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Abstract

Protoplanetary disk simulations show that a single planet can excite more than one spiral arm, possibly explaining
the recent observations of multiple spiral arms in some systems. In this paper, we explain the mechanism by which
a planet excites multiple spiral arms in a protoplanetary disk. Contrary to previous speculations, the formation of
both primary and additional arms can be understood as a linear process when the planet mass is sufficiently small.
A planet resonantly interacts with epicyclic oscillations in the disk, launching spiral wave modes around the
Lindblad resonances. When a set of wave modes is in phase, they can constructively interfere with each other and
create a spiral arm. More than one spiral arm can form because such constructive interference can occur for
different sets of wave modes, with the exact number and launching position of the spiral arms being dependent on
the planet mass as well as the disk temperature profile. Nonlinear effects become increasingly important as the
planet mass increases, resulting in spiral arms with stronger shocks and thus larger pitch angles. This is found to be
common for both primary and additional arms. When a planet has a sufficiently large mass (3 thermal masses for
(h/r)p=0.1), only two spiral arms form interior to its orbit. The wave modes that would form a tertiary arm for
smaller mass planets merge with the primary arm. Improvements in our understanding of the formation of spiral
arms can provide crucial insights into the origin of observed spiral arms in protoplanetary disks.

Key words: hydrodynamics – planet–disk interactions – waves

1. Introduction

A point mass perturber creates disturbances in differentially
rotating (e.g., Keplerian) background disks, which appear in the
form of wakes spiraling away from the perturber. Such spiral
structures are seen in observations and/or numerical simula-
tions of a variety of astrophysical disks, including proto-
planetary disks, circumplanetary disks, and disks around
various binary systems (e.g., binary stars, binary black holes).

Interestingly, numerical simulations of protoplanetary disks
show that one planet can launch multiple spiral arms (e.g.,
Kley 1999; Dong et al. 2015; Fung & Dong 2015; Juhász et al.
2015; Zhu et al. 2015; Bae et al. 2016a, 2016c, 2017;
Lee 2016; Dong & Fung 2017; Hord et al. 2017; Richert et al.
2017). Possibly supporting the idea of a single planet launching
multiple spiral arms, recent high-resolution observations
revealed multi-armed spirals in protoplanetary disks (Muto
et al. 2012; Garufi et al. 2013; Grady et al. 2013; Benisty
et al. 2015; Pérez et al. 2016; Stolker et al. 2016; Maire
et al. 2017; Tang et al. 2017; Reggiani et al. 2018), while the
origin of observed spiral arms is yet to be confirmed.

As a spiral arm steepens into a shock, its angular momentum
is transferred to the background disk gas, opening a gap
(Rafikov 2002b). When a single planet excites multiple spiral
arms, it can create multiple gaps and pressure bumps in
between (Bae et al. 2017; Dong et al. 2017). The resulting
structure in the gas disk can produce corresponding, enhanced
features in dust emission and scattering, such that a single
planet can be responsible for more than one main gap. This
mechanism possibly explains some of the multiple concentric
gaps and rings seen in young protoplanetary disks (e.g., ALMA
Partnership et al. 2015; Andrews et al. 2016; Ginski et al. 2016;
Isella et al. 2016; Tsukagoshi et al. 2016; Walsh et al. 2016;

Zhang et al. 2016; van Boekel et al. 2017). These structures can
also affect subsequent planet formation in such ringed/gapped
disks by collecting solid particles preferentially in local gas
pressure maxima (i.e., rings) through aerodynamic drag.
Beyond the effects on dust and gas rings and gaps, spiral

shocks can transport angular momentum and dissipate energy
in various astrophysical disks including protoplanetary disks
(Goodman & Rafikov 2001; Ju et al. 2016, 2017; Rafikov 2016;
Zhu et al. 2016; Ryan & MacFadyen 2017). Not surprisingly,
this capability is not limited to the primary spiral arm—the one
directly attached to the planet—but the secondary spiral arm is
also known to be able to contribute to angular momentum
transport (Arzamasskiy & Rafikov 2018). If additional spiral
arms exist (e.g., tertiary, quaternary, etc.) and they form
through the same mechanism as the primary arm, angular
momentum transport is also expected for the additional arms.
The characteristics of the observed spiral arms can be used to

constrain the masses of unseen planets. As we will show in a
companion paper (Bae & Zhu 2017, hereafter Paper II), the
number of spiral arms varies as a function of the planet’s mass.
In addition, it is known that the arm-to-arm separation increases
as a function of a planet’s mass (Fung & Dong 2015; Zhu et al.
2015; Lee 2016, Paper II).
Despite the importance and growing number of numerical/

observational studies showing multi-armed spirals in proto-
planetary disks, the mechanism by which a planet excites
multiple arms has not been fully understood. In Ogilvie &
Lubow (2002, hereafter OL02), the formation of the primary
arm was explained as the result of constructive interference
among a set of wave modes having different azimuthal
wavenumbers. The gravitational potential of a point mass
perturber Φp at a position (r, f) and time t can be decomposed
into a Fourier series, a sum of individual azimuthal
modes having azimuthal wavenumbers = ¼ ¥m 0, 1, 2, , :
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f fF = å F - W=
¥( ) ( ) [ ( )]r t r im t, , expp m m p0 . Through the

resonance between the rigid rotation of a perturbing potential
and the epicyclic motions of the disk material, the mth Fourier
component of the potential launches m wave modes that are evenly
spaced in the azimuth (Goldreich & Tremaine 1978a, 1978b, 1979,
see also the review by Shu 2016). Throughout this paper, we use
= ¼ -n m0, 1, , 1 to represent each wave mode excited by the

mth Fourier component. Among the m wave modes launched by
an arbitrary mth azimuthal component, OL02 considered the one
that originates from the perturber position (hereafter n= 0
components; see Figure 1 for illustration). Using linear wave
theory, OL02 calculated the phases of n=0 components having
different azimuthal wavenumbers and confirmed with numerical
simulations that these wave modes add coherently, creating a
primary spiral arm.

