behavioral information.

The medial frontal cortex, particularly the anterior cingulate

cortex (ACC), is integral for processing global contextual infor-

mation (Devinsky et al., 1995). In humans, the ACC is linked

with many different types of context representations, including

task context (Paus et al., 1998), social context (Amodio and Frith,

2006), and environmental context (Walton andMars, 2007). Simi-

larly, in animal models ACC neurons encode the where (Hyman

et al., 2012; Rozeske et al., 2015), when (Ma et al., 2014), what

(Weible et al., 2009), how (Durstewitz et al., 2010), and emotional

(Vetere et al., 2011) aspects of contextual representations (for re-

view, see Wirt and Hyman, 2017). Importantly, these findings

extend into memory retrieval, showing that as time passes the

ACC’s role in contextual processing increases (Teixeira et al.,

2006). This is true for both appetitive (Frankland et al., 2004)

and aversive (Takehara-Nishiuchi andMcNaughton, 2008) tasks.

Successful remote recall is dependent on the ACC being intact

and leads to increases in the amounts of several biomarkers

indicative of neural activity (Maviel et al., 2004; Takehara-Nishiu-

chi and McNaughton, 2008). For example, Bontempi et al. (1999)

found that cFos activation in the ACCmarkedly increased during

remote but not recent contextual recall. Interestingly, in the same

study the opposite effects were detected for hippocampal area

CA1, suggesting that as time passes contextual memory depen-

dence is transferred from the HC to the ACC.

Separately, there is a rich literature showing that interactions

between these same two areas are integrally important for work-

ing memory performance (Jones andWilson, 2005; Hyman et al.,

2010; Benchenane et al., 2010; Westendorff et al., 2016). Strong

interactions occur primarily around the hippocampal theta oscil-

lation (7–12 Hz), and such effects can be seen in theta coher-

ence (Myroshnychenko et al., 2017), entrainment of unit activity
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(Siapas et al., 2005; Hyman et al., 2005, 2010; Jones andWilson,

2005; O’Neill et al., 2013), or cross-frequency coupling (Sirota

et al., 2008; Tamura et al., 2017). In fact, Hallock et al. (2016)

showed that merely impairing theta interactions between these

areas was sufficient to compromise working memory. However,

no studies have yet shown similar interactions occurring during

remote memory recall.

For the present study, we set out to determine whether the

electrophysiological markers of ACC-CA1 interactions changed

as memories matured. Investigating this possibility required a

task in which behavior was both consistent and distinct over

sessions. Cognitive processes and motor activity have profound

impacts on electrophysiological activity in both areas (oscillatory

frequency and power: Pickenhain and Klingberg, 1967; Vander-

wolf, 1969; Vanderwolf et al., 1973; oscillatory interactions: Sia-

pas et al., 2005; Benchenane et al., 2010; Sigurdsson et al.,

2010; unit-oscillatory interactions: Jones and Wilson, 2005; Hy-

man et al., 2005; 2010; Ito et al., 2015; and unit information cod-

ing: Hyman et al., 2005; Ma et al., 2016). In turn, these markers

are influenced by a diverse array of factors, including behav-

ioral-cognitive (rule learning: Benchenane et al., 2010; reward

expectation and delivery: Hyman et al., 2011, 2017), metabolic

(reward consumption: Horst and Laubach, 2013), and motiva-

tional (Jackson et al., 2006). These variables can all be chal-

lenging to control for, and, importantly for the present study,

they all can vary significantly between days or during a task

(Lee et al., 2006). Thus, we needed to use a task that was consis-

tent from session to session regardless of howmuch experience

the subject had with the task, how well the subject performed

during the session (affecting the amount of reinforcement

earned), or how much time had passed between sessions.

To isolate temporal effects, we strove to keep the memory in-

formation as simple as possible to minimize behavioral or cogni-

tive factors. We used a naturalistic task (environment exposure)

that is not reliant upon performance. Because the task features

no overt goals or rewards (Figure 1), any potential influence

frommotivational differences, within session relearning, or work-

ing memory was minimized. Additionally, this task drives strong

ACC and CA1 activity (Hyman et al., 2012) and theta interactions

(Hyman et al., 2005). We hypothesized that if memory depen-

dence transfers to the ACC, then during more remote recall,

theta interactions should strengthen between the areas. More-

over, ACC theta activity should robustly affect CA1 during

remote recall compared to initial encoding or recent recall.

RESULTS

Exploration Was Similar across All Sessions during the
First Two Minutes
We first examined how gross locomotor activity changed over

each environment exposure period to see if animals explored

more during the initial few minutes of exposure. We normal-

ized distance traveled values for each environment (Z trans-

formed), before conducting a two-factor ANOVA (exposure min-

ute [1–10]3 retention interval [days since last exposure: 0, 1, 2, 7,

or 14]). We found a significant main effect for exposure minute

(F[9, 850] = 3.51, p = 2.82E-4) but no difference in retention inter-

val (F[4, 850] = 0.02, p = 0.99) and no interaction effects (F[4,

850] = 1.01, p = 0.45) (Figure 2A). Post hoc tests illuminated

that the amount of exploration changed minute to minute, but a

similar pattern appeared on all days, in which distance traveled

during the first 2–4 min was significantly greater than for the re-

maining time. This analysis revealed a behavioral window (first

120 s) with similar gross locomotor activity during both initial

exposure and at all retention intervals. All subsequent behavioral

Figure 1. Behavioral Task and Verification of Tetrode Placement

(A) Schematic of behavioral protocol. Subjects were introduced into seven

novel environments and then re-introduced at differing delay periods. Different

colors represent retention intervals: green (RI-0) represents initial exposure,

teal (RI-1) and blue (RI-2) represent recent recall, and purple (RI-7) and dark

blue (RI-14) represent remote recall. Session 4, shown in black (RD), was a

behavioral reset day to control for time from last visit and is not included in any

of the analyses.

(B) Recording locations. Representative examples of ACC (left) and CA1 (right)

recording tracks.

(C) Schematic of all recording locations in the ACC (left) and CA1 (right).

2314 Cell Reports 27, 2313–2327, May 21, 2019



and electrophysiological analyses were restricted to only the first

120 s of exposure, because this period allowed us to make com-

parisons with similar levels of gross locomotor activity.

Behavioral Changes Materialized after Initial
Environment Exposure
To quantify habituation effects, we analyzed howmuch time sub-

jects spent in the center of the environment compared with the

periphery. During the initial exposure, subjects spent more

time along the periphery; then, after habituating to an environ-

ment, animals spent more time in the center (see the example

sessions in Figure 2B). We found a significant main effect in cen-

ter-periphery ratios for days since last exposure (F[4, 93] = 15.53,

p = 1.12E-9). Importantly, post hoc tests showed the center-pe-

riphery ratios changed following the first re-exposure, as all re-

exposures (days 1, 2, 7, and 14) were significantly different

from day 0 but not different from one another (see Figure 2C).

Thus, it did not matter whether the re-exposure occurred 1 or

14 days after the last exposure (p > 0.05), which showed compa-

rable memory recall at all retention intervals.

We also sought to measure habituation effects by investi-

gating how much time animals spent in different locations within

Figure 2. Behavioral Changes Occur When

Subjects AreRe-exposed to an Environment

(A) Total distance traveled by exposure minute.

Normalized distance traveled is on the y axis

and time (minutes) on the x axis. In initial expo-

sures and all recall sessions animals explored

more in the first few minutes. No significant dif-

ferences in distance traveled were found during

the first 2 min across the different exposures

(p > 0.05).

(B) Representative exploratory activity during initial,

recent, and remote recall sessions. Note that ani-

mals spent more time in the center of the environ-

ment on recent and remote days compared with

initial exposures.

(C) Proportion of time spent in center increases

after initial exposure. Mean proportion of time

spent in the center of each environment is on the

y axis and retention interval is on the x axis.

