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A Graph-Based Reinforcement Learning Method with Converged 
State Exploration and Exploitation 

 
Han Li1, Tianding Chen2, *, Hualiang Teng3 and Yingtao Jiang4 

 

 
Abstract: In any classical value-based reinforcement learning method, an agent, despite 
of its continuous interactions with the environment, is yet unable to quickly generate a 
complete and independent description of the entire environment, leaving the learning 
method to struggle with a difficult dilemma of choosing between the two tasks, namely 
exploration and exploitation. This problem becomes more pronounced when the agent 
has to deal with a dynamic environment, of which the configuration and/or parameters 
are constantly changing. In this paper, this problem is approached by first mapping a 
reinforcement learning scheme to a directed graph, and the set that contains all the states 
already explored shall continue to be exploited in the context of such a graph. We have 
proved that the two tasks of exploration and exploitation eventually converge in the 
decision-making process, and thus, there is no need to face the exploration vs. 
exploitation tradeoff as all the existing reinforcement learning methods do. Rather this 
observation indicates that a reinforcement learning scheme is essentially the same as 
searching for the shortest path in a dynamic environment, which is readily tackled by a 
modified Floyd-Warshall algorithm as proposed in the paper. The experimental results 
have confirmed that the proposed graph-based reinforcement learning algorithm has 
significantly higher performance than both standard Q-learning algorithm and improved 
Q-learning algorithm in solving mazes, rendering it an algorithm of choice in applications 
involving dynamic environments. 
 
Keywords: Reinforcement learning, graph, exploration and exploitation, maze. 

1 Introduction 
Reinforcement Learning (RL) has found its great use in a lot of practical applications, 
ranging from problems in mobile robot [Mataric (1997); Smart and Kaelbling (2002); 
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Huang, Cao and Guo (2005)], adaptive control [Sutton, Barto and Williams (1992); 
Lewis, Varbie and Vamvoudakis (2012); Lewis and Varbie (2009)], AI-backed chess 
playing [Silver, Hubert, Schrittwieser et al. (2017); Silver, Schrittwieser, Simonyan et al. 
(2017); Silver,  Huang, Maddison et al. (2016)], among many others. The idea behind 
reinforcement learning, as illustrated in Fig. 1, is that an agent learns from the 
environment by interacting with it and receives positive or negative rewards for 
performing calculated actions, and the cycle is repeated. The key issue of the whole 
process is to learn a way of controlling the system so as to maximize the total award. 
When the agent begins to sense and learn a completely or partially unknown environment, 
it involves in two distinct tasks: exploration which attempts to collect as much 
information about the environment as possible, and exploitation which attempts to 
receive positive rewards as quickly as possible. 

 
Figure 1: In reinforcement learning, the agent observes the environment, takes an action 
to interact with the environment, updates its own state and receives reward 

There is a dilemma of choosing between the two tasks of exploration and exploitation, 
though. Too much exploration will adversely influence the efficiency and convergence of 
the learning algorithm, while putting too much emphasis on exploitation will increase the 
possibility of falling into a locally optimal solution. The existing RL algorithms all 
attempt to balance out these two tasks in their learning cycles (Fig. 1), but these is no 
guarantee that the best result can always be obtained. 
Besides the exploration and exploitation dilemma, the RL algorithms have to employ 
value distributions that inexplicitly assume that environment is static (i.e., no change), or 
it changes very slowly and/or insignificantly. However, in many real applications, the 
environment rarely stays unchanged. More than likely, the environment that can be 
described in terms of states (Fig. 1) changes over the course of exploration. In this case, 
value distribution has nothing to do with the problem at hand, and all the information 
obtained from the previous exploration efforts become less, or totally irrelevant. 
To effectively solve the aforementioned problems in reinforcement learning, we herein 
present a new algorithm based on the partitioning of the states set and search of the 
shortest path in a directed graph that represents a RL method. We have formally proved 
and experimentally verified that both exploration and exploitation in reinforcement 
learning actually converge at the end of the decision-making process, and thus, the 
learning process does not need to face the exploration/exploration dilemma as other 
existing reinforcement learning methods would do. This observation indicates that a 
reinforcement learning scheme is essentially the same as searching for the shortest path in 
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a dynamic environment, which is readily tackled by a modified Floyd-Warshall algorithm 
as proposed in the paper. The experiment that applies the proposed algorithm to solve 
mazes confirm better performance of the new algorithm, particularly its effectiveness in 
addressing issues pertaining to a dynamic environment. 

2 Preliminaries and background 
In this section, we will first survey the basic structure of reinforcement learning (RL) 
algorithms, particularly value-oriented method of RL, and formally define the exploration 
vs. exploitation tradeoff in RL. In the literature, RL is shown to be mapped to various 
graph representations, and these methods are briefly described in the section as well. 
With graph representations, RL can benefit from rich results in graph algorithms, and we 
thereby finish this section by reviewing algorithms that search for the shortest path in a 
graph, as they are related to this paper. 

