Santa Clara University
Scholar Commons

Computer Engineering School of Engineering

9-2016

Towards efficient resource provisioning n

MapReduce

Peter Nghiem
Santa Clara University, pnghiem@scu.edu

Silvia M. Figueira

Santa Clara University, sfigueira@scu.edu

Follow this and additional works at: https://scholarcommons.scu.edu/cseng

b Part of the Computer Engineering Commons

Recommended Citation
Nghiem, P. P,, & Figueira, S. M. (2016). Towards efficient resource provisioning in MapReduce. Journal of Parallel and Distributed

Computing, 95, 29-41. https://doi.org/10.1016/j.jpdc.2016.04.001
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.

This Article is brought to you for free and open access by the School of Engineering at Scholar Commons. It has been accepted for inclusion in

Computer Engineering by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng?utm_source=scholarcommons.scu.edu%2Fcseng%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/engineering?utm_source=scholarcommons.scu.edu%2Fcseng%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng?utm_source=scholarcommons.scu.edu%2Fcseng%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rscroggin@scu.edu

J. Parallel Distrib. Comput. 95 (2016) 29-41

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Towards efficient resource provisioning in MapReduce

@ CrossMark

Peter P. Nghiem *, Silvia M. Figueira

Department of Computer Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053-0207, United States

HIGHLIGHTS

Overprovisioning could lead to significant waste of computing resources and energy.
Performance gain decreases quickly beyond the best trade-off point on elbow curve.
Our algorithm for optimal resource provisioning is better than any rules of thumbs.
Use dynamic job profiling with table of signatures to match optimal task resources.
Efficient task provisioning saves energy and resources for jobs in multi-tenancy.

ARTICLE INFO ABSTRACT

Article history:

Received 18 September 2015
Received in revised form

16 January 2016

Accepted 1 April 2016
Available online 12 April 2016

The paper presents a novel approach and algorithm with mathematical formula for obtaining the exact
optimal number of task resources for any workload running on Hadoop MapReduce. In the era of Big
Data, energy efficiency has become an important issue for the ubiquitous Hadoop MapReduce frame-
work. However, the question of what is the optimal number of tasks required for a job to get the most
efficient performance from MapReduce still has no definite answer. Our algorithm for optimal resource
provisioning allows users to identify the best trade-off point between performance and energy efficiency
on the runtime elbow curve fitted from sampled executions on the target cluster for subsequent behav-

I;?gg/g;dls\)[apke(juce ioral replication. Our verification and comparison show that the currently well-known rules of thumb
Spark for calculating the required number of reduce tasks are inaccurate and could lead to significant waste of
Optimal resource provisioning computing resources and energy with no further improvement in execution time.

Energy efficiency © 2016 The Authors. Published by Elsevier Inc.
sf\fég\ilme elbow curve This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The energy consumption associated with datacenters has risen
quickly, and server energy costs over its useful life can now
exceed its original capital expenditure [18]. Google, Microsoft,
Amazon, Facebook and Yahoo now have several hundred thousand
to over a million servers in their datacenter infrastructure. A
large portion of datacenter workloads is processed by Hadoop
MapReduce, a popular de facto standard framework for Big Data
processing, which has been adopted by these world’s leading cloud
computing providers and top Big Data companies, among many
other organizations and institutions. As such, there has been a
growing amount of research work dedicated to making MapReduce
more energy efficient. However, the issue of how to decide on the
right number of task resources for different workloads still has not
been resolved. Therefore, Hadoop developers and users have had to

* Corresponding author.
E-mail addresses: pnghiem@scu.edu (P.P. Nghiem), sfigueira@scu.edu
(S.M. Figueira).

http://dx.doi.org/10.1016/j.jpdc.2016.04.001

rely on popular but inaccurate rules of thumb widely circulated in
industry for their MapReduce job execution, leading to significant
unintended waste of computing resources and energy.

Several research groups have worked on the performance and
energy efficiency of Hadoop MapReduce. Krish et al. [17] present
a workflow scheduler for MapReduce framework that profiles
the performance and energy characteristics of applications on
each hardware sub-cluster in a heterogeneous cluster to improve
matching application to resource while ensuring energy efficiency
and performance related Service Level Agreement goals. Har-
tog et al. [11] suggest a MapReduce framework configuration to
evaluate node power consumption status and dynamically shift
work toward more energy efficient node. Leverich and Kozyrakis
[20] propose modifying Hadoop to allow the scaling down of oper-
ational clusters by keeping only a small fraction of the nodes run-
ning while disabling nodes not in the covering subset to conserve
power. Lang and Patel [19] use all the nodes in the Hadoop cluster
to run a workload and then power down the entire cluster when
there is no work as an all-in-strategy. Kaushik and Bhandarkar [16]
place classified data into two logical zones of HDFS, where 26%
energy consumption reduction is achieved from cold zone power

0743-7315/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

0/).

http://dx.doi.org/10.1016/j.jpdc.2016.04.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.04.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pnghiem@scu.edu
mailto:sfigueira@scu.edu
http://dx.doi.org/10.1016/j.jpdc.2016.04.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

30 P.P. Nghiem, S.M. Figueira / J. Parallel Distrib. Comput. 95 (2016) 29-41

management, and there is room for further energy saving in the
under-utilized hot zone. Lin et al. [21] analyze and derive the job
energy consumption from the job completion reliability of the
general MapReduce infrastructure based on a Poisson distribution
to find way to achieve energy-efficient MapReduce environment.
Wang et al. [26] use a genetic algorithm with practical encoding
and decoding methods, and specially designed genetic operators to
support a new MapReduce energy-efficient task scheduling model.
Chen et al. [8] show that for MapReduce workloads, where the
work rate is proportional to the amount of resources used, improv-
ing the performance as measured by traditional metrics such as job
duration is equivalent to improving the performance as measured
by lower energy consumed. For most systems, decreasing energy
consumption is equivalent to decreasing the finishing time.

Among the above research work dedicated to improving the en-
ergy efficiency of Hadoop MapReduce, we find that Chen et al. [8]’s
publication is the most closely related to our work. [8] suggest a
way to answer the question of how many machines to allocate to a
particular job by comparing energy consumption of different num-
bers of machines but do not provide a method to find the exact
optimal number. A smaller number of machines always consumes
less energy, and takes longer to finish a job unless it has far ex-
ceeded the resources required for the job. In this paper, we present
a solution for finding the best trade-off point in performance and
energy efficiency. We propose a standard method, formula, and al-
gorithm for obtaining the exact optimal number of tasks for any
workload running on Hadoop MapReduce, to provision for perfor-
mance efficiency based on the actual preview runtime data of the
cluster targeted for calibration.

This paper makes the following contributions:

e We develop a job profiling method for optimal resource
provisioning for any MapReduce workload by getting runtime
samples of the cluster targeted for calibration as reference
points for curve-fitting and computation to find the best trade-
off point on the runtime elbow curve.

e We provide a step-by-step computation process with mathe-
matical formulas for the runtime graph function f (x) = (a/x) +
b, its first derivative, its second derivative, the Chain rule, and
search conditions for breakpoints and major plateaus to find the
optimal number of tasks.

e We design an algorithm for best trade-off point to take the
single parameter a in the graph function f (x) = (a/x) + b for a
workload as input and output the exact recommended optimal
number of task resources.

e We validate our design and techniques using experiments on
a real 24-node homogeneous Hadoop cluster with Teragen
and Terasort components of the Terasort benchmark test with
10 GB, 100 GB and 1 TB of data.

e We verify and compare the results of our algorithm against
the numbers of tasks suggested by three currently well-known
rules of thumbs widely circulated in industry using the fitted
runtime elbow curves. We also provide a numerical example of
potential energy savings from the results.

The results of our evaluation show that our approach consis-
tently provides accurate and optimal number of task resources for
any workload to achieve performance efficiency while the num-
bers of reduce tasks suggested by the three currently popular rules
of thumb are inaccurate leading to significant unintended waste of
computing resources and energy as shown in Fig. 9 in Section 6.