(D) Cumulative sum and area under the curve for

exploratory behavior. Mean cumulative sum

values from all subjects and environments for

each retention interval.

(E) Mean area under the curve of time spent in

different locations throughout an environment.

Note that significant increases appeared for all

re-exposures compared with initial exposures.

Thus, familiarity was apparent upon the second

exposure but did not differ between recent and

remote recall.

*p < 0.05.

environments. If an animal explored a

great deal, then it would have spent a

similar amount of time in each location,

but habituated animals should feel less

of a need to explore the entire environ-

ment, and most of their time should be

spent in just a few locations. Unlike the center-periphery anal-

ysis, where in the environment was immaterial, rather how

many locations and for how long they were visited mattered.

We first divided each environment into equal sized spatial bins

and then examined the amount of time animals occupied each

location (during the first 120 s). We compared the area under

the curve (AUC) and found a significant main effect for days since

last exposure (F[4, 93] = 6.972, p = 6.26E-5; Figures 2D and 2E).

Post hoc tests reported significantly larger values for all days

other than day 0 and that these retention days were not signifi-

cantly different from one another (p < 0.05).

It was possible that the animals were merely habituating to

open-field exposure, and as the number of exposures increased

anxiety from being in the open field decreased. To control for this

potential confound, we introduced a novel environment (environ-

ment G) during session 6 (see Figure 1A). Thus, on this day ani-

mals were first re-exposed to two environments after a 14 day

retention interval (B and D), and then they were placed into a

brand new environment (G). We hypothesized that if animals

were exploring less and spending more time in the center on

remote recall days because of decreased anxiety, then we

should see similar behavioral patterns even in this novel

Cell Reports 27, 2313–2327, May 21, 2019 2315



environment. We compared distance traveled and proportion of

time spent in the center versus the periphery between session 6

environments D (RI-14) and G (RI-0) and the initial exposure

to environment D (RI-0) during session 2. We found that environ-

ment G behavioral patterns were similar to the initial exposure to

environment D and significantly different from the remote recall

re-exposure to environment D (distance traveled, F[2, 160] =

0.0012, p > 0.05; center-periphery ratio, F[2, 16] = 0.547, p =

0.015; locations visited AUC, F[2, 84] = 9.95, p = 0.0001; see Fig-

ures S1A–S1C). These analyses suggest that changes in open-

field behavior were due to memories of specific contexts and

not anxiety or motivationally related processes linked to experi-

ence with the task itself. Furthermore, for all our main behavioral

analyses, data were grouped by retention interval and sessions;

thus the RI-0 group contained data from exposures ranging

over 3 consecutive days. If merely being exposed to multiple

environments was having an anxiety-decreasing effect, then

our RI-0 values should have reflected this because these data

mixed so many temporally separated exposures.

Together, our behavioral measures identified evidence of initial

learning (i.e., habituation) and consistent recall over different

retention intervals. These results demonstrated that the environ-

ment exposure task was ideal for finding any potential electro-

physiological markers related to memory consolidation, because

habituating to an environment was so simple that it occurred

in one exposure and performance was similar on subsequent

days. Critically, comparable contextual recall is dependent

upon both HC (Wiltgen et al., 2010) and ACC function (Teixeira

et al., 2006).

ACC-CA1 Coherence Increased during Remote Recall
Oscillatory coherence is thought to be a general indicator of

communication between brain areas (Fries, 2005). Theta coher-

ence between the HC andmedial frontal cortex varies with work-

ing memory performance (Hallock et al., 2016), rule changes

(Benchenane et al., 2010), and the type of information being pro-

cessed (Place et al., 2016). Here, we tested whether such effects

were also influenced by remote memory recall. A single-factor

ANOVA (days since last exposure: 0, 1, 2, 7, or 14) found signif-

icant differences in coherence values (F[4, 2,779] = 35.521, p =

2.011E-30; Figures 3A and 3B). Post hoc tests showed that

coherence was significantly higher on days 7 and 14 compared

with initial exposure and recent recall (p < 0.05, Tukey’s honestly

significant difference [HSD] test). Importantly, no significant

differences were found between initial exposures (day 0) and 1

or 2 day retention intervals (p = 0.46), demonstrating that the

learning captured by our behavioral measures did not alter

ACC-CA1 theta coherence. These two comparisons allowed

us to isolate out familiarity-related (day 0 versus days 1 and 2)

from retention interval-related changes (days 1 and 2 versus

days 7 and 14). Thus, theta coherence was affected by the

amount of time that had passed since the last exposure and

not familiarity with an environment.

Although the above analyses showed that theta coherence

values increased for longer retention intervals, it was possible

that this was due merely to coincidental changes in ACC and

CA1 theta oscillations. To control for this, we examined

maximum power in the theta band (7–12 Hz), and there were

no differences over retention intervals for both areas (CA1: F[4,

172] = 0.345, p = 0.967; ACC: F[4, 172] = 0.802, p = 0.526;

Figure 3C).

Additionally, we found similar coherence values when animals

were initially exposed to a novel environment during session 6

and during session 2, even though these sessions were sepa-

rated bymore than 2 weeks. Coherence for both initial exposures

Figure 3. Increases in Theta Oscillatory Interactions during Remote

Recall

(A) Example coherogram from the first 2 min of a remote recall exposure. Note

high-powered coherence in the theta range (7–12 Hz).

(B) Normalized coherence between ACC and CA1 by retention interval. Sig-

nificant changes in theta band coherence only appear during remote recall.

(C) No differences in normalized theta power in CA1 (top) and ACC (bottom).

(D) ACC leads CA1 theta during remote recall. Mean theta Granger prediction

values are on the y axis, and retention interval in days is on the x axis. There

were no differences in ACC lead and CA1 lead models for initial exposure and

recent recall, but during both remote recall intervals, the ACC lead models had

larger Granger predictive strength.

*p < 0.0001.

2316 Cell Reports 27, 2313–2327, May 21, 2019



was lower than remote recall exposures (F[2, 605] = 6.9317,

p = 0.0011; Figure S1D). Thus, even though ACC-CA1 coherence

was elevated during session 6 remote recall re-exposures, it

returned to lower initial exposure and recent recall levels once an-

imals entered a novel environment. These findings make it

unlikely that any undetected anxiety-related effects were influ-

encing ACC and CA1 electrophysiological activity. Together,

these results clearly show the change in coherence values

were altered by the consolidation process as opposed to other

factors.

ACC Led CA1 during Remote Recall
Theta band coherence has been associatedwith ACC-CA1 inter-

actions, and it is widely believed that such coherence is a pre-

requisite for successful communication (Gray, 1994), but this

does not indicate which direction communications were flowing

(i.e., CA1 to ACC or vice versa). To understand the direction of

the neural interactions detected in our coherence analysis, we

calculated Granger prediction values. Briefly, for this analysis

univariate autoregressive models are created at various time

steps for each signal. Then, bivariate models are created to

see if the signal detected on one lead (X) is predictive of the

signal recorded on the other lead (Y). We then compared the

relative strength, or the difference in error from the univariate

model, of bivariate models created in both directions.

Because our coherence analysis revealed increases in the

theta band (Figure 3A), we compared mean Granger prediction

values in this frequency range. A two-way ANOVA (direction 3

retention interval) revealed significant main effects (direction:

F[1, 5,558] = 17.703, p = 2.6E-5; retention interval: F[4, 5,558] =

9.605, p = 9.73E-8) and a significant direction-by-retention inter-

val interaction (F[4, 5558] = 2.858, p = 0.02). As can be seen in Fig-

ure 3D, Granger values indicated similar predictive strength in

both directions (ACC leads or HC leads) during initial exposure

and recent recall (p > 0.05). During remote recall exposures,

ACC lead values were significantly larger than HC lead values

(p < 0.0001) and increased from initial and recent ACC lead values

(p < 0.0001). These results showed that ACC theta activity was

predictive of HC theta during remote recall, indicating increased

directional connectivity between the areas.