2.1 Value-oriented method for the exploration-exploitation tradeoff in RL 
Most RL problems can be formalized using Markov Decision Processes (MDPs), and 
there are a few key elements in RL as defined below. 
1. Agent: An agent takes actions. 
2. Environment: The physical world through which the agent operates. 
3. State: A state is a concrete and immediate situation in which the agent finds itself. In 

this paper, we denote 𝑠𝑡𝑡𝑖 as the state of the agent at time instance i, and set S 
contains all the states that the agent can operate on. That is, 𝑠𝑡𝑡𝑖 ∈ 𝑆.  

4. Action:  agents choose among a list of possible actions. Denote 𝑎𝑖 as the action that 
agent might perform at time instance 𝑖. 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 is defined as the set of all possible 
moves of the agent can make, i.e., 𝑎𝑖 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠.  

5. Reward: A reward is the feedback that is used to measure the success or failure of an 
agent’s action. Here a reward at time instance 𝑡 is defined as  𝑅𝑡. Actions may affect 
both the immediate reward and, through the next situation, all the subsequent 
rewards [Sutton and Barto (2017)]  

6. Exploitation: a task that makes the best decision given all the current information. 
7. Exploration: a task that gathers more information to be used for making the best 

decision in the future. 
8. An episode: the behavior process cycle of the agent from the beginning of the 

exploration to the beginning of the next exploration. When the interaction between 
the agent and the environment breaks naturally into subsequences, which are 
referred as episodes. Each episode ends in a special state called the terminal state, 
followed by a reset to a standard starting state or to a sample from a standard 
distribution of starting states [Sutton and Barto (2017)].  

In RL, the exploration-exploitation tradeoff refers to a decision making process that 
chooses between exploration and exploitation. Value-oriented RL methods have to deal 
with such exploration-exploitation tradeoff through the value distribution as defined by 
the value function or a probability that decides the chain of actions that lead to the target 
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state all the way from the start state through a series of awards. A decision chain refers to 
a series of decision-making steps taken by an agent. 
In order to strike a balance between exploration and exploitation, there are two main 
decision methods that can be followed, the ϵ − greedy and softmax. 
In ϵ − greedy method, the action is selected by, one has 

𝑎𝑠𝑡𝑡 = � 𝑎𝑠𝑡𝑡∗ 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑖𝑦 1 − 𝜖
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖     (1) 

where 𝑎𝑠𝑡𝑡∗  is the action in which of the value function assumes the highest value: 
𝑎𝑠𝑡𝑡∗ = argmax𝑎∈𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑄(𝑠𝑡𝑡,𝑎) (2) 
where 𝑄(𝑠𝑡𝑡, 𝑎) is action-value function which evaluates each possible action while in 
the current state. One drawback of ϵ − greedy  action selection is that when it explores, 
all the possible actions are given the equal opportunity, as indicated in Eq. (1). In a 
simple term, this method is as likely to choose the worst-appearing action as it is to 
choose the next-to-best action. This gives rise to the so-called softmax method that can 
vary the action probabilities through a graded function below, 

π(𝑎|𝑠𝑡𝑡) = 𝑒
𝑄(𝑠𝑡𝑡,𝑎)

𝜏

∑ 𝑒
𝑄(𝑠𝑡𝑡,𝑎′)

𝜏𝑎′∈𝐴𝑐𝑡𝑖𝑜𝑛𝑠

                (3) 

where π(𝑎|𝑠𝑡𝑡) is the probability policy to choose an action from the specific state 𝑠𝑡𝑡, 
and τ is a “computational” temperature, and is an action-value function that evaluates 
each possible action in the current state. 
The problem of value-oriented method is due to its weak ability to eliminate exploration 
blindness resulting from a large number of repeated explored states introduced by the 
value distribution structure. The stochastic factors that are added to help the search 
process jump out of the loops and balance exploration and exploitation actually come at 
the expense of more blindness of exploration. 

2.2 RL over graphs  
A RL can be represented as a directed graph, G<V, E>, where a vertex, vi∈V(G), 
corresponds to a state 𝑠𝑡𝑡𝑖 in reinforcement learning and an edge, eij∈E(G), connects two 
vertices (two states 𝑠𝑡𝑡𝑖 𝑎𝑛𝑑 𝑠𝑡𝑡𝑗) with a decision action 𝑎𝑖in reinforcement learning. In 
this graph, a path can be regarded as decision sequences in reinforcement learning.  
In the literature, many RL methods are related to their graph representations. In 
PartiGame Algorithm [Moore (1994)], the environment of RL is divided into cells 
modeled by kd-tree, and in each cell, the actions available consist of aiming at the 
neighbor cells [Kaelbling, Littman, Moore (1996)]. In Dayan et al. [Dayan and Hinton 
(1993)], speedup of reinforcement learning is achieved by creating a Q-learning 
managerial hierarchy in which high-level managers learn how to set tasks for their lower 
level managers. The hierarchical Q-learning algorithm in Dietterich [Dietterich (1998)] 
proves its convergence and shows experimentally that it can learn much faster than 
ordinary "flat" Q-learning. None of these methods, however, can solve the root problem 
concerning the dilemma of exploration and exploitation. 
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2.3 Floyd-Warshall algorithm 
Denote 𝑆𝑆𝐴(𝐺, 𝑒𝑖 , 𝑒𝑗) as a shortest path search algorithm that is applied to G from vertice 
𝑒𝑖 to vertice 𝑒𝑗 that represents a RL. The classical shortest path algorithms like Dijkstra 
[Dijkstra (1959)] and A* [Hart, Nilsson, Raphael (1968)] are single starting point 
algorithms for the path-finding. The Floyd-Warshall algorithm [Floyd (1962)] (FW), 
which is pursued to use in this study, provides the shortest path between any two vertices 
in specified graph and it is found to be adaptive to the change of the graph.  
In the standard Floyd-Warshall algorithm, two matrices (DIST and NEXT) are used to 
express the information of all the shortest path in the graph. The matrix DIST records the 
shortest path length between two vertices. The matrix NEXT contains a name of the 
intermediate vertex through which the two vertices are connected through the shortest 
path. Because of the optimal substructure property of the shortest path, no matter how 
many intermediate vertices the shortest path passes through, simply recording one of the 
intermediate vertices is sufficient to express the entire shortest path.  

