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Abstract: Recent studies have revealed the influence of fine particulate matter (PM2.5) on increased
medication use, hospital admission, and emergency room visits for asthma attack in children, but
the lagged influence of PM2.5 on children’s asthma and geographic disparities of children’s asthma
have rarely been discussed simultaneously. This study investigated the documented diagnosis of
children’s asthma in clinic visits for children aged less than 15 years old that were associated with
PM2.5 in two counties located in west-central Taiwan during 2005–2010. The result shows that PM2.5

had a significant lagged effect on children’s asthma for up to 6 days. A significantly higher relative
risk for children’s asthma was more likely to happen at 2-day lag compared to the present day when
PM2.5 increased from 36.17 µg/m3 to 81.26 µg/m3. Considering all lagged effects, the highest relative
risk for children’s asthma was 1.08 (95% CI = 1.05, 1.11) as PM2.5 increased as high as 64.66 µg/m3.
In addition, geographic disparities of children’s asthma were significant, and 47.83% of areas were
identified to have children vulnerable to asthma. To sum up, our findings can serve as a valuable
reference for the implementation of an early warning to governmental agencies about a susceptible
population of children.

Keywords: PM2.5; children’s asthma clinic visits; nonlinear lagged effects; spatial variation

1. Introduction

Asthma is a common chronic disease in childhood and has become an increasing problem in the
last few decades because numerous studies have revealed an increasing trend of asthma prevalence in
both developed and developing countries [1–8]. In Taiwan, children’s asthma is a major health issue,
and evidence has shown that the prevalence of children’s asthma has also increased dramatically over
the last 40 years [9,10]. The overall 8-year prevalence of asthma in children was 15.7% according to
a national survey from 2000 to 2007 [11]. Although the factors behind the changing pattern remain
unclear, many personal and environmental factors have contributed to asthma risk, such as tobacco
smoke, chemical fumes, weather conditions, and air pollution [12–16]. In addition, many industrial
factories in Taiwan, especially in west-central Taiwan, play an important role in the process of economic
development, but they contribute to various kinds of pollutants to the ambient air, which may trigger
the increase of asthma risk [17].

Of the environmental factors, air pollution is one of the widespread environmental threats to
human health. In particular, the issue of the association between air pollutants and asthma has
been extensively discussed. The literature has proven that air pollution is a significant factor of
asthma exacerbations, especially in susceptible populations who may be at risk for exacerbation of
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asthma from the toxic effects of airborne particulate matter (PM) [18–21]. Potential pathways for
pulmonary effects propose that air pollutants can bypass the body’s natural defenses and provoke an
inflammatory response in the lungs, especially from fine particulate matter (PM2.5, particulate matter
with an aerodynamic diameter ≤2.5 µm) [22].

Several studies have revealed the influence of PM2.5 on increased medication use, hospital
admission, and emergency room visits for asthma attack in children [23–28]; however, some studies
found nonsignificant impacts of PM2.5 on asthma hospitalization [29,30]. Current studies have no clear
explanations for the conflict in this regard [29,30]. The reasons may include variability in population
characteristics and geographic variation. Some researchers have pointed out the space-time variation
of PM composition and concentrations [31], which could partially explain the spatial differences in
the health effects for mortality and morbidity [32]. The same levels of PM2.5 may still have different
chemical compositions, which result in various adverse health effects. Epidemiological studies have
demonstrated a strong spatial variation in the chemical component of PM that causes geographic
disparities in human health [14,32–35].

The time-series studies in PM2.5 have found out the temporal pattern of associations between daily
counts of health end-points and daily concentration on the current and a few preceding days [34,36,37].
Such lagged effects caused by PM2.5 have been observed in asthma and other respiratory symptoms,
such as cough and wheeze, while the results are different from 3 to 4 days [38,39] or 2–6 days [40–42].
One possible reason for the different lags affected by PM2.5 is because different lagged effects may
provide insight into different biologic mechanisms of reaction to PM2.5 [43]. Moreover, earlier research
applied linear modeling approaches to assess the lagged effect between ambient air pollution and
health effects [41,44,45]. However, the choice in the number of lags was not objective in different
models, and the linear relationship between a health outcome and a lag is also doubtful. Recently,
more studies have applied nonlinear models and reached more solid findings [14,46–48].

