
Santa Clara University
Scholar Commons

Engineering Ph.D. Theses Student Scholarship

5-19-2012

A Modular Approach to Adaptive Reactive
Streaming Systems
Christopher E. Neely
Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/eng_phd_theses

This Thesis is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in
Engineering Ph.D. Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Neely, Christopher E., "A Modular Approach to Adaptive Reactive Streaming Systems" (2012). Engineering Ph.D. Theses. 19.
https://scholarcommons.scu.edu/eng_phd_theses/19

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_phd_theses/19?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

SANTA CLARA UNIVERSITY

School of Engineering

Department of Computer Engineering

Dissertation Examination Committee:

Prof. Gordon Brebner (industrial co-advisor)

Prof. Silvia Figueira

Prof. JoAnne Holliday

Prof. Tokunbo Ogunfunmi

Prof. Weijia Shang (academic co-advisor)

A MODULAR APPROACH TO ADAPTIVE

REACTIVE STREAMING SYSTEMS

by

Christopher E. Neely

A dissertation presented to the School of Engineering
of Santa Clara University in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2012
Santa Clara, California

copyright by

Christopher E. Neely

2012

i

ABSTRACT

A Modular Approach to Adaptive Reactive Streaming Systems

by

Christopher E. Neely

Doctor of Philosophy in Computer Engineering

Santa Clara University, 2012

Industrial Co-advisor: Professor Gordon Brebner

Academic Co-advisor: Professor Weijia Shang

The latest generations of FPGA devices offer large resource counts that provide the

headroom to implement large-scale and complex systems. However, there are

increasing challenges for the designer, not just because of pure size and complexity,

but also in harnessing effectively the flexibility and programmability of the

FPGA. A central issue is the need to integrate modules from diverse sources to

promote modular design and reuse. Further, the capability to perform dynamic

partial reconfiguration (DPR) of FPGA devices means that implemented systems can

be made reconfigurable, allowing components to be changed during

operation. However, use of DPR typically requires low-level planning of the system

implementation, adding to the design challenge. This dissertation presents ReShape:

a high-level approach for designing systems by interconnecting modules, which

gives a ‘plug and play’ look and feel to the designer, is supported by tools that carry

out implementation and verification functions, and is carried through to support

ii

system reconfiguration during operation. The emphasis is on the inter-module

connections and abstracting the communication patterns that are typical between

modules – for example, the streaming of data that is common in many FPGA-based

systems, or the reading and writing of data to and from memory modules. ShapeUp

is also presented as the static precursor to ReShape. In both, the details of wiring

and signaling are hidden from view, via metadata associated with individual

modules. ReShape allows system reconfiguration at the module level, by supporting

type checking of replacement modules and by managing the overall system

implementation, via metadata associated with its FPGA floorplan. The methodology

and tools have been implemented in a prototype for a broad domain-specific setting –

networking systems – and have been validated on real telecommunications design

projects.

iii

Acknowledgements
I am grateful to Xilinx for sponsoring my research and my participation in this Ph.D.

program at Santa Clara. At Xilinx, I have had the enjoyable experience to work

together with colleagues who I also consider to be great friends. They have also

given me much encouragement along the way to finish my Ph.D. and to take pride in

my work.

Thank you to several colleagues for interesting discussions and for various

contributions to the tools: Robert Esser, Padmini Gopalakrishnan, Phil James-Roxby,

Eric Keller, Chidamber Kulkarni, Nathan Lindop, Andy Norton, Soren Pedersen,

Martin Sinclair, and Henry Styles.

Thank you very much to Jack Lo for his close collaboration on various projects

related to ShapeUp, in particular to refining the interface types and on auto-bridging

for linking modules, and help supporting the OAM project. Jack, thanks for putting

up with me, you are always a pleasure to work with. Mike Attig, thank you for

always being there: whether for technical advice or for your friendship. Special

thanks to my dad for all his encouragement, love, and support, and for inspiring me

to pursue computers and technology.

Lastly and most importantly, I am grateful for the mentorship, opportunities, and

support given to me by my advisors. Thank you to Prof. Gordon Brebner and Prof.

Weijia Shang for their much appreciated help and preparation.

Chris Neely

Santa Clara University

May 2012

iv

Dedicated to:

Carol,

Mom, Dad,

Cathe, Andrea,

and Mammaw.

v

Contents

ABSTRACT .. i

Acknowledgements . i i i

Contents . v

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1

1.1 Research Topic . 2

1.2 Outline . 3

Chapter 2 Background .. 9

2.1 Field Programmable Gate Array (FPGA) architecture and tools 10

2.1.1 Basic FPGA Architecture ... 10

2.1.2 Advanced architectural elements .. 13

2.1.3 Programming the FPGA ... 14

2.2 Modular System Design . 16

2.2.1 System Modeling .. 17

2.2.2 Module Interfaces ... 18

2.2.3 System-level FPGA design tools .. 20

2.3 Dynamic Reconfiguration . 22

2.3.1 Hardware .. 23

2.3.2 Software .. 24

2.4 Packet Processing using FPGAs . 28

2.4.1 FPGA-based platforms ... 29

2.4.2 Packet processing functions .. 32

2.4.3 Networked FPGA programming .. 34

2.4.4 Comparison with other technologies .. 34

Chapter 3 ShapeUp: A High-Level Design Approach to Simplify

Module Interconnection . 37

3.1 The Click Language and Extensions . 40

vi

3.2 Abstractions of Module Interface Behavior . 44

3.2.1 Hardware-programmed modules .. 46

3.2.2 Communications-programmed modules ... 47

3.2.3 Procedural-programmed modules ... 47

3.2.4 Module interface types and Click semantics .. 48

3.3 Interface Metadata . 49

3.3.1 Stream attributes example .. 52

3.3.2 Metadata representation and packaging ... 56

3.4 Type Checker . 57

3.5 ShapeUp Design Tools . 67

3.6 Design Entry Environment and Visualizer . 69

3.7 Additional ShapeUp Tools . 77

3.7.1 ShapeUp validator .. 78

3.7.2 ShapeUp linker ... 79

3.8 Summary . 81

Chapter 4 Flexible and Modular Support for Timing Functions in

High-performance Systems .. 83

4.1 Timing Paradigms in Networking . 85

4.1.1 Timers and activities ... 85

4.1.2 Clocks and timestamps ... 87

4.1.3 Time protocols .. 88

4.1.4 Time Summary ... 88

4.2 Configurable Timing Modules . 88

4.2.1 Starting and finishing activities .. 88

4.2.2 Providing timestamps ... 93

4.2.3 Activity diagrams ... 94

4.3 ShapeUp Context for Timing Modules . 95

4.4 Summary . 97

Chapter 5 Case study 1: A Scalable Modular System Design for

Ethernet OAM ... 99

5.1 Ethernet OAM in a nutshell . 100

5.2 Analysis of Timing Requirements . 104

5.3 System Architecture . 107

5.4 OAM Elements, and the G Language . 108

vii

5.4.1 Overview of the G language ... 109

5.4.2 Ethernet OAM reference designs ... 110

5.5 Integration of the t iming modules . 111

5.6 Click description . 114

5.7 Results . 117

5.8 Summary . 119

Chapter 6 Dynamic Modular Systems with Adaptable Behavior 121

6.1 Partial Reconfiguration Design Flow . 123

6.2 Internal Fragmentation and the Floorplanned PR Methodology 125

6.3 ReShape Floorplanning Algorithm for Networking Systems 131

6.4 ReShape design tools . 143

6.5 Summary . 150

Chapter 7 Case Study 2: An Adaptive HP Network System 153

7.1 High-speed Programmable Packet Parser . 154

7.2 ReShape Linear Click Descriptions . 158

7.3 Experiments and Results . 160

7.4 Summary . 165

Chapter 8 Conclusions . 167

8.1 Main Contributions and Impact . 168

8.2 Future work . 170

Appendix A .. 173

Appendix B .. 179

References . 183

Vita . 199

viii

List of Tables
Table 4.1: Xilinx Virtex-5 data for activity timing modules ... 92
Table 6.1: Quality of results, with and without partitions and floorplanning 130
Table 7.1: PPP instances: hardcoded (HC), microcoded (uC), and ReShape (RS) versions 162
Table 7.2: Reprogramming time for microcode and ReShape approaches ... 164

ix

List of Figures
Figure 2.1: Example of a telecommunication line card ... 29
Figure 2.2: Example of a switch backplane, which seats multiple line cards 30
Figure 2.3: Types of packet processing functions of a line card ... 31
Figure 3.1: Simple Click examples: (a) A sample element. Triangular ports are inputs and rectangular

ports are outputs; (b) A simple graphical Click example of a three element pipeline 42
Figure 3.2: Click compound element example of a simple switch .. 43
Figure 3.3: Click example featuring both push (black ports), pull (white ports) 44
Figure 3.4: (a) Schematic view of FIFO; (b) ShapeUp view of FIFO ... 45
Figure 3.5: (a) Schematic view of Ethernet MAC; (b) ShapeUp view of Ethernet MAC 46
Figure 3.6: Module interaction with five interface abstractions .. 50
Figure 3.7: Example attributes for the Stream interface type .. 54
Figure 3.8: IDL stream type interface attributes example ... 55
Figure 3.9: EDL stream type port attributes example ... 55
Figure 3.10: XML EDL example with two stream ports and two access ports 56
Figure 3.11: Flow for adding a new element to the ShapeUp element library 57
Figure 3.12: Internal data structure for storing IDL description ... 59
Figure 3.13: Example of IDL attribute tree ... 60
Figure 3.14: Internal data structure for storing EDL description .. 61
Figure 3.15: Pseudo-code for type checking of two ports ... 62
Figure 3.16: Type checking example: (a) primary port; (b) secondary port ... 63
Figure 3.17: Example 1: compatible interfaces ... 65
Figure 3.18: Example 2: incompatible interfaces .. 66
Figure 3.19: ShapeUp tool flow diagram .. 68
Figure 3.20: Real-time visualization of Click design entry ... 71
Figure 3.21: Top half shows block diagram; bottom half shows directed graph 72
Figure 3.22: Visualization color experiments and symbol choices ... 74
Figure 3.23: Visualization pane shows both connected and unconnected ports to help user gauge

progress .. 75
Figure 3.24: Click entry pane helpfully prompts as the user types in their description 77
Figure 3.25: Status pane provides a textual description of the actions performed to the system model

and other status .. 77
Figure 3.26: Multi-level validation environment for streaming systems .. 79
Figure 3.27: Insertion of width converter block between two modules .. 81
Figure 4.1: Survey of time in networking and computing ... 84
Figure 4.2: Activity start module ... 90
Figure 4.3: Activity finish module .. 90

x

Figure 4.4: Logical implementation of activity start module .. 91
Figure 4.5: Calendar wheel implementation of activity start and finish timing modules 91
Figure 4.6: Timestamp providing module ... 93
Figure 4.7: Activity diagram notation ... 94
Figure 4.8: Activity diagram with an asterisk ... 95
Figure 4.9: Activity diagram of an activity that begins naturally, without the use of a timing module 95
Figure 4.10: ShapeUp activity start and finish timing modules .. 96
Figure 4.11: ShapeUp timestamp providing module ... 96
Figure 5.1: Ethernet OAM service levels, taken from [119] .. 100
Figure 5.2: Continuity check (CC) function tests the connection status between peer MEPs, shown as

triangles, taken from [121] ... 103
Figure 5.3: Continuity Check in a multipoint-to-multipoint network, taken from [121] 103
Figure 5.4: Activity diagram for Ethernet OAM functions ... 105
Figure 5.5: Setting for the OAM design .. 107
Figure 5.6: Detailed schematic of the overall OAM framework ... 108
Figure 5.7: G module UML interaction diagram ... 109
Figure 5.8: Interaction diagram for CFM design showing the system interaction between the timing

modules and the OAM modules .. 112
Figure 5.9: Start module activates the CCM generator to periodically transmit CCM frames to peer

MEP ... 113
Figure 5.10: Finish module polices the reception of CCM frames from peer MEPs and times out if no

CCM frame is received .. 113
Figure 5.11: Click description of the connectivity fault management (CFM) design 116
Figure 5.12: Continued Click description of the CFM design .. 117
Figure 6.1: Variations in positioning registers on interconnect between stages 126
Figure 6.2: Effect of using partitions on clock frequency of implementation 128
Figure 6.3: Effect of using partitions on implementation tool run time .. 128
Figure 6.4: Effect of using partitions on total area in slices .. 130
Figure 6.5: Example horizontal zig-zag layout of ten-stage linear pipeline .. 132
Figure 6.6: Performance vs. vertical separation between stages ... 134
Figure 6.7: Performance vs. aspect ratio, stretching vertically and horizontally 137
Figure 6.8: Vertical routing congestion: (a) ratio 1:4, (b) ratio 1:48 ... 138
Figure 6.9: Minimizing the area of pipeline designs by adding size bins ... 139
Figure 6.10: Three example floorplanned designs targeting Virtex-6 ... 140
Figure 6.11: Five-stage pipeline layout: (a) Floorplanner, (b) PlanAhead, (c) FPGA Editor 142
Figure 6.12: Click element packaging ... 143
Figure 6.13: Full system implementation flow .. 145
Figure 6.14: ReShape system update implementation flow .. 149

xi

Figure 7.1: Packet parsing pipeline architecture ... 156
Figure 7.2: Pipeline stage microcode organization ... 157

xii

Preface

This dissertation presents research performed towards completing the requirements

of the part-time, industrial track Ph.D. program at Santa Clara University, which was

conducted at Xilinx Research Labs. The main contributions of this dissertation are

derived from the following publications:

• C. Neely, G. Brebner, W. Shang. “ShapeUp: A High-Level Design Approach to

Simplify Module Interconnection on FPGAs”, In Proceedings of the 18th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines, May

2010.

• C. Neely, G. Brebner, W. Shang. “Flexible and Modular Support for Timing

Functions in High Performance Networking Acceleration”, In Proceedings of the

20th International Conference on Field-Programmable Logic and

Applications, August/September 2010.

• C. Neely, G. Brebner, W. Shang. “Reshape: Towards a High-Level Design

Approach to Simplify Module Interconnection on FPGAs”, ACM Transactions

on Reconfigurable Technology and Systems (TRETS), Accepted and pending

publication.

1

Chapter 1
Introduction

Personal networked devices are ubiquitous. People carrying small electronic devices

post updates to social networks, download the latest popular videos, or connect to

each other through video chat. Smart phone users communicate instructions for

processing on remote cloud servers. The public is placing growing dependence on

the networking infrastructure that transparently enables these personalized services.

In the modern Internet, application processing is moving away from host-end

systems and into network clouds. This trend is due, in part, to limitations of mobile

and portable devices, which are constrained by limited processing capabilities and

stringent low-power requirements. Major companies are continuing to invest in

large data centers that farm content and services to a vast Internet audience.

The popularity of the Internet is growing worldwide. There is rising demand for

video and other services, which is causing increased traffic. Network service

providers are constantly upgrading their backbone and core networks, and changing

from 40 Gb/sec to much higher bandwidths like 400 Gb/sec. Processing of packets

that ship this data requires keeping up with these increasing line rates, so there is

need for programmability at hardware speeds. Networks require adequate controls

for maintenance, monitoring, and providing quality of service, e.g. by traffic shaping.

These are important to network service providers and network carriers, as they

continue to build up and enhance their networks.

2

The challenges that custom networking hardware and system designers generally

face are that: (a) costs of producing application-specific integrated circuits are

greatly rising, (b) their projects have short development cycles, (c) network standards

are rapidly changing, and (d) their designs are increasing in complexity [1]. There is

a need for new design methodologies that take advantage of programmability, while

providing the required high performance and improving productivity.

These industry trends are the impetus for this research. The vast and growing array

of Internet services create an insatiable demand for communications bandwidth.

Concurrent with this demand for bandwidth there is a need for improving

programmability towards designing systems that run at hardware speeds.

1.1 Research Topic

The key driving forces behind this research are high-speed networking and the need

for improved programmability. The focus of this research is thus on the area of

programmable streaming systems that are reactive and adaptive.

The choice of streaming systems means an emphasis on processing systems whose

main characteristic is that of data flow through the system. Digital signal processing

systems and packet processing systems are examples of stream processing systems.

This is in contrast to traditional von Neumann style data processing systems. The

topic of stream processing is attracting much attention in the parallel computing

community at present, particularly as a way of harnessing multi-core processors,

through such programming initiatives as Brook [2], CUDA [3], OpenCL [4], and

StreamIt [5]. The research presented in this dissertation focuses on targeting and

harnessing of programmable hardware technologies. To provide further focus to the

work, case studies are drawn from packet processing as a specific domain of

streaming systems.

3

The reactive characteristic of the systems under study means that the systems react

and execute in response to stimulus events from their environment, for example the

arrival of packets over a communication channel. These systems have an ongoing

interaction with the environment, as opposed to systems that run to completion and

produce a final result. The adaptive characteristic refers to the possibility of a

system adapting to changes in the environment. Specifically, this refers to the

possibility of reprogramming hardware while a system is in operation, to make

architectural changes as opposed to just having adaptability within software. An

example would be to modify packet processing capabilities in response to changing

data traffic patterns in a network.

The goal of this research is to improve the ease of design of networking systems that

require hardware-like performance. These network systems have great complexity as

static designs and acquire additional complexity when they are required to adapt to

changing environments. This dissertation proposes a programming methodology to

mitigate design complexity by providing appropriate high-level abstractions that

assist a modular design approach. These systems may potentially incorporate the use

of time in their specification, and they may also have dynamic behavior to adapt.

This dissertation also presents two case studies demonstrating example reactive

systems using the above-mentioned approaches: one non-adaptive and one adaptive.

1.2 Outline

This section provides an outline for the remainder of this dissertation, highlighting

the contributions.

Chapter 2 provides relevant background, in the form of a literature survey organized

into four main categories: (a) FPGA architectures and tools, (b) relevant system

design methodologies, (c) dynamic reconfiguration research related to supporting

4

adaptive systems, and (d) networking research involving reconfigurable hardware

such as FPGAs. This research is bridging and synthesizing these diverse areas.

Chapter 3 presents the basic approach using a modular abstraction called ShapeUp.

A set of interface abstractions and a modular design methodology is described based

on abstractions of module interface behavior, from three programming paradigms.

This research is novel in that there has been significant past work on abstracting

behavior of module functions, but little on the abstraction of the interconnection of

modules. ShapeUp addresses this by abstracting the behavior of the interfaces and

connections between the interfaces. Several tools were developed that use general

data driven mechanisms. A brief introduction to the Click language, from MIT, is

provided in Section 3.1 since it is extended by ShapeUp and used to describe

systems. The contributions of Chapter 3 include:

• A set of abstractions of module interface behavior, featuring five types of

interface that cover both streaming and procedural programming paradigms for

modules. These are presented in Section 3.2.