CA1 Gamma Was Modulated by ACC Theta during
Remote Recall
The above results showed that increased ACC-CA1 theta inter-

actions during remote recall were driven by the ACC, though

how or if ACC theta was affecting hippocampal ensemble activ-

ity was still not known. We used multiple analyses to investigate

these effects. First, we examined the amount of cross-frequency

phase-amplitude coupling between theta activity in one area and

gamma oscillations in the other. Such cross-frequency coupling

is thought to differentiate between the effects of long range

(theta) and local (gamma) communication (Sirota et al., 2008).

We hypothesized that if a memory were consolidated to the

ACC, recall should originate in the ACC. Like a spark that starts

a fire, ACC output should initiate activity across neural ensem-

bles in multiple brain areas. Thus, CA1 gamma activity should

relate more strongly to ACC theta phase during long retention

intervals (Figure 4A). We compared each possible ipsilateral

pair of ACC (theta) and CA1 (gamma) recording leads for the first

120 s of each environment exposure. Overall, modulation index

values were significantly affected by retention interval (F[4,

2779] = 10.652, p = 1.447E-08; Figure 4B). The significant differ-

ences emerged on day 7 and remained on day 14 (p < 0.001, Tu-

key’s HSD test). No familiarity-related differences were found

(day 0 versus day 1), but retention interval-related increases

were apparent between days 1 and 7 or 14 (p < 0.0001) and

days 2 and 7 or 14 (p < 0.05). Thus, as more time passed since

the last visit, hippocampal gamma activity was more strongly

modulated by ACC theta oscillations, implying that theta fre-

quency ACC input drove hippocampal unit activity.

To control for whether this effect was unique to ACC theta, we

also examined internal CA1 theta gamma phase-amplitude

coupling and found no significant differences over the different

retention intervals (F[4, 2779] = 2.772, p = 0.026E-4; Figure 4B).

This indicates that indeed CA1 gamma was affected by ACC

theta and that our above findings were not the by-product of

changes in internal CA1 oscillatory coupling.

We also analyzed cross-frequency coupling in the opposite di-

rection (CA1 theta phase to ACC gamma power), and the only

significant difference was a decrease in coupling between recall

day 0 and day 14 (F[4, 2779] = 5.2751, p = 3.126E-4; Figure 4C).

This could possibly indicate that as ACC theta influence on CA1

increased, there was a corresponding decrease in CA1 influence

on ACC gamma over time. As a control we also compared inter-

nal ACC theta gamma phase-amplitude coupling and found a

weakly significant result overall (F[4, 2779] = 4.6835, p = 0.009;

Figure 4C), but follow-up tests only revealed significant differ-

ences between initial exposure and 14 day retention intervals

(p = 0.001, Tukey’s HSD test). Remote recall was decreased

from initial exposure, but no differences appeared between

recent and remote recall, making it difficult to properly gauge

this effect. Together these analyses show that the ACC-driven

increased theta interactions detected on long retention intervals

were significantly modulating local CA1 networks, and no com-

parable effects were found in the other direction.

More CA1 Units Were Phase Locked to ACC Theta
during Remote Recall
In 34 recording sessions over seven animals we recorded 787

ACC cells and 612 CA1 cells that had at least 50 spikes during

the first 120 s of each environment exposure period analyzed.

The cells were separated by retention interval (see Figure 1A),

yielding cell counts as follows: RI-0, 148 ACC and 94 CA1;

RI-1, 139 ACC and 117 CA1; RI-2, 144 ACC and 167 CA1;

RI-7, 132 ACC and 96 CA1; and RI-14, 224 ACC and 138 CA1.

We examined both CA1 theta oscillations’ influence on ACC

unit firing and ACC theta oscillations’ influence on CA1 unit firing.

We hypothesized that if memory information were consolidated

to the ACC, readout of this memory should be driven by the

ACC. This should manifest as both changes in how widespread

and how strongly CA1 cells were affected by ACC theta rhythms.

Conversely, if remote recall interactions were like those observed

during working memory, then ACC units should be strongly

affected by CA1 theta.

Whenwe compared ACCunit phase locking to CA1 theta oscil-

lations during the first 120 s of exposures, we found no significant

Cell Reports 27, 2313–2327, May 21, 2019 2317



differences by retention interval for both percentage of phase-

locked units (multiple comparison-corrected Rayleigh’s test of

uniformity, p < 0.000625; F[4, 782] = 0.898, p > 0.05; Figure 4D)

and average mean resultant length (MRL) (F[4, 782] = 2.07, p >

0.05; Figure 4E). The effects of CA1 theta oscillations on ACC

unit activity do not change over time or as a factor of familiarity,

indicating that network dynamics are different than during

working memory. Concurrently, there were significant increases

in the both the percentage of CA1 cells significantly phase locked

to ACC theta oscillations (F[4, 619] = 14.655, p = 1.91E-11; Fig-

ure 4D) andmeanMRL (F[4, 619] = 12.40, p = 1.04E-9; Figure 4E).

The increases over initial exposure (i.e., day 0) first appeared

on retention day 7 and remained elevated at day 14 (p < 0.001,

Tukey’s HSD test). Notably, there were no changes for either

percentage of cells phase locked or MRL values between initial

exposure and recent recall days, indicating that familiarity did

not affect CA1 unit phase locking to ACC theta. Rather, the strong

increase between recent (days 1 and 2) and remote recall (days 7

and 14) (p < 0.001 for all) signaled that time since last exposure

was the operative variable. Thus, CA1 unit entrainment to ACC

theta rhythms changed in a similar pattern over time as coher-

ence, Granger prediction, and theta-gamma phase coupling.

CA1 and ACC Environmental Context Ensemble States
Grew More Distinct
We previously showed that ACC ensemble activity states were

more distinct for two different environmental contexts than

CA1 ensembles (Hyman et al., 2012). The present study used

the same task but introduced a memory component by adding

more environmental contexts and then re-exposing subjects to

each environment at different retention intervals. It was previ-

ously reported that larger amounts of cFos and a-CaMKII were

found in ACC following remote recall (Bontempi et al., 1999;

Frankland et al., 2001), suggesting stronger ACC activity during

these re-exposures. Higher firing rates or more distinct changes

in individual unit environmental responses would likely manifest

as increased separation in multiple single-unit activity (MSUA)

state space (Hyman et al., 2012; Ma et al., 2016). Essentially,

this analysis examines the heterogeneity between multidimen-

sional samples. The more distinct the samples, the more

Figure 4. CA1 Gamma Power and Unit Spiking Are Modulated by

ACC Theta during Remote Recall

(A) Representative remote recall trace showing theta-filtered ACC LFP,

gamma-filtered CA1 LFP, and CA1 unit spiking.

(B) CA1 gamma power is modulated by ACC theta phase during remote recall.

For both plots, modulation index is on the y axis and retention interval on the

x axis. Left: ACC theta phase to CA1 gamma power cross-frequency coupling.

Values increased for remote recall, showing the strong influence of ACC theta

on CA1 circuits. Right: CA1 theta phase modulation of CA1 gamma does not

change between different retention intervals.

(C) Theta modulation of ACC gamma does not increase during remote recall.

For both plots, modulation index is on the y axis and retention interval on the

x axis. Left: there is a decrease in CA1 theta phase to ACC gamma power

coupling, but only on day 14. Right: ACC theta phase modulation of ACC

gamma does not change between recent and remote recall.

(D) More CA1 units are phase locked to ACC theta during remote recall. In both

plots, percentage of units significantly phase locked to theta rhythm in the

other area is on the y axis, and retention interval is on the x axis. Left: the

number of ACC units entrained to CA1 theta did not differ over days. Right:

significantly more CA1 units were entrained to ACC theta on remote recall

days.