The remainder of this paper is organized as follows: Section 2
presents a brief background knowledge on MapReduce. Section 3
introduces MapReduce resource provisioning and related research
efforts. Section 4 presents our algorithm for optimal resource pro-
visioning. Section 5 discusses the design, analysis and implemen-
tation of our algorithm. Section 6 compares the accuracy and

energy efficiency of our algorithm to three popular rules of thumb.
Finally, Section 7 concludes our work and proposes future research
on other types of applications and parallel processing frameworks
running on Hadoop YARN including Apache Spark with its dynamic
resource allocation feature.

2. Background knowledge on MapReduce

Apache Hadoop [1,27] is an open source framework for dis-
tributed storage and processing of large sets of data on clusters of
commodity hardware. Although Hadoop ecosystem includes sev-
eral software packages such as HBase, Hive, Mahout, Pig, Scoop,
Spark, Storm and others, the base Apache Hadoop 2.0 framework
comprises only three key modules: the Hadoop Common which
provides file systems and OS level abstractions, the Hadoop Dis-
tributed File System (HDFS), and the Hadoop MapReduce engine
with YARN (MR v. 2). With the addition of YARN in Hadoop 2.0,
multiple applications while sharing a common cluster resource
management can now be run in parallel by new engines. Hadoop
clusters can now be scaled up to a much larger configuration and
support iterative processing, graph processing, stream processing,
and general cluster computing all at the same time.

HDFS, which is based on Google File System (GFS), supports
large-scale data processing workloads and reliable data storage
of several TB on clusters of commodity hardware. It features
scalability, high availability, fault tolerance, flexible access, load
balancing, tunable replication, and security. HDFS splits files into
default blocks of 64 MB or 128 MB, which are distributed among
the nodes to provide a very high aggregate bandwidth across the
cluster for compute performance and data protection. There is
a single master called NameNode, which coordinates access and
metadata as a simple centralized management system. There is
no data caching error because the NameNode stores all metadata,
which include filenames and locations of each file on DataNode,
in memory for fast lookup. The DataNode only stores blocks from
files. A secondary NameNode, running on a separate machine,
periodically merges edit logs with namespace snapshot image
stored on disk to prevent the edit log file from growing into a large
file. In case of NameNode failure, the saved metadata can rebuild a
failed primary NameNode with some data loss since the state of
secondary NameNode always lags from the primary NameNode.
HDFS with block replication feature is designed to tolerate frequent
component failure and is optimized for huge number of very large
files on up to several thousand nodes cluster, which are mostly read
and appended.

The MapReduce programming model uses parallel and dis-
tributed algorithm on a cluster of nodes to process large datasets,
unstructured as in a file system or structured as in a database.
MapReduce can take advantage of data locality by passing data to
each data node within the Hadoop cluster. MapReduce also pack-
ages users’ MapReduce functions as a Java ARchive (JAR) file and
sends it out to each node. The JAR file operates locally on that slice
of input on that data node and therefore, reduces the distance over
which it must be transmitted. By executing compute at the loca-
tion of data instead of having data moved to the compute location,
traditional network bandwidth bottlenecks could be avoided. The
MapReduce framework provides scalability, security and authen-
tication, resource management, optimized scheduling, flexibility,
and high availability for a variety of applications in Big Data in-
cluding but not limited to machine learning, financial analysis, ge-
netic algorithms, natural language processing, signal processing,
and simulation.

MapReduce consists of three phases, map, shuffle and reduce,
where all values are processed independently. The reduce phase
cannot start until the map phase is completely finished. At the
map phase, map() functions run in parallel, creating different

P.P. Nghiem, S.M. Figueira / J. Parallel Distrib. Comput. 95 (2016) 29-41 31

intermediate values from different input datasets: map(input_key,
input_value) ->list <intermediate_key, intermediate_value>. At
the shuffle phase after partitioning, values are exchanged by a
shuffle/combine process which runs on mapper nodes as a mini
reduce phase on local map output to save bandwidth before
sending data to full reducer. At the reduce phase, reduce()
functions, also running in parallel, aggregate all values for a specific
key to a single output to generate a new list of reduced output:
list<intermediate_key, intermediate_value>->list<output_key,
output_value>.

YARN splits the responsibilities of job tracker and task tracker
in MapReduce v.1 into four separate entities in MapReduce v.2:
(1) The Resource Manager has a built-in scheduler, which allo-
cates resources across all applications based on the applications’
resource requirements. (2) The MR Application Master, which ne-
gotiates appropriate resource containers from the scheduler and
tracks their progress, coordinates and manages each and every in-
stance of MapReduce jobs executed on YARN. (3) The Node Man-
ager, which is responsible for containers, monitors each and every
node’s resource usage (CPU, memory, disk, network bandwidth)
within YARN. (4) The Container allocates and represents resources
per node available for each specific application. Thus, the tasks run-
ning MapReduce job is coordinated by the MR Application Master,
which creates a map task object for each split and a number of re-
duce task objects determined by the mapreduce.job.reduces prop-
erty.

3. Optimization of task resource provisioning

In general, allocating a higher number of tasks increases par-
allelization, framework overhead and load balancing, and mini-
mizes the cost of failures to smaller increments of resources. But
too many or too few tasks, whether mappers or reducers, are both
detrimental for job performance. When the number of tasks is too
large potentially causing resource contention and overall perfor-
mance degradation, the overhead time spent by all task resources
continues to grow while there is no further reduction in job run-
time with the gradual increase in number of allocated tasks. When
the number of tasks is too little for a workload, the job runtime is
extremely high due to resource insufficiency (Fig. 1). Our goal is to
find the best trade-off point between runtime and task resources
to provision for optimal performance and energy efficiency.

There are some prior work on MapReduce resource provision-
ing to achieve certain application performance goals and service
level objectives (SLOs) which could be referenced when using
our method for obtaining optimal task resources for energy effi-
cient computing. Babu [6] suggests different techniques for au-
tomatic setting of job configuration parameters for MapReduce
programs, including dynamic profiling, but acknowledges that this
is an inherently difficult research and engineering challenge with-
out knowing the properties of the actual job being processed, its
input data, and resource allocation. Herodotou et al. [12] introduce
the Elastisizer system to configure the right cluster size matching
a workload’s performance needs by using an automated technique
based on a mix of job profiling and simulation. Verma et al. [25]
generate a set of resource provisioning options to meet given SLOs
by applying scaling rules to the job past executions or sampled ex-
ecutions from a given application on the set of small input datasets.
Kambatla et al. [14] propose a brute force job provisioning ap-
proach by analyzing and comparing the resource consumption of
the application at hand with a database of similar resource con-
sumption signatures of other applications to calculate the opti-
mum configuration.

For the greater part, these prior research papers on resource
provisioning for MapReduce v.1 are still applicable to MapRe-
duce v.2. However, MapReduce v.2 is considerably different than

MapReduce v.1 where there are pre-configured static slots for
map and reduce tasks, which are inflexible and often leads to an
under-utilization of resources. In YARN, the job tracker’s role of the
previous MapReduce v.1 is now handled by a separate resource
manager and history server to improve scalability. The NodeM-
anager in MapReduce v.2, which manages resources and deploy-
ment on a node, is now responsible for launching containers. Each
container can store a map or reduce task. MapReduce v.2 running
on YARN is more scalable with resource utilization configured in
terms of physical RAM limit, virtual memory and JVM heap size
limit for each task. These improvements allow Hadoop to share re-
sources dynamically between applications in a finer-grained, more
practical and scalable resource configuration for better provision-
ing and cluster utilization. Along the lines proposed by these prior
papers for resource provisioning by job profiles, our research paper
further provides an innovative method, formula and algorithm to
eliminate the guesswork, and accurately identify the optimal num-
bers of task resources for different workloads to achieve perfor-
mance efficiency on any specific Hadoop cluster while minimizing
any strenuous brute force.