• The use of metadata (and meta-metadata, in fact) to describe a module’s

interfaces in terms of the defined abstractions, enabling the creation of module

repositories. This is described in Section 3.3.

• A type checker that is used by the other tools to indicate the compatibility of two

ports when forming a connection. This is described in Section 3.4.

• Tools that process (extended semantics) Click descriptions and module metadata

in order to provide a high-level modular design experience. These are described

in Section 3.7.

Chapter 4 presents a modular approach for timing functions, which are pervasive in

networking. A wide-ranging review leads to the design of modules for timing.

These mechanisms are similarly flexible and modular, fitting in with the proposed

design methodology, so it is not necessary to re-implement ad hoc timing capabilities

5

each time some network packet processing function is being accelerated using FPGA

technology. The contributions of Chapter 4 include:

• A review of the prevalent timing paradigms observed in network protocols that

exposed three basic timing functions requirements. This is summarized in

Section 4.1.

• The design and implementation of a set of three highly configurable timing

modules that provide a flexible solution for the identified basic requirements.

These are described in Section 4.2. Activity diagrams were created to show time

requirements and the use of the three timing modules as they relate to individual

activities. These are described in Section 4.2.3.

• The embedding of these modules within the ShapeUp methodology, to allow

seamless integration with other modules. This is described in Section 4.3.

Chapter 5 presents a case study that incorporates these timing modules into the

ShapeUp framework and tool flow. The insatiable demand for bandwidth, which was

mentioned earlier as one of the driving forces, is requiring network providers to

upgrade their core networks, including a move to carrier Ethernet. Ethernet OAM,

which stands for Ethernet Operations, Administration, and Maintenance, is an

increasingly important standard in modern carrier Ethernet. The main contributions

of Chapter 5 are:

• A thorough analysis of the complex timing needs of OAM protocols is presented

in Section 5.2. This is demonstrated by productive use of activity model and

mapping to timing modules.

• A high-level approach is carried throughout the programming methodology and

framework, combining ShapeUp and the programming language G within the

methodology. This is described in Section 5.4.

• Non-trivial Click descriptions (Y.1731 and CFM) were entered and processed

with ShapeUp tools. The results were flexible and maintainable designs,

delivering required hardware performance. These are described in Section 5.6.

6

Chapter 6 introduces the adaptive systems part of this work, which extends the

ShapeUp framework to support dynamic modules in an extended methodology called

ReShape. This model allows: (a) modules to be substituted dynamically when the

system is in operation, (b) brings benefits of abstraction and modularity to dynamic

reconfiguration based on the latest partial reconfiguration (PR) tools, and (c) extends

the ShapeUp framework from purely design-time use to lifetime use. A key topic in

this work is floorplanning, which physically constrains design placement. This

chapter investigates the automatic floorplanning of modules and describes

experiments measuring the performance of partition-based design flows. This

chapter also proposes an algorithm to constrain the placement of modules

communicating in a linear pipeline. The contributions of Chapter 6 include:

• An investigation of the characteristics of the backend PR tools, revealing 50%

less internal fragmentation is achievable, compared with prior expectations. The

analysis of these results is presented in section 6.2.

• A domain-specific floorplanning algorithm that provided a reliable basis for

abstraction of the underlying dynamic partial reconfiguration mechanisms. The

algorithm is presented in Section 6.3.

• Extending the ShapeUp methodology and tools into the more general ReShape

methodology, illustrated concretely through a specific set of prototype tools that

support dynamic reconfiguration of networking systems defined using Linear

Click, a Click subset. The methodology and the prototype tools are described in

Section 6.4.

Chapter 7 presents a case study from an adaptive high-speed (150 Gb/sec)

networking, packet parser example. Overall, the case study demonstrated the

benefits of the ReShape approach, in terms of supporting the ‘system for life’ model

and hiding the low-level details of FPGA partial reconfiguration from the user. The

main contributions of Chapter 7 are:

7

• Validation of the productivity gains from use of the ReShape methodology and

the prototype tools on a real-life industrial-strength case study. A high-speed

real-life system is described in Linear Click. An example of the Programmable

Packet Parser supporting dynamic behavior is described in Section 7.2.

• Experiments using four configurations of the Programmable Packet Parser were

conducted, comparing hard-coded, microcoded, and ReShape approaches. A

comparison of the results is presented in Section 7.3.

• The case study demonstrated the benefits of the ReShape approach, in terms of

supporting the ‘system for life’ model and hiding the low-level details of partial

reconfiguration from the user. This is discussed in Section 7.3.

Chapter 8 presents the conclusions of this dissertation and suggests directions for

future work.

Overall, this dissertation shows that the ReShape methodology makes a significant

contribution to encouraging a high-level modular approach to designing FPGA-based

networking systems. This work synthesizes builds upon results from four different

areas: FPGAs, system-level design, dynamic reconfiguration, and networking, and

some relevant background material introduced in the next chapter.

8

9

Chapter 2
Background

The dissertation spans four broad research categories and synthesizes ideas from a

number of different directions. This chapter reviews the foundation for this work.

Section 2.1 presents FPGA architecture and tools and provides an introduction

to the underlying device technology that is being targeted for this research – its

characteristics and current design methodologies in use. The basic architecture of

FPGAs and the current design flow for programming the technology are discussed.

The dissertation extends current FPGA tool flow and programming.

Section 2.2 presents Modular system design and provides an overview of tools

and methodologies for performing system-level design, particularly targeting the

hardware aspects of systems. The dissertation extends existing modular design flows

for networking software to target programmable hardware.

Section 2.3 presents Dynamic reconfiguration and provides an overview of

research into the use of programmable hardware to support systems that have

adaptive behavior at run time. The dissertation focuses on harnessing the partial

reconfiguration capability of FPGAs and suggests improvements in the programming

framework for updating the FPGA’s programming at run time.

Section 2.4 presents Packet processing using FPGAs and provides a review of

past work involving the implementation of packet processing system functions using

FPGA technology. The dissertation suggests improvements in the programming of

high performance networking applications targeted to FPGAs.

10

2.1 Field Programmable Gate Array (FPGA)

architecture and tools

The most recent general survey of this area, the 2002 paper by Compton and Hauck

[6], gives excellent coverage of what the authors term “reconfigurable computing,”

which is seen as filling a gap between hardware and software. However, this survey

is now ten years old in a rapidly evolving field. In the past decade there have been

significant advances in FPGA technology and capabilities. For example, there have

been great increases in the logic density and in I/O speed. Furthermore, significant

architectural improvements have been made for better design scalability.

2.1.1 Basic FPGA Architecture

The Field Programmable Gate Array (FPGA) is a type of Programmable Logic

Device (PLD) technology that can be efficiently programmed to implement custom

logic and systems on chip, and also has the ability to be reprogrammed repeatedly

after it is deployed in the field. The first FPGAs (in 1984) contained only 64 to 100

programmable logic elements. Modern FPGAs have over a million basic

programmable logic elements. These FPGAs can be used in implementing complex

embedded processor systems on chip, advanced signal processing applications for

video or wireless, or high-speed (e.g. 100 Gb/sec) communications applications.

Before the invention of FPGAs, programmable logic arrays (PLAs) were the

mainstream PLD technology for providing the ability to implement custom logic

functions. PLAs were programmed by expressing logic functions as Boolean algebra

expressions, in either sum of products form or product of sums form, depending on

the technology. Early PLAs were manually programmed by setting interconnection

points between individual logic gates to build larger functions. The programming

process involved applying a current to destroy tiny fuses within the interconnection.

11

The fuses provided a choice of inputs to gates, and so fuses connecting undesired

inputs were destroyed until only the desired connections remained. The main

disadvantage of these PLAs was that they could only be programmed once, so any

changes required starting over with a new device. The Complex Programmable

Logic Device (CPLD) is a similar form of technology that improved upon early

PLAs. CPLDs also feature product-based programming, but use a non-volatile

memory for configuration that can be reprogrammed. The key advantage of FPGAs

over PLAs and CPLDs is that they contain a more general programmable structure to

implement logic functions that is capable of supporting reprogramming. The

fundamental characteristic of FPGAs is that logic programming is implemented

using n-input lookup tables (LUTs) to implement programmed logic functions. The

LUTs can be connected in series to implement larger logic functions. Another

essential feature that FPGAs incorporate is a programmable switch box for creating

interconnections between LUTs. Memory-based configuration supports

reprogramming by being implemented in SRAM.

The LUTs are small memories for implementing bit-level logic functions. An n-

input LUT contains 2n single-bit values, indexed by the input. LUTs can either

implement any n-input logic functions by configuring the set of truth table values, or

be used as a small distributed single-bit memory unit with an n-bit address space.

The chosen value of n varies by manufacturer and architecture, and has evolved over

time, but is typically in the range of three to six [7] [8] [9] [10]. The earliest

FPGAs had three- or four-input LUTs. Modern, high-performance FPGAs, like the

Xilinx Virtex-7 and the Altera Stratix V, have six-input LUTs. There has been

considerable research into the most beneficial LUT size, looking at tradeoffs

between area, performance, power, and mapping efficiency for logic circuitry. A

seminal paper by Rose et al. in 1989 [11] made the case for the four-input LUT,

which became dominant for over 15 years. In fact, it also made a case for the three-

input LUT, but this was not adopted in practice. The question was revisited by

Ahmed and Rose in 2000 [12] given advances in FPGA technology, this time with

the conclusion that up to six-input LUTs could be beneficial. This research had a

12

direct impact on practice, first with the Altera Stratix II device, which introduced a

six-input LUT architecture [13].

In most FPGA architectures, LUTs are clustered together in larger units. The

coupling of flip-flops (FFs) with LUTs, to combine storage with combinatorial logic,

was another key recommendation by Rose et al. [11]. In Xilinx architectures,

several LUTs and FFs are grouped together into ‘slices’. For example, each Virtex-7

slice contains four LUTs and eight FFs. In turn, slices are grouped into larger

‘configurable logic blocks’ (CLBs). Each Virtex-7 CLB contains two slices. The

CLBs then form the basic two-dimensional array architecture – the ‘A’ in the

‘FPGA’.

Aside from the LUTs and FFs for computing and storing logic function results, the

other essential aspect of the FPGA is programmable interconnection, to allow logic

circuitry to be built. The basic component is the Programmable Interconnection

Point (PIP). This is a small programmable switchbox to select between

interconnection paths. The actual paths provided are a key feature of any FPGA

architecture. In early FPGAs, the paths were just between neighboring LUT clusters,

giving limited scope for programmable switching. Nowadays, a range of different

paths, spanning different distances over the array and covering different directions,

are provided. In fact, typical FPGA silicon area can be 90% for the programmable

interconnection and only 10% for functions [14], indicating the relative importance

of this feature. Much research has been carried out into the most beneficial styles of

interconnection. For example, Lemieux and Lewis [14] discuss this issue in detail in

their 2004 book.

A final essential component of the FPGA is programmable input/output blocks for

communicating with off-chip devices through the pins of the device. They are

programmable to support different I/O signaling standards, such as drive strengths

and voltages. These blocks have grown increasingly complex over FPGA

generations, retaining support for legacy standards while gaining support for newer

13

standards. A particular trend now is towards support for high-speed serial

input/output channels, operating at rates of up to 28 Gb/sec, with higher rates in

prospect.

2.1.2 Advanced architectural elements

The modern FPGA device is no longer a simple two-dimensional array of logic

blocks with programmable interconnect and input/output blocks. Additional features

have been selectively hardened to improve performance for commonly used

functions. An early feature was explicit support for addition-carry chains between

logic blocks; this arithmetic support was then broadened to include complete

multiplication blocks; and now to fixed-point multiply-accumulate blocks for DSP

acceleration.

A key ingredient of FPGA architectures is a collection of embedded SRAM memory

blocks, to give a more silicon-optimal storage option than building store out of LUTs

and FFs. For example, the largest Xilinx Virtex-7 device has 1,292 dual-port SRAM

blocks, each storing 36 Kbits, giving a total of 46 Mb of on-chip storage. Research

has been carried out into the best ways of organizing embedded memory and

integrating it with the basic logic fabric, notably by Wilton, Rose and Vranesic [15].

Moving beyond hardened arithmetic support, some FPGA architectures feature

embedded processors. The Altera Excalibur and Xilinx Virtex-II Pro devices were

the first FPGAs to contain a hard embedded processor core (ARM and PowerPC

respectively) integrated with the logic fabric. In tandem with these hardened

developments though, the size of FPGA logic arrays has advanced so significantly

that soft processors [16] [17] can be configured as an alternative solution to

processor needs (in fact, up to hundreds with current technology). Thus, hardened

processors do not feature in recent Altera generations, and were not offered in the

latest Xilinx (Virtex-7) generation. Xilinx has recently released the processor-centric

Zynq platform targeted to software developers and to non-hardware experts,

14

containing dual core ARM Cortex A9 processors coupled to a smaller programmable

logic fabric, for implementing custom accelerators [18]. Altera has recently

announced a similar ARM-based platform [19].

Other advanced programmable features sometimes available include digital clock

managers for implementing programmable clock signals, voltage or temperature

sensors, and communication blocks for widely used protocols (e.g. for Ethernet or

PCI Express).

2.1.3 Programming the FPGA

The basic tools and methodologies for designing systems based on FPGAs are

closely related to those used for ASIC design. Thus, the FPGA programming

experience today is very much a hardware-design style of experience, which presents

a high entry barrier to those from a software background. On the other hand, FPGA

tools differ from ASIC tools by generating information for hardware configuration of

an FPGA instead of mask information for a silicon chip.

Verilog and VHDL are the most popular hardware description languages (HDLs)

used for describing FPGA designs at the register transfer level (RTL), which is the

highest level of abstraction typically used. Design at the lower logic gate level is

relatively unusual nowadays except in specialized or critical circumstances, a fact

that reflects the maturity and acceptance of RTL design. The basic steps in the

standard tool design flow are (a) compilation and synthesis, (b) technology mapping,

and (c) placement and routing. Modern computer aided design (CAD) tools and

backend synthesis tools are used to compile and synthesize HDL descriptions. These

HDL descriptions map the synthesized designs into logic gate level representations

that can then be mapped onto FPGA resources: lookup tables, flip-flops, and

interconnection between them.

15

The most time-consuming aspect of using standard FPGA tools is the assignment of

the FPGA resource requirements to specific sites on the FPGA. This assignment

includes placement of LUTs and FFs and routing of interconnections. For large

FPGA designs, this can take many hours, which is a major deterrent to users

accustomed to the fast turnaround and hence frequent iteration possible with

software compilers. Improvement of placement and routing algorithms, for both run

time and storage requirements, is an area of major ongoing research. Chen, Cong,

and Pan conducted an extensive survey of this area in 2006 [20]. A common

approach to placement involves the use of simulated annealing as a heuristic

technique to solve the NP-complete optimization problems involved.

Floorplanning provides the means for mapping system modules to distinct physical

FPGA regions. This topic has been extensively researched. Algorithms for

traditional ASIC floorplanning based on geometry and wire length were described by

Adya and Markov [21] and Adya et al. [22]. Later, specialized algorithms targeting

FPGAs with heterogeneous resources, were devised by Cheng and Wong [23], Feng

and Mehta [24], and Banerjee [25]. The most recently published floorplanning

algorithms further consider device capabilities, including granularity of

reconfiguration and also resource distribution, for example the work of Montone et

al. [26], Bolchini et al. [27], and Banerjee et al. [28]. This prior work has lent great

insight to the domain-specific solution adopted for the work in Chapter 6.

When embedded processors are included in the FPGA design, whether hard or soft,

additional tool support is required to facilitate hardware-software co-design. One

component is a standard software development kit (SDK) for the embedded

processor software. The more challenging component is support for the hardware-

software interface. In current practice, this is fairly low-level, in that the user must

specify details of buses that connect the processor to peripheral blocks implemented

in the logic fabric. Then, the user must adjust details such as address maps for the

bus and software device drivers for the peripheral blocks. Much research has been

done on higher-level approaches to this hardware-software co-design, including

16

automated hardware-software partitioning and hiding of bus details, but this has not

yet made its way into mainstream products from the FPGA vendors. Aspects of such

research are considered in more detail in the next section.

A consequence of the ASIC-like design flow for FPGAs is that standard support for

programming or reprogramming the FPGA is rudimentary: the tools generate a “bit

stream” containing the programming information, and then this is loaded (via a

relatively slow serial interface) into the FPGA. Thus, implementing adaptive FPGA

systems is slow – first because of the time needed to generate replacement bit

streams via the CAD tool flow, and second because of the time needed to load the

new bit stream (which can be of the order of 100s of milliseconds). A notable

feature of most Xilinx FPGAs is support for partial reconfiguration, where only

selected parts of the FPGA are reprogrammed, thus reducing the loading time

significantly when only small changes are being made. However, this requires

specialized tool support. First, there is a need to indicate selected parts of the design

that are subject to partial reconfiguration, and then there is a need to generate

separate partial bit streams for these parts from the remaining background design.

JBits [29] was an early gate-level design tool that was supported by Xilinx until

2004. Since then, a Xilinx partial reconfiguration (PR) flow [30] has been made

available as an add-on to the standard design tools. However, PR requires non-trivial

manual floorplanning of the design layout by the user to define FPGA regions that

are to be partially reconfigured.

2.2 Modular System Design

Modular design involves partitioning a system design into modules of smaller

complexity or building a system out of smaller preexisting sub-modules. Such

designs involve two types of programmed description: for the structural network and

for the behavioral modules. The structural description contains a listing of the

modules and connections formed by wires or other communication pathways

between modules. The behavioral descriptions describe the processing within the

17

modules, which is typically specified as a function reading a pattern of inputs to

generate a programmed pattern of outputs. A modular approach to system design

involves system modeling methods, inter-module interfaces, and tools and

methodologies for modular system design.

2.2.1 System Modeling

A plethora of hardware and software system models have been proposed for

exposing and abstracting different behavioral aspects of concurrent designs. Some

of the early models for concurrent systems include formal models such as Hoare’s

Communicating Sequential Processes (CSP) [31] and Milner’s Calculus of

Communicating Systems (CCS) [32]. These models are useful for analyzing the

behavior of concurrent software for undesirable properties like deadlock and

livelock. Petri nets [33] graphically illustrate concurrent interaction and highlight

synchronization barriers. The Unified Modeling Language (UML) [34] is a set of

graphical models that illustrate separate design concerns, for example: class

relationships, state charts, block diagrams, and interaction.