In this paper, we show that additional spiral arms form in a
similar way to the primary arm: through constructive
interference among appropriate sets of wave modes having
different m. More specifically, in the inner disk, we show that
the wave modes excited at the Lindblad resonance with an
azimuthal shift of 2π/m from the n=0 component (i.e., n= 1
components) create a secondary spiral arm. Similarly, a tertiary
spiral arm forms via constructive interference among the wave
modes excited at the Lindblad resonance with an azimuthal
shift of 4π/m from the n=0 component (i.e., n= 2
components), and so on and so forth when possible. In the
outer disk, it is the n=m−1 components in each mth
azimuthal component that form a secondary spiral arm. As we
will show throughout this paper, this mechanism explains the
characteristics of spiral arms known from previous numerical
simulations very well.

This paper is organized as follows. In Section 2, we first
compute the phases of individual wave modes excited by a
planet using linear density wave theory and show that certain
sets of wave modes can be in phase. We then carry out a suite

of two-dimensional numerical simulations in Section 3, and
verify that the sets of individual wave modes predicted by
linear theory add constructively on to each other, creating spiral
arms. In Section 4, we highlight some important nonlinear
effects, based on numerical simulations with a range of planet
mass covering three orders of magnitude. We summarize our
findings and conclude in Section 5. In Paper II, we present a
parameter study varying the disk temperature and planet mass
and implications of the present work.

2. Expectation from Linear Wave Theory

A rigidly rotating point mass perturber in a differentially
rotating disk excites density waves at the vicinity of Lindblad
resonances (Goldreich & Tremaine 1979). The perturbation
driven by the mth azimuthal Fourier component of the perturber
potential in a two-dimensional (r, f) plane can be written as

òf = f¢ + -W( ) ˜ ( ) ( )[ ( ) ( )]X r t X r, , exp , 1i k r dr m tp

where ˜ ( )X r is the amplitude of the perturbation, k(r) is the
radial wave vector, Ωp is the orbital frequency of the perturber,
and t represents time. The radial wavenumber k can be related
to the azimuthal wavenumber m and the background disk
properties through the WKBJ dispersion relation, which can be
written in a two-dimensional disk as

kW - W = +( ) ( )m c k 2p s
2 2 2 2 2

in the absence of self-gravity and dissipation processes. In the
dispersion relation, Ω is the local orbital angular frequency,
k º W( ) ( )r d r dr12 3 2 2 is the square of the epicyclic
frequency, and cs is the local sound speed.
As a wave propagates, its phase varies over radius. The

phase of a wave with an azimuthal wavenumber m at an
arbitrary radius r, fm (r), can be obtained by integrating
df/dr=−k/m:

òf f
f

= +
¢

¢( ) ( ) ( )r r
d

dr
dr , 3m m

r

r

0
0

where fm (r0) is the phase at r=r0. For a Keplerian disk
(Ω ∝ r−3/2, κ=Ω), one can re-write the dispersion relation in
Equation (2) as follows:

=
W

- -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )k

m c

r

r m
1

1
. 4

s p

3 2

3 2

2

2

1 2

Inserting Equation (4) into Equation (3), with df/dr=−k/m,
we obtain
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Density waves driven by a point mass perturber launch
around the Lindblad resonance =  ( )r m r1 1m p

2 3 , propa-
gating inward in the inner disk and outward in the outer disk
(Goldreich & Tremaine 1978b, 1979), where rp is the radius of
the perturberʼs circular orbit. Far from the resonance, the

Figure 1. A schematic diagram showing the phases of individual wave modes
with m=4, as an example. The two horizontal dotted lines indicate the inner
and outer Lindblad resonances = -r rm and = +r rm , around which radii the
wave modes launch. The perturber’s position in the disk (f=0, r=1 rp) is
marked with a cross symbol. The disk rotates left to right (increasing f) in this
diagram.
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phases of m wave modes are

f
p

p= - - +( ) ( ) ( )r r r
m

n

m
sgn

4
2 , 6m n p,

where n=0, 1, K, m−1, as can be inferred from the
asymptotic behavior of the Airy function (Ward 1986; OL02).5

Using Equations (5) and (6), we now obtain the phases of
individual wave modes with any given combination of m and n:
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Throughout this paper, we call Equation (7) the phase equation.
We note that the phase equation consists of a constant

component (the first two terms) that determines the launching
position of wave modes in the azimuth at the Lindblad
resonance, and a radially varying component (the third term)
that determines how tightly the wave modes are wrapped as
they propagate away from the Lindblad resonance. The
tightness of the wave modes depends on the azimuthal
wavenumber m, as well as the background disk temperature
(cs), and rotation profiles (Ω). The epicyclic term is often
ignored in the literature, such that the dependence of the wave
propagation on m is neglected. This may be a minor effect in
many cases; however, the m-dependency in wave propagation
is what enables the formation of multiple spiral arms by a
single perturber, and therefore the epicyclic term has to be
included.

To help visualize the wave excitation and propagation, we
present a schematic diagram showing the phases of individual
wave modes with m = 4 as an example in Figure 1 .

