
Civil & Environmental Engineering and
Construction Faculty Publications

Civil & Environmental Engineering and
Construction Engineering

1-1-2019

A Graph-Based Reinforcement Learning Method with Converged A Graph-Based Reinforcement Learning Method with Converged

State Exploration and Exploitation State Exploration and Exploitation

Han Li
Wenzhou University

Tianding Chen
Minnan Normal University, chentianding@163.com

Hualiang Teng
University of Nevada, Las Vegas, hualiang.teng@unlv.edu

Yingtao Jiang
University of Nevada, Las Vegas, yingtao.jiang@unlv.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/fac_articles

 Part of the Computer Engineering Commons

Repository Citation Repository Citation
Li, H., Chen, T., Teng, H., Jiang, Y. (2019). A Graph-Based Reinforcement Learning Method with Converged
State Exploration and Exploitation. Computer Modeling in Engineering and Sciences, 118(2), 253-274.
Tech Science Press.
http://dx.doi.org/10.31614/cmes.2019.05807

This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Article has been accepted for inclusion in Civil & Environmental Engineering and Construction Faculty
Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Nevada, Las Vegas Repository

https://core.ac.uk/display/215450742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/fac_articles
https://digitalscholarship.unlv.edu/fac_articles
https://digitalscholarship.unlv.edu/cee
https://digitalscholarship.unlv.edu/cee
https://digitalscholarship.unlv.edu/fac_articles?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalscholarship.unlv.edu%2Ffac_articles%2F582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.31614/cmes.2019.05807
mailto:digitalscholarship@unlv.edu

Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

CMES. doi:10.31614/cmes.2019.05807 www.techscience.com/cmes

A Graph-Based Reinforcement Learning Method with Converged
State Exploration and Exploitation

Han Li1, Tianding Chen2, *, Hualiang Teng3 and Yingtao Jiang4

Abstract: In any classical value-based reinforcement learning method, an agent, despite
of its continuous interactions with the environment, is yet unable to quickly generate a
complete and independent description of the entire environment, leaving the learning
method to struggle with a difficult dilemma of choosing between the two tasks, namely
exploration and exploitation. This problem becomes more pronounced when the agent
has to deal with a dynamic environment, of which the configuration and/or parameters
are constantly changing. In this paper, this problem is approached by first mapping a
reinforcement learning scheme to a directed graph, and the set that contains all the states
already explored shall continue to be exploited in the context of such a graph. We have
proved that the two tasks of exploration and exploitation eventually converge in the
decision-making process, and thus, there is no need to face the exploration vs.
exploitation tradeoff as all the existing reinforcement learning methods do. Rather this
observation indicates that a reinforcement learning scheme is essentially the same as
searching for the shortest path in a dynamic environment, which is readily tackled by a
modified Floyd-Warshall algorithm as proposed in the paper. The experimental results
have confirmed that the proposed graph-based reinforcement learning algorithm has
significantly higher performance than both standard Q-learning algorithm and improved
Q-learning algorithm in solving mazes, rendering it an algorithm of choice in applications
involving dynamic environments.

Keywords: Reinforcement learning, graph, exploration and exploitation, maze.

1 Introduction
Reinforcement Learning (RL) has found its great use in a lot of practical applications,
ranging from problems in mobile robot [Mataric (1997); Smart and Kaelbling (2002);

1 College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou,

Zhejiang, 325035, China.
2 School of Physics and Information Engineering, Minnan Normal University, Zhangzhou, Fujian, 363000,

China.
3 Department of Civil and Environmental Engineering, Howard R. Hughes College of Engineering,

University of Nevada, Las Vegas, NV, 454015, USA.
4 Department of Electrical and Computer Engineering, Howard R. Hughes College of Engineering,

University of Nevada, Las Vegas, NV, 454015, USA.
* Corresponding Author: Tianding Chen. Email: chentianding@163.com.

254 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

Huang, Cao and Guo (2005)], adaptive control [Sutton, Barto and Williams (1992);
Lewis, Varbie and Vamvoudakis (2012); Lewis and Varbie (2009)], AI-backed chess
playing [Silver, Hubert, Schrittwieser et al. (2017); Silver, Schrittwieser, Simonyan et al.
(2017); Silver, Huang, Maddison et al. (2016)], among many others. The idea behind
reinforcement learning, as illustrated in Fig. 1, is that an agent learns from the
environment by interacting with it and receives positive or negative rewards for
performing calculated actions, and the cycle is repeated. The key issue of the whole
process is to learn a way of controlling the system so as to maximize the total award.
When the agent begins to sense and learn a completely or partially unknown environment,
it involves in two distinct tasks: exploration which attempts to collect as much
information about the environment as possible, and exploitation which attempts to
receive positive rewards as quickly as possible.

Figure 1: In reinforcement learning, the agent observes the environment, takes an action
to interact with the environment, updates its own state and receives reward

There is a dilemma of choosing between the two tasks of exploration and exploitation,
though. Too much exploration will adversely influence the efficiency and convergence of
the learning algorithm, while putting too much emphasis on exploitation will increase the
possibility of falling into a locally optimal solution. The existing RL algorithms all
attempt to balance out these two tasks in their learning cycles (Fig. 1), but these is no
guarantee that the best result can always be obtained.
Besides the exploration and exploitation dilemma, the RL algorithms have to employ
value distributions that inexplicitly assume that environment is static (i.e., no change), or
it changes very slowly and/or insignificantly. However, in many real applications, the
environment rarely stays unchanged. More than likely, the environment that can be
described in terms of states (Fig. 1) changes over the course of exploration. In this case,
value distribution has nothing to do with the problem at hand, and all the information
obtained from the previous exploration efforts become less, or totally irrelevant.
To effectively solve the aforementioned problems in reinforcement learning, we herein
present a new algorithm based on the partitioning of the states set and search of the
shortest path in a directed graph that represents a RL method. We have formally proved
and experimentally verified that both exploration and exploitation in reinforcement
learning actually converge at the end of the decision-making process, and thus, the
learning process does not need to face the exploration/exploration dilemma as other
existing reinforcement learning methods would do. This observation indicates that a
reinforcement learning scheme is essentially the same as searching for the shortest path in

A Graph-based Reinforcement Learning Method with Converged State 255

a dynamic environment, which is readily tackled by a modified Floyd-Warshall algorithm
as proposed in the paper. The experiment that applies the proposed algorithm to solve
mazes confirm better performance of the new algorithm, particularly its effectiveness in
addressing issues pertaining to a dynamic environment.