Ptolemy [35] is an influential research project conducted at UC Berkeley that

features heterogeneous formal models, reflecting the practical desire to mix different

models within one design. In Ptolemy terminology, the type or domain of the model

is called the “Model of Computation” (MoC). Examples of MoCs are continuous

time (CT), discrete event (DE), synchronous dataflow (SDF), and Hoare’s CSP. The

Ptolemy system model is hierarchical, like a tree composed of sub-models at each

level, in order to constrain interactions between components. Lee et al. use formal

models to define interface automata that describe the communication states of

interfaces, as well as MoC specific parameters. Ptolemy has a simulation framework

that supports building complex applications composed of heterogeneous models. In

[35], a Ptolemy simulation was used to describe an SDF application that included

DE components targeted to an FPGA.

18

System modeling is becoming an increasingly important aspect of designing for

FPGAs, as modular approaches become mandatory to cope with target system

complexity. There are a variety of different models in use, and understanding and

verifying the interaction between modules to detect unintended behavior can be

extremely difficult. This is exacerbated by the fact that programming applications

for FPGAs exposes different levels of programming abstraction and high levels of

concurrent execution. Practical models used in designing applications for FPGAs

currently fall into three categories: dataflow programming, embedded system-on-

chip (SoC) programming, and RTL programming. Dataflow models describe

relationships between modules that indicate there is a movement of data between a

first processing module and a second processing module, forming a pipeline.

Dataflow models are at a higher level of abstraction than the target hardware,

abstracting away wire signaling details. SoC models describe architectures in terms

of a bus topology where modular components are connected to shared buses.

Interactions are typically between a master component like a processor and multiple

peripheral components, and a bus represents an abstraction of the wires that

implement a data path, and the handshaking signals used for control. RTL system

descriptions are at a lower level of abstraction and describe physical ports and

individual wires that form connections. RTL descriptions additionally include low-

level connection details like clocks and resets.

2.2.2 Module Interfaces

In most research on design at the system level, the focus is on the structural network,

rather than the behavioral modules, which are treated as black boxes. However, it

should be noted that there is also an extensive body of research on higher-level

abstraction for modules. For example, there is a trend for higher-level tools to create

behavioral hardware modules, notably electronic system level (ESL) tools that

synthesize high-level C-like languages into RTL descriptions. These tools are

informally called “C to gates” tools, and take a “C-like” description that usually

contain extra pragmas that help to guide the high-level synthesis tools to

19

automatically extract parallelism from the “C-like” descriptions. AutoESL [36],

Bluespec [37], Impulse C [38], and Synphony C [39] are some examples of high-

level synthesis tools.

To reduce design complexity and enable productivity at the system level, standard

module interfaces that facilitate “design reuse” are important. Traditionally, IP

(intellectual property) cores have been tied to a particular technology or vendor

because they use proprietary interfaces and metadata describing interfaces. For

example, Coral [40] was a pioneering project on automated interface synthesis by

IBM Research that involved synthesis of virtual SoC interconnections into physical

bus structures, including synthesizing any necessary glue logic. It featured a tree

classification for describing the functional, structural, and electrical attributes of

module interfaces, and pin constraint matching for type checking compatibility of

pins.

More recently, there has been an industry drive for standard ways to describe

interfaces so that IP cores can be used interchangeably between different tool

vendors. Initial work on describing module interfaces was done by the Virtual

Socket Interface Alliance (VSIA) [41], which was an industry initiative to promote

IP reuse and standardize terminology and models for SoC integration. IP-XACT

[42], by the SPIRIT Consortium, now merged with Accellera, is a current initiative

by leading EDA companies to develop a standard specification of design metadata,

which will allow IP vendors to more easily exchange IP cores, and system design

tools to more easily interoperate with tools from other vendors. IP-XACT was

influenced by VSIA’s work on Virtual Component Transfer, describing what types

of data to include when packaging modules, called virtual components, for use by

other companies. The IP-XACT object model supports transaction-level models

(TLM), which are at a higher level of abstraction, in addition to RTL models. IP-

XACT v1.5 was approved as IEEE standard 1685 in December 2009.

20

OpenCPI [43] is an open standard under development that is centered on the

importance of interface abstraction for interoperability. It describes IP component

interface descriptions that are abstracted into five interface-type categories: worker

control, worker time, worker stream, worker message, and worker memory. These

type abstractions form profiles for the Open Core Protocol (OCP) [44], which is an

openly licensed interface standard for SoC integration. OCP is a functional superset

of VSIA’s Virtual Component Interface, adding configurable protocol options for

sideband signaling and test harness signals. OpenCPI adds a thin layer of metadata

for patterns of control, memory, data, and time to the Open Core Protocol.

CHREC [45] is a current research project in which an XML schema is used to create

a portable IP interface description that can be used with multiple tools, and is

intended to enhance IP-XACT’s capabilities when FPGAs are being targeted

specifically. CHREC XML comprises three layers: the RTL layer, the data type

layer, and the interface operation information layer. The RTL layer describes low-

level details of the core, the list of parameters for the core, and the related

mathematical expressions for parameters. The data type layer describes high-level

data types such as string, integer, floating point, fixed point, character, and boolean.

The interface operation information layer contains information for high-level

interface synthesis, for example to enable a tool to reason about the timing of signals,

data dependencies, and latencies of signals. Recently, CHREC XML was further

aligned with IP-XACT by describing metadata extensions for different types of

parameterization of modules [46]. Some of the CHREC ideas have also been

applied to descriptions of interfaces of heterogeneous CPU/FPGA systems for

wireless [47].

2.2.3 System-level FPGA design tools

As mentioned earlier, system models for targeting FPGAs fall into three categories:

dataflow programming, embedded SoC programming, and RTL programming.

Current system-level design tools correspond to these three models. There is also

21

some support for integrating system designs that are constructed using the different

types of tools, although this falls somewhat short of the grand vision of, for example,

Ptolemy.

Tools for dataflow design are typically used to build stream-processing applications

with spatial or temporal data parallelism that can be pipelined. Such tools often have

a Digital Signal Processing (DSP) focus at present. The Mathworks Simulink [48]

and National Instruments LabView [49] are examples of tools that can be used for

constructing data flow applications that target FPGAs. Xilinx System Generator for

DSP [50] is a toolbox for the Simulink based design environment that can be used to

build fixed-point signal processing applications like DSP filters. Simulink provides

libraries of modular filter blocks that can be simulated at a high level, and System

Generator for DSP provides libraries of fixed-point blocks that have efficient FPGA

implementations. Examples of System Generator blocks are FFTs blocks, adders,

and multipliers. The System Generator blocks can be connected within Simulink to

build a dataflow model and then the application can be compiled for FPGA

implementation. LabVIEW offers a similar dataflow design environment to

Simulink, but with a focus on designing laboratory instruments for data acquisition

and diagnostic purposes. Much research on tools for packet processing using FPGAs

(e.g. [51]) has used Click [52], which is a dataflow language for describing

networking applications that was developed at MIT. Click, which is described in

more detail in the next chapter, can be used, for example, to describe programmable

routers in terms of simple descriptions that expose the main forwarding paths of

packets.

SoC tools tend to be focused on building embedded processor-based designs. One

example embedded design environment is Xilinx Platform Studio (XPS) [53], used

for integrating embedded processor subsystems into FPGA applications. In XPS,

modular components represent, for example, PowerPC and Microblaze processor

cores, UART and Ethernet peripheral cores, and bus interconnect generators. The

programmer builds the system on chip description by selecting components from a

22

library, specifying bus connections, and programming the address maps. Altium

Designer [54] is another similar SoC design tool that features a schematic entry

view, a graphical bus-based entry view, and a printed-circuit-board design view.

Altium Designer supports a range of different embedded processors and also features

an interactive FPGA diagnostic probe tool.

RTL structural descriptions typically instantiate modular RTL components, while the

programmer specifies wire connections between them using RTL. The components

are typically either static or parameterizable. Xilinx Core Generator and Altera

MegaWizard are example of tools for generating specific RTL components drawn

from parameterized library components.

Regardless of the original system model and design description, the analysis and

verification of implemented systems must often be carried out at the lower RTL level

only. Thus, validating designs typically involves compiling high-level models into

RTL-equivalent models and then running RTL level simulations. It is less usual to

‘back compile’ RTL-level models to higher-level models, and then verify everything

at a higher level. Designs are typically simulated to show functional correctness at

edge conditions. RTL simulations are discrete event simulations, typically with

waveform visualization to inspect signals within the implementation. Examples of

RTL simulators are Mentor Graphics Modelsim and Synopsys VCS. Aside from the

loss of any higher-level abstraction, it can be a very tedious and time-consuming

process if there are many edge conditions. Some tools, like System Generator for

DSP, allow simulation at a high-level functional level that respects the original

dataflow model for the design.

2.3 Dynamic Reconfiguration

For researchers, a compelling feature of FPGA technology has long been the

capability to build systems wherein the hardware can be modified during operation,

that is, post design time. The availability of partial reconfiguration, where only

23

selected parts of the FPGA are updated, allows the option of more delicate,

minimally invasive surgery. Research proposals range from fine-grain extremes,

where tiny hardware features are updated on a very frequent basis, to coarse-grain

extremes, where large hardware features are updated on a more occasional basis.

While the former style offers more novel and exciting prospects, the latter style is

more often seen in practical examples. This section overviews some significant

research into mechanisms to support dynamic reconfiguration.

2.3.1 Hardware

The mainstream commercial hardware vehicles for dynamic reconfiguration are the

Xilinx FPGA families. As mentioned earlier, physical programming of the FPGA is

performed by writing a complete circuit configuration to SRAM after the device is

powered on. Partial reconfiguration (PR), which is unique to Xilinx devices,

involves modifying the circuit behavior at run time by writing an updated portion of

the circuit configuration. Xilinx introduced partial reconfiguration in 1995 as a

feature of the XC6200 FPGA family. This allowed very fine-grain partial

reconfiguration support at the level of individual logic gates. When the XC6200

family was discontinued in 1998, the Virtex family became the mainstream FPGA

architecture supporting partial reconfiguration. The original Virtex, and then Virtex-

II, device architectures supported column-based reconfiguration of frames, in which

columns spanning the entire device were grouped into coarse-grain units called

frames that could be individually reconfigured. In the later Virtex-4 and Virtex-5,

frames are smaller regions that no longer had to span entire device columns.

However, a legacy of the earlier Virtex families was that many researchers still focus

on reconfigurable designs that have a physical columnar structure.

The Virtex-II, and later, devices have three different physical interfaces for loading

partial bitstreams into the FPGA fabric: JTAG, SelectMap, and internal

configuration access port (ICAP). JTAG is the slowest programming interface.

SelectMAP is an external interface for a coprocessor to write configuration frames.

24

ICAP is a wider internal port for an embedded controller to write updated

configuration frames, and is the fastest programming interface.

Trimberger et al investigated an alternative FPGA architecture in [55]. This

research proposed a time-multiplexed FPGA, which increased the configuration

memory per logic region in order to multiplex configurations over time, for example

eight configurations per region. Then, the time multiplexed FPGA emulated a single

large FPGA, using time as a third dimension to the two-dimensional logic gate array.

Its logic engine consisted of regions that switched configurations every micro-period,

thus giving dynamic reconfiguration every clock cycle. Hence, the same regions

could implement successive combinatorial logic before storing the result in flip-

flops. Two other modes for logic regions were a time-share mode and a static mode.

More recently and in fact 12 years later, Tabula, a startup company, announced a

similar style of time-multiplexed architecture [56].

In another notable research project, Nagami proposed the Plastic Cell Architecture

(PCA) [57], which was a cross between an FPGA architecture and a coarser-grain

architecture, having a homogeneous cell structure. Each cell consisted of two parts:

a static built-in part having fixed functionality and a programmable plastic part.

Each cell also contained basic routing infrastructure to transmit between each part

and to transmit to neighboring cells. The PCA offered the capability of provide

highly flexible processing elements through the use of dynamic reconfiguration.

2.3.2 Software

As mentioned earlier, there has always been some basic Xilinx tool support for

dynamic reconfiguration. However, these tools required the user to be fully aware of

the physical floorplan of a design on the FPGA. The user was also wholly

responsible for the organization and management of dynamically reconfigurable

parts of the system being implemented. A historical analog of this situation was the

25

need for early programmers to directly manage memory overlays for programs and

data. In general, this was not an attractive situation for the FPGA user.

Consequently, a major research focus over the past 15 years has involved

approaching dynamic reconfiguration from an operating system angle, particularly

bringing ideas from virtual memory management and translating these into

mechanisms for virtual hardware management. This introduces two particular extra

complications: first, two-dimensional FPGA regions must be managed, as opposed to

one-dimensional pages or segments; and second, it is often necessary to provide

physical connectivity between different regions, corresponding to connections

between modules.

Some of the earliest research was by Hutchings et al. In [58], Hadley and Hutchings

presented a design methodology for partial runtime reconfiguration, specifically for a

runtime reconfigurable artificial neural network. Their methodology aimed to

maximize static circuitry and minimize dynamic circuitry, and they implemented a

feed-forward multiplier as a case study. In [59], Hutchings and Wirthlin compared

two types of reconfiguration: compile-time reconfiguration and run-time

reconfiguration. They presented different strategies for run-time reconfiguration:

global and local. The global strategy involved total reconfiguration, based on a

phased partition of the design, whereas the local strategy involved the use of partial

reconfiguration, based on a functional partition of the design. This work was also

targeted at an artificial neural network.

More general research on managing two-dimensional regions followed this

pioneering work, and still continues. Brebner [60] proposed a virtual hardware-

programming model consisting of swappable logic units (SLUs). SLUs were

considered as virtual hardware components, with the motivation of extending a

conventional operating system to manage SLUs in a similar manner to virtual

memory. Two models were considered: the sea of accelerators, where SLUs were

heterogeneous and not inter-connected, and the parallel harness, where SLUs were

26

homogeneous and tiled to allow nearest-neighbor connectivity. Diessel and ElGindy

[61] also considered the two-dimensional placement problem, and in particular

presented a complex two-dimensional compaction algorithm to reclaim free area

after fragmentation occurred over time. This improved the utilization of the FPGA,

and also the time taken for tasks to be executed using the dynamically configured

blocks. A shortcoming of this early research is that it largely ignores the problem of

implementing inter-module connectivity.

Partly motivated by the fact that the earlier Virtex family FPGAs only supported

whole-column reconfiguration, but also motivated by the complexity of managing

two-dimensional regions, many researchers have focused only on the one-

dimensional problem of managing regions that span the whole height of the FPGA.

For example, Brebner and Diessel [62] presented a scheme for removing

fragmentation along a one-dimensional array of blocks, implemented using the

FPGA itself. Blocks were arranged in a one-dimensional array of columns having

variable width, and could either be allocated to tasks or left free. Unused available

blocks were found using a first fit allocation scheme, implemented using a hardware-

based string match for a set of n consecutive zeros on a binary string representing

used or unused columns. A compaction algorithm was also provided, which shifted

used blocks to the left in order to move free blocks together. In this way, the

management of the FPGA was offloaded from operating software onto the FPGA

itself.

Under the auspices of a national research program on dynamic reconfiguration

funded by the German government, two notable examples of complete one-

dimensional (“slot-based”) reconfigurable architectures emerged. Majer et al

introduced an extended FPGA architecture called the Erlangen Slot Machine [63]

containing a configurable communications switch, which avoids the problem of feed-

through paths. Feed-through paths occur when a module must reserve a circuit path

cutting through a module, for example to provide access to external pins. Feed-

through paths create a problem because they make reconfigurable modules less

27

portable. Ullmann, Hübner, and Becker [64] present an on-demand FPGA run time

system for flexible and dynamic reconfiguration using a slot-based architecture for

inter-module communication. This run-time system is implemented on a MicroBlaze

soft processor and uses the ICAP for partial reconfiguration. The run-time system

loads modules that have been compressed using LZSS compression and the loader

decompresses partial bitstreams.

Wigley et al. presented ReConfigMe [65], the first complete operating system with

runtime support for dynamic reconfiguration. The overall framework was

partitioned into three levels of abstraction: platform tier, operating system tier, and

user tier. The prototype was implemented using a coprocessor host to manage

reconfiguration.

More recent research has focused on means of adding more flexibility to the

implementation of communication paths between dynamically reconfigured

modules. Koh and Diessel [66] proposed merging of communication graphs so that

the communication infrastructure reuses wire paths. Using a fixed wiring harness

and merged communication paths they reduced reconfiguration time. Suris,

Patterson, and Athanas [67] presented WoD, a run-time router that can create routes

between modules arranged in a slot array. At run time, new modules are placed in

empty slots, and the router calculates new routes to and from the new module. This

routing calculation takes four orders of magnitude less computation time than used

by traditional design-time routers.

2.3.3 Theoretical models

Theoretical analysis of the computational capabilities and properties of dynamically

reconfigurable systems has been a somewhat neglected research activity to date. The

practical aspects of the field are still sufficiently immature that identifying

underlying principles is difficult. One candidate for a computational model has been

the Reconfigurable Mesh (RMESH) model [68] from the parallel computing world,

which has some apt properties, such as an underlying two-dimensional grid, but

28

other less apt properties, such coarse-grain processing elements and per-cycle

reconfiguration.

Lange and Middendorf have investigated the notion of ‘hyperreconfiguration’ [69],

where dynamic reconfiguration is layered hierarchically, that is, one can structure

reconfigurable regions. Hyperreconfiguration involves reconfiguring a larger area so

that it supports smaller reconfiguration within its boundaries. A central problem is to

determine when hyperreconfiguration steps should be taken, and how to define the

reconfiguration potential in order to minimize the time for hyperreconfiguration of a

computation. They showed that the Partition into Hypercontexts (PHC) problem is

NP-hard in general, but can be solved for certain practical cases in polynomial time.

Malik and Diessel have defined the notion of the entropy of an FPGA

reconfiguration [70]. This measures the entropy of a circuit that is to be configured,

which leads to practical bounds on the minimum number of reconfiguration bits that

need to be written to the FPGA in order to effect dynamic reconfiguration. This

theoretical notion has important practical consequences, given the limited bandwidth

available on FPGA configuration ports. They use Golomb encoding, which is a

variant of run-length encoding, as a practical compression technique, and showed

that the results were within 1 to 10% of the theoretical bound for a wide range of

representative circuits.

2.4 Packet Processing using FPGAs

Traditionally, FPGAs have featured in a supporting role in networking systems: for

providing physical interface logic or general glue logic. In recent years, this

situation has changed significantly, with FPGAs assuming mainstream packet-

processing roles, reflecting the need for hardware performance at increasing

transmission rates, but coupled with programmability. The Internet commonly

requires multi-gigabit data line rates in access networks and multi-terabit switches in

the core networks. For example, the Cisco CRS-3 core router has a switching

29

capacity of 322Tb/sec. Modern, high performance FPGAs can be used to implement

packet-processing functions at line rates surpassing 100 Gb/sec and packet switching

at rates greater than 1 Tb/sec.