2.1. Primary Spiral Arm Formation

In OL02, the formation of the primary spiral arm driven by a
planet in a protoplanetary disk was explained as the result of
constructive interference among wave modes having different
azimuthal wavenumbers. The constructive interference con-
sidered was for n=0 components of each mth azimuthal
mode. Here, we follow OL02 and briefly summarize the
findings since it will help one to understand the formation of
additional spiral arms that will be explained in the following
section. For the example presented in this section, we adopt a
temperature profile that is decreasing as a function of radius
following T∝r−1/2 (cs∝r−1/4). In addition, we limit our
attention to a Keplerian rotation profile and adopt a disk aspect
ratio at r=rp of (h/r)p=(cs/vf)p=0.1 such that the sound
speed is much smaller than the rotation speed.

For n=0 components, fm is independent of m in the large
m limit as can be seen from the phase equation. This implies
that waves with different azimuthal wavenumbers can have the
same phase so constructive interference among the waves may
be possible. In Figure 2, we present the phases of n=0
components of wave modes having azimuthal wavenumbers

m=1–20, calculated with the phase equation. The phases are
growing positively/negatively in the inner/outer disk, meaning
that these wave modes are trailing waves. The fact that the
phases become greater than 2π as they propagate to the inner
disk, or smaller than −2π in the outer disk, indicates that these
wave modes can wind up multiple times before they reach the
disk inner/outer boundary.
In the right panels of Figure 2, we present the relative phases

of n=0 wave modes (fm,0) to the phase of the = ¥m wave
mode (f¥), so that the phase difference among the wave modes
can be more clearly seen. As can be seen from the figure, wave
modes are nearly in phase when they launch; this is why the
primary arm forms directly attached to the perturber. However,
because wave modes with a small m are less tightly wound than
those with a large m, as inferred from the phase equation, small
m modes are left behind/ahead in the inner/outer disk as they
propagate.
The perturbation driven by a point mass perturber in a disk is

dominated by an azimuthal wavenumber » -( )( )m h r1 2 p
1

(Goldreich & Tremaine 1980). In order for the wave modes
with different m to be coherently added, they have to be within
the wave crest generated by the dominating mode,
Δf≈2π(h/r)p. This azimuthal width is presented with “I”-
shaped symbols in Figure 2. As can be inferred from the figure,
the constructive interference can fail for small m wave modes
far from the planet.

2.2. Formation of Additional Spiral Arms

Extending the primary spiral arm formation scenario
outlined in the previous section, we propose that the nth
components of each azimuthal mode, where n is now non-zero,
can become in phase as they propagate and form additional
spiral arms through constructive interference. While n=0
components launch almost in phase as seen in Figure 2, other n
components launch with non-negligible phase differences. For
example, if one would draw fm,1 for different m in Figure 1,
small m modes will launch with larger initial phases than large
m modes. However, small m modes are less tightly wound than
large m modes so it is possible that small m modes are caught
up by large m modes as the wave modes propagate. As in
Section 2.1, we compute the phases of different wave modes
and examine whether or not constructive interference will be
possible. We first focus on the inner disk in Section 2.2.1 and
then move on to the outer disk in Section 2.2.2.

2.2.1. Inner Disk

In Figure 3, we plot the phases of n=1 components for
m=2–20 azimuthal modes. As shown, small m modes launch
at a larger azimuthal angle, but large m modes catch up with the
small m modes in phase because the small m modes are less
tightly wound. In this specific example, m=2–20 modes
become in phase (Δf2π(h/r)p) at r∼0.3 rp. The same can
happen for n=2 components; however, small m modes in this
case will launch at even larger initial azimuthal angles
compared with n=1 components, so the wave modes have
to travel further in order to become in phase. For n=2
components, m=3–20 modes become in phase at r∼0.1 rp.
For the disk considered here, n>2 components are unlikely to
become in phase before they reach the disk’s inner boundary.

5 One may use a phase offset term π/(3m) in Equation (6), which is the offset
at exact Lindblad resonance locations (Ward 1986), instead of π/(4m). The
differences between the two offset values are small (π/(12m)), especially when
m?1 modes are considered, and we find that the formation mechanism of the
spiral arms is not affected by the choice of the offset value (i.e., π/(4m) versus
π/(3m)).
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2.2.2. Outer Disk

We now turn our attention to the outer disk. We examine
n=m−1 and n=m−2 components instead of n=1 and 2
components, since the wave modes considered here are trailing
waves and, again, small m modes are less tightly wound than
large m modes. In Figure 4, we present the phases of n=m−1
and n=m−2 components. As seen in the figure, the phase
differences among the different m modes initially decrease, but
remain nearly constant beyond r∼3 rp. It hence appears that
small m modes are not able to catch up to large m modes.

While we present the phases out to r=5 rp only in Figure 4,
constructive interference for n=m−1 and n=m−2 com-
ponents beyond the radius is unlikely. This can be inferred
from the phase equation. When r?rp, the last term in the
phase equation simplifies to

ò

ò

W ¢
¢

-
¢

- ¢

W ¢
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and thus has no m dependence. This means that when different
m modes launch at different azimuthal angles and they are not
in phase before r?rp, they will not be in phase in the outer
disk. For the disk considered here, it is thus expected that only

one arm forms in the outer disk through constructive
interference among n=0 components. On the other hand,
more than one outer spiral arm can form when multiple sets of
wave modes become in phase before r?rp, which can occur
in colder disks (see Paper II).

3. Numerical Simulations: Verifying
the Linear Theory Prediction

In Section 2, we showed that appropriate sets of wave modes
having different azimuthal wavenumbers can be in phase from
their launching points (n= 0 component) or as they propagate
(non-zero nth components). In this section, we carry out
numerical simulations to verify that constructive interference
among the sets of wave modes predicted by linear theory can
indeed occur, generating spiral arms. We consider three models
for this purpose.