2 Preliminaries and background
In this section, we will first survey the basic structure of reinforcement learning (RL)
algorithms, particularly value-oriented method of RL, and formally define the exploration
vs. exploitation tradeoff in RL. In the literature, RL is shown to be mapped to various
graph representations, and these methods are briefly described in the section as well.
With graph representations, RL can benefit from rich results in graph algorithms, and we
thereby finish this section by reviewing algorithms that search for the shortest path in a
graph, as they are related to this paper.

2.1 Value-oriented method for the exploration-exploitation tradeoff in RL
Most RL problems can be formalized using Markov Decision Processes (MDPs), and
there are a few key elements in RL as defined below.
1. Agent: An agent takes actions.
2. Environment: The physical world through which the agent operates.
3. State: A state is a concrete and immediate situation in which the agent finds itself. In

this paper, we denote 𝑠𝑡𝑡𝑖 as the state of the agent at time instance i, and set S
contains all the states that the agent can operate on. That is, 𝑠𝑡𝑡𝑖 ∈ 𝑆.

4. Action: agents choose among a list of possible actions. Denote 𝑎𝑖 as the action that
agent might perform at time instance 𝑖. 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 is defined as the set of all possible
moves of the agent can make, i.e., 𝑎𝑖 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠.

5. Reward: A reward is the feedback that is used to measure the success or failure of an
agent’s action. Here a reward at time instance 𝑡 is defined as 𝑅𝑡. Actions may affect
both the immediate reward and, through the next situation, all the subsequent
rewards [Sutton and Barto (2017)]

6. Exploitation: a task that makes the best decision given all the current information.
7. Exploration: a task that gathers more information to be used for making the best

decision in the future.
8. An episode: the behavior process cycle of the agent from the beginning of the

exploration to the beginning of the next exploration. When the interaction between
the agent and the environment breaks naturally into subsequences, which are
referred as episodes. Each episode ends in a special state called the terminal state,
followed by a reset to a standard starting state or to a sample from a standard
distribution of starting states [Sutton and Barto (2017)].

In RL, the exploration-exploitation tradeoff refers to a decision making process that
chooses between exploration and exploitation. Value-oriented RL methods have to deal
with such exploration-exploitation tradeoff through the value distribution as defined by
the value function or a probability that decides the chain of actions that lead to the target

256 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

state all the way from the start state through a series of awards. A decision chain refers to
a series of decision-making steps taken by an agent.
In order to strike a balance between exploration and exploitation, there are two main
decision methods that can be followed, the ϵ − greedy and softmax.
In ϵ − greedy method, the action is selected by, one has

𝑎𝑠𝑡𝑡 = � 𝑎𝑠𝑡𝑡∗ 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑖𝑦 1 − 𝜖
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖 (1)

where 𝑎𝑠𝑡𝑡∗ is the action in which of the value function assumes the highest value:
𝑎𝑠𝑡𝑡∗ = argmax𝑎∈𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑄(𝑠𝑡𝑡,𝑎) (2)
where 𝑄(𝑠𝑡𝑡, 𝑎) is action-value function which evaluates each possible action while in
the current state. One drawback of ϵ − greedy action selection is that when it explores,
all the possible actions are given the equal opportunity, as indicated in Eq. (1). In a
simple term, this method is as likely to choose the worst-appearing action as it is to
choose the next-to-best action. This gives rise to the so-called softmax method that can
vary the action probabilities through a graded function below,

π(𝑎|𝑠𝑡𝑡) = 𝑒
𝑄(𝑠𝑡𝑡,𝑎)

𝜏

∑ 𝑒
𝑄(𝑠𝑡𝑡,𝑎′)

𝜏𝑎′∈𝐴𝑐𝑡𝑖𝑜𝑛𝑠

 (3)

where π(𝑎|𝑠𝑡𝑡) is the probability policy to choose an action from the specific state 𝑠𝑡𝑡,
and τ is a “computational” temperature, and is an action-value function that evaluates
each possible action in the current state.
The problem of value-oriented method is due to its weak ability to eliminate exploration
blindness resulting from a large number of repeated explored states introduced by the
value distribution structure. The stochastic factors that are added to help the search
process jump out of the loops and balance exploration and exploitation actually come at
the expense of more blindness of exploration.

2.2 RL over graphs
A RL can be represented as a directed graph, G<V, E>, where a vertex, vi∈V(G),
corresponds to a state 𝑠𝑡𝑡𝑖 in reinforcement learning and an edge, eij∈E(G), connects two
vertices (two states 𝑠𝑡𝑡𝑖 𝑎𝑛𝑑 𝑠𝑡𝑡𝑗) with a decision action 𝑎𝑖in reinforcement learning. In
this graph, a path can be regarded as decision sequences in reinforcement learning.
In the literature, many RL methods are related to their graph representations. In
PartiGame Algorithm [Moore (1994)], the environment of RL is divided into cells
modeled by kd-tree, and in each cell, the actions available consist of aiming at the
neighbor cells [Kaelbling, Littman, Moore (1996)]. In Dayan et al. [Dayan and Hinton
(1993)], speedup of reinforcement learning is achieved by creating a Q-learning
managerial hierarchy in which high-level managers learn how to set tasks for their lower
level managers. The hierarchical Q-learning algorithm in Dietterich [Dietterich (1998)]
proves its convergence and shows experimentally that it can learn much faster than
ordinary "flat" Q-learning. None of these methods, however, can solve the root problem
concerning the dilemma of exploration and exploitation.