(E) Average CA1 unit MRL values increased during remote recall. In both plots,

MRL values are on y axis, and retention interval is on the x axis. Left: MRL

values for ACC cells for CA1 theta; right: MRL values of CA1 cells for ACC

theta.

*p < 0.0001.
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divergent the network states and in turn the greater the amount

of information each state relays about an individual environment.

In the current experiment, we hypothesized that the environ-

mental context representations should become more distinct

from each other during remote recall.

We first sought to isolate familiarity from retention interval

length, so we restricted this analysis to the first three sessions

(including days 0, 1, and 2; see Figure 1A). For all comparisons,

we calculated Mahalanobis distance (dMah) in the full high-

dimensional space, and all comparisons were made between

time points corresponding to the first 120 s in one environment

compared with the first 120 s in the next environment. A two-

way ANOVA (recording area [CA1, ACC] 3 familiarity category

[novel to novel, novel to familiar, familiar to familiar]) found signif-

icant main effects for both recording area (F[1, 11,994] =

860.4298, p < 1E-100) and familiarity (F[2, 11994] = 81.797.534,

p = 4.2E-91). ACC ensembles had significantly greater dMah

values than CA1 ensembles for all comparisons (p < 0.0001;

see Figure 5A), replicating our previous finding (Hyman et al.,

2012). Interestingly, comparisons between CA1 ensembles

found more separation when at least one familiar environment

was included, but no similar effect was found in ACC. In the

ACC, the largest differences in ensemble states were found in

novel-to-novel comparisons, while in CA1 familiar-to-familiar

comparisons were the largest. Together a picture emerges of

ACC ensembles as more reactive to novelty and CA1 ensembles

Figure 5. Environmental Context Information Increases during Remote Recall in Both ACC and CA1

(A)Novelty and familiaritydifferentially affect ACCandCA1.Mahalanobisdistance (dMah) values areon the y axis, and typeof comparison is on the xaxis. Ensemble

activity state environmental separation was greater in ACC for comparisons that involved novelty or remote recall. CA1 ensembles more distinctly represented

recent and remotely recalled familiar environments than novel. NN, novel to novel; NF, novel to familiar; FF, familiar to familiar. #Including remote recall sessions.

(B) MSUA spaces from representative ensembles for different exposure types. In all plots, each dot represents the activity state of the ensemble during 500 ms.

Gray dots show times from the first environment, and the colored dots show the next. Plots are shown in PC space, but all analyseswere performed in the full high-

dimensional space. Notice how theCA1 remote recall MSUA space (far right) shows clear clustering and separation on the basis of environment similar to the ACC

spaces.

(C) Ensemble environmental context states aremore distinct during remote recall. dMah is on the y axis, and retention interval in days since last exposure is on the

x axis. Separation in both areas was increased during remote recall, with the biggest changes seen in the CA1.

(D) Individual cell environmental selectivity increased at the longest retention intervals. d0 values are on the y axis, and days since last exposure is on the x axis. On

average, unit activity in both areas had more information distinguishing one environment over another during 14 day recall compared with initial exposure.

In all plots, ACC values are shown in solid bars and CA1 are in checkerboard. *p < 0.0001.
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to familiarity (at least during recent recall), which is consistent

with previous results (Wilson and McNaughton, 1993; Weible

et al., 2012). This might suggest that CA1 learns faster than the

ACC, but further experimentation is required. Overall, this anal-

ysis detected changes in environmental context information in

both areas that correlated with the different behavioral patterns

we found in novel and familiar environments.

We next explored how the passage of time, and thus memory

consolidation, affected environmental context information by

incorporating the two long retention sessions (5 and 6; see Fig-

ure 1A). We first repeated the previous analysis, but this time

included familiar-to-familiar comparisons from day 7 and 14,

along with the novel-to-familiar comparison on day 14. Again,

we found significant main effects for both recording area (F[1,

17,994] = 1111.50, p < 1E-100; Figure 5A) and familiarity (F[2,

17,994] = 653.49, p < 1E-100) in dMah values. Follow-up tests

showed the familiar-to-familiar distances were now larger in

the ACC and CA1 compared to when only the recent recall ses-

sions were included (p < 0.0001).

We next wanted to isolate retention interval from familiarity. To

test this directly we needed to regroup the same dMah values

from above, because the uneven distribution of familiarity cate-

gories over days made a single ANOVA with both retention inter-

val and familiarity not possible.We formed groups on the basis of

the retention interval for the first environmental context in each

dMah comparison (i.e., environment A in an AB comparison).

This left us with the same five retention intervals analyzed previ-

ously (days 0, 1, 2, 7, and 14). Both areas showed increases in

environmental context clustering on remote recall days, and

this can be seen most strikingly in CA1 ensembles (Figure 5B).

Notice how during remote recall (far right) the different colored

dots are more tightly grouped together into clusters, and those

clusters are more separated. A two-way ANOVA (recording

area 3 retention interval) found both main effects (area: F[1,

17,990] = 1,736.9, p < 1E-100; interval: F[4, 17,990] = 1,165.6,

p < 1E-100) and a significant interaction (F[4, 17,990] = 140.67,

p < 1E-100) (Figure 5C). Follow-up tests showed significantly

increased dMah values between areas at each retention interval

(p < 0.0001). In fact, during remote recall, CA1 ensembles had

such well-separated clusters that they resembled ACC ensem-

bles, which would be expected with an increase in information

flowing from the ACC to CA1.

At a single-cell level, the picture was slightly different when

we calculated the selectivity indices for all cells comparing

the same two 120 s windows analyzed above. We found

no significant effect of recording area (F[1, 1,399] = 0.0825,

p = 0.774), but we did find an effect for retention interval (F[4,

1,399] = 3.3926, p = 0.009) (Figure 5D). However, no significant

area-by-interval interaction was found (F[4, 1,399] = 1.537,

p = 0.1888), indicating that the cells in both areas had similar

degrees of preference for one environmental context over

another and that cells in both areas formed stronger prefer-

ences over time.

CA1 Context Information Was Related to ACC Theta
Phase Locking
Last, we examined theta entrainment to relate together interarea

theta interactions and ensemble environmental context encod-

ing. We hypothesized that if environmental context information

were flowing from the ACC to CA1, then CA1 ensembles with

larger percentages of ACC theta phase-locked units and higher

mean MRL values would also have higher dMah values. Alterna-

tively, increases in theta coherence during remote recall could be

indicative of overall increased communication back and forth,

and if so, wewould expect dMah and interarea theta entrainment

to be related in both directions.

We fit linear models using dMah values (from that ensemble)

as the predictors and theta entrainment as the observed values.

We found significant linear fits for both ACC theta entrainment

measures (mean MRL values: R2 = 0.298, t(8,998) = 61.876,

p < 1E-100; percentage phase locked: R2 = 303, t(8,998) =

62.548, p < 1E-100), indicating that CA1 ensemble dMah values

and ACC theta entrainment were strongly positive correlated

(Figures 6A and 6B). Thus, the more theta entrained a given

CA1 ensemble, the stronger the MSUA state space environ-

mental context representation. However, when we compared in-

teractions in the other direction we found that ACC ensemble

dMah values were only weakly related to CA1 theta (MRL: R2 =

0.00006, t(8,998) =�2.361, p = 0.018; percentage phase locked:

R2 = 0.0072, t(8,998) = �8.0537, p = 9.056E-16). As can be seen

in Figures 6C and 6D, ACC ensemble dMah values negatively

correlate with bothmeasures of CA1 theta entrainment, suggest-

ing that CA1 theta input decreases ACC environmental context

representation distinctiveness. These results suggest that ACC

ensemble environmental context representations were not

altered by CA1 theta entrainment, but CA1 ensemble information

content was strongly affected by ACC theta. Altogether, these

results imply that environmental context information was trans-

ferred from ACC to CA1.