Model 1. We carry out 20 calculations, each of which includes
a single mth Fourier-decomposed potential of a planet,
where m=1, 2, K, 20. We then construct a single surface
density output Σ by summing the perturbed density
from each of the single mode calculations: S =
S + å S - S= ( )m minit 1

20
init , where Σinit is the initial,

unperturbed surface density, and Σm is the surface density
obtained in a simulation with only the mth Fourier
potential included.

Figure 2. Phases of n=0 wave modes with different azimuthal wavenumbers from m=1 (red) to 20 (purple): the left panels show the actual phase values while the
right panels show the relative phase values to = ¥m mode. The upper panels present phases in the inner disk (r<rp) while the lower panels present phases in the
outer disk (r>rp). Note that there is no m=1 mode in the inner disk because its inner Lindblad resonance is located at r=0. The “I”-shaped marks in the right
panels show the azimuthal width Δf≈2π(h/r)p within which different modes have to be located to participate in the constructive interference. The dotted curves in
the right panels show the phase of the primary arm in the numerical simulation with full perturber potential (see Section 3).
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Model 2. We carry out one calculation in which m=1–20
Fourier-decomposed azimuthal components of the planet
potential are included.

Model 3. We carry out one calculation with the full planet
potential.

By comparing Models 1 and 2 with Model 3, we will be able
to test whether linear addition (i.e., superposition) of individual
waves explains the main features of the model with the full
potential. The comparison between Models 1 and 2 will allow
us to examine if any nonlinear mode–mode interactions exist. If
there is no interaction between the different azimuthal modes,
we expect that Models 1 and 2 will produce identical results.
Finally, by comparing Model 2 with Model 3, we will be able
to see the contribution from large m modes (m>20) in
generating spiral arms.

3.1. Numerical Methods

We solve the hydrodynamic equations for mass and
momentum conservation in the two-dimensional polar coordi-
nates (r, f) using FARGO 3D (Benítez-Llambay & Masset
2016):

¶S
¶

+  S =· ( ) ( )
t

v 0, 9

*S
¶
¶

+  = - - S F + F⎜ ⎟⎛
⎝

⎞
⎠· ( ) ( )v

t
v v P . 10p

In the above equations, Σ is the surface density, v is the
velocity, = SP cs

2 is the pressure where cs is the isothermal
sound speed, Φ*=−GM*/r is the gravitational potential of
the central star, and Φp is the potential of the planet. The
potential of the planet is

fF = -
- +

( )
(∣ ∣ )

( )
r r

r t
GM

s
, , , 11p

p

p
2 2 1 2

where Mp is the planet mass, r and rp are the radius vectors of
the center of the grid cells in question and of the planet, and
s=0.6 hp is the smoothing length. In this work, we ignore the
indirect term that arises due to the offset between the central
star and the origin of the coordinate system. The “full planet
potential” in Equation (11) is used for Model 3.
Assuming a circular planetary orbit, the potential in

Equation (11) can be expanded into a Fourier series:

åf fF = F - W
=

¥

( ) ( ) [ ( )] ( )r t r im t, , exp . 12p
m

m p
0

Figure 3. Phases of n=1 and n=2 wave modes in the inner disk (r<rp), having different azimuthal wavenumbers from m=1 (red) to 20 (purple): the left panels
show the actual phase values while the right panels show the relative phase values to the = ¥m mode. Note that the shape of the phase curves for a given m are
identical regardless of n, but only the launching point is shifted in the azimuth for different ns. The “I”-shaped marks in the right panels show the azimuthal width
Δf≈2π(h/r)p within which different modes have to be located for the constructive interference to occur. The dotted curves in the right panels show the phase of the
secondary and tertiary arms in the numerical simulation with full perturber potential (see Section 3).
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Here,

d bF = - -( ) ( ) ( ) ( )r
GM

r
b2

2
, 13m m

p

p

m
0 1 2

where δij is the Kronecker delta, β=r/rp, and b( )b m
1 2 is the

Laplace coefficient defined as (Brouwer & Clemence 1961)

òb
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f
b f b

fº
- + +

p
( ) ( )

( )
( )b

m

s
d

2 cos

1 2 cos
. 14m

1 2
0 2 2 1 2

The smoothing length s is included in the denominator of the
right-hand side of Equation (14) in order for the summation of
the Fourier-decomposed potential in Equation (12) to be
consistent with the full potential in Equation (11). The Fourier-
decomposed potential in Equation (12) is used for Models 1
and 2, with ms chosen following the model description.

We use the planet mass of Mp=0.01Mth, where

*º W = ( )M c G M h rs pth
3 3 is the so-called thermal mass (Lin

& Papaloizou 1993; Goodman & Rafikov 2001), at which the
Hill radius is comparable to the disk scale height. Assuming a
solar-mass star, 0.01Mth is about 3 Earth masses. When
Mp=Mth, the excitation and the initial propagation of the
density waves from the planet is known to be well
approximated in the linear regime. Goodman & Rafikov
(2001) predict that spiral arms driven by a 0.01Mth planet
steepen into shocks ∼6 scale heights away from the planet (see
Equation (30) of their paper). When we compare the phases of
the spiral arms driven by a 0.01Mth planet with the ones driven
by a 0.001Mth planet in Paper II, we find that the difference in

the phases of the spiral arms are negligible, not only within the
±6 scale height regions around the planet, but in the entire
disk. This suggests that, although spiral arms driven by a
0.01Mth planet can steepen into shocks, nonlinear effects are
negligible. As shown in the following section, density waves
excited by a 0.01Mth planet in numerical simulations indeed
show excellent agreement with the linear theory predictions.
Our initial disk has power-law surface density and temperature

distributions: S = S -( ) ( )r r rp pinit
1 and = -( ) ( )T r T r rp p

1 2,
where Σp and Tp are the surface density and temperature at the
location of the planet r=rp. We choose Tp such that
(h/r)p=0.1, to be consistent with the disk model used in
Section 2. The simulation domain extends from rin=0.05 rp to
rout=5 rp in radius and from 0 to 2π in azimuth. We adopt 4096
logarithmically spaced grid cells in the radial direction and 5580
uniformly spaced grid cells in the azimuthal directions, with
whichΔr:rΔf;1:1. At the radial boundaries, we adopt a wave-
damping zone (de Val-Borro et al. 2006) to suppress wave
reflection. No kinematic viscosity is added in the simulations.