A Graph-based Reinforcement Learning Method with Converged State 257

2.3 Floyd-Warshall algorithm
Denote 𝑆𝑆𝐴(𝐺, 𝑒𝑖 , 𝑒𝑗) as a shortest path search algorithm that is applied to G from vertice
𝑒𝑖 to vertice 𝑒𝑗 that represents a RL. The classical shortest path algorithms like Dijkstra
[Dijkstra (1959)] and A* [Hart, Nilsson, Raphael (1968)] are single starting point
algorithms for the path-finding. The Floyd-Warshall algorithm [Floyd (1962)] (FW),
which is pursued to use in this study, provides the shortest path between any two vertices
in specified graph and it is found to be adaptive to the change of the graph.
In the standard Floyd-Warshall algorithm, two matrices (DIST and NEXT) are used to
express the information of all the shortest path in the graph. The matrix DIST records the
shortest path length between two vertices. The matrix NEXT contains a name of the
intermediate vertex through which the two vertices are connected through the shortest
path. Because of the optimal substructure property of the shortest path, no matter how
many intermediate vertices the shortest path passes through, simply recording one of the
intermediate vertices is sufficient to express the entire shortest path.

3 Convergence of exploration and exploitation
In this section, we first define the completely explored graph, which serves as the
foundation for a graph-based iterative framework for reinforcement learning. Under this
framework, the acquired knowledge from the RL’s exploration task can be recorded by
the graph, and the shortest path search can then be conducted to determine the next
decision chain. This new approach is able to well track the graph changes that are caused
by exploration and sometimes by the changing environment. In this section, we shall
prove that with this framework involving the shortest path search, the exploration
actually converges to exploitation. In a simple word, exploration will find the shortest
path to reach the same reward as exploitation does.

3.1 Completely explored graph
Definition 1 A Completely Explored State is a state of which all its possible successor
states have already been explored. If one of a state’s successor states has been explored
and at least one of its successor states has not yet been explored, the state is called a
Partially Explored State.
Definition 2 If the vertex set V in connected graph G<V,E> includes the start states of
episodes and all these states have been completely explored, and the edge set E represents
all the actions that need to be taken to connect all the different states, graph G is called a
Completely Explored Graph (CEG).
Fig. 2 shows an example of a CEG where each state(𝑠𝑡𝑡𝑥𝑥) is linked with up to 4 possible
actions: 𝑎0,𝑎1,𝑎2,𝑎3. There are some explored edges which are omitted for simplicity,
such as action 𝑎1 for (𝑠𝑡𝑡20) and (𝑠𝑡𝑡01)𝑤𝑖𝑡ℎ 𝑎0 ; they point to nonexistent state
transitions.

258 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

Figure 2: An example of a completely explored graph. Nodes represent states and
directed edges between nodes represent actions. The shadowed area that includes all the
State nodes (colored yellow) and all the associated directed edges represents the CEG.
The unfilled nodes outside the shadowed area represent incompletely explored states,
even though they connect to the CEG

Suppose the complete actions set 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = {𝑎𝑖: 𝑎0, … ,𝑎𝑛} is known. State 𝑠𝑡𝑡𝑖 is a
completely explored state if any reachable next state of 𝑠𝑡𝑡𝑖, denoted as 𝑠𝑡𝑡𝑖+1 ,by taking
a possible action 𝑎𝑖 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 , is traversed. Let GU<V, E> represent a graph that
contains all the traversed states, including both the completely and the partially explored
states. We can define the predecessor state set 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) as
𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) = {𝑠: (𝑠 ∈ 𝑆𝐸) ∧ ({𝑠, 𝑠𝑡𝑡} ∈ 𝐸(𝐺𝑈))} and the successor state set
𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) is defined as
𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) = {𝑠: 𝑠 ∈ 𝑆𝐸 ∧ {𝑠𝑡𝑡, 𝑠} ∈ 𝐸(𝐺𝑈)} where SE denotes the set V(CEG).
If we denote an environment feedback function by Env, then for a given action 𝑎𝑘, the
next state 𝑠𝑖+1can be determined as 𝑠𝑖+1 = 𝐸𝑛𝑣(𝑠𝑖,𝑎𝑘).

3.2 Exploration converges to exploitation
From CEG, we can prove that exploration converges to exploitation. Here 𝑠𝑡𝑡𝑟𝑤𝑑 is
denoted as a reward state.
Lemma 1. Suppose that exploration of each episode starts with state 𝑠𝑡𝑡0, and ends in
reward state sttrwd after passing some intermediate states through a series of episodes.
Of all the possible episodes, one can see 𝑠𝑡𝑡𝑟𝑤𝑑 ∉ 𝑆𝐸.
Proof: Once the agent has landed in state sttrwd, the episode ends, so there will be no
further exploration originated from sttrwd. That is, the graph is a completely explored
graph and the states are completely explored states, according to definitions 1 and 2. Thus
 sttrwd cannot be a member of the SE set. (End of proof)
Define the envelope set of set SE as 𝑆𝐸𝐸 = {𝑠𝑡𝑡𝑖: (𝑠𝑡𝑡𝑖𝑆𝐸) ∧ (𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑖) ⊄ 𝑆𝐸)}
Corollary 1. For 𝑠𝑡𝑡𝑖 ∈ 𝑆𝐸𝐸 consists of members in SE, there exists at least one of the
successor states of stti does not belong to SE.