Because both dMah and theta entrainment increased on

remote recall exposures, it was difficult to determine whether

both were changing at the same time or one variable was driving

the other. Rather, the global variance (changes over days) was so

large that it was difficult to assess the how theta entrainment

affected dMah on a case-by-case basis (i.e., local variance).

To disentangle these variables, we took two different ap-

proaches. First, we separately fit linear models to both CA1

dMah and theta entrainment (MRL) using retention interval

(day 0 = 1, day 1 = 2, day 2 = 3, day 7 = 4, day 14 = 5) as the

predictors and found significant fits for both variables (p < 1E-

100). We then compared the residual values, allowing us to

examine local variance and determine whether these two factors

covaried from linear fits. More specifically, when one ensemble’s

dMah drifted from the linear fit, did its theta entrainment also

differ and in the same direction? To test this, we fit a linear model

to the residual values and found a good fit for mean MRL

and dMah values (R2 = 0.117, t(8,998) = 334.52, p < 1E-100;

Figure 6E).

Our second approach examined single-cell environmental

context information coding and interarea theta phase locking.

Above, we found that both ACC and CA1 single neurons were

more selective for one environment over another during remote

recall.We nowwanted to assess the role of external theta entrain-

ment on these effects. Using the d-prime environmental selec-

tivity indices calculated before, we grouped on the basis of three

factors: area (CA1 or ACC), retention interval (0, 1, 2, 7, or
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14 days), and whether the cell was significantly phase locked to

ACC theta rhythm. The three-way ANOVA returned null results,

except for one comparison: ACC theta entrainment. Once this

factor was included, the apparent retention interval effect re-

ported above (Figure 5D) disappears (F[4, 1,398] = 1.792, p =

0.1280). Thus, the only factor influencing CA1 environmental

selectivity was whether that cell was ACC theta entrained or

not (F[1, 1,398] = 5.9244, p = 0.0151; Figure 6F). With these re-

sults we can conclude that ACC theta entrainment profoundly

affected both CA1 single-unit and ensemble environmental infor-

mation content. Simply, how strongly a CA1 ensemble entrained

to ACC theta rhythms predicted how distinctly that same

ensemble represented two environmental contexts, suggesting

that the important factor differentiating recent and remote recall

was the proliferation of ACC theta modulation. Over the consoli-

dation process, these effects grew more widespread, which led

to CA1 ensembles with significantly better environmental context

information.

DISCUSSION

Interactions between the ACC and CA1 strongly increased as

memories progressed from recent to more remote. Multiple

different electrophysiological markers (theta frequency Granger

prediction, theta-gamma phase-amplitude coupling, interarea

theta entrainment) pointed to ACC theta modulation of CA1 as

the main driving force behind this effect. Concurrently, the

amount of environmental context information in CA1 and ACC

unit spike trains and ensembles also increased. Thesemeasures

were related, such that more ACC theta entrainment amounted

to greater CA1 cell context information. Over time, ACC theta

entrainment of CA1 cells spread, and thus environmental context

information was increased over the whole CA1 population.

Together, these results are consistent with the transference of

environmental context memory dependence to the ACC during

consolidation and show that during remote memory recall infor-

mation is passed from the ACC to CA1 via theta rhythm

interactions.

A Possible Thalamic Route for ACC Theta Modulatory
Control of HC
There are multiple possible mechanistic avenues through which

ACC theta could modulate CA1 activity, including both direct

and indirect projections. Most work on theta interactions be-

tween the ACC and HC has concentrated on the dense recip-

rocal connections that pass through the reuniens nucleus of

thalamus (RE; Carr and Sesack, 1996; Hoover and Vertes,

2007). These pathways contain bidirectional excitatory connec-

tions (Vertes, 2002; Di Prisco and Vertes, 2006; Vertes, 2006), as

well as excitatory collateral projections that extend to both HC

and ACC (Hoover and Vertes, 2012). This makes the RE-based

cortico-thalamo-hippocampal circuit a likely path via which

ACC theta could modulate the HC. Indeed, RE field potentials

are coherent with both HC and medial frontal theta oscillations

(Roy et al., 2017), and RE neurons are phase locked with hippo-

campal theta (Ito et al., 2018). Reports have found that working

memory ACC-HC theta interactions decreasewhenRE is disrup-

ted and behavioral performance is also impaired (Hallock et al.,

Figure 6. Environmental Information in CA1 Ensembles Is Related to

Degree of ACC Theta Entrainment

(A) Larger CA1 ensemble environmental separation correlates with larger

average ACC theta entrainment. dMah values are on the y axis and ensemble

mean MRL on the x axis. Dot color indicates retention interval.

(B) Higher proportion of CA1 cells entrained to ACC theta correlated with

ensemble environmental context separation. dMah values are on the y axis,

and percentage of ACC theta entrained cells are on the x axis.

(C and D) ACC ensemble environmental states are not affected by CA1 theta

rhythms. Although the strength (meanMRL) (C) and spread (percentage phase

locked) (D) of CA1 theta modulation of ACC units decreased and ACC dMah

values increased, these two factors were only weakly correlated.

(E) Theta modulation affected within recall day variance of CA1 ensemble

environmental activity states. The y axis shows residual values from fitting a

linear model to CA1 ensemble dMah values, and the x axis shows the residuals

from a separate linear model of mean MRL values from the same ensembles.

This analysis controlled for changes in these values over days and showed that

even within days, the more ACC theta entrained an ensemble of CA1 cells, the

greater the amount of environmental context information.

(F) CA1 unit environmental preference is stronger in ACC theta entrained cells.

Selectivity index (d0) values are on the y axis. ACC theta phase-locked neurons

carried more information about which environmental context the subject was

currently in.
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2016; Ito et al., 2015, 2018). Interestingly, such spatial working

memory tasks are dependent upon both the HC and ACC (Flor-

esco et al., 1997; Izaki et al., 2000; Lee and Kesner, 2003;

Churchwell et al., 2010), suggesting that RE-based interactions

are integral to proper working memory function. Additionally,

RE inactivation also impairs behavioral flexibility leading to

perseveration in win-shift tasks (Viena et al., 2018) and an

inability to generalize response strategies between contexts

(Linley et al., 2016), which indicates a broader role in cognition

for RE-based interactions. Although the current study involved

a completely different task, it is conceivable that these same

connections could mediate interactions in the opposite direction

during remote recall. Indeed, two notable reports have shown

medial frontal theta affected hippocampal processing (Onslow

et al., 2011; Place et al., 2016), though neither of these experi-

ments delved into possible mechanisms. Thus, it is possible

that during remote recall, ACC efferents stimulate RE neurons,

which in turn modulate CA1 units and field potentials.

Eichenbaum (2017a) suggested that the medial frontal cortex

could exert top-down control over the HC via bidirectional peri-

rhinal and/or entorhinal cortical connections (Burwell and Ama-

ral, 1998; Witter et al., 2000; Apergis-Schoute et al., 2006), and

it is conceivable that the present results are indeed the manifes-

tation of top-down control. These connections are more difficult

to isolate than those passing through the RE nucleus and have

not been studied intensively, but hopefully, future studies will

help reveal what role they have in medial frontal-HC interactions.

Additionally, both the HC and ACC also have common theta-

related connections with other areas, such as the raphe nucleus

(Vertes and Kocsis, 1994; Chandler et al., 2013), reticular forma-

tion (McNaughton and Sedgwick, 1978; Sesack et al., 1989),

VTA (Fujisawa and Buzsáki, 2011), and septum (Varela et al.,

2014). It is possible these non-thalamic routes are mediating

remote recall network dynamics, though these connections

have not been thoroughly evaluated for any potential role in

ACC-HC interactions. Another possibility are the direct connec-

tions from ACC to dorsal CA1 reported by Rajasethupathy et al.

(2015), however, the sparsity of such ACC toCA1 projecting neu-

rons demands a cautious approach when hypothesizing their

function. With that said, these direct connections are a tanta-

lizing possible source by which ACC theta input could modulate

CA1 activity, however, the most likely explanation is that such

effects arise through multisynaptic interactions through the me-

diodorsal thalamus.