In this study, we hypothesized that the health impact of PM2.5 on asthma has a nonlinear
lagged influence and that the district level of PM2.5 concentration might have different effects
on asthma incidence. Thus, we adopted a spatiotemporal model for investigating the nonlinear
relationship between PM2.5 concentrations and children’s asthma clinic visits with consideration
of spatial autocorrelation and lagged effects. Our research aims comprise: first, evaluating the
lagged effects of the daily PM2.5 concentration on the morbidity of asthma; and second, investigating
geographic disparities of asthma risk after controlling for air pollutants and weather conditions.

2. Materials and Methods

2.1. Asthma Data

The data used in this study were retrieved from claim files of the National Health Insurance
Research Database (NHIRD) provided by the Department of Health at the Bureau of National Health
Insurance and managed by the National Health Research Institutes (NHRI). The NHIRD provides
all inpatient and ambulatory medical claims for around 99% of Taiwanese residents [49]. With the
approval of the NHRI, this study used the annual ambulatory care visit registry to claim data between
2005 and 2010, which provide information on the date of the clinic visit, up to three diagnoses,
scrambled identification numbers of both patients and attending physicians, date of birth of patients,
and gender. Asthma cases younger than 15 years old from 2005 to 2010 with the International
Classification of Diseases, 9th Revision, Clinical Modification code from 493.00 to 493.99 were recruited
in the study sample.

2.2. Environmental Data

Measurements of air pollutants were based on data routinely collected at seven monitoring
stations maintained by the Environmental Protection Administration in Taiwan (TWEPA): three in
Changhua County and four in Yunlin County (Figure 1). Each monitoring station gathered hourly
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concentration data of carbon oxide (CO), nitric oxide and nitrogen dioxide (NOx), ozone (O3), sulfur
dioxide (SO2), particulate matter with a diameter less than 10 µg/m3 (PM10), and PM2.5 together
with weather-condition-related data, such as temperatures, relative humidity, wind speed, and wind
direction. The Central Weather Bureau also provides weather records (temperature, relative humidity,
and wind direction) from 35 weather monitoring stations in Changhua County and Yunlin County.

2.3. Study Area

Yunlin County is located in west-central Taiwan and accommodates one power plant, which is
the third-largest coal-fired power plant in Taiwan. The widest east-west distance is about 50 kilometers
(km) and the longest south-north distance is about 38 km. It has an area of 1291 km2 and a population
of 710,000; 16% of the inhabitants are children. Changhua County is located at the center of Taiwan
and is bordered by Yunlin County to the south. It has an area of about 1074 km2 and a population of
around 1.3 million, of whom more than 17% are children. This county has a density of 7.7 factories per
square kilometer. According to insurance administrative divisions, a total of 46 districts are contained
in the study area, with 20 districts in Yunlin County and 26 districts in Changhua County as shown in
Figure 1.
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2.4. Imputation of Missing Environmental Data

We used the Bayesian maximum entropy (BME) method to estimate the spatiotemporal
distribution of air pollution concentrations and weather conditions for each unmonitored location
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by day from 2005 to 2010. The BME method is a spatiotemporal interpolation technique to
incorporate measurement data, prior knowledge of neighbor information, and local spatiotemporal
covariates [50–53] and has been applied to estimate the ambient pollution concentration across
space–time previously [54–57]. The process of spatiotemporal air pollutants can be characterized
by spatiotemporal trend and covariance. Nested spatiotemporal covariance models were used to
characterize the spatiotemporal dependence of the air pollutants to reveal the spatiotemporal processes
at different space-time scales [50,57]. Before performing spatiotemporal data imputation, the wind
data were decomposed into two wind components along longitude and latitude, respectively, i.e.,
µ and ν, by using the formula µ = (wind speed) × sine (wind direction) and ν = (wind speed) ×
cosine (wind direction). The imputed wind data were reconstructed from the estimated µ and ν at
unmonitored spatial locations and time instants.