A Graph-based Reinforcement Learning Method with Converged State 259

Proof: It comes directly from the definition of SEE. (End of proof)
Corollary 2. If stti ∈ (Setpredecessor(sttrwd) ∩ SE) is in an exploring episode, then
irrespective of the explore strategies adopted in the future, stti will always be part of SEE.
Proof: From lemma 1, one can see that if 𝑠𝑡𝑡𝑖 ∈ 𝑆𝐸 has a successor state 𝑠𝑡𝑡𝑟𝑤𝑑 and it is
impossible for 𝑠𝑡𝑡𝑟𝑤𝑑 to be a member of SE. By definition of SEE it is known that 𝑠𝑡𝑡𝑖 is
always a member of 𝑆𝐸𝐸. (End of proof)
Definition 3. If SSA(CEG) plans a decision chain that eventually reaches 𝑠𝑡𝑡𝑟𝑤𝑑, and it
does not produce any change in either V(CEG) or E(CEG), this condition is referred as
Exploration Convergence.
Corollary 3. Once the exploration converges, the planned decision chain from SSA(CEG)
remains the same in the next exploration episode.
Proof: At the beginning of each episode, a CEG is constructed as needed to explore the
new states. If the CEG keeps unchanged at the end of the current episode, the next
episode will produce the exactly same path. At this point, the algorithm converges as it
satisfies the condition set by Definition 3. (End of proof)
Theorem 1. Assume there are a finite number of states and a SSA(CEG) is able to find the
shortest path in CEG, exploration becomes finding a path from the start state stt0 to the
sttrwd. In other words, exploration converges to exploitation.
Proof:
i. During exploration, state 𝑠𝑡𝑡0 can reach the SEE through SSA(CEG) . That is, one

needs to find the shortest path, path k, among all the paths, such that:
𝑘 = argmin

𝑗
{𝐿(𝑠𝑡𝑡0, 𝑠𝑡𝑡𝑗): 𝑠𝑡𝑡𝑗 ∈ 𝑆𝐸𝐸)} (4)

where 𝐿(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗) is the length of the shortest path between state 𝑠𝑡𝑡𝑖 and state 𝑠𝑡𝑡𝑗.
If 𝑠𝑡𝑡𝑘 ∈ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑) , then (𝑠𝑡𝑡0, … , 𝑠𝑡𝑡𝑘, … , 𝑠𝑡𝑡𝑟𝑤𝑑) from SSA(CEG)
algorithm marks the shortest path from 𝑠𝑡𝑡0 to 𝑠𝑡𝑡𝑟𝑤𝑑. In this case, the conditions
concerning exploration convergence (defined in Definition 3) are met, and the
exploration converges to the exploitation.

ii. If 𝑠𝑡𝑡𝑘 ∉ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑) , CEG continues to evolve as exploration
progresses.

iii. As exploration continues, new members are added into SEE and they replace the old
ones, extending the shortest path, and according to Corollary 2, any new member
𝑠𝑡𝑡𝑖 ∈ (𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑) ∩ 𝑆𝐸) will always be part of SEE.

iv. When exploration ends, 𝑠𝑡𝑡𝑘 that satisfies Eq. (4) will eventually meet the condition:
𝑠𝑡𝑡𝑘 ∈ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑) .

v. The agent is bounded to pass the state 𝑠𝑡𝑡𝑘 associated with the shortest path in the
𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑 . If not, there would have a different
𝑠𝑡𝑡𝑘𝑠 ∈ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡𝑟𝑤𝑑) from 𝑠𝑡𝑡𝑘 that otherwise makes 𝐿(𝑠𝑡𝑡0, 𝑠𝑡𝑡𝑘𝑠) <
𝐿(𝑠𝑡𝑡0, 𝑠𝑡𝑡𝑘). If 𝑠𝑡𝑡𝑘𝑠 ∈ 𝑆𝐸𝐸 , it’s impossible for SSA(CEG) to choose 𝑠𝑡𝑡𝑘 as a
state in the shortest path. If 𝑠𝑡𝑡𝑘𝑠 ∉ 𝑆𝐸𝐸 , there must be a state 𝑠𝑡𝑡𝑚 ∈ 𝑆𝐸𝐸 in

260 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

𝑠𝑡𝑡𝑘𝑠’s predecessor chain that makes 𝐿(𝑠𝑡𝑡0, 𝑠𝑡𝑡𝑚) < 𝐿(𝑠𝑡𝑡0, 𝑠𝑡𝑡𝑘). The algorithm
does not converge during this episode.

vi. Putting all things together, one can see that exploration by SSA(CEG) must
converge to the shortest path from start state 𝑠𝑡𝑡0 to 𝑠𝑡𝑡𝑟𝑤𝑑.

As indicated in corollary 3, once the algorithm has found the shortest path from 𝑠𝑡𝑡0 to
𝑠𝑡𝑡𝑟𝑤𝑑, the path will be repeated with no change in the following episodes. In this case,
the exploration is readily to be halted. (End of proof).

4 Algorithm implementation
Based on Theorem 1 described in the previous section, we propose a framework for RL
that does not need to concern about the dilemma of exploration and exploitation. There
are two major components in the framework, namely CEG and Incompletely explored
states, and there are two iterative steps as illustrated in Fig. 3:
i. Based on the current CEG, an action decision, in the form of a single decision or a

chain of multiple decisions, will be made to guide the next exploration.
ii. Update the CEG with the new knowledge acquired from the latest exploration. In a

static or nearly static environment, exploration will help continue to grow CEG,
while in a changing environment, CEG members can be added or deleted according
to the exploration result. Note that when the CEG is updated, nodes or edges can be
added or deleted from the graph. In a static environment, as the exploration
progresses, the number of nodes and edges tends to increase, while in a dynamic
environment, the number of nodes and edges may increase or decrease.