ACC-Driven Memory Retrieval
Bontempi et al. (1999) were the first to reveal a link between

medial frontal areas and recall of remote environmental context

information. Since then,more detailed anatomical studies shown

that these effects occur in both dorsal and ventral areas along

themedial wall of the frontal cortex (Wang and Cai, 2008). Similar

effects have been documented for both appetitive and aversive

conditioning tasks (Restivo et al., 2009; Frankland and Bon-

tempi, 2005), suggesting that a more general form of memory

(i.e., context) is consolidated to medial frontal cortex. Corre-

spondingly, Kitamura et al. (2017) found that the network of

medial frontal cells that became active during contextual fear

learning could not be reactivated by cue presentation until

2 weeks after initial learning. Even though the same cells were

part of this network, somematuration of the ensemble took place

over the intervening period that made the network sensitive to

recall cues. Perhaps the increase we observed in ACC ensemble

representations over time is indicative of this idea. Although the

Kitamura et al. (2017) study strongly suggests the storage of a

contextual memory, our work provides some evidence of how

this engram activation may affect the whole memory retrieval

network. Indeed, it has been proposed that during remote recall

the medial frontal cortex plays a role tantamount to the HC in

recent recall. Thus, it coordinates reactivation of a memory trace

across a broad neural network involving multiple brain areas

(Maviel et al., 2004; Frankland and Bontempi, 2005; Blum

et al., 2006; Eichenbaum, 2017b).

It should be noted that the task we used did not rely on

emotional responses, and it is possible that the networks

described here could react differently when emotional arousal

is high. In fact, both the ACC (Shidara et al., 2005; Steenland

et al., 2012) and HC (Sinnamon and Schwartzbaum, 1973) are

strongly activated by emotional arousal, but similar contextual

recall deficits are observed following ACC perturbation for both

positive and negative emotional states (Maviel et al., 2004; Res-

tivo et al., 2009). Additionally, ACC and HC networks notoriously

respond to seemingly every possible event, as if they are

providing a record of ongoing experience (Duncan and Owen,

2000; Eichenbaum, 2004). Thus, it is reasonable to conclude

that the present results should extend to all tasks regardless of

motivational valence, but certainly, this needs further experimen-

tation to determine.

ACC Effects on HC Function
Although studies in animal models suggest that differentmemory

networks are engaged in encoding and remote recall (Quillfeldt

et al., 1996; Takehara et al., 2003), this idea is based on changes

in memory recall dependence from the HC for recent memories

(Squire and Alvarez, 1995; Bayley et al., 2003; Frankland et al.,

2006; Ding et al., 2008) to the medial frontal cortex for remote

(Maviel et al., 2004; Blum et al., 2006). However, imaging and

recording studies in humans report similar networks of struc-

tures are activated during bothmemory encoding or recent recall

and retrieval (Piolino et al., 2004; Viard et al., 2007, 2010; Rugg

and Vilberg, 2013; Conejo et al., 2013; Kragel et al., 2017).

Concurrently, Conejo et al. (2013) found that metabolic activity

linked with functional interactions between the medial frontal

cortex and HC was consistent throughout the memory process.

However, chemogenetic inactivation of ACC cells impaired only

remote recall and not recent (Varela et al., 2016). To square these

apparently contradictory findings, it has been suggested that the

hippocampal subfields are differentially engaged during encod-

ing and remote recall (Hasselmo et al., 2002). The dentate gyrus

(DG) is thought to perform pattern separation (presumably

important for encoding new memories), and the CA fields are

involved in pattern completion (important for retrieval). Most of

these results have been based on lesion and inactivation studies

of the subfields, so it is not clear how this could play out in the

intact system. Given the strength of HC perforant path connec-

tions (Del Ferraro et al., 2018), it is far from obvious how the input

of the DG could be selectively minimized during remote memory

2322 Cell Reports 27, 2313–2327, May 21, 2019



recall. This would be necessary so that the orthogonalized DG

output does not control CA1 and, thus, hippocampal output via

the subiculum. The present results suggest that ACC-driven

theta modulation may be a mechanism for this operation. ACC

theta modulation could be biasing CA1 units toward ACC inputs,

which would effectively minimize perforant path input. In such a

model, ACC signals would cut internal hippocampal processing

off at the pass and in turn control hippocampal output. In this

way, remotely recalled ACC traces could control retrieval across

the entire memory network by using the medial temporal lobe’s

connections with the rest of the brain. This creates the possibility

that area CA1 may be involved in ACC directed remote memory

retrieval, while simultaneously, DG function remains the same as

during encoding, a possibility that is ripe for future testing. Such

dynamics would lead to comparable levels of activity across the

HC during encoding and remote retrieval, as is seen in human

imaging results, even though memory dependence has changed

over the course of consolidation.

These results present a mechanism for how the contextual

memory system solves the important computational problem

of separating memory encoding from retrieval, supporting the

ideas put forward by Eichenbaum (2017a). It is possible that

during remote recall of other types of information, other areas in-

fluence CA1 unit activity via theta modulation and that this is a

common mechanism. It is also possible that the ACC has a

unique role in remote memory retrieval, perhaps due to the

global nature of contextual information, and thus is acting like

the HC for remote recall but does so by controlling CA1 activity

as a backdoor way to control HC output.

Alternatively, it is also possible that the observed effects are

independent of the ACC and are either mediated by another neu-

ral area or somehow the product of internal hippocampal pro-

cesses. Unit spatial responses in the HC do stabilize over the

course of days (Frank et al., 2004; Attardo et al., 2018), so it is

possible that over longer periods the hippocampal code

changes even more. Once stable, hippocampal responses are

remarkably durable with consistent spatial mapping observed

over days and months (Muller and Kubie, 1987; Thompson

and Best, 1990; Kinsky et al., 2018), however, in each of these

studies, animals were exposed to the familiar environments mul-

tiple times in the intervening periods. This could possibly make

the memories labile again as they undergo reconsolidation (Du-

dai and Eisenberg, 2004; McKenzie and Eichenbaum, 2011).

Furthermore, it is possible that individual CA1 cells maintain

strong place cell-like firing, but other cells change their context

specific activity over consolidation. If so, the present results

are not inconsistent with these previous findings, because those

studies concentrated on cells with place fields established dur-

ing initial learning and stabilized during recent recall. Alterna-

tively, it has been proposed that the HC reconstructs consoli-

dated neocortical memories into spatially coherent assemblies

(Barry and Maguire, 2018). This may explain the similarities

between the remote CA1 and ACC context representations,

because CA1 could be using the ACC representation as the

contextual foundation of its reconstruction.

Additionally, it is possible that a third neural area could drive

both the ACC and HC during remote recall. For example, the

VTA entrains both areas during working memory (Fujisawa and

Buzsáki, 2011) and could do the same during remote recall.

However, it is worth mentioning that the ACC can also drive

VTA activity during high-effort responses (Elston and Bilkey,

2017; Elston et al., 2019), and one could argue that remote recall

is a high-effort cognitive process. All these possibilities require

further experimentation to evaluate, but given the data pre-

sented here, the simplest explanation is that the ACC is driving

CA1 activity via theta oscillations during remote recall.

Conclusions
The present findings show robust changes in ACC-CA1 network

dynamics as time passes from the last experience. These find-

ings are consistent with the transference of contextual memory

dependence, or consolidation, from the HC to the ACC. Further-

more, theta rhythm interactions are a likely mechanism for

remote memory retrieval, which manifests in two ways as mem-

ories mature: CA1 units are more strongly modulated by ACC

theta oscillations, and CA1 ensembles possess information

that is similar to ACC ensemble contextual representations.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, JamesM.