2.5. Statistical Modeling Approach

This study adopted a distributed lag nonlinear model (DLNM) to investigate the nonlinear lagged
influence of PM2.5 on children’s clinic visits for asthma. Suppose Yit is the number of children’s asthma
clinic visits at day t in district i, where Yit follows a Poisson distribution with a mean parameter µit.
In order to adjust for the possible bias from the overdispersion problem, we especially considered
a quasi-Poisson link function in the DLNM: log(µit) = α + β × (DOW) + γ × (AP) + δ × (WD) +
f(TP) + f(RH) + f(Time) + f(PM2.5, lag = 7) + fspat + offset, where DOW is a day-of-the-week vector
from Monday to Saturday (i.e., Sunday is the reference level), AP is a co-pollutant vector containing
condensable particulate matter (cPM), the ratio of carbon oxide and nitrogen oxide (CO/NOx), SO2,
and O3, and WD is an eight-level wind direction variable in terms of southwest (202.5–247.5◦), west
(247.5–292.5◦), northwest (292.5–337.5◦), north (337.5–22.5◦), northeast (22.5–67.5◦), east (67.5–112.5◦),
and southeast (112.5–157.5◦), while south is a reference level (157.5–202.5◦). We added three natural
cubic splines for mean temperature (TP) with 6 degrees of freedom, mean relative humidity (RH)
with 6 degrees of freedom, and calendar time (Time) with 21 degrees of freedom. The model also
included a cross-basis function for PM2.5 to investigate the nonlinear association among children’s
asthma, PM2.5, and lagged day. The cross-basis function is a 2-dimensional function from a natural
cubic spline of PM2.5 with 4 degrees of freedom interacting with another natural cubic spline of lag up
to 7 days with 3 degrees of freedom. A spatial function fspat was included by using the Markov random
fields (MRF) to take spatial autocorrelation into account [58]. The MRF can transform a shape file
into a neighborhood matrix to depict whether any couple of areas share any piece of their boundaries.
The number of neighboring districts in each district was also used to estimate unknown parameters of
the MRF. The last term is an offset from the logarithm of the district population from 2005 to 2010.

All linear estimates derived from the model can be transformed into the relative risk (RR) by an
exponential function. In particular, the linear estimates of air pollutants were transformed into the
increased percentage of the relative risk (RR%) by an inter-quartile range change. The estimates of
the cross-basis function can be also transformed into RR along with PM2.5 concentrations and lagged
days. We defined 35 µg/m3 as the reference level of PM2.5 according to the PM2.5 standard published
by TWEPA, which suggests less outdoor physical activity among at-risk individuals sensitive to
respiratory diseases when the density of PM2.5 is over 35 µg/m3. The reference level of the lagged day
is the present day (lag 0). The MRF can conduct a spatial estimate in each district, which can be also
transformed into RR to explain the excessive asthma risk of each district compared with the average
asthma risk from all districts.

Our data were maintained and managed by SAS v9.3 (SAS Institute, Cary, NC, USA), and missing
data were imputed by using SEKS-GUI v.1.0.3 (SpaceTimeWorks, LLC, San Diego, CA, USA) [59]. DLNM
estimation was performed with software R, version 3.1.2 (R Development Core Team, Vienna, Austria).
The statistical significance of an estimate was determined by the 95% confidence interval (CI).
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3. Results