3 Convergence of exploration and exploitation 
In this section, we first define the completely explored graph, which serves as the 
foundation for a graph-based iterative framework for reinforcement learning. Under this 
framework, the acquired knowledge from the RL’s exploration task can be recorded by 
the graph, and the shortest path search can then be conducted to determine the next 
decision chain. This new approach is able to well track the graph changes that are caused 
by exploration and sometimes by the changing environment. In this section, we shall 
prove that with this framework involving the shortest path search, the exploration 
actually converges to exploitation. In a simple word, exploration will find the shortest 
path to reach the same reward as exploitation does. 

3.1 Completely explored graph 
Definition 1 A Completely Explored State is a state of which all its possible successor 
states have already been explored. If one of a state’s successor states has been explored 
and at least one of its successor states has not yet been explored, the state is called a 
Partially Explored State. 
Definition 2 If the vertex set V in connected graph G<V,E> includes the start states of 
episodes and all these states have been completely explored, and the edge set E represents 
all the actions that need to be taken to connect all the different states, graph G is called a 
Completely Explored Graph (CEG).  
Fig. 2 shows an example of a CEG where each state(𝑠𝑡𝑡𝑥𝑥) is linked with up to 4 possible 
actions: 𝑎0,𝑎1,𝑎2,𝑎3. There are some explored edges which are omitted for simplicity, 
such as action 𝑎1  for  (𝑠𝑡𝑡20)  and (𝑠𝑡𝑡01)𝑤𝑖𝑡ℎ 𝑎0 ; they point to nonexistent state 
transitions. 
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Figure 2: An example of a completely explored graph. Nodes represent states and 
directed edges between nodes represent actions. The shadowed area that includes all the 
State nodes (colored yellow) and all the associated directed edges represents the CEG. 
The unfilled nodes outside the shadowed area represent incompletely explored states, 
even though they connect to the CEG 

Suppose the complete actions set 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = {𝑎𝑖: 𝑎0, … ,𝑎𝑛}  is known. State 𝑠𝑡𝑡𝑖  is a 
completely explored state if any reachable next state of 𝑠𝑡𝑡𝑖, denoted as 𝑠𝑡𝑡𝑖+1 ,by taking 
a possible action 𝑎𝑖  ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 , is traversed. Let GU<V, E> represent a graph that 
contains all the traversed states, including both the completely and the partially explored 
states. We can define the predecessor state set 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) as 
𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) = {𝑠: (𝑠 ∈ 𝑆𝐸) ∧ ({𝑠, 𝑠𝑡𝑡} ∈ 𝐸(𝐺𝑈))} and the successor state set 
𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) is defined as 
𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) = {𝑠: 𝑠 ∈ 𝑆𝐸 ∧ {𝑠𝑡𝑡, 𝑠} ∈ 𝐸(𝐺𝑈)} where SE denotes the set V(CEG). 
If we denote an environment feedback function by Env, then for a given action 𝑎𝑘, the 
next state 𝑠𝑖+1can be determined as 𝑠𝑖+1 = 𝐸𝑛𝑣(𝑠𝑖,𝑎𝑘). 