3.2. Simulation Results

We first present the perturbed density distributions, δΣm/ Σinit,
where δΣm=Σm–Σinit, from individual mode calculations
(Model 1) in Figure 5. While Figure 5 includes results from the
m=1–4 mode runs only, we note that the discussion below
applies to all the individual wave mode runs with m=1–20.
Most importantly, the excitation and propagation of the

density waves in the numerical simulations show excellent
agreement with the linear theory. Each azimuthal component of

Figure 4. Same as Figure 3, but for n=m−1 and n=m−2 wave modes in the outer disk (r>rp).
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the Fourier-decomposed potential excites m wave modes at the
inner and outer Lindblad resonance; m=1 mode does not excite
any waves in the inner disk because the inner Lindblad resonance
is located at r=0. The perturbation from individual wave modes
is <1% over the entire simulation domain, supporting the fact that
these waves are in a linear regime. The amplitude of the
perturbation in all the individual mode runs increases as the waves
propagate, which is also in a good agreement with the expectation
for linear waves (Rafikov 2002a).

In Figure 6, we display the perturbed surface density
distributions δΣ/Σinit for Model 1, 2, and 3. The azimuthal
distributions of δΣ/Σinit at r=1.5, 0.6, 0.3, and 0.1 rp are
presented in Figure 7 for more quantitative comparison among the
models. All three models form three spiral arms in the inner disk
and one spiral arm in the outer disk. The primary arm is directly
attached to the planet, spiraling away from it. In the inner disk, the
secondary and tertiary arms excite around r∼0.3 rp and
r∼0.1 rp, respectively. Note that these radial positions are in
good agreement with the predictions made based on the phase
argument in Section 2. The secondary and tertiary arms become
narrower in azimuth and produce stronger perturbations as they
propagate, indicating that the individual waves participating in the
formation of these arms become closer in phase, so the
constructive interference become more effective. This is also
consistent with the linear theory prediction (see e.g., Figure 3).

Comparing the models, we find that both Models 1 and 2
reproduce the full potential model (Model 3) fairly well. The
major difference seen in Model 3 is that the primary arm is
sharper and produces a larger perturbation close to the planet
(e.g., r=0.6 and 1.5 rp in Figure 7). This is because the
Laplace coefficients (Equation (14)) that determine the
strengths of the perturbation driven by the individual azimuthal
modes decline slowly with increasing m when β=r/rp is
close to unity. The contribution from the azimuthal modes with
m>20 is therefore not negligible near r=rp. At the radius a
spiral arm excites (e.g., 0.3 rp for the secondary and 0.1 rp for the
tertiary), and we see that all of the three models agree with each

other very well, suggesting that the excitation of the additional
spiral arms is a linear process. As spiral arms propagate,
however, we see that Models 2 and 3 deviate from Model 1. For
example, the phase of the primary arm in Models 2 and 3 is
offset in phase from the primary arm phase in Model 1 at
r=0.1 and 0.3 rp. Also, at r=0.1 rp, the secondary arm breaks
up into finer azimuthal scales in Models 2 and 3. This suggests
that there could potentially be nonlinear mode coupling
(e.g., Lee 2016) even at this low level of perturbations.
To further ensure that it is the n=0, n=1, and n=2

components from different azimuthal modes that generate the
primary, secondary, and tertiary arms, we subtract each nth
component from Model 1 one at a time when constructing the
final surface density output. More specifically, we return the
surface density associated with the nth component in each
individual azimuthal mode calculation to the unperturbed value
as illustrated in Figure 8.
In Figure 9, we present the perturbed density distributions

from Model 1 along with those from models without n=0
components, n=1 components (n=m−1 components in the
outer disk), and n=2 components (n=m−2 components in
the outer disk). For more quantitative comparison among the
models, we present the azimuthal distributions of the perturbed
density at r=0.1 rp in Figure 10. As seen in the figures, the
primary arm does not form when the n=0 components are
subtracted, the secondary arm does not form when the n=1
components are subtracted, and the tertiary arm does not form
when the n=2 components are subtracted. Also, we note that
removing the n=0 components does not affect the secondary
and tertiary arms. Likewise, removing the n=1 or n=2
components only affects the secondary or tertiary arms.
Previous studies pointed out that a negative density

perturbation appears before the secondary spiral arm forms
(e.g., Arzamasskiy & Rafikov 2018). We also find such a
negative density perturbation in our simulations: as shown in
Figures 6 and 7, the negative density perturbation just on the
right side of the primary arm develops at r∼0.6 rp and

Figure 5. Two-dimensional distributions of the perturbed surface density δΣm/Σinit from individual mode runs with (left to right) m=1–4, where δΣm=Σm−Σinit.
In each panel, the phase of n=0 component calculated using Equation (7) is plotted with a black curve. Note the excellent agreement between the linear theory and
numerical simulation.
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deepens inward before the secondary arm launches. In the
constructive interference scenario we explain here it is obvious
that, after n=0 components (i.e,. wave crests) form
the primary arm, the wave troughs between n=0 and n=1
wave crests have to be in phase before the n=1 wave crests
become in phase to form the secondary arm. Similarly, the

wave troughs between n=1 and n=2 wave crests become in
phase before n=2 wave crests form the tertiary arm, and this
is what forms the negative density perturbation between the
secondary and tertiary arms. In short, a negative density
perturbation between spiral arms can be understood as
constructive interference among wave troughs, as opposed to