Obtaining the right number of mappers and reducers for each
job has been a challenge for Hadoop MapReduce users since there
are lots of variables involved in balancing computing resources
with network transfer bandwidth and disk reads. There are more
than 180 parameters specified to control the behavior of a MapRe-
duce job in Hadoop and the settings of more than 25 of these pa-
rameters can have significant impact on job performance [6,14].
However, the optimal number of tasks for a job depends not only
on the settings of various parameters and metrics for fine tuning
Hadoop cluster performance but also on several other factors in-
cluding but not limited to the type of application, dataset size and
structure, cluster hardware specifications, system setup and con-
figuration, and output buffer size. Therefore, the most practical
method to indirectly take all those factors into account is to com-
pute the optimal number of tasks from the actual sampled runtime
data of the target cluster.

The number of maps needed for certain job is usually decided
by the number of blocks in the job inputs, which varies with the
HDFS block size. The current default HDFS block size is 128 MB,
an increase from the previous version, which was 64 MB. In some
cases, capitalizing on data locality to enlarge the HDFS block size
up to 512 MB to store a large input file can reduce runtime for I/O
bound jobs. On the other hand, when mappers are more CPU bound
and less I/O bound, reducing the HDFS block size can improve
the utilization of computing resources in the cluster. Hence, the
total number of mappers running for a particular job actually
depends on the number of input splits of the data. According to
Hadoop Wiki, the right level of parallelism for maps seems to be
around 10-100 maps/node, although it could be taken up to 300
or so for very CPU-light map tasks [3]. Significantly, the number
of reducers at the aggregation step is more difficult to estimate
since it is not easy to ascertain any spill of intermediate outputs
to memory buffer and/or to disk for different workloads. Although
there are currently three popular rules of thumb widely circulated
in industry for deciding on the optimal number of reducers for a
job, none of them provide an accurate and verifiable number of task
resources for certain workload as shown in Fig. 9 in Section 6.

4. Algorithm for optimal resource provisioning

We have developed an algorithm (Fig. 2) to search for the best
trade-off points on the elbow curve of runtime versus number
of launched tasks to overcome the uncertainty of all variables
involved in finding the right number of tasks for a job to run in
any specific Hadoop cluster. Before applying the algorithm, Hadoop

32

P.P. Nghiem, S.M. Figueira / J. Parallel Distrib. Comput. 95 (2016) 29-41

a Teragen 10GB Benchmark with -Dmapreduce.job.maps = 1 to 96
700000 T T T T T T T T T
All Map Tasks (job Counters) —+— /\"
600000 - CPU (MR Framework) —<— o 1
Teragen Execution)
__ 500000 - v ol =
@
=
= 400000 /N =
5] /
=3 —
w
@ 300000 /_ - - ; T
200000 =
100000 1
o _ 1 1
o 10 20 30 40 50 60 70 80 a0
Launched Map Tasks
b Teragen 100GB Benchmark with -Dmapreduce.job.maps = 1 to 96
o T T T T T T T T T -
4.5%10 _ =
E All Map Tasks (job Counters) —+— <
4x10° [T CPU (MR Framework) ¢ A B
s Teragen Execution A//«""' i
3.5x10 /),/_A
T a0 P ey 7
£ 2.5x08 [// —
= i
6 - — -
g 2x10 /
— o i : A
1.5x108 [~ <ot DAV L R -
A e
1x106 [T 1
500000 *
0 1 1 i 1 i i
0 10 20 30 40 50 60 70 80 a0
Launched Map Tasks
C Teragen 1TB Benchmark with -Dmapreduce.job.maps = 1 to 96
4.5%107 T T T T T T T T I
s L All Map Tasks (job Counters) —+— = i
4x10 CPU (MR Framework) —— e
e Teragen Execution — e B
3.5x10 hopert
e
= 3x107 [it —
E o
Pt 7t B .
2 2.5x10 S
o ot
[7. I Ly -
@ 2x%10 -
E ,,/-F
F o1sxa0” [s i 1
S il o3
1x107 [asaesre 1
5x10% [~ n
0 1 i i 1 1 1 1
o 10 20 30 40 50 60 70 80 a0

Launched Map Tasks

Fig. 1. Graphs of time spent by all map tasks, CPU, and Teragen execution versus number of launched map tasks. The runtime elbow curves of Teragen (a) 10 GB, (b) 100 GB
and (c) 1 TB workloads plotted at different y-axis scales all appear to have the best trade-off points for performance efficiency at around 10 map tasks. But that is refuted by

our algorithm as a visual misperception of different granularities at low magnification.

users should first get some sampled executions from their target
production system as reference points for each workload.

From the shape of the elbow curve of runtime versus task re-
sources, we intuitively recognize its graph function f (x) = (a/x) +
b, which is confirmed by curve-fitting the preview data to obtain
the fit parameters a and b. Using the fit parameter a as input, our
program computes the number of tasks over a range of slopes
from the first derivative and the acceleration over a range of slopes
from the second derivative. Applying the Chain rule to our search
algorithm for break points and major plateaus on the graphs of
acceleration, slope, and task resources over a range of incremen-
tal changes in acceleration per slope increment, our program ex-
tracts the exact number of tasks at the best trade-off point on the
curve and outputs it as recommended optimal number of tasks for
a workload (Figs. 5 and 6 in Section 5.3).

This preview method, as job profiling for optimization of task
resource provisioning, should work out well in any production en-
vironment where most of the jobs frequently submitted are of the
same type of applications combined with different sizes of dataset.
Hadoop users only need to calibrate the optimal numbers of tasks
for each different workload in their production system once to
build up a table of signatures and use them for all equivalent jobs.
However, if there are subsequent changes made to the cluster’s
system architecture, hardware setup, and configuration, a recali-
bration for a new set of optimal number of tasks might be necessary
to maintain accuracy and precision. Once a database of signatures
has been established, dynamically submitted jobs with different
workloads could be quickly matched to their recommended opti-
mal resource values for allocation using nested for-loops or equiv-
alent structure to find resembling applications and datasets. The

P.P. Nghiem, S.M. Figueira / J. Parallel Distrib. Comput. 95 (2016) 29-41

Algorithm BestTrade-offPoint
Input: Parameter a for a job with runtime curve f(x)=(a/x)+b
Output: Optimal number of tasks

foreach incremental slope value do
output number of tasks x=sqrt(-a/slope);
end
foreach incremental slope value do
output acceleration=2a(1/pow(slope, 3);
end
foreach incremental target value of change in acceleration do
foreach incremental slope value do
if change in acceleration in the current slope increment is >= to the
target value AND change in acceleration in the next slope increment

33

is < the target value then

output acceleration, slope and number of tasks;
store number of tasks in an array register;

break;
end
end
end

foreach incremental target of change in acceleration do
if numbers of tasks do not change in 8 increments then
output number of tasks as recommended optimal value;

break;
end
end

Fig. 2. Algorithm to ascertain the best trade-off point on a runtime elbow curve for optimal resource provisioning.

performance of task resources should be predictable through the
job profiling of the same identical cluster-based system.

Therefore, it is possible to provide a single and general approach
for automatic provisioning based on each specific system and ap-
plication. However, users have to establish a database of resource
utilization signatures corresponding to workloads for every differ-
ent application with various sizes of input datasets in advance. This
approach relying on behavior replication is best suitable for pro-
duction environment with repetitive workloads corresponding to
the values of identical characteristics within the range of signa-
tures pre-computed during preview stage. It will be difficult and far
less accurate to generally provision for a class of applications due
to the diversified nature of MapReduce applications. Chen et al. [7],
in their development of an empirical workload model using pro-
duction workload traces from Facebook and Yahoo to generate and
replay synthetic workloads, acknowledge that per-workload per-
formance measurements are necessary, and using proxy datasets
and map/reduce functions can alter performance behavior con-
siderably. In order to avoid recalibration of their workload model
upon any change in the input data, map/reduce function code,
or the underlying hardware/software system, [7] exclude system
characteristics and system behavior from the workload descrip-
tion. [7]’s method with replay mechanisms, which yield some use-
ful insights by enabling performance comparisons across various
system and workload changes, is in contrast with our general ap-
proach, which emphasizes on the accuracy of optimal resource
provisioning for each particular application running on a specific
system.