Figure 3: Graph iterative frame

4.1 Shortest path search in dynamic environment
The standard Floyd-Warshall Algorithm calculates matrices DIST and NEXT in batch
divided by the length of short path (the number of relay vertices here) for each vertex pair.
For constantly changing of vertices and graph structure that engages in exploration all the
time, a more efficient method is needed and thus proposed in this section.
During exploration in reinforcement learning, the completely explored states are
discovered in sequence, and subsequently, they are added to the CEG, after which the

A Graph-based Reinforcement Learning Method with Converged State 261

corresponding edges are also added. In addition, if the agent wants to adapt to the
dynamic environment, the removal of vertex must also be taken into account. In this
section, a modified algorithm Floyd-Warshall algorithm (SFW) is presented, which is
able to search for the shortest path in a graph that represents a dynamic environment. In a
simple term, we present SSA(CEG) for SFW.
In SFW, each time when a new vertex is added, it is not only to add the shortest path
associated with the new vertex directly tied to the two matrices as defined in Floyd-
Warshall, but also to compare the length of the new path introduced by the new vertex
against that of the shortest path obtained from the prior iteration. These operations may
result in the update of the two matrices. The major steps of SFW are summarized follow.
If current state stt is to be added to set SE, do the following steps:
i. Add and initialize a new row in matrices DIST and NEXT.
ii. Add and initialize a new column in matrices DIST and NEXT.
iii. Update the new column by computing the shortest paths from all the vertices to this

new vertex.
iv. Update the new row by computing the shortest paths from the new vertex to all the

other vertices.
v. Update matrices DIST and NEXT by comparing the length of each vertices pair

between the old shortest path recorded in the matrices and that of the new paths
with the new vertex added.

Denote 𝐿𝑠𝑒𝑡(𝑠𝑡𝑡𝑖, 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)) as the length of the shortest path from arbitrary
state 𝑠𝑡𝑡𝑖 to 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡) as defined in Section 2:
𝐿𝑠𝑒𝑡(𝑠𝑡𝑡𝑖, 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)) = min

𝑗
{𝐿(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗): 𝑠𝑡𝑡𝑗 ∈ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)} (5)

Matrices DIST and NEXT are updated by performing the following operations:
𝐷𝐼𝑆𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡) = 𝐿𝑠𝑒𝑡(𝑠𝑡𝑡𝑖, 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)) + 1 (6)
𝑁𝐸𝑋𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡) = 𝑠𝑡𝑡𝑗𝑚𝑖𝑛 (7)
where 𝑗𝑚𝑖𝑛 is the the result of min

𝑗
{𝐿(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗): 𝑠𝑡𝑡𝑗 ∈ 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)} as given in

Eq. (5).
In the same token, one can update the stt’s predecessor states set 𝑆𝑒𝑡𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)
with stt’s successor states set 𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡). That is,
𝐿𝑠𝑒𝑡(𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡), 𝑠𝑡𝑡𝑖) = min

𝑗
{𝐿(𝑠𝑡𝑡𝑗, 𝑠𝑡𝑡𝑖): 𝑠𝑡𝑡𝑗 ∈ 𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡)} (8)

𝐷𝐼𝑆𝑇(𝑠𝑡𝑡, 𝑠𝑡𝑡𝑖) = 𝐿𝑠𝑒𝑡(𝑆𝑒𝑡𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑡𝑡), 𝑠𝑡𝑡𝑖) + 1 (9)
𝑁𝐸𝑋𝑇(𝑠𝑡𝑡, 𝑠𝑡𝑡𝑖) = 𝑠𝑡𝑡𝑗𝑚𝑖𝑛 (10)
Correspondingly, matrix DIST in this case can be updated by
𝐷𝐼𝑆𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗) ← 𝑚𝑖𝑛{𝐷𝐼𝑆𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗),𝐷𝐼𝑆𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡) + 𝐷𝐼𝑆𝑇(𝑠𝑡𝑡, 𝑠𝑡𝑡𝑗)} (11)
If a path that passes through state stt is shorter than the previously obtained shortest path,
then matrix NEXT is updated by:
𝑁𝐸𝑋𝑇(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗) = 𝑠𝑡𝑡 (12)

262 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

4.2 Guided exploration
As proved in Section 3, exploration finally converges to the shortest path that connects
with the target state. Since exploration and exploitation basically produce the same result,
our algorithm only needs to consider one single task, exploration.
The steps of how to guide exploration is listed in Tab. 1.

Table 1: Exploration algorithm

01 set the current state to stt, if ∃𝑎𝑖 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 ⇒ 𝑠𝑡𝑡𝑟𝑤𝑑 ≡ 𝐸𝑛𝑣(𝑠𝑡𝑡,𝑎𝑖) :
02 return {𝑎𝑖}
03 if 𝑠𝑡𝑡 ∉ 𝑆𝐸 :
04 𝐴𝑠𝑢𝑥𝑝𝑙(𝑠𝑡𝑡) = {𝑎:𝐸𝑛𝑣(𝑠𝑡𝑡,𝑎)𝑖𝑠𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑, 𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠}
05 if 𝐴𝑠𝑢𝑥𝑝𝑙(𝑠𝑡𝑡) ≠ ∅:
06 choose {𝑎𝑘} randomly from 𝐴𝑠𝑢𝑥𝑝𝑙(𝑠𝑡𝑡)
07 else:
08 choose {𝑎𝑘} randomly from Actions
09 else:
10 if 𝑠𝑡𝑡 ∈ SEE:
11 𝐴𝑠𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑠𝑡𝑡) = {𝑎:𝐸𝑛𝑣(𝑠𝑡𝑡,𝑎) ∉ 𝑆𝐸,𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠}
12 choose {𝑎𝑘} randomly from 𝐴𝑠𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑠𝑡𝑡)
13 else:
14 get the nearest edge state 𝑠𝑡𝑡𝑒𝑛 by SFW from current state 𝑠𝑡𝑡
15 build the shortest actions chain 𝐴𝑠𝑐ℎ𝑎𝑖𝑛 by SFW from 𝑠𝑡𝑡 to 𝑠𝑡𝑡𝑒𝑛
16 get 𝐴𝑠𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑠𝑡𝑡𝑒𝑛)
17 choose 𝑎𝑘 randomly from 𝐴𝑠𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑠𝑡𝑡𝑒𝑛)
18 𝐴𝑠𝑐ℎ𝑎𝑖𝑛 ← 𝐴𝑠𝑐ℎ𝑎𝑖𝑛 ∪ {𝑎𝑘 }
19 return 𝐴𝑠𝑐ℎ𝑎𝑖𝑛
20 return {𝑎𝑘}