Figure 6. Two-dimensional distributions of the perturbed surface density δΣ/Σinit for (from left to right)Models 1, 2, and 3. The horizontal lines indicate (from top to
bottom) r=1.5, 0.6, 0.3, and 0.1 rp, for which radii we present the one-dimensional perturbed density distributions along the azimuth in Figure 7. The primary,
secondary, and tertiary arms are labeled with “P,” “S,” and “T,” respectively, in the left panel. In the right panel, the dotted curves labeled as f5,0, f5,1, and f5,2 present
the phases of the three spiral arms predicted with the linear theory.

Figure 7. Black dotted curves show the perturbed density distributions δΣ/Σinit from Model 1, whereas the red and blue curves show the results from Models 2 and 3.
The primary, secondary, and tertiary arms are labeled with “P,” “S,” and “T,” respectively.
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constructive interference among wave crests, which forms a
positive density perturbation (i.e., spiral arms).

Since the linear approach (i.e., superposition of individual
wave modes) explains the formation and propagation of spiral
arms well, we can make use of the linear wave theory to
predict the phases of spiral arms. In the right panel of
Figure 6, we present the phases of m=(1/2)(h/r)p

−1=5
mode for n=0, 1, and 2 components: f5,0, f5,1, and f5,2. As
shown, the phases of spiral arms predicted by the linear theory
agree well with the phases of spiral arms in the numerical
simulation.

4. Nonlinear Evolution of Spiral Arms

As shown in the previous section, the linear wave theory
explains the formation and propagation of spiral arms reason-
ably well for a sufficiently low-mass planet (i.e., 0.01Mth). As
the planet mass grows, however, nonlinear effects are expected
to play an increasingly important role. In order to investigate
the nonlinear effects, we ran a set of simulations with various
planet masses of Mp=0.1, 0.3, 1, 3, and 10Mth (0.1, 0.3, 1, 3,
and 10 Jupiter mass assuming a solar-mass star), adopting the
full planet potential as in Equation (11). All the other numerical
setups, except the planet mass, remain the same as explained in
Section 3.

In each of the simulations we introduce the planet at the
beginning of the calculation with its full mass, instead of
growing the planet mass over an extended period of time. We
take this approach because planets with Mp1Mth open a gap
around their orbit. The gap edges then become unstable to the
growth of the Rossby wave instability (RWI; Lovelace
et al. 1999; Li et al. 2000, 2001), launching spiral waves that
have different pattern speeds from the planet-driven spiral
arms. For the planet masses considered here, we find that the
RWI develops over about ten or more orbital times. By having
the full planet mass from the beginning, spiral arms launched

by the planet fully develop in the entire disk well before the
RWI develops. This approach thus allows us to avoid the
interference from RWI-driven spiral waves.
With the background disk profile assumed here, the planet

excites two or three spiral arms in the inner disk depending on
its mass. In the outer disk, on the other hand, the planet excites
only one spiral arm independently on the planet mass. To
determine the phases of spiral arms from the simulations, we
find the local maximum of the density perturbation in the
azimuth as we follow each spiral arm along the radius. The
phases of the primary, secondary, and tertiary arms for different
planet masses are presented in Figure 11. In the figure, we also
indicate the radial locations at which the secondary and tertiary
spiral arms start to shock the disk gas. In order to diagnose the
shock location, we compute the potential vorticity (PV)
ζ≡(∇× v)/Σ. The idea is that the PV experiences a jump
at the shock front (Li et al. 2005; Dong et al. 2011; Bae et al.
2017). In Figure 12, we plot the perturbed surface density
distributions along the azimuth at some selected radii to show
the level of perturbation driven by spiral arms and the
morphology of the spiral arm front. We highlight some
important aspects of spiral arm formation and propagation
below.
First, the phases of the secondary and tertiary arms during

their excitation and initial propagation agree reasonably well
with the linear wave theory prediction. Looking at the phases of
the secondary arms in Figure 11 first, one can see that they are
very closely located to each other in the azimuth at
r=0.4–0.6 rp for such a broad range of planet mass, and
moreover follow the linear prediction (f5,1) very well. This is
also clear in Figure 12: at r=0.4 rp, the secondary spiral arms
are located close to the linear theory prediction. Note also that
secondary arms from planets with masses of �0.3Mth have
already evolved into shocks at this radius, as the steep density
gradient as well as the shock locations presented in Figure 11
suggest. The fact that spiral arms follow the linear theory well

Figure 8. Example showing the subtraction of selected nth components. In this example, n=1 component in the inner disk and n=m−1 component in the outer
disk are subtracted from m=4 mode. (Left) The two-dimensional distribution of the perturbed surface density δΣ4/Σinit after the subtraction. The horizontal dashed
line indicates r=0.6 rp. (Right) δΣ4/Σinit along the azimuth at r=0.6 rp, before the subtraction with a dotted curve and after the subtraction with a solid curve.
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after they start to shock the disk gas supports the notion that
shocks need to propagate some distance before they deviate
from the linear theory (Goodman & Rafikov 2001). Similarly,
the tertiary arms are closely located in the azimuth at

r=0.15–0.2 rp, and the linear theory predicts the phases of
the tertiary arms very well at the radii.
Second, spiral arms are more open with a larger planet mass.