3.2 Exploration converges to exploitation 
From CEG, we can prove that exploration converges to exploitation. Here 𝑠𝑡𝑡𝑟𝑤𝑑  is 
denoted as a reward state. 
Lemma 1. Suppose that exploration of each episode starts with state 𝑠𝑡𝑡0, and ends in 
reward state sttrwd after passing some intermediate states through a series of episodes. 
Of all the possible episodes, one can see 𝑠𝑡𝑡𝑟𝑤𝑑 ∉ 𝑆𝐸. 
Proof: Once the agent has landed in state sttrwd, the episode ends, so there will be no 
further exploration originated from sttrwd. That is, the graph is a completely explored 
graph and the states are completely explored states, according to definitions 1 and 2. Thus 
 sttrwd cannot be a member of the SE set. (End of proof) 
Define the envelope set of set SE as 𝑆𝐸𝐸 = {𝑠𝑡𝑡𝑖: (𝑠𝑡𝑡𝑖𝑆𝐸) ∧ (𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑖) ⊄ 𝑆𝐸)} 
Corollary 1. For 𝑠𝑡𝑡𝑖 ∈ 𝑆𝐸𝐸 consists of members in SE, there exists at least one of the 
successor states of stti does not belong to SE.  
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Proof: It comes directly from the definition of SEE. (End of proof) 
Corollary 2. If stti ∈ (Setpredecessor(sttrwd) ∩ SE)  is in an exploring episode, then 
irrespective of the explore strategies adopted in the future, stti will always be part of SEE.  
Proof: From lemma 1, one can see that if 𝑠𝑡𝑡𝑖 ∈ 𝑆𝐸 has a successor state 𝑠𝑡𝑡𝑟𝑤𝑑 and it is 
impossible for 𝑠𝑡𝑡𝑟𝑤𝑑 to be a member of SE. By definition of SEE it is known that 𝑠𝑡𝑡𝑖 is 
always a member of 𝑆𝐸𝐸. (End of proof) 
Definition 3. If SSA(CEG) plans a decision chain that eventually reaches 𝑠𝑡𝑡𝑟𝑤𝑑, and it 
does not produce any change in either V(CEG) or E(CEG), this condition is referred as 
Exploration Convergence.  
Corollary 3. Once the exploration converges, the planned decision chain from SSA(CEG) 
remains the same in the next exploration episode.  
Proof: At the beginning of each episode, a CEG is constructed as needed to explore the 
new states. If the CEG keeps unchanged at the end of the current episode, the next 
episode will produce the exactly same path. At this point, the algorithm converges as it 
satisfies the condition set by Definition 3. (End of proof) 
Theorem 1. Assume there are a finite number of states and a SSA(CEG) is able to find the 
shortest path in CEG, exploration becomes finding a path from the start state stt0 to the 
sttrwd. In other words, exploration converges to exploitation. 
Proof: 
i. During exploration, state 𝑠𝑡𝑡0 can reach the SEE through SSA(CEG) . That is, one 

needs to find the shortest path, path k, among all the paths, such that: 
𝑘 = argmin

𝑗
{𝐿(𝑠𝑡𝑡0, 𝑠𝑡𝑡𝑗): 𝑠𝑡𝑡𝑗 ∈ 𝑆𝐸𝐸)}    (4) 

where 𝐿(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗) is the length of the shortest path between state 𝑠𝑡𝑡𝑖 and state 𝑠𝑡𝑡𝑗. 
If 𝑠𝑡𝑡𝑘 ∈ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑) , then (𝑠𝑡𝑡0, … , 𝑠𝑡𝑡𝑘, … , 𝑠𝑡𝑡𝑟𝑤𝑑)  from SSA(CEG) 
algorithm marks the shortest path from 𝑠𝑡𝑡0 to 𝑠𝑡𝑡𝑟𝑤𝑑. In this case, the conditions 
concerning exploration convergence (defined in Definition 3) are met, and the 
exploration converges to the exploitation. 

ii. If 𝑠𝑡𝑡𝑘 ∉ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑) , CEG continues to evolve as exploration 
progresses. 

iii. As exploration continues, new members are added into SEE and they replace the old 
ones, extending the shortest path, and according to Corollary 2, any new member 
𝑠𝑡𝑡𝑖 ∈ (𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑) ∩ 𝑆𝐸) will always be part of SEE. 

iv. When exploration ends, 𝑠𝑡𝑡𝑘 that satisfies Eq. (4) will eventually meet the condition: 
𝑠𝑡𝑡𝑘 ∈ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑) . 

v. The agent is bounded to pass the state 𝑠𝑡𝑡𝑘 associated with the shortest path in the 
𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑 . If not, there would have a different 
𝑠𝑡𝑡𝑘𝑠 ∈ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑)  from 𝑠𝑡𝑡𝑘  that otherwise makes 𝐿(𝑠𝑡𝑡0, 𝑠𝑡𝑡𝑘𝑠) <
𝐿(𝑠𝑡𝑡0, 𝑠𝑡𝑡𝑘). If 𝑠𝑡𝑡𝑘𝑠 ∈ 𝑆𝐸𝐸 , it’s impossible for SSA(CEG) to choose 𝑠𝑡𝑡𝑘  as a 
state in the shortest path. If 𝑠𝑡𝑡𝑘𝑠 ∉ 𝑆𝐸𝐸 , there must be a state 𝑠𝑡𝑡𝑚 ∈ 𝑆𝐸𝐸  in 
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𝑠𝑡𝑡𝑘𝑠’s predecessor chain that makes 𝐿(𝑠𝑡𝑡0, 𝑠𝑡𝑡𝑚) < 𝐿(𝑠𝑡𝑡0, 𝑠𝑡𝑡𝑘). The algorithm 
does not converge during this episode. 

vi. Putting all things together, one can see that exploration by SSA(CEG) must 
converge to the shortest path from start state 𝑠𝑡𝑡0 to 𝑠𝑡𝑡𝑟𝑤𝑑. 

As indicated in corollary 3, once the algorithm has found the shortest path from 𝑠𝑡𝑡0 to 
𝑠𝑡𝑡𝑟𝑤𝑑, the path will be repeated with no change in the following episodes. In this case, 
the exploration is readily to be halted. (End of proof). 