Telecommunication-equipment vendors, such as Alcatel Lucent, Cisco, Huawei and

Juniper, perform much of the leading-edge research and development internally.

Consequently, the work remains largely unpublished, although visible to FPGA

vendors, such as Xilinx. However, there is an increasing quantity of published

academic research in this area too. This section overviews some hardware platforms

for FPGA-based networking research, packet processing functions that benefit from

the use of FPGA technology, and comparison with other processing technologies.

Figure 2.1: Example of a telecommunication line card

2 .4.1 FPGA-based platforms

In real-life networking equipment, FPGAs usually feature as a part of

telecommunication line cards, an example is shown in Figure 2.1. These plug into a

switching backplane via high-speed interfaces, an example backplane being shown in

Figure 2.2. Packets arrive on an input connection into one line card, are processed

there, then passed to the switch, and emerge onto another (perhaps on the same) line

card for further processing before departing on an output connection. In research

settings, FPGAs more often feature on standalone cards that include any switching

30

capability as an integral on-board feature. Such cards often plug into standard

computer workstations.

Figure 2.2: Example of a switch backplane, which seats multiple line cards

Here, three major academic research platforms are described, which are all public

domain and have found widespread usage in the international networking community

for both research and teaching. However, there are other instances of specific

boards being built for particular research projects, or the use of standard boards

available from FPGA vendors.

The pioneering platform was the Field-programmable Port eXtender (FPX)

developed at Washington University in St. Louis [71]. This platform was a plug-in

line card that sat between a 2.5 Gb/sec line interface and the switch backplane of a

multi-gigabit router. The FPX could be deployed within a core router or an edge

network – though line rates have now increased significantly since the FPX’s

introduction. It has been used by researchers to implement accelerated versions of

many networking applications ranging from fast Internet Protocol lookup, to content

scanning and replacement, to network intrusion detection, and to streaming video

processing.

31

NetFPGA [72] is an ongoing project at Cambridge University and Stanford

University, incorporating ideas from FPX, and currently providing the standard

worldwide research platform. The original version was a plug-in PC card with four 1

Gb/sec Ethernet interfaces and one PCI interface. In early 2012, there were around

2200 of these cards in use worldwide. The second-generation version, NetFPGA

10G, was completed in 2010. It improves upon the original platform by using a

more modern and much larger FPGA, four 10 Gb/sec Ethernet interfaces and one

PCI Express interface.

NetCOPE [73] is a networking platform that was developed by Brno University of

Technology in the Czech Republic. Like NetFPGA, it plugs into a standard PC, and

one application for it is as a high-speed host-based network interface card (NIC). As

well as the hardware board, NetCOPE comes with a firmware abstraction layer that

includes common modules required in networking applications.

Figure 2.3: Types of packet processing functions of a line card

Classificat ion Edit ing
Traffic

Management

32

2.4.2 Packet processing functions

Functions in the main packet processing data plane can be divided into three broad

groups: classification, editing, and traffic management, as shown in Figure 2.3.

Classification involves some parsing and checking of a packet to ascertain its

relevant properties or ownership. Editing involves changing fields in packet headers

(or trailers), inserting or removing fields, splitting and joining packets, or completely

dropping packets. Traffic management involves queuing and scheduling of packet

departures to meet quality of service goals. FPGAs find application for all these

functions, particularly when they are on the “fast path” where a function is applied to

all packets passing through (at high speed). Associated with these packet processing

functions are management activities like gathering statistics and maintenance, which

may be orchestrated by embedded processors on an FPGA.

Classification has attracted much attention in the research community, particularly to

exploit the ability of FPGAs to perform high-speed table lookups or pattern

matching. Basic classification to determine packet forwarding through a switch

involves extracting one or more packet header fields, and using these as a key into a

lookup table containing forwarding information. These tables are typically

implemented as Ternary Content Addressable Memory (TCAM), the ternary aspect

allowing wild cards in table entries. Commodity TCAM devices are available, but

these consume higher power compared to using FPGAs together with on-chip or off-

chip memory. High speed, power-efficient FPGA-based approaches have been

demonstrated using pipeline architectures [74] or hash-based techniques [75].

Security applications, such as network intrusion detection, typically require not just

inspecting packet headers, but also scanning the contents of packet payloads. The

latter is often referred to as deep packet inspection (DPI). Efficient ways to

implement content scanning applications involving regular expression matching have

been well researched (e.g. [76] [77] [78] [79] [80]). Because they require checking

an incoming packet against a large database of rules for content, they are easy to

accelerate by checking the rules in parallel using an FPGA. Snort [81] is an

33

example open source software program for network intrusion detection, and the

standard Snort rule database has been a frequently used example rule set for

benchmarking FPGA implementations. The basic implementation of regular

expression matching normally involves execution of an equivalent deterministic

finite automaton (DFA) or non-deterministic finite automaton (NFA). In [76] for

example, Hutchings presents a regular expression matching application implemented

on an FPGA using an NFA approach, which was tested on regular expression rules

derived from the Snort database. Bloom filters have been used as a different

approach to implementing DPI [82]. Parallel Bloom filters used for dictionary

lookup were chained together to implement string matching for thousands of rules, as

a series of probabilistic hash functions. In addition to scanning for content, some

researchers have also included packet modification to actively decontaminate

packets. For example, Moscola et al. [78] scan packets for Internet viruses and spam

and then neutralize infected packets by removing the malicious data.

Other research has focused on high performance protocol handling though packet

parsing and editing. Fallside and Smith [83] demonstrated FPGA implementations

of networking protocol layers, implementing the standard ARP, IP, TCP and UDP

protocols over an Ethernet connection. Schuehler [84] presented a TCP splitter for

stateful monitoring of thousands of TCP/IP flows. Marcus et al. [85] described

“protocol boosters”, a general approach to implementing protocols on FPGAs.

Protocol boosters were based on the idea that new protocols can easily be

constructed by incrementally adding inline protocol booster components to

accelerate a baseline protocol. Brebner [86] presented a high-level language and

compiler for automatically building high-performance packet parsing and editing

pipelines on an FPGA. Soviani and Hadzic [87] also presented research on high-

level synthesis and optimization of packet processing pipelines.

Comparatively little research on traffic management has been published, although

this area is of great importance to networking equipment providers and has generated

many patents. Zhang et al. [88] presented a programmable traffic manager (TM)

34

architecture for supporting simultaneous scheduling of uni- and multi-cast traffic in a

packet switch. This had a modular architecture, allowing flexible configuration in

terms of number of packet queues, scheduling algorithms, etc.

2.4.3 Networked FPGA programming

A notable converged-application area is the dynamic reconfiguration of FPGAs at a

distance, over networks. Casselman [89] presented an API for a networked FPGA

that can be remotely reconfigured with new bitstreams. Horta and Lockwood [90]

partitioned the application FPGA within the FPX platform into two logical halves so

that each half could be reprogrammed at runtime using partial bitstreams transmitted

over a network. Circlets [91] were proposed as a model for networked FPGA

programming, inspired by the runtime portability enabled by Java applets. Circlets

involve programmed circuit descriptions made portable by targeting an abstract

FPGA two-input LUT. Each such LUT was then dynamically mapped on to an

actual FPGA’s n-input LUT implementation.

2.4.4 Comparison with other technologies

FPGAs are well suited for accelerating packet processing functions because modern

networking often requires very fast transmission rates, but also offers a high amount

of potential independent data parallelism. Networking applications tend to have a

high number of contexts or flows, which can be processed with parallelism across

different contexts, as well as between individual packets within flows. Compared to

general-purpose microprocessors, FPGAs can be used to program new custom

architectures to implement parallel functions with low latency and high throughput.

FPGAs can effectively implement thousands of concurrent operations mapped onto

the logic gate resources, whereas current generation general-purpose

microprocessors have only 2 to 8 cores for implementing thread-level and

instruction-level parallelism.

35

Network processors (network processing units: NPUs) are a high performance

alternative for packet processing. They are programmed using C and/or assembly

level programming of their functional components, which may be pipeline stages,

micro-engines, or specialized function units. There is currently a wide diversity of

NPU architectures and a lack of standards for programming NPUs, which is a

negative point since it hinders porting and reuse of NPU firmware. Some NPUs

support instruction and thread level parallelism since they also contain multiple

processor cores. For example, the Intel IXP 2800 [92] has 16 programmable micro-

engine cores for performing packet inspection and traffic shaping for line rates up to

10 Gb/sec. Other NPUs feature programmable packet processing pipelines. For

example, the Xelerated X10q NPU [93] can perform packet processing at line rates

up to 40 Gb/sec. Newer network processors such as EZchip’s NP-5 is targeted for

200Gb/sec packet processing, and acceleration of a variety of traffic management

and Carrier Ethernet functions [94]. Cavium’s Octeon III contains up to 48 2.5 GHz

MIPS64 cores for processing multiple lanes of 40Gb/sec traffic [95].

Designing application specific integrated circuits (ASICs) for networking can

potentially offer the highest level of performance, but ASICs in general require

involve much higher engineering costs and more time to design, fabricate, and test

than using FPGAs. ASICs require high initial mask costs that are continuing to rise.

FPGAs present a higher unit cost, with no initial cost, and so they are preferred for

lower volume production. FPGAs can have the performance advantage that, because

of high volume production they can leverage the latest silicon process technologies

before they are available to new ASICs [96].

In practice, mixtures of technologies are often used when implementing complete

networking or telecommunications systems. FPGAs can be programmed with

standard external interfaces to connect directly to other networking devices such as

ASICs or NPUs, as well as to general-purpose CPUs. This way, FPGAs can be

selectively used to implement the particular functions that are best suited to the

36

capabilities of technology. The work presented in dissertation could be used to

target the FPGA portion of these hybrid systems.

FPGAs have an attractive technological case for networking systems, but the current

design methodologies are a barrier to entry. Currently FPGAs operate at a fairly low-

level of abstraction. This dissertation presents a design methodology and tools to

bring the four main categories of this chapter together in order to raise the level of

abstraction.

37

Chapter 3
ShapeUp: A High-Level Design Approach

to Simplify Module Interconnection

 This chapter introduces ShapeUp, a high-level approach for designing systems by

interconnecting modules, that gives a ‘plug and play’ look and feel to the designer

and is supported by tools that carry out implementation and verification

functions. The emphasis is on the inter-module connections and abstracting the

communication patterns that are typical between modules – for example, the

streaming of data that is common in many FPGA-based DSP or networking systems,

or the reading and writing of data to and from memory modules. The details of

wiring and signaling are hidden from view, via metadata associated with individual

modules. The ShapeUp tool suite includes a module interface type checker and a

design environment with a novel visualizer.

Custom computing has come of age with the advent of large Field Programmable

Gate Array (FPGA) devices that enable the implementation of complex application-

specific configurable systems. For example, the largest Xilinx FPGA device has

around two million programmable logic cells, with larger devices to be expected in

the future. The double-edged sword is that actually designing these now-feasible

systems is an increasingly complex engineering task, and so methodologies above

and beyond traditional FPGA design flows are required to improve designer

productivity. Learning from other disciplines, modular design and reuse are essential

to make progress, along with higher levels of abstraction in design specification.

While considerable research energy has been focused on abstraction of functional

descriptions of modules, the complementary topic of abstraction of module

38

interconnection has been somewhat neglected. This chapter describes work that

addresses the hitherto neglected area of ‘system plumbing’.

Xilinx has adopted the term “plug and play IP” to refer to a vision of modules – IP

(Intellectual Property) blocks – that can be used together in a plug-and-play manner

without the need for significant effort. To make this modular vision real and

incorporated into design methodologies (for both static and dynamically

reconfigurable systems), three key module interconnection enablers are required.

The first is increased standardization of module interfaces, to replace the plethora of

legacy ways in which candidate modules have been interfaced to their environment.

The second is standardization of metadata formats used to describe the nature of

module interfaces (and modules themselves). The third is high-level tools that can

interpret such metadata in order to provide assistance with building systems from

modules by making connections between module interfaces.

While increased standardization of interfaces is welcome, complete standardization

is not seen to be achievable, or indeed desirable, and one aim of the work reported in

this chapter is to provide assistance in connecting interfaces that have compatible

semantics but may have different ‘syntaxes’. A simple FPGA example is where two

interfaces have a similar role, but have different data widths, e.g. one is 32-bit wide

and the other is 128-bit wide.

For expressing module metadata, the increasingly influential IP-XACT standard [97]

from Accellera [98] (which absorbed the work of the Spirit Consortium in 2009) is a

most appropriate approach, and is the chosen substrate for this work as it progresses.

In earlier research prototypes, custom metadata formats were devised and used but

these have now been superseded by alignment with the IP-XACT standard – and

indeed they have suggested some possible future extensions to the standard.

The ShapeUp approach to providing higher-level tools that assist in higher-level

modular system design has been founded upon the definition of a clean, but

39

pragmatic, set of abstractions of module interface behavior. This set captures the

semantics of standard (or less standard) interfaces, and is associated with a standard

metadata format that is used to describe these semantics. Thus, the modules

themselves are treated as black boxes, and the focus is entirely upon their interfaces

and connections between these interfaces. Not surprisingly then, the work has a

networking flavor to it, being concerned with respecting and implementing

communication protocols between interconnected modules.

Current tools for assisting FPGA-based module interconnection can be divided into

three broad categories, each with very different natures. The first are traditional

HDL level tools targeted at the hardware design specialist, for example Mentor HDL

Designer [99]. Here, there is no interconnection abstraction above Verilog or

VHDL hand wiring between blocks. The second are tools targeted at embedded

system design, and strongly influenced by ASIC system-on-chip methodologies, for

example Xilinx Platform Studio [100]. Here, there is a setting of processors, buses,

and peripherals, in other words a specialized style of module interconnection. The

third are tools targeted at the DSP domain, for example Xilinx System Generator for

DSP [50]. Here, there is a domain-specific setting of DSP components and

streaming dataflow between them. Complete systems are typically constructed using

all three types of tools in tandem, perhaps uncomfortably. ShapeUp was designed to

provide the basis for a more uniform tool framework, in terms of both level of

abstraction and breadth of application.

One requirement for ShapeUp is a notation by which a user can describe the

connections made between module interfaces. The Click language [52] was chosen

for this purpose, continuing its use from earlier FPGA-targeted research [51]. Click

originated at MIT, and is much used in the networking research community for

describing software systems built out of modular components that are ‘clicked

together’. An overview of Click is given in Section 3.1. Aside from one minor

generalization, ShapeUp uses the Click syntax as is; however, a significantly

40

generalized underlying semantics has been added in order to broaden the

applicability of this domain-specific language.

In terms of recent research in this area, the ShapeUp work has closest relationships

with the CHREC XML work of Wirthlin et al. [101] [102], discussed in Section

2.2.2. This features an XML data schema that goes beyond current IP-XACT to

address module metadata requirements for reconfigurable computing. A simple

demonstration module integration and reuse tool based on CHREC XML metadata is

presented in [45].

3.1 The Click Language and Extensions

There was nothing deeply profound about the particular language choice in Click.

Click is a declarative language for representing a directed graph of connected

communicating elements. However, other benefits include: both graphical and

textual representations; hierarchical graphs; and parameterization of vertex

properties. All of these extras are useful for the practical requirements of ShapeUp

descriptions.

This section briefly describes the Click language and provides simple examples

written in Click. Routers are devices that guide packets from one network to another

by classifying incoming packets and forwarding them towards their destination.

Click simplifies the designs of software-based routers: (a) by providing modular

abstraction of the software, (b) by exposing the main forwarding path of packets as

they are processed and buffered by the router, and (c) by providing an open source

library of reusable modules. A full description of Click can be found in [52]. The

Click short examples that follow are taken from [103].

In Click terminology, the graph vertices are called elements (which are modules) and

the edges are called connections. Elements process packets, and packets flow over

41

connections. Elements can have an arbitrary set of input and output ports.

Connections are made between ports on elements (which are module interfaces). So

packets are transmitted at output ports and received at input ports, and this

constitutes the complete interconnection semantics of standard Click. Elements have

an optional configuration string, which contains parameters for initializing the

element.

A simple textual example is shown below. Since Click is a declarative language, a

description consists of declarations of: (a) elements and (b) connections between

elements.

An example configuration string is “eth0”, indicating that the src will capture

packets from the eth0 device interface.

This Click example could be reduced to just one line using Click syntactic sugar, for

example:

src :: FromDevice(eth0) -> ctr :: Counter -> sink :: Discard;

When elements have multiple input and/or output ports, port numbers are used to

identify them, for example:

src[2] -> [0]ctr;

// Declare three elements ...

src :: FromDevice(eth0);

ctr :: Counter;

sink :: Discard

// ... and connect them together

src -> ctr;

ctr -> sink;

42

Figure 3.1 illustrates the graphical Click syntax. The first example (a) shows the

graphical syntax of an element where a box represents an instance of an element, and

symbols represent the ports, text describes the element class and also the

configuration string. The second example (b) shows Click graphical connection

syntax, where arrows between boxes represent connections.

Figure 3.1: Simple Click examples: (a) A sample element. Triangular ports are inputs and rectangular

ports are outputs; (b) A simple graphical Click example of a three element pipeline

The standard implementation of Click is in software, and C++ objects represent

elements. Elements have one or more method interfaces e.g. for obtaining

information about packets and packet transfer between elements. An undesirable

feature is that sometimes elements have behind-the-scenes interactions through other

method calls, and these interactions are not explicit in the provided Click description,

which captures only packet dataflow.

Click’s model supports hierarchical designs. Elements can be either simple elements

or compound elements, and they are stored in a library. Compound elements consist

of an aggregate group of elements, which is treated as a single element. The Click

programmer can create new compound elements from existing library elements. A

textual example of a compound element is shown on the next page, with one input

port and one output port. The corresponding graphical example of the same

compound element is shown in Figure 3.2.

4 · E. Kohler et al.

Tee(2)input port output ports

element class

configuration string

Fig. 1. A sample element. Triangular ports are inputs and rectangular ports are outputs.

FromDevice(eth0) Counter Discard

Fig. 2. A router configuration that throws away all packets.

in parentheses; the ‘2’ in ‘Tee(2)’ is interpreted by Tee as a request for two
outputs. Method interfaces are not shown explicitly, as they are implied by the
element class. Figure 2 shows several elements connected into a simple router
that counts incoming packets, then throws them all away.