Hyman (james.hyman@unlv.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Seven male Long-Evans rats (8-12 months) obtained from Charles River Laboratories, Inc. (Wilmington, MA) were used in this exper-

iment. Subjects were given a minimum of three days after arrival prior to any experimental procedures, after this time, subjects were

handled by experimenters for a minimum of two weeks before surgery. After surgery, subjects were individually housed on a twelve-

hour light-dark cycle with food and water available ad libitum. All experimental procedures took place during the light cycle and were

approved by the University of Nevada Las Vegas Institutional Animal Care and Use Committee.

METHOD DETAILS

Surgery and Electrophysiology
Subjects were deeply anesthetized using isoflurane gas (1 – 3%) and implanted with 32 movable tetrodes in a hyperdrive affixed to

the animal’s skull. 16 tetrodes targeted bilateral ACC (2.5 mm anterior; + 0.5 lateral; 8 left and 8 right), and 16 tetrodes targeted bilat-

eral dorsal CA1 (3.5 mm posterior to bregma; + 2.5 lateral; 8 left and 8 right). Two posterior screws placed just above the cerebellum

were connected to a grounding wire and soldered into the electrode interface board (EIB; Plexon Inc. Dallas, Texas) as is typically

done in rodent in vivo recordings (Buzsáki, 1986). After the tetrodes were positioned over the targeted brain areas, we affixed it to

the skull using dental acrylic. When the dental acrylic had fully hardened, the tetrodes were lowered 400 mm into the cortex. After

a 7 day recovery period we slowly lowered tetrodes ventrally into the ACC (�2.5 mm) and the pyramidal cell layer of dorsal CA1 using

electrophysiological markers (Buzsáki, 1986).

Electrodes were connected to a 128 channel EIB which plugged into four headstages (Intan Technologies, Los Angeles, CA).

Digitized electrophysiological signals were sent up tether cables into the into the RHD 2000 USB interface board (Intan Technologies,

Los Angeles, CA) which feeds the digital signal into a computer workstation. Electrophysiological data was read into Open Ephys

(Cambridge, MA). Data was acquired at a sampling rate of 30 KHz. During acquisition continuous data were bandpass filtered

between 1-6000 Hz and spike data were bandpass filtered between 600-6000 Hz. Spike data was then read into Offline Sorter

(Plexon Inc.) for spike sorting using 2D and 3D projections to discern visually dissociable clusters. Spike timestamps were then

read into MATLAB (Mathworks, Natick, Massachusetts) for further analyses.

Behavior
Subjects were placed into a series of environments situated in the center of a lowly lit room. Throughout the experiment, subjects

were exposed to seven unique environments all with high walls (> 22 inches) to limit influences from distal recording room cues.

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Biological Samples n/a

Experimental Models: Organisms/Strains

Long-Evans Charles River Labs n/a

Software and Algorithms

Open Ephys Siegle et al., 2017 http://www.open-ephys.org/

Bonsai Lopes et al., 2015 https://bonsai-rx.org/

EEGLAB Delorme and Makeig, 2004 https://sccn.ucsd.edu/eeglab/download.php

MV_GC Barnett and Seth, 2014 https://users.sussex.ac.uk/�lionelb/MVGC/

MATLAB Mathworks n/a

Plexon offline sorter Plexon n/a

Other

Intan Intan technologies n/a
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All environments were distinct in size, shape, texture, and visual stimuli present. Each environment was made of a different material

(corrugated plastic, polyethylene, cardboard, vinyl, PVC, laminated poster board) or a unique combination of these materials, which

created a texture contrast between environments. An array of visual cues (varying by color and shape) were on the walls of each

environment. Each environment was placed in the same location within the recording room. For each session, animals were brought

to the recording room and allowed to habituate for a minimum of thirty minutes. After that time, subjects were placed on a pedestal

and fed Froot Loops (Kellogg’s, Battle Creek,MI) while the headstageswere plugged into the EIB.When the connectionwas secured,

animals were placed into an environment and allowed to freely explore for exactly tenminutes. After this time, subjects were removed

from the environment and placed upon the pedestal for oneminute before being placed into the next environment. See Figure 1A for a

schematic breakdown of environment exposures. Briefly, during session one (RI-0), subjects were introduced to environment A and

B. Session two (RI-1), subjects re-explored environment A and then were introduced into environments C and D. On session three

(RI-2), subjects were re-exposed to environments B and D and then introduced to environment E. Session four was a reset day (RD)

and used to control for differences in time from last visit before our remote recall sessions and no electrophysiological recordings

took place on this day though subjects were attached to the recording tether. During this session, subjects were re-exposed to

environments A, B, C, D, and E, and also introduced to environment F. Session five took place seven days after session four

(RI-7) and subjects were reintroduced into environments A, C, and E. Fourteen days after the fourth session (RI-14), subjects

were reintroduced into environments B, D, and F, and introduced to environment G (see Figure 1A). These intervals were chosen

based upon previous studies that showed remote recall effects in ACC after similar delays (Takehara-Nishiuchi and McNaughton,

2008). For example, Frankland et al. (2004) found memory deficits with ACC inactivation at 2 weeks and 5 weeks, but no effects

at 1 or 3 days. Concurrently, Suzuki et al. (2004) found delivery of anisomycin, preventing reconsolidation, caused subsequent mem-

ory impairments if the re-exposure and anisomycin delivery took place 1 week after learning. Similar results were found for 3 and

6 weeks, suggesting that the memory had been consolidated after the one week interval.

The order of environments was constructed so that later analyses could be performed on two consecutive environments or dyads.

This order allowed us to counterbalance the number of novel-novel, novel-familiar, and familiar-familiar environment dyads. Each

animal was exposed to the same sequence of environments to control for any possible order effects. Given that this experiment

featured seven subjects and seven unique environments, proper environmental counterbalancing would require each animal to

have experienced a unique sequence, which would have introduced lots of possible variance. Thus, we chose to use the same order

in all animals and believe that the risk of order effects corrupting our sample was low. Video and path data were gathered using

Bonsai behavioral tracking software.

Histology
After subjects completed the experiment, they were deeply anesthetized under isoflurane gas and electrolytic lesions were created

by passing current through all ACC and hippocampal wires. Subjects were then perfused with a solution containing 250 mL 10%

buffered formalin, 10 mL glacial acetic acid, and 10 g of potassium ferrocyanide. The brains were removed and stored in a solution

containing 10% buffered formalin and sucrose for a minimum of 1 week. After that time, brains were sliced at 40 mm andmounted on

slides for visual inspection of wire tracks (see Figures 1B and 1C).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral Analysis
To quantify behavioral changes that occurred due to re-exposure of environments, we examined distance traveled and the amount of

time spent in the center areas of each environment. To examine gross locomotor activity, we calculated the total distance traveled

over each exposure in one-minute time bins. Since each environment was unique in shape, size, and texture, all of which could affect

total distance traveled, and during each session animals only visited 3 out 6 environments, we needed to control for variance between

environments. We first grouped the raw values from each environment, combining all retention intervals and subjects, and then

z-transformed these populations. This allowed us to isolate any variance in distance traveled based upon amount of time in an

environment and amount time since the environment was last visited. To test recall effects of re-exposure to environments we calcu-

lated the percent of time animals spent in the center (half the total area) relative to the periphery of the environment (inside/outside).

Environment A was in the shape of a triangle and had a total area of 444 cm. Environment B was hexagonal shaped and had a total

area of 1600 cm. Environment Cwas circular and had a total area of 650 cm. Environment Dwas diamond shaped and had a total area

of 1200 cm. Environment E was square and had a total area of 1400 cm. Environment F was rectangular and had a total area of

1100 cm. Environment G was ‘‘V’’ shaped and had a total area of 850 cm.