4 Algorithm implementation 
Based on Theorem 1 described in the previous section, we propose a framework for RL 
that does not need to concern about the dilemma of exploration and exploitation. There 
are two major components in the framework, namely CEG and Incompletely explored 
states, and there are two iterative steps as illustrated in Fig. 3: 
i. Based on the current CEG, an action decision, in the form of a single decision or a 

chain of multiple decisions, will be made to guide the next exploration.  
ii. Update the CEG with the new knowledge acquired from the latest exploration. In a 

static or nearly static environment, exploration will help continue to grow CEG, 
while in a changing environment, CEG members can be added or deleted according 
to the exploration result. Note that when the CEG is updated, nodes or edges can be 
added or deleted from the graph. In a static environment, as the exploration 
progresses, the number of nodes and edges tends to increase, while in a dynamic 
environment, the number of nodes and edges may increase or decrease. 

 
Figure 3: Graph iterative frame 

4.1 Shortest path search in dynamic environment 
The standard Floyd-Warshall Algorithm calculates matrices DIST and NEXT in batch 
divided by the length of short path (the number of relay vertices here) for each vertex pair. 
For constantly changing of vertices and graph structure that engages in exploration all the 
time, a more efficient method is needed and thus proposed in this section. 
During exploration in reinforcement learning, the completely explored states are 
discovered in sequence, and subsequently, they are added to the CEG, after which the 
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corresponding edges are also added. In addition, if the agent wants to adapt to the 
dynamic environment, the removal of vertex must also be taken into account. In this 
section, a modified algorithm Floyd-Warshall algorithm (SFW) is presented, which is 
able to search for the shortest path in a graph that represents a dynamic environment. In a 
simple term, we present SSA(CEG) for SFW. 
In SFW, each time when a new vertex is added, it is not only to add the shortest path 
associated with the new vertex directly tied to the two matrices as defined in Floyd-
Warshall, but also to compare the length of the new path introduced by the new vertex 
against that of the shortest path obtained from the prior iteration. These operations may 
result in the update of the two matrices. The major steps of SFW are summarized follow. 
If current state stt is to be added to set SE, do the following steps: 
i. Add and initialize a new row in matrices DIST and NEXT. 
ii. Add and initialize a new column in matrices DIST and NEXT. 
iii. Update the new column by computing the shortest paths from all the vertices to this 

new vertex. 
iv. Update the new row by computing the shortest paths from the new vertex to all the 

other vertices. 
v. Update matrices DIST and NEXT by comparing the length of each vertices pair 

between the old shortest path recorded in the matrices and that of the new paths 
with the new vertex added. 

Denote 𝐿𝑠𝑒𝑡(𝑠𝑡𝑡𝑖, 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)) as the length of the shortest path from arbitrary 
state 𝑠𝑡𝑡𝑖 to 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) as defined in Section 2: 
𝐿𝑠𝑒𝑡(𝑠𝑡𝑡𝑖, 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)) = min

𝑗
{𝐿(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗): 𝑠𝑡𝑡𝑗 ∈ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)}    (5) 

Matrices DIST and NEXT are updated by performing the following operations: 
𝐷𝐼𝑆𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡) = 𝐿𝑠𝑒𝑡(𝑠𝑡𝑡𝑖, 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)) + 1    (6) 
𝑁𝐸𝑋𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡) = 𝑠𝑡𝑡𝑗𝑚𝑖𝑛     (7) 
where 𝑗𝑚𝑖𝑛 is the the result of min

𝑗
{𝐿(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗): 𝑠𝑡𝑡𝑗 ∈ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)} as given in 

Eq. (5). 
In the same token, one can update the stt’s predecessor states set 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) 
with stt’s successor states set 𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡). That is, 
𝐿𝑠𝑒𝑡(𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡), 𝑠𝑡𝑡𝑖) = min

𝑗
{𝐿(𝑠𝑡𝑡𝑗, 𝑠𝑡𝑡𝑖): 𝑠𝑡𝑡𝑗 ∈ 𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)}    (8) 

𝐷𝐼𝑆𝑇(𝑠𝑡𝑡, 𝑠𝑡𝑡𝑖) = 𝐿𝑠𝑒𝑡(𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡), 𝑠𝑡𝑡𝑖) + 1    (9) 
𝑁𝐸𝑋𝑇(𝑠𝑡𝑡, 𝑠𝑡𝑡𝑖) = 𝑠𝑡𝑡𝑗𝑚𝑖𝑛     (10) 
Correspondingly, matrix DIST in this case can be updated by  
𝐷𝐼𝑆𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗) ← 𝑚𝑖𝑛{𝐷𝐼𝑆𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗),𝐷𝐼𝑆𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡) + 𝐷𝐼𝑆𝑇(𝑠𝑡𝑡, 𝑠𝑡𝑡𝑗)}    (11) 
If a path that passes through state stt is shorter than the previously obtained shortest path, 
then matrix NEXT is updated by: 
𝑁𝐸𝑋𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗) = 𝑠𝑡𝑡    (12) 
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4.2 Guided exploration 
As proved in Section 3, exploration finally converges to the shortest path that connects 
with the target state. Since exploration and exploitation basically produce the same result, 
our algorithm only needs to consider one single task, exploration. 
The steps of how to guide exploration is listed in Tab. 1. 