There are several major steps in the algorithm listed in Tab. 1:
Step 1: If 𝑠𝑡𝑡 is a neighbor of 𝑠𝑡𝑡𝑟𝑤𝑑 , the agent can take action 𝑎𝑖 directly, which
transitions the state to 𝑠𝑡𝑡𝑟𝑤𝑑.
Step 2: If 𝑠𝑡𝑡 is not a member of SE, a decision is randomly made by calling 𝐴𝑠𝑢𝑥𝑝𝑙(𝑠𝑡𝑡).
Step 3: If 𝑠𝑡𝑡 is an edge state of SE, a decision is randomly made by calling
𝐴𝑠𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝑠𝑡𝑡).
Step 4: If 𝑠𝑡𝑡 is a member of 𝑆𝐸 but not a member of 𝑆𝐸𝐸, the shortest path is obtained
using SFW. This path represents the decision chain by which the agent can exit 𝑆𝐸 in the
most efficient way.

A Graph-based Reinforcement Learning Method with Converged State 263

4.3 Update of the CEG
Before exploration starts, SE is empty, the agent has no a priori knowledge of the
environment. Denote 𝑠𝑡𝑡0 as the start state of each exploration episode. Once exploration
begins, from the initial state 𝑠𝑡𝑡0, for each successor state 𝑠𝑡𝑡𝑖, an action 𝑎𝑘 is selected
from the actions set according to SFW, after which the agent moves to the next state
𝑠𝑡𝑡𝑖+1 by taking action 𝑎𝑘 obtained from the feedback of the environment.
Exploration gets repeated. Whenever a new state is found, it will be added to the graph,
GU, immediately. When the current state is completely explored, it will be added to set
SE, sometimes to the SEE simultaneously. This algorithm is listed in Tab. 2. One can see
that when a new completely explored state, corresponding to a vertex in the graph can be
added to the CEG, it must generate some action decision reflected as edge changes in the
graph. The new SEE by definition can be readily derived from the updated CEG.

Table 2: Algorithm: update CEG

01 Initialize: 𝑆𝐸 = ∅
02 Repeat:
03 Agent takes action 𝑎𝑘 in state 𝑠𝑡𝑡𝑖.
04 Get next state 𝑠𝑡𝑡𝑖+1 from environment.
05 if (𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑖+1) ∉ 𝐸(𝐺𝑈):
06 𝐸(𝐺𝑈) ← 𝐸(𝐺𝑈) ∪ {(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑖+1)}
07 if {(𝑠𝑡𝑡𝑖, 𝑠𝑡𝑡𝑗): 𝑠𝑡𝑡𝑗 = 𝐸𝑛𝑣(𝑠𝑡𝑡𝑖,𝑎𝑘),𝑎𝑘 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠} ⊂ 𝐸(𝐺𝑈):
08 if 𝑠𝑡𝑡𝑖 ∉ 𝑆𝐸:
09 𝑆𝐸 ← 𝑆𝐸 ∪ {𝑠𝑡𝑡𝑖}
10 update CEG
11 update SEE

4.4 Notes on the proposed algorithm
If the current state of the agent is in SE, the shortest path to the boundary of the explored
region is selected, as seen from the algorithm listed in Tab. 1. As far as the completely
explored states are concerned, our approach is able to traverse all of them as opposed to
explore them repeatedly. In the classical Q-learning algorithm, there are such a large
number of states that have to be traversed repeatedly. This subtle difference makes our
algorithm more computationally efficient, as evidenced by the experimental results
reported in the next section.
Compared to value-oriented algorithms, experiences in our approach obtained from
exploration history are recorded in GU and SE rather than derived from the value
distribution. The establishment of two matrices in SFW relies on GU and SE, while its
structure contains the shortest path of all the pairs of states in SE. Therefore, in the case
of changing environment, the modest modification of GU and SE and the updates of the
two matrices will make the proposed algorithm more adaptive to the new, changing
environment. This feature can be clearly seen from the result reported in 5.3.

264 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

5 Experimental results
The new graph-based algorithm detailed in Section 4 has been applied to solve a maze.
Maze solving has been widely adopted for the testing of reinforcement learning
algorithms. The agent in the experiment can be seen as a ground robot roaming in a maze,
and it can always sense its current position (state) as it moves around. At the beginning of
experiment, the agent knows nothing about the maze, and it needs to find the
reward(target) position and complete its journey by passing through a path from a
specified start position.