The number of annual clinic visits for children’s asthma was 172,696 in 2005, 157,278 in 2006,
162,837 in 2007, 148,439 in 2008, 150,680 in 2009, and 148,450 in 2010. The daily average of children’s
asthma clinic visits was 4.70 cases (standard deviation (SD) = 14.28) in Yunlin County, while Changhua
County only had 3.03 (SD = 7.94) children’s asthma clinic visits per day. Daily measurements of ambient
pollutants and meteorological factors during the study period are summarized in Table 1. In particular,
the mean daily average of PM2.5 was 37.22 µg/m3 (SD = 18.87) in Changhua County and 37.26 µg/m3

(SD = 19.38) in Yunlin County, and both were higher than the World Health Organization (WHO)
guideline value (25 µg/m3). In addition, during the study period, 27.99% of days blow northeast wind
in Changhua County, and 26.27% of days blow south wind in Yunlin County. Figure 2 shows a clear
seasonality on the temporal variation of daily averaged PM2.5 concentration and daily clinic visits for
children’s asthma. A total of 1543 days (70.4%) has the daily mean of PM2.5 concentration exceeding
the WHO standard of 25 µg/m3 during the study period. On average, the study area had 180.22 daily
clinic visits (SD = 51.84) for children’s asthma. A higher number of clinic visits more likely happened
during springs and winters. Figure 3a depicts the geographic distribution of the average crude rate of
daily children’s asthma and a higher rate more likely concentrated on a few eastern inland districts.
Figure 3b presents the geographic distribution of daily average PM2.5 concentrations, in which there
was a higher-density distribution from the western coast to the eastern inland districts in the whole
study area, especially in the southeastern area.

Table 1. Characteristics of study variables.

Study Variables Changhua Yunlin

Mean Standard deviation Mean Standard deviation

Children’s asthma cases 3.03 7.94 4.70 14.28
PM2.5 (µg/m3) 37.22 18.87 37.26 19.38

O3 (ppb) 28.89 10.01 31.68 10.67
SO2 (ppb) 3.73 1.42 3.59 1.39

cPM (µg/m3) 24.20 17.82 28.76 21.00
CO/NOx (ppm/ppb) 0.02 0.01 0.02 0.01

Temperature (◦C) 22.33 4.85 21.87 4.69
Relative humidity (%) 68.02 8.00 69.67 7.09

Frequency Percent Frequency Percent

Wind direction

South 15,371 26.98% 11,510 26.27%
Southwest 4164 7.31% 2262 5.16%

West 307 0.54% 226 0.52%
Northwest 136 0.24% 162 0.37%

North 1160 2.04% 1714 3.91%
Northeast 15,944 27.99% 11,186 25.53%

East 8429 14.80% 7073 16.14%
Southeast 11,455 20.11% 9687 22.21%

PM2.5 = fine particulate matter; O3 = ozone; SO2 = sulfur dioxide; cPM = condensable particulate matter;
CO = carbon oxide; NOx = nitric oxide and nitrogen dioxide.
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from 2005 to 2010.

Table 2 shows a significant RR of children’s asthma in each DOW compared to Sunday, whereas
Monday had the highest RR by 2.07 (95% CI = 2.04–2.11; p-value < 0.0001). Moreover, compared
to a southerly wind, a significantly lower RR was highly likely in a westerly wind (RR = 0.82;
95% CI = 0.76–0.89; p-value < 0.0001) and a northwesterly wind (RR = 0.89; 95% CI = 0.82–0.97;
p-value = 0.0076). Only a northerly wind was significantly positively associated with children’s
asthma (RR = 1.03; 95% CI = 1.00–1.06; p-value = 0.0272). Furthermore, increased asthma visits
were significantly associated with cPM and SO2. When cPM increased one interquartile range
(=17.60 µg/m3), the RR for children’s asthma significantly increased 1.42% (95% = 1.01–1.83; p-value
< 0.0001). Similarly, when SO2 increased one interquartile range (=1.66 ppb), the RR significantly
increased 1.25% (95% CI = 0.43–2.08; p-value = 0.0028).