Table 1: Exploration algorithm 

01 set the current state to stt, if ∃𝑎𝑖 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 ⇒ 𝑠𝑡𝑡𝑟𝑤𝑑 ≡ 𝐸𝑛𝑣(𝑠𝑡𝑡,𝑎𝑖) : 
02 return {𝑎𝑖} 
03 if 𝑠𝑡𝑡 ∉ 𝑆𝐸 : 
04 𝐴𝑠𝑢𝑥𝑝𝑙(𝑠𝑡𝑡) = {𝑎:𝐸𝑛𝑣(𝑠𝑡𝑡,𝑎)𝑖𝑠𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑, 𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠} 
05 if 𝐴𝑠𝑢𝑥𝑝𝑙(𝑠𝑡𝑡) ≠ ∅: 
06 choose {𝑎𝑘} randomly from 𝐴𝑠𝑢𝑥𝑝𝑙(𝑠𝑡𝑡) 
07 else: 
08 choose {𝑎𝑘} randomly from Actions 
09 else: 
10 if 𝑠𝑡𝑡 ∈ SEE: 
11 𝐴𝑠𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑠𝑡𝑡) = {𝑎:𝐸𝑛𝑣(𝑠𝑡𝑡,𝑎) ∉ 𝑆𝐸,𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠} 
12 choose {𝑎𝑘} randomly from 𝐴𝑠𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑠𝑡𝑡) 
13 else: 
14 get the nearest edge state 𝑠𝑡𝑡𝑒𝑛 by SFW from current state 𝑠𝑡𝑡 
15 build the shortest actions chain 𝐴𝑠𝑐ℎ𝑎𝑖𝑛 by SFW from 𝑠𝑡𝑡 to 𝑠𝑡𝑡𝑒𝑛 
16 get 𝐴𝑠𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑠𝑡𝑡𝑒𝑛) 
17 choose 𝑎𝑘 randomly from 𝐴𝑠𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑠𝑡𝑡𝑒𝑛) 
18 𝐴𝑠𝑐ℎ𝑎𝑖𝑛 ← 𝐴𝑠𝑐ℎ𝑎𝑖𝑛 ∪ {𝑎𝑘 } 
19 return 𝐴𝑠𝑐ℎ𝑎𝑖𝑛 
20 return {𝑎𝑘} 

There are several major steps in the algorithm listed in Tab. 1: 
Step 1: If 𝑠𝑡𝑡  is a neighbor of 𝑠𝑡𝑡𝑟𝑤𝑑 , the agent can take action 𝑎𝑖  directly, which 
transitions the state to 𝑠𝑡𝑡𝑟𝑤𝑑. 
Step 2: If 𝑠𝑡𝑡 is not a member of SE, a decision is randomly made by calling 𝐴𝑠𝑢𝑥𝑝𝑙(𝑠𝑡𝑡).  
Step 3: If 𝑠𝑡𝑡  is an edge state of SE, a decision is randomly made by calling 
𝐴𝑠𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑠𝑡𝑡).  
Step 4: If 𝑠𝑡𝑡 is a member of 𝑆𝐸 but not a member of 𝑆𝐸𝐸, the shortest path is obtained 
using SFW. This path represents the decision chain by which the agent can exit 𝑆𝐸 in the 
most efficient way. 
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4.3 Update of the CEG 
Before exploration starts, SE is empty, the agent has no a priori knowledge of the 
environment. Denote 𝑠𝑡𝑡0 as the start state of each exploration episode. Once exploration 
begins, from the initial state 𝑠𝑡𝑡0, for each successor state 𝑠𝑡𝑡𝑖, an action 𝑎𝑘 is selected 
from the actions set according to SFW, after which the agent moves to the next state 
𝑠𝑡𝑡𝑖+1 by taking action 𝑎𝑘 obtained from the feedback of the environment. 
Exploration gets repeated. Whenever a new state is found, it will be added to the graph, 
GU, immediately. When the current state is completely explored, it will be added to set 
SE, sometimes to the SEE simultaneously. This algorithm is listed in Tab. 2. One can see 
that when a new completely explored state, corresponding to a vertex in the graph can be 
added to the CEG, it must generate some action decision reflected as edge changes in the 
graph. The new SEE by definition can be readily derived from the updated CEG. 

Table 2: Algorithm: update CEG 

01 Initialize: 𝑆𝐸 = ∅ 
02 Repeat: 
03 Agent takes action 𝑎𝑘 in state 𝑠𝑡𝑡𝑖. 
04 Get next state 𝑠𝑡𝑡𝑖+1 from environment. 
05 if (𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑖+1) ∉ 𝐸(𝐺𝑈): 
06 𝐸(𝐺𝑈) ← 𝐸(𝐺𝑈) ∪ {(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑖+1)} 
07 if {(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗): 𝑠𝑡𝑡𝑗 = 𝐸𝑛𝑣(𝑠𝑡𝑡𝑖,𝑎𝑘),𝑎𝑘 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠} ⊂ 𝐸(𝐺𝑈): 
08 if 𝑠𝑡𝑡𝑖 ∉ 𝑆𝐸: 
09 𝑆𝐸 ← 𝑆𝐸 ∪ {𝑠𝑡𝑡𝑖} 
10 update CEG 
11 update SEE 