2.1 Push and Pull Connections

Click supports two kinds of connections, push and pull. On a push connection,
packets start at the source element and are passed downstream to the destina-
tion element. This corresponds to the way packets move through most software
routers. On a pull connection, in contrast, the destination element initiates
packet transfer: it asks the source element to return a packet, or a null pointer
if no packet is available. This is the dual of a push connection. (Clark called
pull connections upcalls [Clark 1985].) Each of these forms of packet transfer
is implemented by one virtual function call.

The processing type of a connection—whether it is push or pull—is deter-
mined by the ports at its endpoints. Each port in a running router is either
push or pull; connections between two push ports are push, and connections
between two pull ports are pull. Connections between a push port and a pull
port are illegal. Elements set their ports’ types as the router is initialized. They
may also create agnostic ports, which behave as push when connected to push
ports and pull when connected to pull ports. When a router is initialized, the
system propagates constraints until every agnostic port has been assigned to
either push or pull.1 In our configuration diagrams, black ports are push and
white ports are pull; agnostic ports are shown as push or pull ports with a
double outline. Figure 3 shows how push and pull work in a simple router.

Push processing is appropriate when unsolicited packets arrive at a Click
router—for example, when packets arrive from a device. The router must han-
dle such packets as they arrive, if only to queue them for later consideration.
Pull processing is appropriate when the Click router needs to control the timing
of packet processing. For example, a router may transmit a packet only when
the transmitting device is ready. In Click, transmitting devices are elements

1The simplest way of creating an agnostic port causes each packet handoff to that port to take two
virtual function calls rather than one. The first calls a general push or pull method, which is a
wrapper that calls the element’s “agnostic” method.

4 · E. Kohler et al.

Tee(2)input port output ports

element class

configuration string

Fig. 1. A sample element. Triangular ports are inputs and rectangular ports are outputs.

FromDevice(eth0) Counter Discard

Fig. 2. A router configuration that throws away all packets.

in parentheses; the ‘2’ in ‘Tee(2)’ is interpreted by Tee as a request for two
outputs. Method interfaces are not shown explicitly, as they are implied by the
element class. Figure 2 shows several elements connected into a simple router
that counts incoming packets, then throws them all away.

2.1 Push and Pull Connections

Click supports two kinds of connections, push and pull. On a push connection,
packets start at the source element and are passed downstream to the destina-
tion element. This corresponds to the way packets move through most software
routers. On a pull connection, in contrast, the destination element initiates
packet transfer: it asks the source element to return a packet, or a null pointer
if no packet is available. This is the dual of a push connection. (Clark called
pull connections upcalls [Clark 1985].) Each of these forms of packet transfer
is implemented by one virtual function call.

The processing type of a connection—whether it is push or pull—is deter-
mined by the ports at its endpoints. Each port in a running router is either
push or pull; connections between two push ports are push, and connections
between two pull ports are pull. Connections between a push port and a pull
port are illegal. Elements set their ports’ types as the router is initialized. They
may also create agnostic ports, which behave as push when connected to push
ports and pull when connected to pull ports. When a router is initialized, the
system propagates constraints until every agnostic port has been assigned to
either push or pull.1 In our configuration diagrams, black ports are push and
white ports are pull; agnostic ports are shown as push or pull ports with a
double outline. Figure 3 shows how push and pull work in a simple router.

Push processing is appropriate when unsolicited packets arrive at a Click
router—for example, when packets arrive from a device. The router must han-
dle such packets as they arrive, if only to queue them for later consideration.
Pull processing is appropriate when the Click router needs to control the timing
of packet processing. For example, a router may transmit a packet only when
the transmitting device is ready. In Click, transmitting devices are elements

1The simplest way of creating an agnostic port causes each packet handoff to that port to take two
virtual function calls rather than one. The first calls a general push or pull method, which is a
wrapper that calls the element’s “agnostic” method.

43

Figure 3.2: Click compound element example of a simple switch

Another aspect of Click connections is the push and pull abstraction for ports,

illustrated in the example in Figure 3.3. A port on an element can be either push or

pull, which indicates which side of the connection controls the movement of data.

Push ports are indicated as black symbols and pull ports are indicated by white

symbols. A third type of port control flow is agnostic, which is used when the port

matches either push or pull behavior of the port directly connected to it. An agnostic

port is shown on the null element in the example, represented by a double outline.

This is an important feature of the software implementation because it also directly

indicates control compatibility between the ports of two modules. However, this

feature is less relevant to hardware implementations, where the control flow is

normally agnostic.

elementclass SFQ {
hash :: HashSwitch(...);
rr :: RoundRobinSched;
input -> hash;
hash[0] -> Queue -> [0]rr;
hash[1] -> Queue -> [1]rr;
rr -> output;

}

HashSwitch(...)

RoundRobin...

Figure 3.3—A simple compound element class.

elementclass Example4 {
s1 :: InfiniteSource; s2 :: RatedSource;
s1 -> [0]output; s2 -> [0]output;

}
e :: Example4 -> d :: Discard;

will expand into this flattened configuration:

e/s1 :: InfiniteSource; e/s2 :: RatedSource; d :: Discard;
e/s1 -> d; e/s2 -> d;

An input port may also be connected directly to an output port. For example,
the following Example5 element disappears when flattened:

elementclass Example5 {
input -> output;

}
FromDevice(eth0) -> Example5 -> Discard;

expands into

FromDevice(eth0) -> Discard;

It is an error to use an input port of input or an output port of output, or
to leave a particular input or output port unused when a higher-numbered
port was used.

36

elementclass SFQ {

 hash :: HashSwitch(…);

 rr :: RoundRobinSched;

 input -> hash;

 hash[0] -> Queue -> [0]rr;

 hash[1] -> Queue -> [1]rr;

 rr-> output;

}

44

Figure 3.3: Click example featuring both push (black ports), pull (white ports)

For ShapeUp, the implementation of Click might be in either software or hardware,

or both. On the hardware side, packets are transmitted over wiring that forms

connections between hardware modules. Between hardware and software,

interfacing elements are based on software device drivers. Aside from these

implementation aspects of connections though, the significant semantic change to

Click was in allowing connections to represent a much wider range of element

interactions than just the transmission of packets, as will be described in Section

3.2.4. This generality is based on the module interface abstractions presented in the

next section. To aid clarity, the only (tiny) syntax change in ShapeUp was to allow

alphanumeric port identifiers, not just numerical.

3.2 Abstractions of Module Interface Behavior

To motivate the desire for greater abstraction, Figure 3.4 shows a simple example

drawn directly from the world of the hardware designer. It concerns a module,

which is a FIFO for packet data with parameterizable depth. This FIFO has a 64-bit

data path width, and uses the Xilinx LocalLink [104] standard for its input and

output interfaces. Figure 3.4(a) shows the actual schematic for the FIFO, featuring

the detailed input and output wiring detail (over which LocalLink standard signaling

is carried out). Figure 3.4(b) shows a graphical Click description of this FIFO

FromDevice Null Null ToDevice

push(p) push(p)

return
return

pull()
pull()
return p return p

receive
packet p

enqueue p
ready to
transmit

dequeue p
and return it

send p

Figure 2.3—Push and pull control flow. This diagram shows functions called as a packet
moves through a simple router; time moves downwards. During the push, control flow
starts at the receiving device and moves forward through the element graph; during the pull,
control flow starts at the transmitting device and moves backward. The packet p always
moves forward.

The type of a connection is determined by the ports at its endpoints. Each
port in a running router is either push or pull. Connections between two push
ports are push, and connections between two pull ports are pull; connections
between a push port and a pull port are illegal. Elements set their ports’ types
as the router is initialized. They may also create agnostic ports, which behave
as push when connected to push ports and pull when connected to pull ports.
In our configuration diagrams, black ports are push and white ports are pull;
agnostic ports are shown as push or pull ports with a double outline.

Figure 2.3 shows how push and pull work in a simple router. This router
forwards packets unchanged from one network interface to another. The
central element in the figure is a Queue. This element enqueues packets on a
FIFO queue as they are pushed to its input, and yields packets from the front
of that queue as it receives pull requests on its output. The two Null elements,
which pass packets through unchanged, demonstrate agnostic ports.

Push connections are appropriate when unsolicited packets arrive at a
Click router—for example, when packets arrive from a device. The router
must handle such packets as they appear, if only to queue them for later con-
sideration. Pull connections are appropriate when the Click router needs to
control the timing of packet processing. For example, a router may transmit
a packet only when the transmitting device is ready. In Click, transmitting de-
vices are elements with one pull input. They use pull requests to initiate packet
transfer only when ready to transmit. Agnostic ports model the common case
that neither kind of processing is inherently required.

Pull connections also model the scheduling decision inherent in choosing
the next packet to send. A Click packet scheduler is simply an element with
multiple pull inputs and one pull output. It responds to a pull request by

19

45

abstracted, with just ‘stream type’ input and output ports. The abstracted version

might have either a hardware or software implementation. Automatically bridging

the gap between the Click abstraction and the implementation is the goal of this

research.

ShapeUp is intended to go far beyond support for just the traditional Click packet

type of interactions between modules, however. Figure 3.5 shows a larger example

depicting the interface of an Ethernet MAC module. This features three other

interface types that will be introduced in the next subsections.

Since modules are treated as black boxes, the range of interface abstractions is based

on broad observations about overall module behavior and how this is programmed.

Three basic programming paradigms were identified: (i) hardware programming; (ii)

communications programming; and (iii) procedural programming. These, and their

impacts on interface behavior, are described in turn below, together with one, two,

and two, derived interface abstractions respectively. Each of these module interface

abstractions has an (open-ended) set of attributes associated with it, used to specify

the characteristics of particular instances of the type.

Figure 3.4: (a) Schematic view of FIFO; (b) ShapeUp view of FIFO

ll_fifo_64	

46

Figure 3.5: (a) Schematic view of Ethernet MAC; (b) ShapeUp view of Ethernet MAC

3 .2.1 Hardware-programmed modules

This paradigm is somewhat less deep than the other two, being the placeholder for

hardware modules that exhibit some arbitrary pattern of signaling over wires at their

interfaces. In short, it leads to a lower-level interface abstraction included as a

fallback option for module interfaces that are not conveniently described using the

other, more sophisticated, abstractions. This interface abstraction is termed plain,

and its basic attribute is that a logical vector of bits is transmitted unidirectionally

over the interface. An important additional implementation attribute is whether

transmission is synchronous or asynchronous. In synchronous mode, communication

is by polling at agreed times. In asynchronous mode, changes in bit vector values are

explicitly communicated, for example, using an edge-triggered signaling approach at

the receiver.

ShapeUp we are not concerned with the internal behavior of
blocks, only how they communicate. In this respect, our blocks
are essentially black boxes. Block hierarchal abstraction is
supported, and it is similar to hierarchy in Click.
Blocks are an abstraction over architectural blocks which may be:
IP cores, blocks generated from high level language descriptions,
and other architectural components. An implementation of a block
is called an instance.
The Click+ textual syntax for a block instance named
“ll_fifo_64”, shown in Figure 3. The FIFO is configured by the
string “depth=128.” The Click+ graphical syntax for the same
block instance for ll_fifo is shown in 4a.
To peek below the abstraction we, uncovering the schematic
representation in Figure 4b. In this view we see pins representing
the signal interface of the block. The Click+ instance in 4a
abstracts the pins from 4b into a port symbol. Ports mode is
depicted on the port symbol by a small circle, to indicate either
master or target to indicate the direction of control relationship.
The port type selection will be discussed in detail in the next
section.

myfifo::ll_fifo_64 (“depth=128”);
Figure 3. (a) Schematic view of a simple block;

(b) ShapeUp view of the simple block

(a) (b)

Figure 4. (a) ShapeUp view of a simple block;
 (b) Schematic view of the simple block

3.2 Ports
As mentioned earlier, the main feature of this programming model
is emphasis on specialized port types to abstract common patterns
of interconnection for a path to efficient mapping onto FPGA-
based implementations. In this section we preset the type
abstraction is used to smooth over small differences in signaling
and provide semantics that programmers can use for
differentiation.

(a) (b)

(c)

Figure 5. (a) Schematic view of a complex block;
(b) port type symbols; (c) ShapeUp view of the complex block

In order to simplify interconnect patterns into meaningful types;
we have selected familiar programming abstractions consistent
with three influential programming paradigms. These paradigms
were chosen out of engineering compromise for the most part, to
provide a practical set for building real systems. The set covers a
range to support expert system designers as well as novices and
software programmers.
Our selection of interface types was based on characterizing
FPGA-based streaming systems. This represented a convergence
of three well-known paradigms: 1) RTL programming, 2)
communications programming, and 3) procedural programming.
Each interface type can be viewed as embodying a programmed
protocol that describes the inter-block interaction over the
interface. The protocols are programmable in the sense that they
allow one to describe variations in behavior.

3.2.1 RTL Programming: Plain
In our model, RTL programmed interfaces form the base layer.
We represent signal interfaces with our interface type called plain.
Plain is the basic 'fall-back' option in protocol terms when
selecting a type because it has no prescribed semantics, for
example this can be used when the type is not specified or it does
not appear to fit in the other categories. The data format of plain
is a logical vector of bits. The master assigns a value to a bit
vector to communicate in one direction to a target. The bit vector
may reflect the concurrent or serial presentation of one or more
data values or control signals. A subset of the data, in this case a
slice of bits can be selected from the complete vector, by
specifying the high and low indices.

Communication can occur either synchronously or
asynchronously. In synchronous mode, the master and target are
synchronized so that the master outputs a value and the target
inputs that value at a prearranged time. In asynchronous mode,

ll_fifo_64

Ta
rg

et
 st

re
am

 p
or

t:
 “

s_
RX

”

M
as

te
r s

tr
ea

m
 p
or

t:
 “

s_
TX

”

stream
access
compute
notify
plain

Master notify port: “n_Interrupt”

Master notify port: “n_RstDone”Target access port: “a_ClientStats” Ethernet
MAC

Target stream port: “s_RX” Master stream port: “s_TX”

Target plain port: “p_RXP_RXN”

Master plain port: “p_TXP_TXN”

47

3.2.2 Communications-programmed modules

This paradigm captures modules that process streaming data, for example, DSP

samples or network packets. Two interface abstractions are defined, corresponding

to the connectionless (datagram) and connection-oriented (virtual circuit) styles that

are universal in data communications.

The connectionless interface abstraction is termed notify, and its basic attribute is

that atomic messages are passed unidirectionally over the interface. A typical usage

is that these messages are used to signal the occurrence of events. Communication

of messages between two modules connected via notify interfaces is lossless and

sequenced. This interface type can be seen as the next higher level of abstraction

above the plain interface type, adding a little data structuring above basic bit vector

transmission.

The connection-oriented interface abstraction is termed stream, and its basic attribute

is that a stateful stream of atomic packets (equivalently: samples or tokens) is passed

unidirectionally over the interface. An important additional attribute is that there can

be a flow control mechanism for the stream, to police the rate of transmission.

Typically, flow control is applied by the receiving module to avoid data loss, though

explicit flow control by the transmitting module is also possible.

For both the notify and stream types, the atomic data units transmitted have various

attributes. These include implementation attributes, such as parallel data widths and

start/finish indications, and structural attributes, such as data formats and

interpretations.

3.2.3 Procedural-programmed modules

This paradigm captures modules that embody the standard software programming

mechanisms of accessing variables and calling functions. Two interface abstractions

are defined, corresponding to these mechanisms

48

The first interface abstraction is termed access, and its basic attribute is that a

primary module accesses data in a secondary module via read and write requests, for

example, processing that interacts with memory, or processing that uses input/output

devices. A particular attribute is whether the accesses are addressless (e.g. to a

register or a FIFO) or addressed (e.g. to a memory array). Another implementation

attribute is whether read or write requests can be grouped together into bursts.

The second interface abstraction is termed compute, and its basic attribute is that a

primary module calls a function in a secondary module by passing arguments and

receiving results back. This is analogous to the networking notion of a remote

procedure call. A particular attribute is how the target function is specified.

In both cases, there is a simple two-stage handshake protocol between the primary

and secondary modules (though the second stage of the handshake may not be

explicitly required for access writes). This is analogous to the flow control

capability of the stream interface type.

As for the notify and stream types, the atomic data units transmitted (read or written

values, function arguments and results, respectively) have both implementation

attributes and structural attributes.

3.2.4 Module interface types and Click semantics

Figure 3.6 shows a summary of the five interface abstractions indicating the basic

interactions between two modules connected using each of the five types. This also

indicates that there are three basic layers of abstraction: plain; then notify; then

stream, access, and compute. Aside from plain, the interface abstractions are

applicable to both hardware and software implementations of modules. Note that

notify corresponds to the common notion of message passing between modules in

software implementations.

49

In the standard Click semantics, a connection denotes streaming packet dataflow

from one module to another and so, in either the textual or graphical representation,

an arrow denotes direction of data flow. For ShapeUp, the meaning of a connection

arrow is generalized to denote a primary-secondary relationship: a primary element

initiates an interaction with a secondary element. In the particular case of the stream

interface type, this is equivalent to the standard Click semantics. In the case of the

access interface type for example though, the arrow shows the direction in which

read and/or write requests are made. So, for a write request, data flows in the

direction of the arrow. However, for a read request, data flows against the direction

of the arrow. In the case of the compute type, data flows in both directions.

Note that no extension was made to the Click syntax in order to explicitly indicate

the interface type associated with element ports. However, given that port name

syntax was generalized to allow alphanumeric identifiers, something like Hungarian

notation [105] can be systematically used: prefix the port name with an indication of

type (e.g. “P_” for plain).

3.3 Interface Metadata

The ShapeUp design environment requires that each module has metadata associated

with it, describing its interfaces in terms of the abstract interface types and their

attributes. Thus, repositories of modules available for use and reuse store this

information alongside other metadata about the modules (for example, descriptions,

creation times, etc.). When users create new custom modules, then the appropriate

interface metadata must be created at the same time. With maturity of the ShapeUp

flow, higher-level tools used for module creation can also be made to generate the

required metadata automatically.

50

Figure 3.6: Module interaction with five interface abstractions

Notify atomic data unit

Primary Secondary

Plain
n signals n signals

Compute

e.g. remote procedure call (RPC)

e.g. RPC result

Primary Secondary

Access
e.g. burst read request

e.g. burst read response

Primary Secondary

Stream
stream of atomic units with flow control

backpressure

Primary Secondary

Primary Secondary

51

The interface metadata is described using the ShapeUp Element Description

Language (EDL). This follows a data schema giving, for each interface on a module

(i.e., for each port on a Click element), the required information. The two essential

pieces of information are the interface type, and whether the interface is primary or

secondary. These provide the most basic type-checking capability: to determine

whether a legal connection can be made between two modules using their respective

interfaces. Basically, both have to have the same type, and one has to be primary

and the other has to be secondary.