Figure 4a demonstrates the effect of PM2.5 concentration changes on children’s asthma along with
lagged days, suggesting a higher RR of children’s asthma simultaneously increased when lagged day
and PM2.5 concentration also increased. However, in each lagged day, the RR of children’s asthma
gradually decreased when PM2.5 concentration increased over 80 µg/m3. A contour plot shown in
Figure 4b presents a clear variation of RR by PM2.5 concentration and lagged day, indicating that a RR
greater than 1 happened from present day and 4-day lag when PM2.5 concentration increased between
60 and 80 µg/m3.
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Table 2. Percentage change of relative risk (RR) in children’s clinic visits for asthma from 2005 to 2010.

Variable RR 95% CI p-Value

Day of the Week

Sunday 1.00 Reference -
Monday 2.07 (2.04, 2.11) <0.0001
Tuesday 1.75 (1.72, 1.79) <0.0001

Wednesday 1.71 (1.68, 1.74) <0.0001
Thursday 1.45 (1.42, 1.48) <0.0001

Friday 1.64 (1.61, 1.67) <0.0001
Saturday 1.74 (1.71, 1.77) <0.0001

Wind direction

South 1.00 Reference -
Southwest 1.00 (0.97, 1.02) 0.6907

West 0.82 (0.76, 0.89) <0.0001
Northwest 0.89 (0.82, 0.97) 0.0076

North 1.03 (1.00, 1.06) 0.0272
Northeast 1.00 (0.98, 1.02) 0.9091

East 1.00 (0.98, 1.02) 0.9532
Southeast 1.00 (0.99, 1.02) 0.7150

RR% 95% CI p-Value

Air pollutant
cPM 1.42 (1.01, 1.83) <0.0001

CO/NOx −3.16 (−3.85, −2.46) <0.0001
SO2 1.25 (0.43, 2.08) 0.0028
O3 0.82 (−0.07, 1.71) 0.0704

Abbreviation: RR = Relative risk; RR% = Increased percentage of relative risk per interquartile range change;
CI = Confidence interval.
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Figure 4. Transformed estimated cross-basis function for PM2.5: (a) The three-dimensional plot shows
the variation of relative risk (RR) of children’s asthma along with PM2.5 concentration and lagged
day; (b) The contour plot shows the hot spot of RR of children’s asthma in a coordinate of PM2.5

concentration and lagged day.

Compared to the reference level of PM2.5 (35 µg/m3), a higher concentration at the 75th percentile
(49.24 µg/m3) and 95th percentile (73.02 µg/m3) of PM2.5 had a RR significantly higher than 1 from
1 to 6 lagged days as shown in Figure 5a,b. Compared to the present day, a higher RR was more likely
to happen at 2-day lag, and it was significantly greater than 1 when PM2.5 increased from 36.17 µg/m3

to 81.26 µg/m3 (Figure 5c). The range of PM2.5 having a significant RR greater than 1 was shorter along
with more lags. For instance, at 6-day lag, a significant RR greater than 1 can be only observed for the
concentration of PM2.5 between 38.25 µg/m3 and 76.71 µg/m3 (Figure 5d). Figure 5e shows an overall



Int. J. Environ. Res. Public Health 2018, 15, 829 8 of 14

PM2.5 effect on children’s asthma after accumulating all RRs from each lagged day along with PM2.5

concentration. The result displays a significant increase of RR when PM2.5 increased over 35 µg/m3.
The cumulative RR reached the highest level by 1.08 (95% CI = 1.05, 1.11) as PM2.5 increased as high
as 64.66 µg/m3. The increment of RR turned downward when PM2.5 was over 64.66 µg/m3, and no
significant RR greater than 1 was observed when PM2.5 was higher than 85.25 µg/m3.
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PM2.5 concentrations and lagged days.