5.1 Setup of experiment
The maze has a size of 16 rows by 16 columns for a total of 256 blocks. There are 4 types
of blocks, namely target, trap, obstacle and ordinary pass. The fixed start position is
treated as a normal pass block. The agent gets a reward of 1 when it reaches the target,
but if the agent falls into a trap, it will get a reward of -1. Both conditions will lead to the
finish of current episode, and the agent will have to return to the start position and restart
its exploration. Note that the agent can keep the exploration information from all the
previous episodes. There are 975 mazes in the experiment, and they differ from each
other in terms of the locations of the obstacle blocks. In our experiment, there are 46
obstacles for each of the 975 mazes.

Figure 4: Maze settings

For each maze, the initial position of the agent is at the upper left corner (1,1), and the
target position is set to be (9,9). There are 4 fixed traps, located at (4,4), (12,4), (4,12)
and (12,12). Tab. 3 summarizes the main characteristics of the maze. Fig. 4 illustrates a
sample of mazes, and their respective reference numbers are 25, 36, 159, 256, 377, 512,
666 and 908. In these mazes, the red circle represents the agent, gray blocks represent

A Graph-based Reinforcement Learning Method with Converged State 265

obstacles, black blocks represent the traps, yellow block represents the target, and the rest
are normal pass blocks.

Table 3: Maze design parameter

Parameter Value
Map Size 16 × 16
Map Amount 975
Target Amount 1
Trap Amount 4
Rate of Obstacles 0.18
Total number of Episodes 100

The proposed algorithm, referred as SFW, is compared against the classical Q-learning
algorithm (ql) and an improved Q-learning algorithm (qlm).Tab. 4 tabulates the main
parameter values for ql. The main improvement of qlm over ql is that qlm can remember
the locations of the obstacles and traps found during exploration, and avoid them during
the subsequent explorations. Even if the next action is randomly selected based on some
probability, qlm can filter out the obstacles and traps.

Table 4: Q-learning parameter

Parameter Value
Learning Rate(𝛼) 0.01
Discount (𝛾) 0.9
ϵ − greedy 0.9

5.2 Performance comparison with Q-learning algorithms
5.2.1 Single maze comparison
All three algorithms are compared in terms of number of steps per episode when they are
applied to solve all the mazes, and the results from mazes 25 and 908 are plotted in Fig. 5
and Fig. 6, respectively. In solving both mazes, SFW is found to converge more quickly
than the other two algorithms, and it requires less number of steps during the exploratory
process. As expected, qlm’s performance is better than that of classical ql.

266 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

Figure 5: The steps amount in the #25 maze per episode comparison. The X axis is the
episode number, and the Y axis represents the number of steps in each episode

Figure 6: The number of steps in the #908 maze per episode

All three algorithms are compared in terms of average exploration efficiency of each step
in every episode when they are applied to solve all the mazes, and again, the results from
mazes 25 and 908 are plotted in Fig. 7 and Fig. 8, respectively. One can see that SFW is
more efficient in exploration and converges faster than the other two algorithms.

A Graph-based Reinforcement Learning Method with Converged State 267

Figure 7: Average exploration efficiency while solving maze 25

Figure 8: Average explore efficiency while solving maze 908

5.2.2 Statistical performance comparisons for all mazes
The experiments in this section include all 975 mazes. The X axis of each figure
corresponds to the maze number.
The comparison of convergence speed of every maze is shown in the Fig. 9 and Fig. 10,
where ql and qlm are compared with SFW separately. The Y axis of each figure is the
number of episodes when the agent for the first time arrives at convergence. In both
figures, one can see that the proposed algorithm converge more quickly than the other
two algorithms, especially true when there are a large number of episodes. Actually, the
SFW alogirthm converges after no more than 20 episodes, while the other two algorithms
need as many as 100+ episodes.

268 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

Figure 9: Convergence speed comparison: ql and SFW

Figure 10: Convergence speed comparison: qlm and SFW

The lengths of the finally discovered paths by are reported in Fig. 11 and Fig. 12. One
can see that the paths found by SFW have shorter lengths, in the range of 15 to 20, while
the paths found by the other two algorithms are much longer. In quite a few cases, the
paths found by ql and qlm are twice longer than those found by SFW.

A Graph-based Reinforcement Learning Method with Converged State 269

Figure 11: Steps length of convergence comparison: ql and SFW

Figure 12: Steps length of convergence steps comparison: qlm and SFW

The exploration efficiency obtained from solving every maze is shown in Fig. 13. One
can see SFW outperforms qlm in this regard, and both algorithms are significantly better
than ql. The X axis represents the maze number. The Y axis is the ratio of the total
number of explored states to the total number of steps when the agent for the first time
arrives at convergence.

270 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

Figure 13: Explore efficiency comparison

5.3 The maze in the dynamic environment
Changes of environment are categorized as obstacle change and target position change.
We will in this subsection examine how these changes can affect the performance of the
three algorithms.

5.3.1 Obstacle change
Take Maze #8 as an example, the changes of the obstacles are tabulated in Tab. 5.

Table 5: Dynamic obstacle, Maze #8

Change
episode

Change
state

Convergence
episode #

The corresponding
figure

0 Init 16 Fig.14(a) and 14(c)
18 (2,8) 18 Fig. 14(d)
24 (3,6), (3,7) 25 Fig. 14(e) and 14(f)
29 (9,8), (10,8) 34 Fig. 14(g) and

14(h)

Fig. 14 shows the snapshot of exploration, convergence, environment change and
adaptation. The maze has undergone three major changes that occur to the locations of
the obstacles in the experiments. The green squares in Fig. 14 represent the members of
SE, and the purple squares represent dynamically increased obstacles that are located
within the current convergent path.

A Graph-based Reinforcement Learning Method with Converged State 271

Figure 14: Dynamic obstacles, Maze #8

5.3.2 Changes of target positions
Tab. 6 summarizes the changes that occur to maze 243. Other mazes have gone through
similar changes. One can see that the target position is changed once, relocated from the
center of the maze to its lower left corner.