Beyond the basic interface metadata, the EDL description includes more detailed

information about the various attribute values that apply for the particular interface

type instance. These can be used for more detailed type checking, as well as to guide

the operation of the various ShapeUp tools, as described in the next section. To give

a feel for the potential descriptive power of the metadata, the current ShapeUp

prototype has 24 defined available attributes for the stream interface type, and 38

attributes for the access type. (The larger number for access is a reflection of greater

tool experimentation using this interface type.)

To make the mechanism as flexible and table-driven as possible, the EDL data

schema is itself described using meta-metadata described in the ShapeUp Interface

Description language (IDL). This follows a data schema giving, for each defined

abstract interface type, the required metadata information. So, it expresses the basic

behavior of an interface type, together with its attributes, giving type and range

information, and default information, for each. Thus, the chosen five types need not

be seen as being tablets of stone, but as an initial pragmatic selection that can be

easily evolved and upgraded based on practical experience and learning. Ultimately,

certain knowledge of the interface type behavior is built into the tools that process

EDL descriptions, since it is not practicable to make IDL a language that can express

all conceivable interface behaviors.

52

3.3.1 Stream attributes example

Example attributes for the stream interface type are provided in Figure 3.7. Stream

is of particular focus since it is necessary for describing packet processing systems.

These attributes were based on characterizing the behavior of typical streaming

interface protocols of modules, e.g. Xilinx’s LocalLink, ATM Aurora, ARM’s AXI-

stream, etc. The attributes describe both the format of data and the behavior of the

transmission. A short example of the IDL for the stream interface type is shown in

Figure 3.8. A corresponding example of EDL for an element is shown in Figure 3.9,

which has a stream input port.

For each of the interface types there are attributes for describing the behavior of the

interaction. Each connection forms a control relationship connecting a primary

(controller) to a secondary (target). As mentioned, the basic functions of a stream

interface are to transmit and to receive network packets or tokens. Packets or tokens

are transmitted by the primary to the secondary for one-way communication. The

control plane of stream allows the secondary to throttle the transmission rate by

asserting flow control/backpressure to pause the transmission in order to avoid data

loss. The following is a more detailed description of the stream behavioral attributes.

There are attributes for indicating the word length and endianness in the

transmission. The packet length, and whether the packet can be segmented into

smaller chunks or cells is also indicated. The method of specifying the length of the

packet is also described.

The method for indicating packet boundaries chunk boundaries is also an attribute.

For example, the start of packet can be indicated by (a) a marker that is a signal or by

a reserved position in a packet header, (b) the assertion of a ready signal, (c) ready

plus a status or control word, (d) determined by a time slice, or (e) determined by

some other encoding. The start of a chunk may also be indicated by these encodings.

The end of packet can be indicated by (a) a marker that is a signal or by a reserved

position in a packet header, (b) the assertion of a ready signal, (c) a length field, (d)

53

determined by a time slice, or (e) determined by some other encoding. The last word

of the packet is indicated either by a specified length or remainder signal that

indicates how many bytes are valid in the last word of the packet, called rem. The

rem may have different encodings, for example the number of bytes can be

expressed in binary or as a byte enable.

There is a timing relationship between the primary and the secondary. Flow control,

or backpressure, can be asserted by the secondary to indicate to the primary to pause

the sending of any more data until the secondary releases the backpressure. The

transmitter also signals its readiness, and the primary can pause transmission by

deasserting data enable or its ready signal.

In terms of a transaction, the transmission of the packet or token is either all or

nothing. The transmitter, or primary, can abort the transmission of the current packet

by asserting its abort signal. The receiver, or secondary, can similarly abort the

transmission of the current packet by asserting its discontinue signal. A transmission

of packets or tokens is order preserving, meaning that the data is received in the

same order as it was transmitted.

Stream interfaces may have an associated logical identifier that can be used for

different purposes, e.g. identifying channels or unique identifier for each interface.

Channels are typically a grouping for packets based on a low-level physical

transmission property, e.g. channels are found in wireless transmission based on

frequency or optical transmission based on wavelength. Grouping by flow identifier

is more common for packets.

For preserving data integrity, whether the transmission interface supports parity bits

is described. Alternatively whether the entire packet or chunk contains a checksum,

e.g. CRC, is also described.

54

Figure 3.7: Example attributes for the Stream interface type

Relationship of Endpoint (primary | secondary)

Stream Data Format
In tra-word
 1.Size of word (specify: bytes | bits; specify min & max)
 2.Structure:
 a) byte order
 b) bit order
 c) Method of specifying the completeness of a word (or less than max bytes)
 (rem | byte enable | length)

Chunks / Shor t Inter -word / Hor izontal (Chunk = Cell / Burst / Segment)
 0. Supported by Protocol
 1. Size of chunk (specify words | bytes | bits; specify: min & max)
 2. Structure:
 a) method of specifying start of chunk
 (marker { signal | reserved position within hdr } |
 assertion of ready signal |
 ready plus a status/ctrl word |
 determined by time slice | other encoding)
 b) method of specifying completion of chunk
 (marker { signal | reserved position in trailer } |
 deassertion of ready signal |
 length field | determined by time slice | other encoding)
 3. Uses Data Offset (Y & specify value | N)

Packets / Long Inter-word / Aggregate Horizontal
 1. Size of packet (specify chunks | words | bytes | bits; specify: min & max)
 2. Structure:
 a) method of specifying start of packet
 (marker { signal | reserved position within hdr } |
 assertion of ready signal | ready plus a status/ctrl word |
 determined by time slice | other encoding)
 b) method of specifying completion of packet
 (marker { signal | reserved position in trailer } |
 deassertion of ready signal | length field |
 determined by time slice | other encoding)
 3. Uses Data Offset (Y & specify value | N)

Transmission Behavior
 Intra-word Data Enable (Y & specify signal | N)
 Chunks Data Enable (Y & specify signal | N)
 Chunks Flow Control (Y & specify signal | N)
 Packet Data Enable (Y & specify signal | N)
 Packet Flow Control (Y & specify signal | N)
 Abort (Y & specify Granularity (F2 | F3) & specify mechanism: signal | encoded msg) | N)
 AbortResponseAction(proceed to transmit partial data | discard partial data)
 Uses Channels (Y & specify max number | N)
 Uses Parity (Y & specify width | N)

55

Figure 3.8: IDL stream type interface attributes example

Figure 3.9: EDL stream type port attributes example

/* IDL definition for Stream */
Stream::$Definition1 [Set of experimental behavioral attributes]::Attributes(
 Format[Details of the formats and organization of control information] (
 Words[Format of words] (
 *size:(int|intlist|expr) with units ("bits":1 | "bytes":8)
 with range(0:128),
 byte_order:choice("Big Endian"|"Little Endian"),
 bit_order:choice("high to low"|"low to high"),
 *indicate_completion:choice(
 rem(sz[size of the encoded value]:int,
 signal_valid:choice("active high"|"active low")) |
 byte_enable(sz:int) | length(sz:int)
)
),
 Chunks[Format of chunks] (
 *required:bool,
 *supported:bool,
 size:(int|intlist|expr) with units("bits":1|"bytes":8),
 indicate_start:choice("marker" |
 "assertion of ready signal" |
 "ready plus a status ctrl word" |
 "determined by time slice" |
 "other encoding"
),
 indicate_completion:choice("marker" |
 "assertion of ready signal" |
 "ready plus a status ctrl word" |
 "determined by time slice" |
 "other encoding"
)
),

Element TestElement {

/* Secondary (input) port*/
Input in_port Stream :: $ localLink :: Attributes(

 Format (
 Words ["intrawords"] (
 size:1 bytes,
 byte_order:"Big Endian",
 bit_order:"high to low",
 indicate_completion:rem/*help?*/(sz:4, signal_valid:"active high")),
 Chunks["this doesnt support chunks"] (
 required:false,
 supported:false
),
 Packets["format of streams"] (
 size:1500 bytes,
 indicate_start:"assertion of ready signal",
 indicate_completion:"assertion of ready signal"
)
),

56

3.3.2 Metadata representation and packaging

The ShapeUp prototype implementation used custom XML representations for both

EDL and IDL descriptions, to allow easy experimentation. For the future, EDL is

being aligned with the IP-XACT standard for expressing module interface metadata.

IP-XACT at present is very bus-centric in terms of inter-module connections, and so

a certain amount of artificiality, and some use of ‘vendor-specific extensions’ is

necessary to map the more general model of ShapeUp connections onto the IP-

XACT data schema. A small sample of the XML version of the EDL is shown in

Figure 3.10.

The interface metadata is bundled with each element to support table-driven tools

that assist the designer with making connections between modules. Figure 3.11

shows the flow for adding a new element to the ShapeUp element library. The

module source files, e.g. RTL descriptions, are packaged along with the interface

metadata and then stored in the element library. The metadata for the interfaces is

specified either by the designer of the module or auto-generated by a high-level

language compiler. The ShapeUp suite of tools described in the next section uses

this element library and metadata for raising the level of abstraction.

Figure 3.10: XML EDL example with two stream ports and two access ports

<interfaces>
 <Stream direction="input" technology="LocalLink" name="streamin">
 <data maximumLength="1024" minimumLength="32" width="32"/>
 <speed units="Gbps" value="20"/>
 </Stream>
 <Stream direction="output" technology="LocalLink" name="streamout">
 <data maximumLength="1024" minimumLength="32" width="32"/>
 <speed units="Gbps" value="20"/>
 </Stream>
 <Access direction="input" technology="fifo" name="stats"
 writeable="true">
 <data width="16"/>
 <speed units="MHz" value="133"/>
 </Access>
 <Access direction="input" technology="register" name="ctrl"
 readable="true">
 <data width="32"/>
 <speed units="MHz" value="133"/>
 </Access>
 </interfaces>

57

Figure 3.11: Flow for adding a new element to the ShapeUp element library

3.4 Type Checker

Type checking is central to the ShapeUp framework. A fundamental requirement is

to check whether two element ports match, and so determine whether it is possible to

make a connection between them. This involves testing whether the two ports have

the same type, and then that they have matching attributes for that type. The

approach is in the same spirit as earlier research of Bergamaschi et al. [40] in

checking pin compatibility, but tackles a much more general interface checking

problem. The main goal is that by characterizing and capturing the signaling

behaviors of these interfaces, system designers will no longer need to check the

detailed behavior, and some tool can usefully automate the process and indicate

compatibility. An algorithm was developed to carry out this type checking

operation. Since ShapeUp uses a data-driven model for the interface types, whereby

their characteristics are described using meta-metadata, some details of how both

IDL and EDL descriptions are processed are relevant to understanding the type

checking algorithm itself.

Element	
 packager

Interface	
 metadata Module	
 RTL

Add	
 to	
 element	
 library

RTL Metadata

58

Interface type attributes are organized hierarchically: at the top level is the type, and

then there are main groups of attributes, then sub-groups, etc. The particular

structure is defined in the IDL description of each type. Particular attributes have

data types, which can include ranges of allowed values or enumerated values. Each

attribute is flagged as whether or not it is compulsory. If not, then a default value can

be specified in the IDL. All of these aspects are taken account of by the type

checker.

The internal data structure used for storing an IDL description is shown in Figure

3.12. If the IDL file parses correctly, the main feature is the interface list, which

contains the defined interfaces. For the standard case, there are five on the list: plain,

notify, stream, access, and compute. For each interface, its name is stored (e.g.

“plain”), together with an optional subtype name to allow derivative interface

profiles to be defined (e.g. “stream” “LocalLink”), and an optional description string

for documentation. Then there is an attribute list for the interface. Each attribute has

a name and an optional description string. As mentioned, there is an indication of

whether the attribute is compulsory, and there is also an indication of its sort. One

sort is that the attribute is a node in a hierarchy, and then a list of sub-attribute

children is stored. The other sort is that the attribute is a leaf, and then a list of type

choices for the attribute value is stored. For each such type, information is stored on

any characteristics or restrictions on values of that type. Figure 3.13 shows an

abstracted example representing the IDL as a tree of attributes.

The internal data structure used for storing an EDL description is shown in Figure

3.14. When a description is processed, it is first parsed to check syntax, and then

parsed against the stored IDL description to check interface types. The main feature

of the data structure is the port list, which contains the defined ports of the element.

For each port, its name and direction are stored, together with its type name and

59

optional subtype name, and an optional description. Then there is an attribute list for

the port.

Figure 3.12: Internal data structure for storing IDL description

IDL data structure
• File name (string)

• Parse error count (integer)
• Interfaces (Inte rface list)

Inte rface data structure

• Type name (string)

• Subtype name (string)
• Description (string)

• Attributes (Attribute list)

Att ribute data structure

• Name (string)
• Description (string)

• Compulsory (boolean)
• Sort (ATTRIB, LIST)
• Union of sort characteristics, as relevant:

– Node sub-attributes (Attribute list)
– Leaf type choices (Type list)

Type data structure

• Type (BOOL, INT, STRING, CHOICE_STRING, CHOICE_ATTRIB)
• Union of type characteristics, as relevant:

– Integer units and allowed range (Unit list, integer, integer)

– Choice strings (string list)
– Choice attributes (Attribute list)

Unit data structure

• Name (string)

• Multiplicative factor (integer)

60

Figure 3.13: Example of IDL attribute tree

Two attribute data structures are shown: one used before the parsing against the IDL,

and the other used for the final EDL representation. The port type name and subtype

name are used to select the appropriate IDL interface type and subtype to check

against. The checking involves ensuring that all compulsory attributes are present,

no unknown attributes are present, and the attribute hierarchy matches structurally.

Each leaf attribute is checked to ensure it has a legal type and a legal value for that

type. The final EDL data structure indicates whether each leaf attribute has an

unassigned, wildcard, or assigned value.

The port type checking algorithm involves comparing two stored EDL port data

structures. Pseudo-code for the algorithm is given in Figure 3.15. The two ports are

first checked to ensure they have the same type and the same subtype if it is used.

Then the attribute lists of the two ports are compared, attribute by attribute, to ensure

that they match. The comparison of two attributes involves first checking that the

attribute names match, and then that the attribute values are consistent. If either

attribute has a wildcard value, or both attributes have unassigned values, then they

are deemed to match. Note that, as discussed earlier, more elaborate approximate

matching tests can be included here, depending on the nature of the attributes. If it is

a leaf attribute, the two values are compared directly if they are scalar or are

compared recursively if they are themselves attributes. If it is a node attribute, the

next level of the hierarchy is compared recursively.

root:	
 port	
 type

List	
 of	
 attributes Choice	
 of	
 types

w
attribute

y
type

z
type

x
attribute

61

Figure 3.14: Internal data structure for storing EDL description

EDL data structure

• File name (string)

• Parse error count (integer)
• Element name (string)
• Ports (Port list)

Port data structure

• Port name (string)
• Direction (string)

• Type name (string)
• Subtype name (string)
• Description (string)

• Attributes (Attribute list)

Att ribute data structure 1 – before parsing against IDL

• Name (string)

• Description (string)
• Type (UNASSIGNED, WILDCARD, INT, STRING, ATTRIB,

ATTRIB_LIST)
• Union of values, as relevant:

– Integer value and units (integer)
– String value (string)
– Attribute value (Attribute)

– Attribute list value (Attribute list)

Att ribute data structure 2 – after parsing against IDL

• Name (string)

• Description (string)
• Type (BOOL, INT, STRING, ATTRIB, ATTRIB_LIST)
• Value sort (UNASSIGNED, WILDCARD, ASSIGNED)

• Union of values, as relevant:
– Boolean value (boolean)

– Integer value (integer)
– String value (string)
– Attribute value (Attribute)

– Attribute list value (Attribute list)

62

Figure 3.15: Pseudo-code for type checking of two ports

Note that the algorithm used to parse an EDL port description against a stored IDL

interface description has a very similar organization to this type checking algorithm.

It also involves the recursive traversal of the attribute hierarchy tree, but with more

complicated operations carried out at each stage: both checking and matching, and

also building the final attribute data structures.

The original IDL and EDL parsing algorithms, and the port type checking

algorithms, were implemented in Java. Later, when transferred into product

development at Xilinx, they were reimplemented in C++.

boolean compare_ports (port1, port2)
{
 return false if type1 != type2 || subtype1 != subtype2;
 return compare_attribute_lists (attributes1, attributes2);
}

boolean compare_attribute_lists (list1, list2)
{
 for (a1=first1,a2=first2; a1 != last1 && a2 != last2; a1++,a2++)
 return false if ! compare_attribues (a1, a2);
 return (a1 == last1 && a2 == last2);
}

boolean compare_attributes (attribute1, attribute2)
{
 return false if name1 != name2;
 return true if sort1 == wildcard || sort2 == wildcard;
 return true if sort1 == unassigned && sort2 == unassigned;
 return false if sort1 == unassigned || sort2 == unassigned;
 switch (type) {
 bool: return (value1 == value2);
 int: return (value1 == value2);
 string: return (value1 == value2);
 attrib: return compare_attributes (value1, value2);
 attrib_list: return compare_attribute_list (value1, value2);
 }
}

63

A simple type checking example is presented in Figure 3.16. Here, the connections

almost match, but are not an exact match. The primary stream port, (a), and the

secondary stream port, shown in (b) differ in both their width and size of rem, and so

do not exactly match. However, they approximately match if tools are available to

bridge the differences. Automatically generating shims with bridging logic is

discussed in Section 3.8.2. As well as giving a true or false result, the type checker

can also supply a list of things that did not match exactly.

Figure 3.16: Type checking example: (a) primary port; (b) secondary port

The stitcher basically consists of checking the connections
between ports, if necessary generating “shim” glue logic to make
the connection compatible, and generating the connection signals
to implement the connection. The remainder of this section
describes how the stitcher: (a) uses the semantics of port attributes
for type checking (b) automatically generates a “shim” between
ports to make the connection compatible, and lastly provides some
example results.

4.2.1 Connection compatibility checking example
To describe the behavior and the format of transmitted data a tree
of attributes is used to characterize the behavior. Behavioral
abstraction: as programmed-protocols Flavor of attributes; what is
unique about each, a couple simple examples of each

Another way to look at this is that with further characterizing and
documenting of the signaling behaviors of interfaces, users will no
longer need to check information at that level directly, and some
automatic tool could usefully serve that purpose. Prototype tools
are described in the next section.

As mentioned earlier in 4.1, the listing of ports and their attributes
are specified in the EDL file. We provide a simple graphical
example of how the experimental prototype tool checks
connections: first by port type, second by attributes. We provide
an illustrated example to simplify discussion rather than involving
the format of our experimental attribute language or the XML,
since conveying the basic ideas is more important than learning
syntax.