4.4 Notes on the proposed algorithm 
If the current state of the agent is in SE, the shortest path to the boundary of the explored 
region is selected, as seen from the algorithm listed in Tab. 1. As far as the completely 
explored states are concerned, our approach is able to traverse all of them as opposed to 
explore them repeatedly. In the classical Q-learning algorithm, there are such a large 
number of states that have to be traversed repeatedly. This subtle difference makes our 
algorithm more computationally efficient, as evidenced by the experimental results 
reported in the next section. 
Compared to value-oriented algorithms, experiences in our approach obtained from 
exploration history are recorded in GU and SE rather than derived from the value 
distribution. The establishment of two matrices in SFW relies on GU and SE, while its 
structure contains the shortest path of all the pairs of states in SE. Therefore, in the case 
of changing environment, the modest modification of GU and SE and the updates of the 
two matrices will make the proposed algorithm more adaptive to the new, changing 
environment. This feature can be clearly seen from the result reported in 5.3. 
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5 Experimental results 
The new graph-based algorithm detailed in Section 4 has been applied to solve a maze. 
Maze solving has been widely adopted for the testing of reinforcement learning 
algorithms. The agent in the experiment can be seen as a ground robot roaming in a maze, 
and it can always sense its current position (state) as it moves around. At the beginning of 
experiment, the agent knows nothing about the maze, and it needs to find the 
reward(target) position and complete its journey by passing through a path from a 
specified start position.  

5.1 Setup of experiment 
The maze has a size of 16 rows by 16 columns for a total of 256 blocks. There are 4 types 
of blocks, namely target, trap, obstacle and ordinary pass. The fixed start position is 
treated as a normal pass block. The agent gets a reward of 1 when it reaches the target, 
but if the agent falls into a trap, it will get a reward of -1. Both conditions will lead to the 
finish of current episode, and the agent will have to return to the start position and restart 
its exploration. Note that the agent can keep the exploration information from all the 
previous episodes. There are 975 mazes in the experiment, and they differ from each 
other in terms of the locations of the obstacle blocks. In our experiment, there are 46 
obstacles for each of the 975 mazes. 

 
Figure 4: Maze settings 

For each maze, the initial position of the agent is at the upper left corner (1,1), and the 
target position is set to be (9,9). There are 4 fixed traps, located at (4,4), (12,4), (4,12) 
and (12,12). Tab. 3 summarizes the main characteristics of the maze. Fig. 4 illustrates a 
sample of mazes, and their respective reference numbers are 25, 36, 159, 256, 377, 512, 
666 and 908. In these mazes, the red circle represents the agent, gray blocks represent 
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obstacles, black blocks represent the traps, yellow block represents the target, and the rest 
are normal pass blocks. 

Table 3: Maze design parameter 

Parameter Value 
Map Size 16 × 16 
Map Amount 975 
Target Amount 1 
Trap Amount 4 
Rate of Obstacles 0.18 
Total number of Episodes 100 

The proposed algorithm, referred as SFW, is compared against the classical Q-learning 
algorithm (ql) and an improved Q-learning algorithm (qlm).Tab. 4 tabulates the main 
parameter values for ql. The main improvement of qlm over ql is that qlm can remember 
the locations of the obstacles and traps found during exploration, and avoid them during 
the subsequent explorations. Even if the next action is randomly selected based on some 
probability, qlm can filter out the obstacles and traps.  

Table 4: Q-learning parameter 

Parameter Value 
Learning Rate(𝛼) 0.01 
Discount (𝛾) 0.9 
ϵ − greedy 0.9 

5.2 Performance comparison with Q-learning algorithms 
5.2.1 Single maze comparison 
All three algorithms are compared in terms of number of steps per episode when they are 
applied to solve all the mazes, and the results from mazes 25 and 908 are plotted in Fig. 5 
and Fig. 6, respectively. In solving both mazes, SFW is found to converge more quickly 
than the other two algorithms, and it requires less number of steps during the exploratory 
process. As expected, qlm’s performance is better than that of classical ql. 
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Figure 5: The steps amount in the #25 maze per episode comparison. The X axis is the 
episode number, and the Y axis represents the number of steps in each episode 

 
Figure 6: The number of steps in the #908 maze per episode 

All three algorithms are compared in terms of average exploration efficiency of each step 
in every episode when they are applied to solve all the mazes, and again, the results from 
mazes 25 and 908 are plotted in Fig. 7 and Fig. 8, respectively. One can see that SFW is 
more efficient in exploration and converges faster than the other two algorithms. 