272 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

Table 6: Dynamic target, Maze #243

Change
episode

Change
state

Convergence
episode #

The corresponding
figure

0 Init 14 Fig. 15(a) and 15(c)
18 (9,9) ⇒ (1,16) 21 Fig. 15(d) and 15(e)

Figure 15: Dynamic target, Maze #243

The results of exploration, convergence due to target position changes and re-
convergence are shown in Fig. 15. In episode 0, the reward is claimed at block (9, 9) (Fig.
15(a)). The exploration converges in episode 14 (Fig. 15(c)). In episode 18 where move
the reward is moved to the block (1, 16) (Fig. 15(d)), the agent finds the right path to the
target, after three episodes (Fig. 15(e)).

5.4 Computation efficiency
All three algorithms are compared for their respective computation efficiency under the
same computation platform. The hardware used in the experiments has a Intel(R)
Core(TM) i5-3210M CPU running at 2.50 GHz, and a RAM size of 8 GB. The operating

A Graph-based Reinforcement Learning Method with Converged State 273

system is Ubuntu 64bits. The tools used to test CPU time and memory occupation are
line_profiler and memory_profiler, respectively.
The average CPU time reported in Tab. 7 is the average time of solving all 975 mazes.
The basic memory usage in Tab. 7 refers to the stable memory usage collected from
solving select 62 mazes. One can see that SFW requires more memory space than the
other two algorithms; the memory usage for both ql and qlm is comparable. The peak
memory usage of SFW is also higher than that of ql or qlm.

Table 7: Algorithm complexity comparison

Parameter ql qlm SFW
Average CPU Time (s) 0.5382 0.8472 4.9307
Basic Memory usage (MB) 60.434 60.352 70.148
Peak Memory usage (MB) 61.024 61.500 74.135

6 Conclusion
In this paper, a new graph-based method was presented for reinforcement learning.
Unlike classical Q-learning algorithm and improved Q-learning algorithm, the proposed
algorithm does not struggle with the exploration vs. exploitation tradeoff, as it was
proved that the two tasks of exploration and exploitation actually converge in the
decision-making process. As so, the proposed graph-based algorithm finds the shortest
path during exploration, which gives higher efficiency and faster convergence than the Q-
learning algorithm and its variant. Another big advantage of the proposed algorithm is
that it can be applied to the dynamic environment where the value-oriented algorithm
fails to work. The efficiency and convergence performance of the proposed algorithm
comes at a cost of increased computational complexity. Future study will be focused to
confine the computational complexity and particularly memory usage.

Acknowledgements: This research work is supported by Fujian Province Nature Science
Foundation under Grant No.2018J01553.
The authors would like to thank the U.S.DOT Tier 1 University Transportation Center on
Improving Rail Transportation Infrastructure Sustainability and Durability.

References
Dayan, P.; Hinton, G. E. (1993): Feudal reinforcement learning. Advances in Neural
Information Processing Systems, pp. 271-278.
Dietterich, T. G. (1998): The maxq method for hierarchical reinforcement learning.
ICML, vol. 98, pp. 118-126.
Dijkstra, E. W. (1959): A note on two problems in connexion with graphs. Numerische
Mathematik, vol. 1, no. 1, pp. 269-271.
Floyd, R. W. (1962): Algorithm 97: shortest path. Communications of the ACM, vol. 5,
no. 6, pp. 345.

274 Copyright © 2019 Tech Science Press CMES, vol.118, no.2, pp.253-274, 2019

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968): A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100-107.
Huang, B. Q.; Cao, G. Y.; Guo, M. (2005): Reinforcement learning neural network to
the problem of autonomous mobile robot obstacle avoidance. Proceedings of 2005
International Conference on Machine Learning and Cybernetics, vol. 1, pp. 85-89.
Kaelbling, L. P.; Littman, M. L.; Moore, A. W. (1996): Reinforcement learning: a
survey. Journal of Artificial Intelligence Research, vol. 4, pp. 237-285.
Lewis, F. L.; Varbie, D.; Vamvoudakis, K. G. (2012): Reinforcement learning and
feedback control: Using natural decision methods to design optimal adaptive controllers.
IEEE Control Systems, vol. 32, no. 6, pp. 76-105.
Lewis, F. L.; Varbie, D. (2009): Reinforcement learning and adaptive dynamic
programming for feedback control. IEEE Circuits and Systems Magazine, vol. 9, no. 3,
pp. 32-50.
Mataric, M. J. (1997): Reinforcement learning in the multi-robot domain. Robot
Colonies Springer Press, pp. 73-83.
Moore, A. W. (1994): The parti-game algorithm for variable resolution reinforcement
learning in multidimensional state-spaces. Advances in Neural Information Processing
Systems, pp. 711-718.
Smart, W. D.; Kaelbling, L. P. (2002): Effective reinforcement learning for mobile robots.
IEEE International Conference on Robotics and Automation, vol. 4, pp. 3404-3410.
Sutton, R. S.; Barto, A. G.; Williams, R. J. (1992): Reinforcement learning is direct
adaptive optimal control. IEEE Control Systems, vol. 12, no. 2, pp. 19-22.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M. et al. (2017):
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.
arXiv, preprintarXiv:1712.01815.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A. et al. (2017):
Mastering the game of go without human knowledge. Nature, vol. 550, no. 7676, pp.
354-359.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L. et al. (2016): Mastering the
game of go with deep neural networks and tree search. Nature, vol. 529, no. 7587, pp.
484-489.
Sutton, R. S.; Barto, A. G. (2017): Reinforcement Learning: An Introduction. MIT Press.

	A Graph-Based Reinforcement Learning Method with Converged State Exploration and Exploitation
	Repository Citation

	tmp.1553875972.pdf.2ac9q