5. Design, analysis and implementation

5.1. Experimental background

To illustrate our method for obtaining the optimal number of
task resources for different workloads, we use the Teragen and

Terasort components of the Terasort benchmark test, which is part
of the open source Apache Hadoop distribution, to experiment
with 10 GB, 100 GB and 1 TB datasets. The benchmark tests are
performed on a 24-node homogeneous Hadoop cluster, with two
racks of 12 nodes each, running Cloudera CDH-5.2 YARN (MapRe-
duce v.2). The NameNodes are VM (virtual machines) of 4 cores and
24 GB of RAM each running on Intel Xeon E5-2690 physical hosts
of 8 cores and 16 threads with 2.9 GHz base frequency and 3.8 GHz
max turbo frequency, and Thermal Design Power (TDP) of 135 W.
The DataNodes/NodeManagers are physical system running Intel
Xeon E3-1240 v.3 CPUs with 3.4 GHz base frequency and 3.8 GHz
max turbo frequency, and TDP of 80 W. Each NodeManager has 4
cores, 8 threads, 32 GB of RAM, two 6 TB hard disks and 1Gbit net-
work bandwidth. All nodes are connected to a switch with a back-
plane speed of 48 Gbps.

To sample executions of the Hadoop cluster under test, we
use the -Dmapreduce.job.maps = (int num) and -Dmapreduce.job.
reduces = (int num) as a hint to the InputFormat to allocate
the number of mappers and reducers during command line ex-
ecution of JAR instead of setting the number of tasks in the
code using the JobConfs conf.setNumMapTasks (int num) and
conf.setNumReduceTasks (int num). For Teragen, which uses MapRe-
duce programming engine to break up the data to be sorted using a
random sequence, we generate 10 GB, 100 GB and 1 TB of data with
-Dmapreduce.job.maps set equal to a few reference points between
1 and 96. For Terasort, which uses MapReduce programming en-
gine to sample and sort the data created by Teragen, we sort 10 GB,
100 GB and 1 TB of data with -Dmapreduce.job.reduces set equal to
a few reference points between 1and 96. We observe MapReduce’s
behaviors in terms of total time spent by all map tasks, total time
spent by all reduce tasks, CPU time spent by MapReduce frame-
work, and the job execution time to develop a general formula for
obtaining the optimal number tasks for efficient use of available
computing resources (Figs. 1 and 3).

34

P.P. Nghiem, S.M. Figueira / J. Parallel Distrib. Comput. 95 (2016) 29-41

a Terasort 10GB Benchmark with -Dmapreduce.job.reduces = 1 to 96
1.8x10% T T T T T T T T T
+
(=) —
1.6x10 <l| All Map Tasks (job Counters) —+—
s H All Reduce Tasks (Job Counters) —<— a
1.4x10 | CPU (MR Framework) —#—
s Terasort 10GB Execution n
o 1.2x10
£
= 1x10° | i
@
=3 [
5 800000 [| i 7]
E | _— —
600000 = i et iy
/ b it i
%&MMwJ\/\ A —""
400000 [g E
¢ X Soe—3—¢
200000 [Froe Sseversrsttoatetos i
0 i i 1 i 1 1 1 1 1
] 10 20 30 40 50 60 70 80 Q0
Launched Reduce Tasks
b Terasort 100GB Benchmark with -Dmapreduce.job.reduces = 1 to 96
1.6x107 T T T T T T T T
All Map Tasks (Job Counters) —+—
1.4x107 All Reduce Tasks (Job Counters) —<— _|
. l_ CPU (MR Framework)
\ Terasort 100GB Execution
1.2x107 [~ \ 7
E bao’F N -
= e m— —
& sac®” i =
=
= 6x10° [~ y
4x10% gl
5% \ D . il i s e[
%106 [~ PP P >
o i i 1 i i 1 i i i
0 10 20 30 40 50 a0 70 80 90
Launched Reduce Tasks
C Terasort 1TB Benchmark with -Dmapreduce.job.reduces = 1 to 96
1.6x10% T T T T T T T T
All Map Tasks (Job Counters) —+—
3 All Reduce Tasks (Job Counters) —<— _|
10 %} CPU (MR Framewvork)
\ Terasort 1TB Execution
1.2x108) T
E bpacdf \.\ 5
= . RN
g 8x107 [~ Tt R e =
=
= 6x107 [~ &
4x107 - 5 s e e P e
P ey 3 e e e
2x107 [7 5
o 1 i35 1 i 1 A 1 1 1
0 10 20 30 40 50 60 70 a0 o0

Launched Reduce Tasks

Fig. 3. Graphs of time spent by all map tasks, all reduce tasks, CPU, and Terasort execution versus number of launched reduce tasks. The runtime elbow curves of Terasort
(a) 10 GB, (b) 100 GB and (c) 1 TB workloads plotted at different y-axis scales all appear to have the best trade-off points for performance efficiency at around 10 reduce
tasks. But that is disproved by our algorithm as a visual misperception of different granularities at low magnification.

5.2. Preview data

Although we performed thorough benchmark tests at numer-
ous data points in our experiment, sampling around over a dozen
points, which cover the whole elbow curve, will be sufficient to
compute the target optimal task resource values. To get a little
smoother graph, increase the number of points for the theoreti-
cal curve. Since the graphs of both Teragen and Terasort preview
data are plotted at different vertical scales, where the 100 GB and
1 TB plots are around 10 to 100 times lower in magnification than
the 10 GB plot, respectively (Figs. 1 and 3), it appears at first glance
that there is no further significant improvement in runtime at the
bottom of the elbow curves starting from around 10 launched map
tasks and up for all three workloads. But that is a visual misper-
ception of different granularities at low magnification since our

algorithm shows that the best trade-off points are actually located
at higher numbers of tasks, especially for large workloads.

In both component benchmark tests (Figs. 1 and 3), the CPU
time spent by MapReduce framework increases with the number
of task resources since there is more framework overhead. There
is no plot of CPU time spent on reduce tasks in Teragen since it
only breaks up the data to be sorted by Terasort and does not do
any aggregation. For Terasort, we are only concerned about the
time spent by all reduce tasks. We let mappers be allocated by
MapReduce in Terasort based on the number of blocks in the input
dataset previously generated by Teragen. The number of mappers
for a given workload is driven by the number of input splits, and
not by the -Dmapreduce.job.maps parameter set at the command
line JAR execution. For each input split, a map task is spawned
by MapReduce framework. Thus, 80 mappers are spawned from

P.P. Nghiem, S.M. Figueira / J. Parallel Distrib. Comput. 95 (2016) 29-41

35

a Curve-fitting Teragen 10GB, 100GB and 1TB Preview Data
‘nl T T T T T T T T T
1.4x10° [Teragen 10GB + -
Teragen 10GB-fit: a1=96659.1, b1=25429.8
1.2%106 |- . Teragen 100GB
| Teragen 100GB-fit: a2=844460, b2=66793
- . N\ Teragen 1TB
E. a0t - \\ Teragen 1TB-fit: a3=8.61967e+006, b3=428809 — 7|
= 800000 g =1
E B
o N T
S 600000 - T .
i} B
&
400000 — =
200000 .
oy
bbb e e e e e e e A B
UD 10 20 30 40 50 60 70 80 90
Launched Map Tasks
b Curve-fitting Terasort 10GB, 100GB and 1TB Preview Data
4x100 T T T T T T T T T
Terasort 10GB +
3.5%108 [Terasort 10GB-fit: a1=194358, b1=33581.9 7
\ Terasort 100GB
3106 Terasort 100GB-fit: a2=2489280, b2=68091.6 .
™ N\ Terasort 1TB
% 2.5x105 | "v.\\ Terasort 1TB-fit: a3=30986800, b3=773066
i L -}
- 2x10®
o TR
=
3 = o, S -
2 1.5x10 RSl
Bet ——
v} TS N N
1x108 - =
500000 — 1
iy
0 bbb ey I i i i i i
0 10 20 30 40 50 60 70 80 90

Launched Reduce Tasks

Fig.4. Fitted runtime elbow curves of (a) Teragen and (b) Terasort 10 GB, 100 GB and
aand b in the graph function f (x) = (a/x) + b.