 
 
 
A Graph-based Reinforcement Learning Method with Converged State                        267 

 
Figure 7: Average exploration efficiency while solving maze 25 

 
Figure 8: Average explore efficiency while solving maze 908 

5.2.2 Statistical performance comparisons for all mazes 
The experiments in this section include all 975 mazes. The X axis of each figure 
corresponds to the maze number. 
The comparison of convergence speed of every maze is shown in the Fig. 9 and Fig. 10, 
where ql and qlm are compared with SFW separately. The Y axis of each figure is the 
number of episodes when the agent for the first time arrives at convergence. In both 
figures, one can see that the proposed algorithm converge more quickly than the other 
two algorithms, especially true when there are a large number of episodes. Actually, the 
SFW alogirthm converges after no more than 20 episodes, while the other two algorithms 
need as many as 100+ episodes. 
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Figure 9: Convergence speed comparison: ql and SFW 

 
Figure 10: Convergence speed comparison: qlm and SFW 

The lengths of the finally discovered paths by are reported in Fig. 11 and Fig. 12. One 
can see that the paths found by SFW have shorter lengths, in the range of 15 to 20, while 
the paths found by the other two algorithms are much longer. In quite a few cases, the 
paths found by ql and qlm are twice longer than those found by SFW. 
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Figure 11: Steps length of convergence comparison: ql and SFW 

 
Figure 12: Steps length of convergence steps comparison: qlm and SFW 

The exploration efficiency obtained from solving every maze is shown in Fig. 13. One 
can see SFW outperforms qlm in this regard, and both algorithms are significantly better 
than ql. The X axis represents the maze number. The Y axis is the ratio of the total 
number of explored states to the total number of steps when the agent for the first time 
arrives at convergence. 
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Figure 13: Explore efficiency comparison 

5.3 The maze in the dynamic environment 
Changes of environment are categorized as obstacle change and target position change. 
We will in this subsection examine how these changes can affect the performance of the 
three algorithms. 

5.3.1 Obstacle change 
Take Maze #8 as an example, the changes of the obstacles are tabulated in Tab. 5. 

Table 5: Dynamic obstacle, Maze #8 

Change  
episode 

Change  
state 

Convergence  
episode # 

The corresponding 
figure 

0 Init 16 Fig.14(a) and 14(c) 
18 (2,8) 18 Fig. 14(d) 
24 (3,6), (3,7) 25 Fig. 14(e) and 14(f) 
29 (9,8), (10,8) 34 Fig. 14(g) and 

14(h) 

Fig. 14 shows the snapshot of exploration, convergence, environment change and 
adaptation. The maze has undergone three major changes that occur to the locations of 
the obstacles in the experiments. The green squares in Fig. 14 represent the members of 
SE, and the purple squares represent dynamically increased obstacles that are located 
within the current convergent path. 
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Figure 14: Dynamic obstacles, Maze #8 

5.3.2 Changes of target positions 
Tab. 6 summarizes the changes that occur to maze 243. Other mazes have gone through 
similar changes. One can see that the target position is changed once, relocated from the 
center of the maze to its lower left corner. 
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Table 6: Dynamic target, Maze #243 

Change  
episode 

Change  
state 

Convergence  
episode # 

The corresponding 
figure 

0 Init 14 Fig. 15(a) and 15(c) 
18 (9,9) ⇒ (1,16) 21 Fig. 15(d) and 15(e) 

 

 
Figure 15: Dynamic target, Maze #243 

The results of exploration, convergence due to target position changes and re-
convergence are shown in Fig. 15. In episode 0, the reward is claimed at block (9, 9) (Fig. 
15(a)). The exploration converges in episode 14 (Fig. 15(c)). In episode 18 where move 
the reward is moved to the block (1, 16) (Fig. 15(d)), the agent finds the right path to the 
target, after three episodes (Fig. 15(e)). 

5.4 Computation efficiency 
All three algorithms are compared for their respective computation efficiency under the 
same computation platform. The hardware used in the experiments has a Intel(R) 
Core(TM) i5-3210M CPU running at 2.50 GHz, and a RAM size of 8 GB. The operating 
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system is Ubuntu 64bits. The tools used to test CPU time and memory occupation are 
line_profiler and memory_profiler, respectively.  
The average CPU time reported in Tab. 7 is the average time of solving all 975 mazes. 
The basic memory usage in Tab. 7 refers to the stable memory usage collected from 
solving select 62 mazes. One can see that SFW requires more memory space than the 
other two algorithms; the memory usage for both ql and qlm is comparable. The peak 
memory usage of SFW is also higher than that of ql or qlm.  

Table 7: Algorithm complexity comparison 

Parameter ql qlm SFW 
Average CPU Time (s) 0.5382 0.8472 4.9307 
Basic Memory usage (MB) 60.434 60.352 70.148 
Peak Memory usage (MB) 61.024 61.500 74.135 

6 Conclusion 
In this paper, a new graph-based method was presented for reinforcement learning. 
Unlike classical Q-learning algorithm and improved Q-learning algorithm, the proposed 
algorithm does not struggle with the exploration vs. exploitation tradeoff, as it was 
proved that the two tasks of exploration and exploitation actually converge in the 
decision-making process. As so, the proposed graph-based algorithm finds the shortest 
path during exploration, which gives higher efficiency and faster convergence than the Q-
learning algorithm and its variant. Another big advantage of the proposed algorithm is 
that it can be applied to the dynamic environment where the value-oriented algorithm 
fails to work. The efficiency and convergence performance of the proposed algorithm 
comes at a cost of increased computational complexity. Future study will be focused to 
confine the computational complexity and particularly memory usage. 
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