Several districts were identified to have a higher RR for children’s asthma in Changhua County
and Yunlin County. In Figure 6a, districts with a higher RR were more located in Changhua County,
while the highest one was observed in the Huwei District (RR = 172.80; 95% CI = 162.83–183.39)
at the center of Yunlin County, which is the second significant district for local industries, medical
care, economy, and employment. Figure 6b reveals a total of 22 districts (13 in Changhua County and
9 in Yunlin County) with a RR significantly higher than 1 after controlling for the other confounding
variables. Meanwhile, children living in 47.83% of the total 46 districts were vulnerable to asthma.
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Figure 6. Maps for each district in Changhua County and Yunlin County according to the transformed
estimated spatial function. Map (a) is the relative risk (RR) of children’s asthma from small (white)
to large (red). Map (b) is the statistical significance of RR in each district determined by the 95%
confidence interval, where black represents a significant RR < 1, white represents a significant RR > 1,
and gray represents a nonsignificant RR.



Int. J. Environ. Res. Public Health 2018, 15, 829 9 of 14

4. Discussion

Air pollutants, especially in PM2.5, have been implicated as a potential risk factor for human
health, and have raised the greatest public health threat globally according to the WHO’s report [60].
This study selected children as the study population because children are very sensitive to air pollution.
We investigated the exposure-lag-response association between children’s asthma and PM2.5 within
the lag period, resulting in significantly lagged effects on children’s asthma, especially from 2-day lag
to 6-day lag. In addition, this study revealed several high-risk districts after controlling for ambient air
pollutants and weather conditions. The finding not only verified the evidence of geographic disparities
on children’s asthma, but also provided a priority order of at-risk areas for advanced interventions
or preventions.

The main feature of this study is taking the nonlinear properties into account for assessing
associations between children’s asthma clinic visits and exposure to ambient air pollution. While
some previous studies have examined the linear association between PM2.5 and asthma [23–25,61,62],
actually at-risk children may not have any asthma symptoms during the concurrent day when being
exposed to air pollutants. Meanwhile, the admissions observed on a particular day can be related to
the air pollution observed on previous days. Therefore, using a linear model cannot reflect the true
relationship of PM2.5 and health, and the lag itself may not be linearly correlated as well. The more
lags we consider, the more nonlinearity among lags should be explicit.

Previous epidemiological research on asthma has usually defined lagged effects as linear terms
in a model [25–28], while this modeling strategy assumed that those lagged terms were linearly
independent with each in nature. This study adopted the DLNM, which is more flexible in defining
the relationships among lags and emphasizes the interactions between PM2.5 concentrations and lags.
Thus, the linearity assumption is no longer needed. In fact, recent studies had applied the DLNM
more frequently to research lagged effects of air pollution on asthma. For instance, a Sweden study
used this model to analyze air pollution data on primary health care visits for asthma, resulting in a
significant finding from NO2 [63]. A similar application with the same model in Hong Kong evaluated
the association of asthma emergency room visits among children with ozone concentration [64].
More importantly, our model includes a spatial function to adjust for spatial heterogeneity among
46 districts. The rationale of including the spatial function is to present a possible phenomenon known
as harvesting, which appears as a raised risk ratio at a short lag followed by an apparent protective
effect at a longer lag [65]. In other words, without including the spatial function in the DLNM, the effect
of harvesting may be ignored, and may cause a monotone increasing trend in a disease risk as the
concentration of an air pollutant increases. The situation has been well-investigated and discussed in a
previous study of acute respiratory disease and PM2.5 [66].