10 GB/128 MB = 10 * 1024 MB/128 MB = 80 input splits for
Terasort 10 GB, and that number increases to 800 and 8192 map-
pers for Terasort 100 GB and 1 TB, respectively.

As expected, the job execution time increases with larger
workload and decreases with a higher number of launched tasks.
However, assigning more tasks than necessary for a job will result
in waste of computing resources since the reduction in execution
time quickly decreases and becomes insignificant after the needed
task resource value has been reached.

5.3. Process for ascertaining optimal number of tasks

The best trade-off point on the runtime elbow curve should
be the location where no further significant decrease in execution
time could be obtained by continuing to increase the number of
launched tasks. Since the rate of descending of the execution time
is the downhill slope of the graph, the target point could be found
in the area where the slope is gentle and no longer steep, and the
vertical movement has diminished close to almost flat. To find the
slope, we take the derivative of the polynomial function

foo=(3)+b (1)

where x is the number of launched map tasks and launched re-
duced tasks for Teragen and Terasort, respectively. The derivative

1 TB workloads versus number of launched map/reduce tasks, and their fit parameters

of f(x) is a slope of a tangent line at a point x on a graph f(x). It is
equivalent to the slope of a secant line between two points x and
x + Ax on the graph, where Ax approaches 0.

f 0 = lim (f (x4 A%) = f () /Ax.)
From (1),
flx)=—ax? (3)

and therefore,

x=+/—a/f'(x) (4)

where f'(x) < 0 for a downbhill slope with a negative value.

Using Gnuplot to curve-fit the preview data points, we obtain
the fit parameters a and b of the graph function f (x) = (a/x) + b.
We then plot the three fitted elbow curves of execution time versus
launched tasks for Teragen and Terasort 10 GB, 100 GB and 1 TB
workloads (Fig. 4).

Taking the second derivative of the function f (x), which is the
derivative of the slope, we have the acceleration of the rate of
change in number of task resources.

'@ ="' (x) (3)

36 P.P. Nghiem, S.M. Figueira / J. Parallel Distrib. Comput. 95 (2016) 29-41

Table of number of tasks over range of slopes from -0.25 to -39.25 for x=sqrt(-a/slope)

Slope Teragen 10GB Teragen 100GB
18. 58.
8. 25.
6 19.
5 16.
4 14.
4. 12.
3 114
3 10.

Teragen 1TB
185.68
83.04
61.89
51.50
45.04
40.52
37.14
34.48

#Table of acceleration over range of slopes from -8.25 to -39.25 for accele=2a(1/pow(slope,3)

Slope Teragen 10GB Teragen 100GB
-0.25 i 108096.00
-1.25 . 864.
-2.25 5 148.
-3.25
-4.25
-5.25
-6.25
-7.25

Teragen 1TB
1103321.60
8826.57
1513.
502.
224,
119.
70.
45,

Table of recommended acceleration, slope and optimal number of tasks over range of
incremental changes in acceleration per slope increment from 1 to 70

#Accele
#Change

Teragen 10GB Teragen 100GB Teragen 1TB
Accele Slope Tasks Accele Slope Tasks Accele Slope
2.26 -4.25 4.52 4.43 -7.25 18.79 5.96 -14.25
5.85 -3.25 5.16 6.92 -6.25 11.62 12.11 -11.25

15.22 =2.25 6.21 11.67 -5.25 12.68 16.01

Teragen 10GB, the recommended number of tasks resources is 6.21
Teragen 10GB, the recommended number of tasks resources is 8.33
Teragen 100GB, the recommended number of tasks resources is 16.12
Teragen 100GB, the recommended number of tasks resources is 19.37
For Teragen 1TB, the recommended number of tasks resources is 37.14
Teragen 1TB, the recommended number of tasks resources is 40.52
For Teragen 1TB, the recommended number of tasks resources is 45.04

First recommended number of tasks for same workload provides highest efficiency
in performance/energy ratio. Subsequent number(s) slightly improves job runtime.

Fig. 5. Applying the algorithm for best trade-off point to Teragen 10 GB, 100 GB and 1 TB workloads, our program tabulates the number of tasks over range of slopes,
acceleration over range of slopes, and recommended acceleration, slope, and optimal number of tasks over range of incremental changes in acceleration per slope increment,

to output the final recommended optimal numbers of tasks for each Teragen workload.

im [(f &+ Ax) —f (%) /AX] — [(f (%) —f(x — AX)) /AX]

= li
Ax—0 AX
(6)
. (x4 Ax) = 2f (x) + f (x — Ax))
= lim (7)
Ax—0 ZXXZ
as the second symmetric derivative.
From (2),
(%) = 2ax~3. (8)

Our algorithm finds the optimal number of tasks recommended
for a workload by locating the best trade-off point at the bottom
of the elbow curve where assigning more task resources no longer
significantly reduces the job execution time and therefore, reduces
the overall system efficiency in resource utilization and energy
consumption. Taking the parameter a in f (x) = (a/x) + b as input,
our program computes and tabulates the number of tasks over a
range of slopes from —0.25 to —39.25 for x = ./—a/slope, and
the acceleration over a range of slopes from —0.25 to —39.25 for
f(x) = 2a *slope™3.

Applying the Chain rule

dz_dz dy
dx dy dx’

the rate of change in acceleration with respect to tasks is

d(acceleration) _ d (acceleration) d (slope)
d(tasks) d(slope) d(tasks)

Our algorithm looks for break points on the graphs to compute
a table of recommended acceleration, corresponding slope, and
optimal number of tasks, when the change in acceleration in the
current slope increment is greater than or equal to the target value
of change in acceleration per slope increment, and the change in
acceleration in the next slope increment is less than the target
value of change in acceleration per slope increment (Figs. 2,
5 and 6). Finally, our algorithm searches for all major plateaus
lasting at least eight increments of change in acceleration on the
graph of task resources versus change in acceleration per slope
increment, which corresponds to the graph of slope versus change
in acceleration per slope increment and the graph of acceleration
versus change in acceleration per slope increment (Figs. 7 and 8).
Our program then outputs the exact optimal numbers of tasks
recommended for different workloads (Figs. 5 and 6). The first
recommended number of tasks for the same workload provides the
highest efficiency in system performance and energy consumption
ratio. The subsequent recommended number(s) of tasks lowers
the job runtime a little bit more but at a much less efficient
performance/energy ratio. However, increasing the number of

(10)

P.P. Nghiem, S.M. Figueira / J. Parallel Distrib. Comput. 95 (2016) 29-41 37

Table of number of tasks over range of slopes from -8.25 to -39.25 for x=sqrt(-a/slope)
Terasort 1TB
111.33

Slope Terasort 18GB Terasort 108GB
-0.25 8.82 31.55
-1.25 3.94 14.11
-2.25 2.94 10.52
-3.25 2:45 8.75
-4.25 2.14 7.65
-5.25 1.92 6.89
-6.25 1.76 6.31

#Table of acceleration over range of slopes from -8.25 to -39.25 for accele=2a(1/pow(slope,3)

Slope Terasort 18GB Terasort 100GB
-0.25 2487.78 31862.78
-1.25 19.90 254,90
-2.25 3.41 43.71
-3.25 1.13 14.50
-4.25 0.51 6.49
-5.25 0.27 3.44
-6.25 0.16 2.04

Terasort 1TB

396631.04
3173.05
544.08
180.53
80.73
42.83
25.38

Table of recommended acceleration, slope and optimal number of tasks over range of
incremental changes in acceleration per slope increment from 1 to 70

#Accele Terasort 10GB Terasort 100GB Terasort 1TB

#Change Accele Slope Tasks Accele Slope Tasks Accele Slope Tasks
1 3.41 -2.25 2.94 3.44 -5.25 6.89 5.75 #10.25. 17.39
2 3.41 -2.25 2.94 6.49 -4.25 7.65 7.83 -9.25 18.30
3 19.98 -1.25 3.94 6.49 -4.25 7.65 11.04 -8.25 19.38

For Terasort 10GB, the recommended number of task resources is 3.94
For Terasort 10GB, the recommended number of task resources is 8.82

For Terasort 100GB, the recommended number of task resources is
For Terasort 100GB, the recommended number of task resources is
For Terasort 1TB, the recommended number of task resources is
For Terasort 1TB, the recommended number of task resources is
For Terasort 1TB, the recommended number of task resources is

10.52

14.11
24.29
27.00
30.88

First recommended number of tasks for same workload provides highest efficiency
in performance/energy ratio. Subsequent number(s) slightly improves job runtime.