Spiral arms deviate from the linear theory prediction after their

Figure 9. (Left) The two-dimensional distributions of the perturbed surface density δΣ/Σinit from Model 1. The primary, secondary, and tertiary arms are labeled with
“P,” “S,” and “T,” respectively. In the other three panels, the distributions of δΣ/Σinit (left middle) without n=0 components, (right middle) without n=1
components at r<rp and n=m−1 components at r>rp, and (right) without n=2 components at r<rp and n=m−2 components at r>rp are presented. Note
that the primary arm does not form when the n=0 components are subtracted, the secondary arm does not form when the n=1 components are subtracted, and the
tertiary arm does not form when the n=2 components are subtracted.

Figure 10. One-dimensional plots of δΣ/Σinit along the azimuth at r=0.1 rp. The black curves present δΣ/Σinit before the subtraction, while the red curves present
δΣ/Σinit after the subtraction: (left) without the n=0 components, (middle) without the n=1 components, and (right) without the n=2 components. Note that
removing certain n components does not affect formation of other spiral arms. The primary, secondary, and tertiary arms are labeled with “P,” “S,” and “T,”
respectively.
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initial propagation, which ends sooner (i.e., at larger radii in the
inner disk and at smaller radii in the outer disk) for larger planet
masses (Goodman & Rafikov 2001; see also Figure 11). When
a spiral arm nonlinearly steepens into a shock it travels at a
faster speed, resulting in a less tightly wound shape than the
linear theory prediction. The speed of the shock expansion is
proportional to the amplitude of the shock, so spiral arms
excited by a planet with more mass propagate at faster speeds
and thus appear to be more open (Zhu et al. 2015). In
Figure 13, we present the measured pitch angle of spiral arms
driven by 0.1, 1, and 10Mth planets from numerical
simulations, along with linear theory predictions. As expected,
the pitch angles measured in simulations with 1 and 10Mth

planets are larger than the linear theory prediction, while the
linear theory and simulation agree well with each other for a
0.1Mth planet. Compared at a given radius, the more massive
the planet is, the more open a spiral arm is in general. This
trend is commonly seen, not only for the primary arm but also
for additional arms. We confirm this trend in disks with other
(h/r)p values from the parameter study carried out in Paper II
(see Figure 5 from the aforementioned paper).

Third, only two spiral arms form in the inner disk for
sufficiently large planet masses (3Mth). We conjecture that
this is because the primary arm nonlinearly propagates and
merges with the wave modes that would form a tertiary arm for
smaller mass planets. In the third panel of Figure 11, we over-
plot the phase of the primary arm driven by a 3Mth planet. As
shown, the primary arm becomes more open as it nonlinearly
propagates to smaller radii and eventually overlaps with the
linear phase of the tertiary arm at r∼0.2 rp. At r=0.3 rp in
Figure 12, the primary arm and the tertiary arm are well
separated in the azimuth for a 1Mth planet. For a 3Mth planet,
on the other hand, the primary arm has a broad wing-like
density enhancement on the left side of the “N”-shaped shock,

which is likely formed by the waves that would constructively
interfere with each other to form a tertiary arm at the azimuth.
The fact that the primary arm produces a comparable
magnitude of perturbation to the secondary arm with Mp=3
and 10Mth at r=0.2 and 0.3 rp—whereas the secondary arm
is generally stronger for lower-mass planets at these radii
because the primary arm weakens due to less efficient
constructive interference—also supports the idea of tertiary
arm-forming waves merging with the primary arm.
Last, interference between spiral arms may occur. In

Figure 14 we present the two-dimensional density distribution
from the Mp=1Mth model. Also presented with a black curve
in the figure is the predicted primary spiral arm front position
based on nonlinear shock expansion theory (Goodman &
Rafikov 2001; Rafikov 2002a), following the procedure
detailed in Section 4 of Zhu et al. (2015). Note that the shock
expansion theory predicts the primary arm phase reasonably
well at r0.25 rp, but fails inward of the radius where the
primary arm gradually approaches the secondary arm in the
azimuth. The primary arm then returns back to the predicted
position at r0.08 rp. Interestingly, we find that this is not
transient, but a long-lasting and stationary feature. We propose
that one possibility for this is the interference between the
primary and secondary spiral arms. The perturbation driven by
the primary arm is expected to gradually decrease since it
dissipates while propagating. However, the primary arm gains
in strength inward of ∼0.2 rp as it approaches the secondary
arm, while the secondary arm loses its strength over the same
radii, possibly because some low azimuthal modes that become
out of phase from the secondary arm are added to the primary
arm and/or because of nonlinear mode–mode interaction. This
supports the hypothesis that the deviation of the primary arm
from the shock expansion theory at 0.08 rpr0.25 rp is
due to the interference from the secondary arm. In Paper II, we

Figure 11. Phases (from left to right) of the primary arm (fp) in the inner disk, secondary arm (fs), tertiary arm (ft), and primary arm in the outer disk, for planet
masses of 0.01, 0.1, 0.3, 1, 3, and 10 Mth. The dotted curves represent the phases for = =-( )( )m h r1 2 5p

1 mode (f5,n) calculated with the phase equation, while the
dashed curves represent the phase for = ¥m mode (f¥). The arrows in the two middle panels show where each spiral arm starts to shock the disk gas, diagnosed
based on the potential vorticity jump. In the middle right panel, the yellow dashed curve presents the primary arm phase for the Mp=3 Mth case (see text). The
distortion seen in the outer primary spiral arm for 10Mth planet is due to too strong shocks at the arm front.
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find that interference between spiral arms in colder disks can
even result in a merging of the arms, presumably made possible
because spiral arms in colder disks launch with smaller
azimuthal separations. While we see potential evidence of
interference between spiral arms, it is unclear at the moment
under which conditions such interference occurs. Interference
between spiral arms is an interesting phenomenon to study, but

Figure 12. Perturbed surface density distributions δΣ/Σinit along the azimuth
for various planet masses at (top) r=0.4 rp, (middle) r=0.3 rp, and (bottom)
r=0.2 rp. For the purposes of visualization, each curve is scaled by a factor
presented on the right side of each panel such that the peak of the primary arm
at the radius has δΣ/Σinit=1. The primary, secondary, and tertiary arms are
indicated by “P,” “S,” and “T,” respectively. The dotted vertical lines present
f5,0, f5,1, and f5,2 at each radius, while the dashed vertical line presents the
phase of = ¥m mode f¥ at the radius.