Figure 9. Graphical symbol notation for attribute example

Figure 9 illustrates the organization and symbols used for the
simple example. The figure depicts a tree organization to
attributes, where a root is the port type. The next levels down
represent attributes that describe structure and format features and
attributes that describe the behavioral temporal protocol features.
This is how attributes are organized first as a schema in the
experimental IDL into format and behavioral categories. Second
in the experimental EDL, each block has ports, and each port has
assigned values for attributes.

The symbols are used represent finer detail in the structure of the
organization of attributes. As shown, attributes may be contained
in a list reflecting a grouping. Attributes may also be organized as
a multiple choice, where the EDL selects only one of the choices
that are presented in the IDL.

The experimental EDL allows for attributes to be left undefined,
in this case the EDL specification would just leave those attributes
out of the description. It is possible, however, to declare some
attributes as required with a “compulsory” tag in the IDL. In that
case they must be included in every EDL and have an assigned
value. In the case that a block is agnostic to an attribute, in the
EDL the attribute can be assigned to have a “don’t care” value.

(a)

(b)

Figure 10. Attribute checking example: (a) master; (b) slave

 Figure 11. Pseudo code for connection checking
Pseudo code for the performing connection compatibility
checking appears in Figure 11. Connection compatibility can be
checked quickly with the typeCheck(..). Alternatively it can be
checked based on comparing the attributes, attributeCheck(..). In a
prototype implementation we implemented the check with a depth
first search and recursive checking function, but the details are
beyond the scope of this paper. The experimental EDL type
checking was implemented initially in a Java prototype, and later
also implemented in a C++ version of the stitcher.

/* Quickly check connection compatibility */
boolean typeCheck(port Master, port Target){
 return (Master.type == Target.type);
}
/* Attribute check for behavior compatibility */
differences[] attributeCheck(port Mstr, port Trgt) {
 Attrib a = Mstr.getRoot();
 a.compareTo(Trgt.getRoot());
}

int compareTo(Attrib a) // Class interface for Attrib
/* recursive function that checks that the attributes
starting from leaf checking backwards to root */ ...

/* Note that wildcard prunes the comparison */
/* compareTo(...) has polymorphic implementation
depending on subclass of Attrib */
...

{/* After checking, possibly generate shim */
 switch(resultOfComparison) {
 case 1: // compatible, directly connect signals
 ...
 case 2: // generate a shim and then connect
 ...
 case 3: // incompatible, so signal an error
 ...
 }
}

root: port type

List of attributes Choice of attributes

xattribute yattribute z attribute

k

awidth

Port_type e.g. stream

Data Format and
Interface
Structure
attributes list

Temporal Protocol and
Signaling attributes list

f
Fixed length

!(Method for signaling end of packet) // ! = compulsory

g Last Word has Marker plus REM

Size of REM = 2

16

b MTU
4096

x

nwidth

Port_type e.g. stream

Data Format and
Interface
Structure
attributes list

Temporal Protocol and
Signaling attributes list

s
Fixed length

!(Method for signaling end of packet) // ! = compulsory

t Last Word has Marker plus REM

Size of REM = 4

32

o

MTU
* // don’t care

The stitcher basically consists of checking the connections
between ports, if necessary generating “shim” glue logic to make
the connection compatible, and generating the connection signals
to implement the connection. The remainder of this section
describes how the stitcher: (a) uses the semantics of port attributes
for type checking (b) automatically generates a “shim” between
ports to make the connection compatible, and lastly provides some
example results.

4.2.1 Connection compatibility checking example
To describe the behavior and the format of transmitted data a tree
of attributes is used to characterize the behavior. Behavioral
abstraction: as programmed-protocols Flavor of attributes; what is
unique about each, a couple simple examples of each

Another way to look at this is that with further characterizing and
documenting of the signaling behaviors of interfaces, users will no
longer need to check information at that level directly, and some
automatic tool could usefully serve that purpose. Prototype tools
are described in the next section.

As mentioned earlier in 4.1, the listing of ports and their attributes
are specified in the EDL file. We provide a simple graphical
example of how the experimental prototype tool checks
connections: first by port type, second by attributes. We provide
an illustrated example to simplify discussion rather than involving
the format of our experimental attribute language or the XML,
since conveying the basic ideas is more important than learning
syntax.

Figure 9. Graphical symbol notation for attribute example

Figure 9 illustrates the organization and symbols used for the
simple example. The figure depicts a tree organization to
attributes, where a root is the port type. The next levels down
represent attributes that describe structure and format features and
attributes that describe the behavioral temporal protocol features.
This is how attributes are organized first as a schema in the
experimental IDL into format and behavioral categories. Second
in the experimental EDL, each block has ports, and each port has
assigned values for attributes.

The symbols are used represent finer detail in the structure of the
organization of attributes. As shown, attributes may be contained
in a list reflecting a grouping. Attributes may also be organized as
a multiple choice, where the EDL selects only one of the choices
that are presented in the IDL.

The experimental EDL allows for attributes to be left undefined,
in this case the EDL specification would just leave those attributes
out of the description. It is possible, however, to declare some
attributes as required with a “compulsory” tag in the IDL. In that
case they must be included in every EDL and have an assigned
value. In the case that a block is agnostic to an attribute, in the
EDL the attribute can be assigned to have a “don’t care” value.

(a)

(b)

Figure 10. Attribute checking example: (a) master; (b) slave

 Figure 11. Pseudo code for connection checking
Pseudo code for the performing connection compatibility
checking appears in Figure 11. Connection compatibility can be
checked quickly with the typeCheck(..). Alternatively it can be
checked based on comparing the attributes, attributeCheck(..). In a
prototype implementation we implemented the check with a depth
first search and recursive checking function, but the details are
beyond the scope of this paper. The experimental EDL type
checking was implemented initially in a Java prototype, and later
also implemented in a C++ version of the stitcher.

/* Quickly check connection compatibility */
boolean typeCheck(port Master, port Target){
 return (Master.type == Target.type);
}
/* Attribute check for behavior compatibility */
differences[] attributeCheck(port Mstr, port Trgt) {
 Attrib a = Mstr.getRoot();
 a.compareTo(Trgt.getRoot());
}

int compareTo(Attrib a) // Class interface for Attrib
/* recursive function that checks that the attributes
starting from leaf checking backwards to root */ ...

/* Note that wildcard prunes the comparison */
/* compareTo(...) has polymorphic implementation
depending on subclass of Attrib */
...

{/* After checking, possibly generate shim */
 switch(resultOfComparison) {
 case 1: // compatible, directly connect signals
 ...
 case 2: // generate a shim and then connect
 ...
 case 3: // incompatible, so signal an error
 ...
 }
}

root: port type

List of attributes Choice of attributes

xattribute yattribute z attribute

k

awidth

Port_type e.g. stream

Data Format and
Interface
Structure
attributes list

Temporal Protocol and
Signaling attributes list

f
Fixed length

!(Method for signaling end of packet) // ! = compulsory

g Last Word has Marker plus REM

Size of REM = 2

16

b MTU
4096

x

nwidth

Port_type e.g. stream

Data Format and
Interface
Structure
attributes list

Temporal Protocol and
Signaling attributes list

s
Fixed length

!(Method for signaling end of packet) // ! = compulsory

t Last Word has Marker plus REM

Size of REM = 4

32

o

MTU
* // don’t care

64

Figure 3.17 shows a more in-depth example using example EDL attributes showing

compatible interfaces. This example contains a comparison of two implementations

of LocalLink interfaces, which are represented as stream ports. The interface

metadata for this example is arranged in columns. Green highlighting indicates

compatible behavioral attributes. Yellow highlighting indicates attributes that are

similar and can be bridged in order to be compatible. The Xilinx XAPP536

ll_temamac_v1_00_c, or ll_temac, is connected to an XAPP691 LocalLink FIFO, or

ll_fifo. There are three differences in the EDL attributes that can be bridged in order

to make the interfaces compatible. First, they signal the rem, which indicates how

many bytes are valid in the last word of the packet, differently. The ll_temac signals

rem using a four bit encoding (byte enable encoding) and the ll_fifo uses a two bit

encoding (binary encoding). Second, the ll_temac has a minimum size to the frames

that it transmits and the ll_fifo has a maximum size to the frames that it accepts. The

bridging logic needs to check that the frames from the ll_temac do not exceed the

maximum size frames to the ll_fifo. Third, the ll_temac uses a data offset, and the

ll_fifo does not, however, this information can be passed through.

Figure 3.18 shows a comparison of two implementations of LocalLink ports,

arranged in columns, having incompatible behavioral attributes. Again, the yellow

highlighting indicates attributes with similar behavior that can be bridged. The red

highlighting indicates attributes that are incompatible and cannot be bridged. The

LocalLink GMAC, or ll_gmac, is connected to a LocalLink IPOptionizer, or

ipoptionizer. There are four sets of attributes that are similar and can be bridged, and

there are two sets that are incompatible and cannot be bridged. The first

incompatible attribute is that the ll_gmac does not support chunks, and the

IPOptionizer requires segmentation support. The second related incompatible

attribute is that the IPOptionizer requires the use of channel identifiers, and the

ll_gmac does not have this support, and so the compiler cannot automatically bridge

these two interfaces. Therefore, the two versions of these modules are incompatible

and cannot be automatically used together, without the user manually creating a

custom wrapper to reconcile the differences and make them compatible.

65

Figure 3.17: Example 1: compatible interfaces

XAPP536 ll_temac_v1_00_c XAPP691 FIFO

Primary Secondary

Format Format

F1 (Word) F1 (Word)

1. 32 bits 1. 8, 16, 32, 64, 128 bits

 2. a) Big Endian b) 31:0 2. a) N/A b) N/A

 c) rem (4 bits encoded value,
 active high)

 c) rem (2 bits encoded value,
 active high)

F2 (Chunk) F2 (Chunk)

 0. Y 0. Doesn't care

1. min(9, C_RX_FIFO_KBYTE)
in k bytes

 2. a) marker(signal, ll_sop_n)

 b) marker(signal, ll_eop_n)

F3 (Packet) F3 (Packet)

1. min(9, C_RX_FIFO_KBYTE)
in k bytes

1. max(BRAM_MACRO_NUM *
 F1.width)

 2. a) marker (signal, ll_sof_n) 2. a) marker (signal, sof_in_n)

 b) marker (signal, ll_eof_n) b) maker (signal, eof_in_n)

Behavior Behavior

 F1 Data Enable = Y, (based on rem,
 only valid with ll_eop_n)

 F1 Data Enable = Y, (based on rem,
 only valid with eof_in_n)

 F2 Data Enable = Y, ll_src_rdy_n F2 Data Enable = Y, src_rdy_in_n

 F2 Flow_Control = Y, ll_dst_rdy_n F2 Flow_Control = Y, dst_rdy_in_n

 F3 Data Enable = Y, ll_src_rdy_n F3 Data Enable = Y, src_rdy_in_n

 F3 Flow_Control = Y, ll_dst_rdy_n F3 Flow_Control = Y, dst_rdy_in_n

 Abort(N) Abort(N)

 Uses Channels(N) Uses Channels(N)

 Uses Parity(N) Uses Parity(N)

 Uses Data Offset(Y for F2,
 protocol specific) Uses Data Offset(N)

66

Figure 3.18: Example 2: incompatible interfaces

LocalLink GMAC IPOptionizer

Primary Secondary

Format Format

F1 (Word) F1 (Word)

1. 8 bits 1. 128 bits

 2. a) Big Endian b) 7:0 2. a) Big Endian b) 127:0

 c) rem (1 bit encoded value,
 active high) c) length

F2 (Chunk) F2 (Chunk)

 0. N 0. Y, requires

 1. 8 words

 2. a) ready plus a status/ctrl word

 b) ready plus a status/ctrl word

F3 (Packet) F3 (Packet)

 1. 1500 bytes 1. Not specified

 2. a) marker (signal, ll_sof_n) 2. a) ready plus a status/ctrl word

 b) marker (signal, ll_eof_n) b) ready plus a status/ctrl word

Behavior Behavior

 F1 Data Enable = Y, (based on rem,
 only valid with ll_eof_n) F1 Data Enable = N

 F2 Data Enable = Y, ll_src_rdy_n F2 Data Enable = N

 F2 Flow_Control = Y, ll_dst_rdy_n
 F2 Flow_Control = Y,
 in0_backpressure or in0_status_backpressure

 F3 Data Enable = Y, ll_src_rdy_n F3 Data Enable = N

 F3 Flow_Control = Y, ll_dst_rdy_n
 F3 Flow_Control = Y,
 in0_backpressure or in0_status_backpressure

 Abort(Y, ll_src_dsc_n),
 Response(discard, sender retransmit)

 Abort(Y, encoded in status/ctl word),
 Response(discard, sender retransmit)

 Uses Channels(N) Uses Channels(Y requires, 6)

 Uses Parity(N) Uses Parity(N)

 Uses Data Offset(N) Uses Data Offset(N)

67

This work on type checking was patented as part of US Patent #7,852,117:

“Hierarchical Interface for IC system” [106].

3.5 ShapeUp Design Tools

In ShapeUp, systems are specified using a (possibly hierarchical) Click description

of the component modules and their interconnections. Then, module interface

metadata based on the defined behavioral abstractions can be used by a variety of

design tools that aid in system implementation and testing. Three initial ShapeUp

tools are described here: a design entry tool and visualizer, a linker, and a validator.

The tool flow is shown in Figure 3.19. Each of the three ShapeUp tools makes use

of the type checker, which is abbreviated as “TC” in the figure.

Section 3.6 will describe a novel Click entry environment and visualizer, another key

topic in this chapter, which uses the type checking in order to suggest possible

connections. The visualizer shows connection possibilities and which ports have

already been connected. The interface for this design environment was patented as

US Patent #8,121,826: “Graphical interface for system design” [107].

Section 3.7 will describe two additional tools for producing the output structural

description and for performing system-level validation. The validator runs a system

level simulation, using a simple protocol to pass data between multiple module level

simulators. The linker is used to create a top level RTL structural description of the

design.

The resulting system RTL design is fed as input to the standard FPGA tool flow,

discussed in Section 2.1.3, consisting of synthesis (e.g. XST), mapping the

synthesized netlist onto FPGA primitives (e.g. MAP), and placement and routing

(e.g. PAR). Lastly, the Xilinx ISE tools produce the final FPGA configuration

bitstream, which is used to program the FPGA device.

68

These prototype tools have been used together practically on some real FPGA-based

product designs in the telecommunications industry, forming the system design level

of an experimental packet processing design tool suite developed by Xilinx Research

Labs [86]. The point tools were embedded in an Eclipse-based Integrated

Development Environment (IDE).

Figure 3.19: ShapeUp tool flow diagram

System	
 entry	
 and	
 visualization	
 	
 	
 	
 	
 	
 …..

Click	
 description

System	
 RTL	
 	

ISE	
 (XST,	
 Map,	
 PAR,	
 Bitgen)

Element	
 library

Linker	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 …..

Full	
 bitstream	
 	

Validation:	

multi-­‐level	

Simulation	

	

	

TC

TC

TC

69

3.6 Design Entry Environment and Visualizer

The entry environment and visualizer, called Pop, is an interactive tool that provides

visualization of emergent systems as the user enters their Click description. It is

somewhat the reverse of a traditional schematic editor, which would have graphical

input and textual output. Rather, it has textual Click input and graphical

visualization output. This is because a Click description is often most conveniently

entered in a textual form. However, since Click is a declarative language, i.e.

declarations and connections can be written in any order, an ongoing visualization

aids the user in ensuring that all connections are entered and that only valid

connections are made. Because of this, the visualizer is connection-centric rather

than module-centric in terms of its operation.

Figure 3.20 shows a screenshot from the visualizer. In the lower part of the screen is

the textual Click description being entered by the user. The upper part of the screen

shows the visualization of the system in progress. Individual element ports, and

connections between them, are shown separately. That is, the ports of a particular

element may be distributed over the visualization, rather than clumped together in a

display of that element. This is the key connection-centric feature of the visualizer.

Ports are represented by shapes that correspond to the different interface types (plain,

notify, stream, access, and compute). Each element is assigned a different color, and

this is used for all the port shapes for that element, which allows the user to see each

element in its distributed form. Connections in the Click description are shown as

arrows between the port shapes. Real-time type checking is carried out during Click

entry, to check that only valid connections are made between elements. Beneath this

display, currently unconnected ports for declared elements are shown, as an aide

memoire to the user.

The visualizer deploys various heuristics to determine the placement of port shapes

and arrows on the screen, and these were evolved after experimentation with test

users. For example, for communication-style systems dominated by stream type

70

ports, left-to-right placement of connections on a single line is used to highlight

streaming dataflow. This can be seen in the first line of the display in Figure 3.20.

The concise syntax of Click makes it easy to read, however, the concise nature of

port identifiers can potentially lead to connecting mismatched ports. The user must

be familiar enough with components to specify the names of ports and match their

types against that of other ports when forming connections. This is unsurprisingly

more difficult than working with the original Click, which had integer-only

identifiers for ports and only packet interfaces. Exposing the additional port types

that were once hidden, due to cross-element method calls not shown in the Click

graph, can lead to the user having to specify more connections in their design

overall, but at the same time they also need to keep track of what is unconnected.

The first problem is that the Click programmer writes statements to form

connections, however, the ports that are not connected do not appear in the

description—it is up to the programmer to keep track of them. The second problem

is that Click’s independence of connection statements allows connections to be

arbitrarily arranged within the description, and their arrangement impacts the

readability of the code. The third problem, which is related to the first, is that in both

complex designs and even simple ones, unless the programmer is familiar with each

of the elements, to the point that they can keep track of all the ports, it is possible to

forget to specify one (or more) connections without noticing this from their Click

description.

Pop automatically solves each of these problems by providing real time assistance, as

the user types in their description. The compiler reads the metadata for ports and

assists the user when forming connections. Pop identifies possibilities for forming

connections by suggesting names according to the interface type. Pop also checks

the interface types across connections to make sure that detailed attributes of the

interfaces are correctly matched. Pop graphically shows what has been connected

71

Figure 3.20: Real-time visualization of Click design entry

and what remains to be connected, and it shows this information arranged by port

type. This is intended to help the user gauge the level of completeness of their

description. Pop also performs auto-completion of port-name and element-name

statements.

The most novel feature of Pop is the kind of visualization that it provides. The

visualization format was developed from examining traditional block diagrams for

some example systems and also the textual Click descriptions for the same systems.

In a block diagram view like the one shown in the top half of Figure 3.21, boxes are

color-coded and represent elements. Ports are drawn on the sides of the boxes.

Depending on convention, the input ports are indicated by symbols (or labels) on the

left and the outputs are similarly shown on the right. The boxes importantly provide

association between the ports from the same element as well as giving an abstract

representation of some embedded functionality.