We explored the temporal lag patterns of the effects of PM2.5 concentrations on children’s asthma
clinic visits to conclude that PM2.5 was correlated with 1–6-day lags. Among the 6-day lagged
effect, the first 3 days have the greatest relative risks. Consistent with our results, previous studies
have suggested the lagged effect on different asthma outcomes to be at most 6 days. For instance,
Ko et al. reported stronger lagged effect estimates from lag of 0–4 days for asthma hospitalization
in Hong Kong [67]. Slaughter et al. examined the relationship between PM2.5 and asthma attack in
children and found a significant effect for 0–1 day lag [25]. A longer lagged effect, up to 5 days, was
observed among children [40]. The possible mechanism leading to the lagged effect could partly be
explained by inflammation in the alveolar region of the lung caused by the smaller particles in the
pollutant mixture [68]. The efficient deposition of ultrafine particles has been shown to be able to
penetrate deep into the lungs and in particular in subjects with asthma [69]. In addition to differences
in biological mechanism, the different lagged effects could be attributed to patient behavior patterns.
Several days are needed for exacerbation to become severe enough to lead to a clinic visit. This would
explain why the increase in asthma clinic visits was delayed. The finding of the lagged effects of
asthma from the exposure to high PM2.5 episodes provides an important reference for governmental
agencies to assess the health effects of the PM2.5 events, which have occurred frequently in recent
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years throughout Taiwan, in terms of clinic visits and their associated economic costs from the national
health insurance plan.

The short-term time effect should be considered as a confounding factor for clinic visits due to
the fact that seeking medical treatment varies by the day of the week. In Taiwan, generally the open
time in most hospitals is from Monday morning to Saturday afternoon. Therefore, people who need to
see a doctor on Sunday would wait until the following Monday to be admitted. The situation reflects
a higher RR on Monday in our model, which illustrates the temporal pattern of medical treatment
associated with the short-term time effect.

Because of a variety of air pollutants generated by certain sources, such as transportation and
industry, are the major sources of CO and NOx, having those co-pollutants as confounding factors in
the model is necessary. However, the correlation between CO and NOx is as high as 0.81, causing the
collinearity problem in the model. Although no previous study has examined whether collinearity
will affect the estimation on a cross-basis function in the DLNM, we still alternatively used a single
predictor by the CO/NOx ratio to avoid potential biases. In addition, the CO/NOx ratio has been
frequently used in air quality assessment, where a high value indicates that mobile sources are the
predominant contributors of these two compounds, while a low value of rationality indicates that
point sources contribute from industrial sources [70,71]. Thus, this should be an adequate replacement
rather than using CO and NOx separately in the same model.

The spatial function of our model identified a significant excessive asthma risk in 22 districts
after controlling for confounding variables. The finding concluded that those districts may have other
unobserved risk factors, while we can only examine why children living in those districts are more
vulnerable to asthma than children living in the other districts. Those unobserved factors may attribute
to socioeconomic deprivation, other unobserved pollutants, or uneven medical resources. In our study,
we observed that the high RR regions are mostly those locations with major medical centers, such as
Douliu, Huwei, Beikang, and the Mailiao Townships in Yunlin County. This suggests that the spatial
disparity of medical resources can be an important confounding factor in the spatial distribution of
clinic visits for asthma.

This study revealed the concentration-response relationship from the population-based clinic
visits data. As a result, our finding can provide a solid background for a governmental agency to
develop an effective strategy to mitigate the health effects from PM2.5 concentration. Two limitations
should be noted regarding this study. First, this study was not able to adjust for potential confounders
at the individual level, such as body mass index, exposure to environmental tobacco smoke, genetic
information, and allergens, because no such information is available in the NHIRD. Second, we were
unable to identify the composition of PM2.5 from monitoring stations because of differences in pollutant
composition across space and time and different influences during specific exposure periods.

5. Conclusions

Ambient levels of PM2.5 are associated with children’s asthma clinic visits in Taiwan. The study
results clearly show that PM2.5 had significant lagged effects of up to 6 days on children’s asthma.
Those identified high-risk districts reveal where vulnerable children may live, and their parents need to
be informed in advance when a high concentration of PM2.5 is measured. The findings in this research
can be useful for forecasting children’s asthma clinic visits in the coming days, and therefore, our
results can serve as a valuable reference for the implementation of an early warning to governmental
agencies about susceptible populations.
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