Fig. 6. Applying the algorithm for best trade-off point to Terasort 10 GB, 100 GB and 1 TB workloads, our program tabulates the number of tasks over range of slopes,
acceleration over range of slopes, and recommended acceleration, slope, and optimal number of tasks over range of incremental changes in acceleration per slope increment,
to output the final recommended optimal numbers of tasks for each Terasort workload.

tasks beyond the recommended range does not necessarily
translate into any further performance gain in execution time.

In summary, the sequential steps to implement our method for
optimal resource provisioning in a computer system is outlined as
follows:

1. Complete the configuration and fine-tuning of the computer
system targeted for calibration.

2. Collect preview job performance data from sampled executions
on the same target computer system.

3. Curve-fitting the preview data to obtain the fit parameters a and
b in the elbow curve function f (x) = (a/x) + b, where x is the
number of tasks.

4. Input the fit parameter a to our Best-Trade-off-Point algorithm
to obtain the recommended optimal number of tasks for a
workload.

5. Repeat steps 2-4 to build a database of resource consumption
signatures with different workloads for subsequent job profil-
ing.

6. If there is any major change to step 1, repeat steps 2-5 to
recalibrate the database of resource consumption signatures.

7. Use the database of resource consumption signatures to
match dynamically submitted production jobs to their optimal
number of tasks for efficient resource provisioning.

6. Verification and comparison to rules of thumb

The recommended optimal resources for Teragen and Terasort
10 GB, 100 GB and 1 TB in decimal notation generated by our
program should be rounded off to integers before use (Figs. 5 and
6). Their pinpoint accuracy and integrity are verified by the fitted
runtime elbow curves generated from their sampled executions
(Fig. 4). Comparing the reduce task numbers from our algorithm to
those suggested by the three popular rules of thumbs, we notice
some major discrepancies throughout the workloads not only
between our algorithm and the rules of thumb but also between
the rules of thumb themselves (Fig. 9).

From our algorithm for optimum, the recommended numbers
of reduce tasks range 4-9 for Terasort 10 GB, 11-14 for Terasort
100 GB, and 24-27-31 for Terasort 1 TB (Fig. 6). These values
are not only optimal but also accurate, as verified by the fitted
elbow curves in Fig. 9, since they are derived from the sampled
job runtimes of the actual cluster-based system targeted for
calibration.

According to rule of thumb (A) [15] where the ideal setting for
each reduce task to process should be in a range of 1 GB to 5 GB,
the suggested range of reducers are 2-10, 20-100 and 200-1000
for Terasort 10 GB, 100 GB and 1 TB, respectively. Apparently, the
suggested range of reducers for Terasort 10 GB is close enough but
starting at 2 reducers might be a little weak in performance. The
ranges of reducers for Terasort 100 GB and 1 TB are not only a bit

38 P.P. Nghiem, S.M. Figueira / J. Parallel Distrib. Comput. 95 (2016) 29-41

a Acceleration over Change in Acceleration per Slope Increment for Teragen 10GB, 100GB and 1TB
250 T T T T T T
Teragen 10GB —+—
Teragen 100GB »E
200 — Teragen 1TB —#— | -
5 150 ¥
" |
ey
@ FOVSVVS VUV SSUSOVIRVIRP VOV SPSOUIE SEPPSPSIVIOVIPPIOPSPN 1
3 |
=1
= 100 : : f : ; —
ettt S A
|
|
1 1 1 1 1
20 30 40 50 60 70
Change in Acceleration per Slope Increment
b Slope over Change in Acceleration per Slope Increment for Teragen 10GB, 100GB and 1TB

sz Teragen 10GB —+— |
Teragen 100GB ——<«—
—1a k) Teragen 1TB —#— 7|
-16 1 1 I I 1 i
o 10 20 30 40 50 a0 70
Change in Acceleration per Slope Increment
Optimal Number of Tasks over Change in Acceleration for Teragen 10GB, 100GB and 1TB
P g g
50 T T T T T

T
Teragen 10GB —+—
45— Teragen 100GB
Teragen 1TB

40

W
u
T

w
o
T

N
(=}
T

Task Resources
N
w
T

o 10 20 30

40 50 (=10] 70
Change in Acceleration per Slope Increment

Fig. 7. The optimal number of tasks for Teragen 10 GB, 100 GB and 1 TB workloads are identified by the major plateaus lasting at least eight increments on the graphs. The
algorithm searches for break points in the changes in acceleration and outputs: (a) recommended acceleration, (b) corresponding slope and (c) task resources versus change

in acceleration per slope increment.

too wide but also too high causing significant energy waste for no
further gain in performance, particularly for 1 TB workload (Fig. 9).

Per Rule of thumb (B) [2], the suggested number of reducers
is 0.95 x (number of nodes * number of maximum containers per
node) = 0.095 % (24 % 3.6) = 82 or 1.75 x (number of nodes
number of maximum containers per node) = 1.75 % (24 * 3.6)
= 151 for better load balancing. For our cluster node of 4 cores,
2 disks and 32 GB of RAM, the maximum number of contain-
ers/node = min (2 * number of CPU cores, 1.8 x number of disks,
Total available memory/Minimum container size) = min (2 * 4,
1.8 % 2, (32-6 reserved for system) GB/2 GB) = 3.6, and the rec-
ommended minimum container size for total RAM per node above
24 GB is 2048 MB [13]. These suggested numbers of reducers de-
rived solely from the hardware architecture specifications, without

taking into consideration the workloads, are not tailored for perfor-
mance efficiency since it appears to be based on the misconception
that more parallelism is always faster. This rule of thumb suggests
an overkill solution for all three Terasort 10 GB, 100 GB and 1 TB
workloads. Using more tasks than necessary equates to overload-
ing the NameNode with unused objects and unnecessarily increas-
ing network transfer as well as framework overhead, needless to
say wasting computing resources and energy (Fig. 9).

Under Rule of thumb (C) [3], the ideal reducers should be the
optimal value that gets them closest to: (1) a multiple of the block
size; (2) a task time between 5 and 15 min; (3) creates the fewest
files possible. Applying the measurable Rule C(2) of a task time
between 300 and 900 s to the benchmark data of our 24-node
cluster and their fitted curve functions, the suggested numbers of

P.P. Nghiem, S.M. Figueira /J. Parallel Distrib. Comput. 95 (2016) 29-41 39

a Acceleration over Change in Acceleration per Slope Increment for Terasort 10GB, 100GB and 1TB

300 .