Using custom written MATLAB code, each environment was separated into a set of standardized squares, we then calculated the

percent of time spent in each square compared to all other squares during environment exposure. As an additional measure of

memory recall, we calculated time spent computed as:

P=
Tn

ðSðSTnÞÞ
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where P is the percent time spent, T overall time spent, and n is each separated location, of the 120 s time window. This allowed

us to evaluate the extent of exploratory behavior in the entire environment. To do this, we calculated the cumulative sum using the

MATLAB function cumsum and corresponding definite integral (area under the curve or AUC) using the MATLAB function trapz of

the standardized squares in each environment. We then performed a one-way ANOVA to compare AUC values over retention

intervals.

Analysis of Continuous Data
After experimental procedures concluded, data were read into a computer workstation and down sampled to 1000 Hz using custom

written MATLAB code. To remove the 60 Hz noise signal, data were notch filtered between 58 and 61 Hz using MATLAB function

butter. Next, we identified ‘‘good wires’ through visual inspection to minimize signal redundancy, leaving four per recording area

but only one from any single tetrode. For all comparisons each exposure was treated individually, so during each recording session

exposures could contribute to data groups according to retention interval. For example, in session 3 animals were first re-exposed to

environment B (2 day retention interval), next they were re-exposed to environment D (1 day retention interval), and last they were

exposed to environment E (initial exposure or 0 day retention interval).

Coherence
To test how oscillatory activity changed between the ACC and CA1 over recording days, we calculated coherence during exposures

to each environment for all recording sessions.We used theMATLAB functionmscohere on notch filtered LFPs. The coherence value

is computed as

CxyðfÞ=
��PxyðfÞ

�� 2

PxxðfÞPyyðfÞ
where C is the coherence value between 0 and 1, P is power spectral densities, x and y are respective signals, and f is frequency (Kay,

1988). We calculated theta coherence between ACC and CA1 recording sites for all 8 ipsilateral pairs of LFP signals per environment

exposure (see Figure 3A). We then normalized values in the theta range (7-12 Hz) by z-transformation (MATLAB function zscore) of

data groups by environment. This helped to eliminate any differences due to size or shape of environments from affecting our com-

parisons as done above. A single factor ANOVA was used to compare coherence values during each recording session. To examine

signal power, a Fast Fourier transform (FFT) was computed using the MATLAB function fft. Results from ACC and hippocampal FFT

were analyzed separately. Values in the theta range were then normalized for each environment and examined across each delay

period using and one-way ANOVA.

Granger Prediction
To assess directionality of LFP interactions we used a frequency resolved measure of Granger prediction, provided by a freely

available MATLAB toolbox (MVGC: multivariate Granger causality toolbox; Barnett and Seth, 2014). This method examines how

predictive one signal is of another. First, higher order autoregressive models were created for each pair of ipsilateral ACC-CA1 leads

for each exposure. 60Hz notch-filtered high sampling rate data was binned in 1 s bins for the first 120 s of environment exposure. The

data were tested for stability over time and the model order was chosen by Bayesian information criterion. These values were

then spectrally resolved according to Geweke’s formulation (Geweke, 1982). Mean Granger prediction values within the theta range

(7-12Hz) were then compared across conditions.

Theta-Gamma Cross Frequency Phase-Amplitude Coupling
Phase to amplitude coupling techniques were first described by Tort et al. (2009). For this analysis, we examined the modulation

index (MI) or the rate at which the amplitude of gamma band LFPs from either CA1 or ACC were influenced by the theta phase of

LFPs in the other area. MI values are between 0 and 1 and were generated using the freely available Neurodynamics Lab MATLAB

toolbox function ModIndex_v2. Changes in MI by retention interval were examined using a one-way ANOVA.

Analysis of Unit Data
After each recording session spike data were read into a computer work station and translated into (.nex) format using customwritten

MATLAB code. Single unit data were sorted based off of waveform characteristics using Plexon Offline Sorting (Plexon Inc, Dallas,

TX). Spiking data were then read into MATLAB for further analysis. In addition to examining oscillatory interactions between the ACC

and CA1, we also were interested in understanding how theta activity affected unit firing.

Unit Theta Phase-Locking
For each cell we calculated the degree of theta entrainment to all 4 ipsilateral leads in the other area during the initial period in each

environment and looked at themaximum value from all comparisons. To analyze phasicmodulation of unit spike trains we first Hilbert

transformed the theta range filtered LFPs to extract instantaneous phase using the MATLAB function hilbert. A cell was considered

modulated based off of the distribution of spike times relative to theta oscillations. We found the phase for each spike during the first
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120 s in each environment and used Rayleigh’s test of uniformity to assess whether a cell was significantly modulated. The Rayleigh

test statistic is computed as

Z= nR2

where n equals the number of spikes and R the mean resultant length (or the magnitude of the vector that results when each spike is

represented as a vector on the unit circle whose angle relative to some fixed point is given by the spike’s phase and the vectors are all

summed together) (Stephens, 1969; Hyman et al., 2005). We performed ANOVAs that compared ACC or CA1 unit MRL by retention

interval, and also compared percentage of ACC or CA1 units that were phase-locked to the other area’s theta oscillations for each

retention interval. Note that some cells could be counted in multiple categories, however, entrainment was only considered by indi-

vidual environment exposure, so a cell recorded during session 2 contributed to both retention interval day 0 and day 1 counts.

Mahalanobis Distance
To examine how ensemble activity states differed between environments we employed an analytical approach similar to our previous

work (Hyman et al., 2012). Our experimental setup was designed so animals would be presented with novel environments following

both day 1 and day 2 recall exposures, allowing us to expose the animals to many environments over days and also helping to mini-

mize potential memory interference effects within sessions. However, since this analysis required comparisons of two environmental

contexts at a time, we thus needed to control for an animal’s familiarity with both environments, while also isolating any changes that

occurred due to retention interval length. To this end we grouped comparisons together based on level of familiarity with both envi-

ronments and retention interval of one or both environments. Our first step was to group the cells based upon recording session,

which allowed us to compare based upon either familiarity or retention interval.

Neural firing rates were estimated for each isolated cell as a function of time binning (500ms). This relatively long time bin size is

ideal for examining contextual representations, which should be reflected in the steady state firing rates and thus less sensitive to

transient behavioral changes. 500ms time bins were also used in our previous paper analyzing contextual representations across

ACC and CA1 ensembles (Hyman et al., 2012). Cells with fewer than 50 spikes during the behaviorally relevant period were excluded

from analysis. To control for differences in recorded ensemble size (mean ensemble size = 41 cells; range = 8-120) and any momen-

tary behavioral differences that occurred between sessions, we normalized the number of cells considered for both areas. We

randomly drew 40 cell ACC and CA1 ensembles for each recording session type. To determine ensemble activity states between

contexts, we normalized each unit’s firing rate and then randomly selected 1000 CA1 and ACC ensembles for each session type,

leaving 5000 CA1 and 5000 ACC ensembles. We computed dMah in the full high dimensional MSUA space between the first

120 s (240 time points) of each exposure. Principal components were only used for the 3D visualizations ofMSUA state spaces shown

in Figure 5B.

Each environment was classified as either novel (initial exposure only) or familiar (any subsequent exposure). This left us with three

types of comparisons: novel versus novel (NN), familiar versus novel (FN), or familiar versus familiar (FF). These were spread relatively

evenly over the recording sessions.

Selectivity Index
A selectivity index for each unit was constructed to identify if it exhibited preference for one environment over another. Thus, for this

analysis cells were grouped by the type of environment exposure as described above for the dMah analysis. The selectivity index,

previously described in (Hyman et al., 2012; Ma et al., 2014), was obtained by grouping firing rates of neuron i during each environ-

ment exposure. The index was computed as

d
0
i =

jhfriðtÞ j t˛Eng � riðtÞjt˛En+1i jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
i t˛En +s2

i t˛En+ 1

p

where h i denotes the mean.

DATA AND SOFTWARE AVAILABILITY

Analysis-specific code and datasets are available by request to the Lead Contact: james.hyman@unlv.edu
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