Figure 13. Pitch angle of the (circle) primary, (triangle) secondary, and (cross)
tertiary arm for (blue) 0.1 Mth, (green) 1 Mth, and (red) 10Mth planets. The
black solid curve presents the pitch angle calculated with = ¥m in the phase
equation assuming (h/r)p=0.1, whereas the dashed curve presents the pitch
angle calculated with m=5.

Figure 14. Two-dimensional distribution of the perturbed surface density
δΣ/Σinit from the Mp=1Mth model. The black curve presents the predicted
shock front obtained with a nonlinear shock expansion theory (see text). The
black and red arrows on the right indicate the primary and secondary arms,
respectively. Note that the primary arm deviates from the nonlinear shock
expansion theory prediction at ∼0.25 rp approaching the secondary, and then
returns back to the predicted phase at ∼0.08 rp.
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it is beyond the scope of the paper and thus a more thorough
investigation is deferred to a future paper.

One thing that does not change regardless of planet mass
(and also disk temperature; see Paper II) is that small m modes
are less tightly wound than large m modes. This property of
waves suggests that an additional spiral arm always forms
ahead of the previous arm in the azimuth in the inner disk and
behind the previous arm in the azimuth in the outer disk. Also,
an additional spiral arm always forms farther away from the
planet in radius, because the wave modes have to travel a
longer distance to be in phase.

5. Summary and Conclusion

We have shown how a planet excites multiple spiral arms in
the underlying protoplanetary disk. Using linear wave theory
we first calculated the phases of individual wave modes excited
by a planet and showed that appropriate sets of wave modes
having different azimuthal wavenumbers can be in phase, from
their launching points (in the case of the primary arm) or as
they propagate (in the case of additional arms). By carrying out
a suite of two-dimensional hydrodynamic simulations, we then
verified that the sets of wave modes predicted by the linear
theory add constructively on to each other and form
spiral arms.

As the planet mass grows, nonlinear effects play an
increasingly important role. We investigated the nonlinear
effects by carrying out numerical simulations with various
planet masses from 1% of a thermal mass to 10 thermal masses.

Our main findings are:

1. The formation of spiral arms—both primary and addi-
tional arms—is a linear process: constructive interference
among appropriate sets of wave modes having different
azimuthal wavenumbers.

2. A planet excites m evenly spaced wave modes at the mth
Lindblad resonance, where = ¼ ¥m 1, 2, 3, , is the
azimuthal wavenumber. Among the wave modes
the n=0 components, which are those originating from
the planet’s location, add constructively on to each other
and form the primary arm (Sections 2 and 3), confirming
the mechanism presented in OL02.

3. Additional spiral arms form in a similar manner to the
primary arm, but through constructive interference among
non-zero nth components. Non-zero nth components
excite out of phase at the Lindblad resonance, in contrast
to n=0 components, but constructive interference
among the wave modes is possible because wave
propagation is dependent upon their azimuthal wave-
number (Equation (7)).

4. The phases of spiral arms follow the dominating
azimuthal mode with » -( )( )m h r1 2 p

1 reasonably well,
until they steepen into shocks and depart from the linear
regime. We provide a generalized analytic formula in
Equation (7), which can be used for the primary arm but
also additional arms.

5. In the outer disk, the propagation of wave modes
becomes independent on the azimuthal wavenumber m
when r?rp. Additional spiral arms can thus form in the
outer disk only if wave modes become in phase before
r∼ a few × rp (Section 2.2.2).

6. Spiral arms excited by a planet with more mass propagate
at faster speeds and thus appear to be more open,

consistent with previous studies (e.g., Zhu et al. 2015).
This trend is seen to be in common with the primary arm
and also for additional arms (Figure 13).

7. Only two spiral arms form for sufficiently large planet
masses (Mp3Mth). The wave modes that would form a
tertiary arm for smaller mass planets merge with the
primary arm (Figures 11 and 12).

To conclude, the multiple spiral arm formation mechanism
presented in this paper can explain many characteristics of
planet-driven spiral arms known from previous studies. An
obvious extension is to examine this scenario in three-
dimensions, particularly when the background disk is vertically
stratified. Because of vertical gravity and/or buoyancy, the
wave modes in such disks will behave differently as they depart
from the disk midplane. Spiral arms thus may not have a
coherent vertical structure, possibly explaining the curvature of
spiral arms seen in three-dimensional numerical simulations
(e.g., Zhu et al. 2015; Bae et al. 2016b). While we focused on
the case in which the primary object (i.e., star) has a much
larger mass than the perturbing companion (i.e., planet), the
spiral arm formation mechanism presented here can also be
applied to the systems where the companion body has a
comparable mass to the primary (e.g., disks around dwarf
novae or binary black holes), or a much larger mass than the
primary (e.g., circumplanetary disks). In the cases when
the companion body has a mass comparable to or greater than
the primary mass, it is very likely that the companion launches
largely open two-armed spirals in the disk around the primary.
We present applications of the present work in Paper II and
discuss whether various characteristics of observed spiral arms
can be used to constrain the masses of yet unseen planets and
their positions within their disks.
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