Terasort 10GB second plateau is at 2487.78

T

250 » T
!
4

N

=]

o
T

Acceleration
[
wu
[=]
T

100 | -1
l Terasort 10GB —+—
50 - e s k Terasort 100GB ——<— |
Terasort 1TB
o .. & 1 1 1 1 1 1
u] 10 20 30 40 50 60 70
Change in Acceleration per Slope Increment
b Slope over Change in Acceleration per Slope Increment for Terasort 10GB, 100GB and 1TB
0 . _— —_— —_— e —_—
.'"l - -
g L | oot aenct
_2 _+—f:|’ —
. =
of
@
B -6 .
wy
8 .
Terasort 10GB —+—
-10 | Terasort 100GB —
Terasort 1TB
-12 1 1 Il Il Il 1
a 10 20 20 40 50 60 70
Change in Acceleration per Slope Increment
c Optimal Mumber of Tasks over Change in Acceleration for Terasort 10GB, 100GB and 1TB
35 T T T T T T
Terasort 10GB —+—
30 Terasort 100GB —»— -
Terasort 1TB
25 1
w
<5
=]
5 20 -
o
w
<5}
L
=% 15
G
—
10
5
1 1 1

i} 10 20 30

Change in Acceleration per Slope Increment

Fig. 8. The optimal numbers of tasks for Terasort 10 GB, 100 GB and 1 TB workloads are identified by the major plateaus lasting at least eight increments on the graphs. The
algorithm searches for break points in the changes in acceleration and outputs: (a) recommended acceleration, (b) corresponding slope and (c) task resources versus change

in acceleration per slope increment.

reducers come out to be 3-7 and 36-158 for Terasort 100 GB and
1 TB, respectively. A value of 1 task is suggested for Terasort 10 GB
even though its benchmark task time is below 156 s. None of these
values matches the actual optimal range of reducers for Terasort
10 GB, 100 GB and 1 TB workloads. The first value of 36 tasks at the
beginning of the range for Terasort 1 TB might be close to the tail
end of the actual optimal range of 24-27-31 tasks. But this rule of
thumb further suggests an upper range for Terasort 1 TB of up to
158 reducers which is a complete waste of energy with no further
improvement in runtime (Fig. 9).

Job runtime is an important metric in MapReduce v.2 since
resources are shared by several applications running in parallel
on YARN, which allocates maps and reduces as needed by the job
dynamically. The energy consumption per job can be computed

from the linear sum multiplying job duration by active power and
idle duration by idle power [8]. Power models based on a linear
interpolation of CPU utilization have been shown to be accurate
with I/O workloads for this class of server, since network and
disk activity contribute negligibly to dynamic power consumption
[20,23].

Energy(N) = [Timey,(N) * Power,ctive (N)]
+ [Time;jqie * Power;gie]. 11

To quantify the potential saving in using our algorithm, we
compare the highest recommended numbers of tasks for Terasort
1 TB from our algorithm (31 tasks equivalent to 9 nodes) and the
rule of thumb C(2) (158 tasks equivalent to 44 nodes) based on a
cluster with a maximum number of containers per node of 3.6 [13].

40 P.P. Nghiem, S.M. Figueira / J. Parallel Distrib. Comput. 95 (2016) 29-41
Verifying the Suggested # of Tasks on Terasort 10GB, 100GB and 1TB Runtime Elbow Curves
4x108 T T T T T T T T T
Terasort 10GB + Reducers 10GB 100GB 1TB
3.5x106 10GB-fit from : i
Y Terasort 100GB Rule A 2-10 20-100 200-1000
- iyl Rule B 82-151 82-151 82-151
. b N Terasort 1TB -
g " 1TB-fit —— Rule C(2) 1 37 36-158
g 20 g Algorithm 49 11-14 24-27-31
E AN for Optimum
= 5| : . S : .
— 210 :
S e ! Annual energy savings up to $4,451.63
5 —~ er node compared to rule C(2
§ 15x10°1 e --_,______E e k-
i T —]
1x108 - .
500000 _
+y : : :
0 et | I | i i i I i
0 10 20 30 40 50 60 70 80 0

Launched Reduce Tasks

Fig. 9. Fitted elbow curves of Terasort 10 GB, 100 GB and 1 TB workloads from sampled executions verify the accuracy of our algorithm for optimal resource provisioning
in contrast to the unreliable number of reducers calculated from three popular rules of thumb (A, B and C(2)), which could lead to significant waste of computing resources

and energy.

For an active power consumption per node of 250 W, idle power of
235 W, and an average job arrival time of 2000 s:

E(9) = [1773s% (250 W % 9)] 4+ [(2000 s — 1773 s) * 235 W]
= 4042.595 k] = 1.123 kWh per job
E(44) = [969 s * (250 W * 44)] 4 [(2000 s — 969 s) * 235 W]

10, 901.285 k] = 3.028 kWh per job.

Hence, by provisioning task resources with our algorithm,
we reduce the energy consumption by about two-thirds. This
translates to (1.905 kWh saved per job) * [((365 * 24) h/yr)/
((2000/3600) h/job)] = 30,038 kWh saved per year. According
to the US Department of Energy, May 2015 average retail price of
electricity to commercial customers in California of $0.1482 per
kWh, this amounts to an annual saving of $4451.63 per compute
node [24].

From the table of number of reducers suggested by different
methods under assessment for Terasort 10 GB, 100 GB and 1 TB
workloads (Fig. 9), the potential energy savings could be even
much larger if we compare the highest recommended numbers of
tasks for Terasort 1 TB from our algorithm (31 tasks) and the rule
of thumb A (1000 tasks), or the highest recommended numbers of
tasks for Terasort 10 GB and 100 GB from our algorithm (9 tasks
and 14 tasks, respectively) and the rule of thumb B (151 tasks for
both workloads).

Using only the right number of tasks needed for a job will allow
users to allocate the remaining resources for other jobs in a multi-
tenant Hadoop YARN cluster running at full or near full capacity
and therefore, will increase the overall system throughput. Even
when the system is lightly loaded, avoiding allocating more tasks
than necessary still certainly results in energy saving. Dialing up
the number of tasks allocated for a job within the recommended
range, users could get a little bit of extra performance gain. How-
ever, the continuing slight reduction in execution time quickly dis-
appears while the power consumption expense increases linearly
with the number of tasks launched. As such, we do not recommend
allocating more task resources beyond the best trade-off points,
which offers rapidly diminishing returns, when it comes to run-
time performance and energy efficiency.

7. Conclusion and future work

Our proposed solution for resource provisioning in MapReduce
offers a verifiable working method, formula and algorithm to

ascertain the optimal task resource values for performance
efficiency. The recommended values will always be accurate since
they are derived from actual sampled executions of each specific
application and system in use. Hadoop MapReduce users no longer
have to rely on inaccurate rules of thumb to guess the required
number of tasks for a job. Although our experiment is conducted
on a small-scale 24-node Hadoop cluster, our proposed solution
should also work for larger workloads running on a much bigger
cluster of several thousands of nodes in today’s datacenter. If our
proposed method for efficient resource provisioning is adopted
and consistently applied to all jobs running on all Hadoop clusters
in an organization’s datacenter such as the 42,000 compute nodes
running Hadoop in Yahoo datacenter, the amount of aggregate
annual energy saving will be very significant, up to several million
dollars.

Our algorithm for optimum should also work for many other
types of parallel processing frameworks running on Hadoop YARN
beyond MapReduce such as Apache Spark [4,10,29,28], which has
recently gained its momentum of popularity for in-memory pro-
cessing of Big Data analytic applications with better sorting perfor-
mance for large clusters. Spark, which can access to HDFS dataset
without being tied to the two-stage MapReduce paradigm, also
supports running application JARs in HDFS. Our approach and algo-
rithm for optimum could be used to determine the initial number
of executors required for a job at the inceptive stage of Spark’s dy-
namic resource allocation, an important feature available in Spark
v.1.2 and up. Unlike a MapReduce task resource, which resides in
a process and is immediately killed upon its completion, a Spark
task, which is actually a thread residing in a process known as ex-
ecutor, is not released until the long running application is finished.
As such, it is necessary for Spark to be able to acquire and release
resources during runtime through its dynamic allocation. Spark
could relinquish executors when they are no longer used and ac-
quire executors when they are needed according to its mechanism
to gracefully decommission an executor by preserving its state
before its removal using timeout [22,5,9]. Such elastic resource
scaling ability, which is missing in MapReduce, helps prevent
under-utilization of cluster resources allocated for an application
and starvation of others in a multi-tenant system environment.

Since Spark could process large-scale data up to 100x faster than
Hadoop MapReduce in memory, or 10x faster on disk, and it can
dynamically adjust the number of executors allocated to the appli-
cation based on the workload, the additional small gain in efficient

P.P. Nghiem, S.M. Figueira /J. Parallel Distrib. Comput. 95 (2016) 29-41 41

performance through a more optimized initial number of execu-
tors might not be desirable considering the extra work involved
in building an extensive database of signatures for this further op-
timization. Users will have to weigh the benefits in each specific
case to determine applicability and best practices. In general, our
algorithm to compute the best trade-off point for optimization of
resource provisioning is applicable whenever there is a runtime el-
bow curve.

References

[1] Apache Hadoop. http://hadoop.apache.org (12/24/15).

[2] Apache Hadoop 2.7.1. MapReduce Tutorial. Reducer: How Many Reduces?
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-
mapreduce-client-core/MapReduceTutorial.html#Reducer (09/09/2015).

[3] Hadoop Wiki: HowManyMapsAndReduces. http://wiki.apache.org/hadoop/
HowManyMapsAndReduces (09/09/2015).

[4] Apache Spark. http://spark.apache.org (12/24/15).

[5] Apache Spark Dynamic Resource Allocation. http://spark.apache.org/docs/
latest/job-scheduling.html#dynamic-resource-allocation (12/24/15).

[6] S. Babu, Towards automatic optimization of MapReduce programs, in:
Proceedings of the 1st ACM symposium on Cloud computing, 2010.

[7] Y.Chen, A.S. Ganapathi, R. Griffith, R.H. Katz, A methodology for understanding
mapreduce performance under diverse workloads. Tech. Rep. UCB/EECS-2010-
135, EECS Department, University of California, Berkeley, 2010.

[8] Y. Chen, L. Keys, R. Katz, Towards energy efficient mapreduce. EECS Depart-
ment, Tech. Rep. UCB/EECS-2009-109, University of California, Berkeley, 2009.

[9] Cloudera Spark Dynamic Allocation. http://www.cloudera.com/content/
www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_
on_yarn.html#concept_zdf_rbw_ft_unique_1(12/24/15).

[10] Databricks. https://databricks.com/spark/about (12/24/15).

[11]]J. Hartog, Z. Fadika, E. Dede, M. Govindaraju, Configuring a MapReduce
framework for dynamic and efficient energy adaptation, in: 2012 [EEE 5th Int.
Conference on CLOUD, IEEE, 2012, pp. 914-921.

[12] H. Herodotou, F. Dong, S. Babu, No one (cluster) size fits all: automatic cluster
sizing for data-intensive analytics, in: Proceedings of the 2nd ACM Symposium
on Cloud Computing, ACM, 2011.

[13] Hortonworks Data Platform. Section 1.11.1. Manually Calculate YARN and
MapReduce Memory Configurating Settings.
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-
2.0.9.1/bk_installing_manually_book/content/rpm-chap1-
11.html (09/09/2015).

[14] K. Kambatla, A. Pathak, H. Pucha, Towards optimizing hadoop provisioning in
the cloud, in: Proc. of the First Workshop on Hot Topics in Cloud Computing,
2009.

[15] S. Karanth, Mastering Hadoop. Advanced MapReduce. The Reduce task. 2014,
p. 50.

[16] RT. Kaushik, M. Bhandarkar, Greenhdfs: towards an energy-conserving,
storage-efficient, hybrid hadoop compute cluster, in: Proceedings of the
USENIX Annual Technical Conf., 2010, p. 109.

[17] KR. Krish, M.S. Igbal, M.M. Rafique, A.R. Butt, Towards energy awareness in
Hadoop, in: Proceedings of Fourth International Workshop on Network-Aware
Data Management, IEEE Press, 2014, pp. 16-22.

[18] J. Koomey, Growth in Data Center Electricity Use 2005 to 2010, Analytics Press,
Oakland, CA, 2011.

[19] W. Lang,].M. Patel, Energy management for mapreduce clusters, Proc. VLDB
Endow. 3 (1-2) (2010) 129-139.

[20]]J. Leverich, C. Kozyrakis, On the energy (in) efficiency of hadoop clusters, ACM
SIGOPS Oper. Syst. Rev. 44 (1) (2010) 61-65.

[21] J. Lin, F. Leu, Y. Chen, Analyzing job completion reliability and job energy
consumption for a general MapReduce infrastructure., J. High Speed Netw. 19
(3)(2013) 203-214.

[22] M. Li, J. Tan, Y. Wang, L. Zhang, V. Salapura, SparkBench: a comprehensive
benchmarking suite for in memory data analytic platform Spark, in: Proceed-
ings of the 12th ACM International Conference on Computing Frontiers, ACM,
2015, p. 53.

[23] S.Rivoire, P.Ranganathan, C. Kozyrakis, A comparison of high-level full-system
power models, HotPower 8 (2008) 3-3.

[24] US. Energy Information Administration. Electric Power Monthly Data for
June 2015. http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?
t=epmt_5_06_a (09/09/2015).

[25] A. Verma, L. Cherkasova, R.H. Campbell, Resource provisioning framework
for mapreduce jobs with performance goals, in: Middleware 2011, Springer,
Berlin, Heidelberg, 2011, pp. 165-186.

[26] X. Wang, Y. Wang, H. Zhu, Energy-efficient task scheduling model based on
MapReduce for cloud computing using genetic algorithm, J. Comput. 7 (12)
(2012) 2962-2970.

[27] T. White, Hadoop: The Definitive Guide, Yahoo Press, 2010.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J.
Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing, in: Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation,
USENIX Association, 2012, pp. 2-2.

[29] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica, Spark: cluster
computing with working sets, in: Proceedings of the 2nd USENIX conference
on Hot topics in cloud computing, Vol. 10, June 2010, p. 10.

Peter P. Nghiem is a seasoned IT and Semiconductors pro-
fessional with over two decades of experience in the high-
tech industry. He has previously held various positions
in design engineering, product marketing management
and national sales management at AMD, Fujitsu, Raytheon,
Toshiba, NEC and Adastra JUMPtec (Kontron). He holds a
B.S. with honors in Electrical and Electronics Engineering,
from California State University, Sacramento, an M.S. in
Engineering Management, and an M.S. in Computer Sci-
ence and Engineering, from Santa Clara University. He does

‘ A Ph.D. thesis research in Computer Engineering at Santa

Clara University in the area of energy-efficient computing and Big Data.

Silvia M. Figueira received the B.S. and M.S. degrees
in Computer Science from the Federal University of
Rio de Janeiro (UFRJ), Brazil, and the Ph.D. degree also
in Computer Science from the University of California,
San Diego. She is an Associate Professor of Computer
Engineering at Santa Clara University. Her research is
in the area of performance evaluation and prediction,
recently with a focus on energy efficiency. She is also
the Director of the SCU Frugal Innovation Lab, in which
she leads the Mobile Lab and advises students working
on mobile applications for under-served communities and

emerging markets.

http://hadoop.apache.org
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html%23Reducer
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html%23Reducer
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html%23Reducer
http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://spark.apache.org
http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref7
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref8
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#concept_zdf_rbw_ft_unique_1
https://databricks.com/spark/about
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref11
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref12
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.1/bk_installing_manually_book/content/rpm-chap1-11.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.1/bk_installing_manually_book/content/rpm-chap1-11.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.1/bk_installing_manually_book/content/rpm-chap1-11.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.1/bk_installing_manually_book/content/rpm-chap1-11.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.1/bk_installing_manually_book/content/rpm-chap1-11.html
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref17
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref18
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref19
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref20
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref21
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref22
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref23
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref25
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref26
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref27
http://refhub.elsevier.com/S0743-7315(16)30007-7/sbref28

	Santa Clara University
	Scholar Commons
	9-2016

	Towards efficient resource provisioning in MapReduce
	Peter Nghiem
	Silvia M. Figueira
	Recommended Citation

	Towards efficient resource provisioning in MapReduce
	Introduction
	Background knowledge on MapReduce
	Optimization of task resource provisioning
	Algorithm for optimal resource provisioning
	Design, analysis and implementation
	Experimental background
	Preview data
	Process for ascertaining optimal number of tasks

	Verification and comparison to rules of thumb
	Conclusion and future work
	References