12 Pop: A ClickPlus Entry Assistant

visualization

ClickPlus entry

status

72

Figure 3.21: Top half shows block diagram view of system; bottom half shows directed graph view of

the same system with boxes removed and second connection formed to the yellow element

Two properties of Click that are relevant to mention here are: (a) connections are just

between ports on elements and (b) connection statements are independent. Because

of the independence of statements in Click, the ordering of connections is not

necessarily based on the adjacency of ports. Some elements may even be artificial in

terms of their dataflow, depending on how they are used within a system.

For example, the yellow element in the top half of Figure 3.21 is shown connected

between the purple and pink elements. Its remaining ports would be connected in the

area circled in red, between the green and blue elements. However, if these two new

connections were to be drawn, a very cluttered layout would result. In fact, because

the yellow element features at both the beginning and end of the main pipeline, there

is no ideal place to position it. The key insight embodied into Pop was that the ports

and connections matter more to the user than the actual elements. In particular, the

user needs to be able to easily determine what ports remain to be connected in the

design. Therefore, the visualization style shown in the lower half of Figure 3.21 was

adopted instead. Here, ports have independent existences from their

elements. However, all ports of the same element have the same color to allow easy

identification. Where it is convenient to collocate the all the ports of an element, it is

done, as can be seen for most of the elements in the figure. But, the yellow element

is now seen in a distributed visualization: two ports are to the left, and two ports are

to the right. The overall effect is to focus on the system dataflow.

73

Experiments were conducted to see what effect color selection had to the readability

of the diagrams, when color is used as a primary means to associate ports by their

parent element. Figure 3.22(a,b) show some of the pseudo-random test patterns that

were generated. Figure 3.22(a) shows a large test pattern to check readability of

randomly generated colors for port symbols. Figure 3.22(b) shows a smaller test

pattern to see if reducing number of ports improved readability. The test patterns are

considered pseudo-random because a hash-based function was used to ensure that

colors were somewhat dissimilar, in that they did not produce the same hash value as

any of the other randomly selected colors, when comparing respective luminance and

chrominance values. To help make elements easier to identify, a second color is

assigned to the symbol outline and also the thickness of the outline is varied.

In Figure 3.22(a,b,d), triangles represent output ports and circles represent input

ports, which was done only for early stages of testing color choice. Later, specific

symbol shapes were selected to represent the port types instead of direction, as seen

in Figure 3.22(c). This image shows the symbols that were assigned to each of the

five interface types in our experiments. To keep things simple, the same shape is

used for both inputs and outputs. The symbol choice like the plus symbol for

compute, for example, helps to make the description somewhat easier to read

through symbol association. However, color alone might not be sufficient to

associate ports that belong to the same element, particularly if the programmer is

colorblind or has difficulty with matching colors. As a result, an option to label the

symbols with the element name and port name makes association easier for the

programmer.

74

Figure 3.22: Visualization color experiments and symbol choices: Counter-clockwise from upper-left:

(a) large test pattern; (b) small test pattern; (c) chosen port symbols; (d) column layout for ports

access

packet

plain

compute
notify

75

The port symbols are drawn in two columns, at the time the programmer types the

instantiation of an element, as shown in Figure 3.22(d). The ports per element are

arranged with inputs to the left and outputs to the right.

The visualization pane in Figure 3.23 shows both connected and unconnected ports

to help user gauge progress while entering the design. This indicates the overall

completeness of the description. A dotted horizontal line separates the ports that

have been connected in the upper portion from the ports that have not yet been

connected in the lower portion. This way, the programmer can quickly see what

remains by scanning below the line. Checking a schematic diagram for an

unconnected port requires a scan over the diagram, whereas in this visualization

there is a partition to directly show what is not connected. In this view, the relative

number of unconnected ports can be seen right away. A small circle is added to each

symbol to the left or right indicate whether it is an input or output port. The set of

ports for a single element are drawn in columns going left to right, as they are

instantiated.

Each row above the line corresponds to a line of Click that the user typed. At the

time the user forms a connection, port symbols are moved down into new rows if

they are not used in the connection, so that anything unconnected rests below the

horizontal line.

Figure 3.23: Visualization pane shows both connected and unconnected ports to help user gauge

progress

Ports symbols arranged
in real time as user
types in click

Dotted line sort of
vertical cursor

Unconnected ports below

76

Arrows are drawn between port symbols used in the connection and an animation

takes place to rearrange the drawing, so that the order of ports and connections

matches the textual Click description. The Piccolo Zoomable User Interface (ZUI)

construction kit [108], developed by the University of Maryland, was used in the

implementation of the visualization pane to draw and animate the symbols.

The Click entry pane, shown in Figure 3.24, is the text editor area where the user

types in their description. The entry pane also helps to suggest the names of ports,

with a pop-up context menu, as the user is typing their connection. When the user

selects a port from the context menu, the text in the description is automatically

generated and inserted at the text cursor position. Only unconnected ports are

suggested, and when the user is prompted for the input port on the right hand side of

an arrow it will suggest only ports of the appropriate type.

The status pane, shown in Figure 3.25, provides an activity log that displays an

incremental record of how the user has constructed the system model. The activity

log has statements for each action; with the number of unconnected ports remaining

in the design after each action is performed. This is another place to indicate if there

are errors detected in the design with an error or warning message. This is also a

place to print summary messages about the library of elements and the also to

provide any resource estimates for the design.

To summarize this section, the Pop development environment is different from

existing approaches in that the Pop environment interactively draws and checks the

system as the user types in their description. Pop addresses a difficulty introduced

by the extension to Click. The real-time, line-by-line visualization is made possible

because Click is a declarative language. The fact that descriptions can be

conveniently checked on a line-by-line basis helps to reinforce our view that Click is

an appropriate language to use for the stitching task of designing modular

77

Figure 3.24: Click entry pane helpfully prompts as the user types in their description

Figure 3.25: Status pane provides a textual description of the actions performed to the system model

and other status

architectures. The graphical enhancement of textual focus provided by Pop conveys

useful information about progress and the remaining ports. The visualization, overall,

very closely resembles graphical Click syntax, and the port symbols provide

symbolic help to interpret the ShapeUp design.

3.7 Additional ShapeUp Tools

The following two tools were implemented by others, fitting within the overall

ShapeUp framework. Both of these tools incorporated the ShapeUp type checker.

Auto completion fills in port names
Suggests only compatible unconnected ports

78

3.7.1 ShapeUp validator

The validator is the main testing tool for systems built from component modules. It

encompasses multi-level (including mixed-level) simulation and on-FPGA operation.

This allows validation prior to any FPGA implementation steps, after ShapeUp

linking, after synthesis, after place-and-route, or running on a real FPGA.

The ShapeUp validator takes a Click description of the target system, and the data

and metadata for the constituent modules. It then has a variety of options, depending

on the validation level required.

The highest level of validation is prior to any explicit assembly of the system from

its constituent modules. A distributed simulation framework corresponding to the

Click interconnection graph is constructed. Each node in the framework is

responsible for the simulation of one module, and these nodes communicate to

simulate interactions between modules. Standard Unix TCP/IP sockets are used as

the communication mechanism. A master process is responsible for creating the

simulation nodes, and then making TCP/IP connections between them. The use of

TCP/IP means that nodes need not all be running on the same computer, allowing

genuine parallel simulation.

The simulation at each node requires some model for the module. This might be

simple, for example a Perl script, or more accurate, for example a SystemC model or

the actual RTL. The validator uses the module interface metadata and module model

metadata to ensure accurate emulation of the interactions between modules.

Figure 3.26 shows how the validator can generate a framework that allows validation

across different implementation levels, in this case for a system with a streaming

packet input and a streaming packet output. The same packet data source is used for

each level, and the same format of output packet data is produced for each level.

This allows automated comparison of results between the levels to ensure correctness

of implementation steps. There are three levels of RTL simulation using ModelSim,

corresponding to HDL generated by the ShapeUp linker, by the synthesized netlist

79

from this HDL, and by the placed-and-routed layout from the netlist. Finally, there

is ‘hardware in the loop’ operation, where the system is exercised on the target

FPGA with real input and output.

Figure 3.26: Multi-level validation environment for streaming systems

3 .7.2 ShapeUp linker

The linker is the main implementation tool for system assembly from component

modules. The term ‘linker’ is drawn from the analogous software design flow,

envisaging that compilers are used to generate the modules, and then the linker is

used to connect them together into a whole.

The ShapeUp linker takes a Click description of the target system, and the data and

metadata for the constituent modules, and generates the structural RTL design (in

Verilog or VHDL) of the complete description. Standard synthesis and place-and-

route tools can then process the design.

Click-­‐level	

simulation	

Packet	

generator	

Input packet set description

Equivalent?

Packet	

Translator	

Synthesized	

netlist	

Packet	

translator	

Equivalent?

“Golden” output packet set description

Packet	

Translator	

Hardware	
 in	

the	
 loop	

Packet	

Translator	

Equivalent?

Generated	
 HDL	

Placed	
 &	
 routed	

layout	

80

The main action of the linker is to type-check the Click description and then to create

wiring that implements the required connections between the hardware modules.

Type checking is as described in Section 3.4. The linker can also generate wiring for

specific module requirements, such as clocks and resets. Finally, it can ensure that

wiring is consistent with board-level constraints on FPGA input/output pin

placement. All of this is guided by module interface metadata, other module

metadata, and board-level metadata that is supplied to the linker.

The basic benefit of this wiring activity is to relieve the user of the tedious and

sometimes intricate task of gathering all necessary module interface information and

then writing HDL code to connect interface pins together. It also simplifies

maintainability and evolvability, by allowing simple changes to be made at a high

level without the need to rewrite and recheck low-level HDL code.

A significant additional function of the linker is ‘auto-bridging’. When the type

checker indicates that two interfaces approximately match, rather than strictly match,

the linker is able to bridge certain differences by inserting one or more additional

conversion blocks between two modules. This is illustrated in Figure 3.27. Here,

one module has a LocalLink packet interface with a 32-bit data path that is to be

connected to another module with a LocalLink interface with a 128-bit data path.

The linker inserts a block that accumulates four successive 32-bit words and then

forwards them as a single 128-bit word. If the first module is not clocked at four

times the rate of the second module, then the block must also assert LocalLink flow

control as appropriate.

In the current prototype version of the linker, there is a pre-canned repository of

available parameterized conversion blocks and metadata for them. A future

aspiration is to support the automated generation of conversion blocks based on the

exact needs identified by the attribute mismatch(es) between the connected module

interfaces. One approach is to build upon earlier work of Passerone et al. on

automated synthesis of interfaces between incompatible protocols [109].

81

Figure 3.27: Insertion of width converter block between two modules

An aspect of improving the overall modular design experience is to import the

ShapeUp interface abstraction into the tools that are used to generate modules

themselves. This has been done for the experimental G packet processing language

[86], so that its typing of input and output ports matches the ShapeUp typing. The

impact is to produce modules that are ‘ShapeUp ready’, and thence pose fewer

bridging problems for the linker and validator tools to overcome. Chapter 5 will

discuss an integrated example, with programming in G and Click, and founded on

ShapeUp.

3.8 Summary

Chapter 3 presented the basic approach using a modular abstraction called ShapeUp.

A set of interface abstractions and a modular design methodology was described

based on abstractions of module interface behavior, from three programming

paradigms. This research is novel in that there has been significant past work on

abstracting behavior of module functions, but little on the abstraction of the

interconnection of modules. ShapeUp addressed this by abstracting the behavior of

the interfaces and connections between the interfaces. Several tools were developed

that use general data driven mechanisms.

Width	
 =	
 64	

Width	
 =	
 32	

Width	
 =	
 64	

Width	
 =	
 128	

Width	
 converter	
 block	

Module	
 1	
 Module	
 2	

82

The main contributions of the ShapeUp work described in this chapter are the

following:

• Section 3.2 presents a set of abstractions of module interface behavior,

featuring five types of interface that cover both streaming and procedural

programming paradigms for modules.

• Section 3.3 presents interface metadata (and meta-metadata, in fact) to

describe a module’s interfaces in terms of the defined abstractions, enabling

the creation of module repositories.

• Section 3.4 presents the type checker that is used by the other tools to

indicate the compatibility of two ports when forming a connection.

• Section 3.5 provides an overview of the ShapeUp tool flow.

• Section 3.6 presents the Pop Click entry and visualization environment

• Section 3.7 presents additional tools that were enabled by the (extended

semantics) Click descriptions and module metadata and completed the high-

level modular design experience.

Chapter 4 describes a practical addition to the ShapeUp library, modules for

performing timing functions. These modules enable time-triggered behavior

important to many networking systems. Chapter 5 describes the validation of the

‘plug-and-play IP’ productivity gains from use of the ShapeUp methodology and the

prototype tools on a real-life industrial-strength case study involving building real

high performance networking systems.

83

Chapter 4
Flexible and Modular Support for Timing

Functions in High-performance Systems

Field programmable logic is increasingly used to provide the high performance and

flexible acceleration needed for network processing functions at multi-gigabit rates.

Almost all such functions feature the use of clocks and timers in control and/or data

roles, and these are typically implemented in an ad hoc manner. This chapter

introduces a set of three configurable timing modules that are based on abstractions

of the prevalent timing paradigms observed in network protocols. The modules fit

within the experimental ShapeUp methodology for modular FPGA-based system

design, and so can be easily integrated with other modules that are tailored for

specific networking functions. The use and benefits of the new modular approach

are demonstrated in Chapter 5 by an example of a flexible FPGA reference design

that has been made available for real-life use by telecommunication equipment

providers.

A characteristic of numerous computing and networking functions is the use of

clocks and timers. A broad survey was conducted showing that time is used

extensively in computing, for example: to schedule processing to start or to meet

deadlines; to schedule the sharing of resources; for synchronization; to keep track of

events; to model performance, realistic delay, or phenomena; and for security.

Similarly, time is used extensively within networking. Figure 4.1 depicts a collage

representing the diverse areas of the conducted survey.

84

Figure 4.1: Survey of time in networking and computing

In networking, time is used at the physical interface level; hardware clocking is

directly used for signaling functions. Above this level though, less direct timing is

used. For example, many network protocols involve timeout mechanisms, which

specify actions to be taken if a time period has elapsed without some communication

event taking place. This requires an alarm clock style of timer to be implemented.

Other protocols require explicit timestamps to be placed in packets to guarantee

properties such as freshness or uniqueness. This requires a real time clock to be

implemented.

In these early days of FPGA acceleration of sophisticated networking functions, the

various required clocks and timers are usually implemented on an ad hoc basis,

closely integrated with the rest of the system design. This is not desirable in terms of

providing maintainable and extensible systems that can evolve with changing

requirements. Aside from the drawbacks of monolithic designs, this is counter to

any attempts at higher-level design specification techniques.

85

The aim of this work was to demonstrate that it is not necessary to incur the

overhead of re-implementing ad hoc timing capabilities each time some network

packet processing function is being accelerated using FPGA technology.

Although this research has focused initially on the particular needs of the important

domain of network processing, it has potential application much more widely for

other types of real time embedded systems implemented on FPGAs. In essence, it

can be seen as a higher level of timing abstraction above the standard digital clock

manager blocks that feature in FPGA architectures.

4.1 Timing Paradigms in Networking

At first sight, there is a plethora of ways in which clocks and timers are used in

networking. However, if one adopts a time-centric viewpoint of what is happening,

as opposed to a protocol-centric viewpoint, the situation becomes dramatically

simplified. Indeed, one fairly obvious observation, noted in the past (e.g., in [110]),

explains almost the whole picture. This is that communication between two or more

parties can be seen as an activity over time with a start point and a finish point.

There may be structuring of activities, into sub-activities, sub-sub-activities, etc.

conducted over time. Ultimately, an atomic leaf-node activity (in the digital world)

could be the communication of a single bit of data between two parties.

4.1.1 Timers and activities

Considering the start points of activities, two main use cases can be identified:

• Activities scheduled at some specific time.

• Missing events recognized after some time period.

The first case includes activities that are deliberately delayed for some time or those

that are periodic in nature.

86

A few standard examples will make the above general description more tangible.

The well-known CSMA/CD approach used in Ethernet [111] involves checking for

the transmission medium to become idle, and then waiting for a random amount of

time before transmitting. In this case, a start point is scheduled for the transmission

ready time plus this random time period.

Many control or management protocols, for example the RIP routing protocol [112],

involve sending messages at fixed time intervals to provide status information to

another entity; in this case, a start point is scheduled for the previous sending time

plus this fixed time interval.

The widely used technique of polling deals with expected, but missing, events.

When an entity has seen no communication from another entity for some period of

time, it starts a polling communication to check on the status of this entity; in this

case, the start point is at some fixed time after the last seen communication. The

Internet Transmission Control Protocol (TCP) [113] keepalive is an example of

polling behavior.

For the finish points of activities, the two main use cases are:

• Lack of activity recognized after some time period.

• Activities terminating at some specific time.

Many communication protocols, notably TCP for example, embody the notion of

timeouts used by one entity to recognize when another entity has not responded

within some period of time chosen to be longer than the maximum possible response

time. In each of these cases, a finish time is scheduled for the start time plus the

timeout period. Note that this time-related finish point is nullified whenever an

activity finishes naturally through a communication event.

Many security protocols, for example the SIP session protocol [114], embody the

notion of an expiry time which limits the duration of activities in order to bound the

87

time for which an authorization lasts; in this case, a finish point is scheduled

corresponding to the expiry time.

When considering the implementation of some specific protocol, it is just necessary

to observe where these use cases arise in order to situate timing functions correctly.

Then the goal of this work is to provide generic configurable FPGA-based timing

modules that can be correspondingly situated as part of modular protocol

implementations. The benefit of such hardware modules in general is to provide

accuracy and responsiveness that may not be possible with software timing

implementations. In some applications, for example the case study presented in

Chapter 5, just acceleration of the timing functions is motivation for an FPGA-based

implementation.

4.1.2 Clocks and timestamps

The only other significant timing paradigm is the use of clocks is to provide

timestamp values, which are included as data within communication activities.

These serve a number of purposes in network protocols, including:

• Indicating the time when a message was sent.

• Indicating the time when a message expires.

• Differentiating cases when exactly the same message has been sent more than

once.

• Measuring communication times

This use case points to the need for a generic FPGA-based timing module to supply

absolute timestamps. These may be absolute times-of-day or relative internal clock

values.

A prime example of timestamp use is the Real Time Protocol (RTP) [115], which is

concerned with sending real time data, such as audio or video, over the standard

Internet best-effort service. RTP packets carry monotonically increasing timestamps

88

with application-specific time granularity, so that the receiver can deal with packet

delay variation. The associated RTCP control protocol uses packets with timestamps

in seconds since 1 January 1900.

4.1.3 Time protocols

A special category of protocols is concerned with communicating information about

time itself. The principal examples are the Network Time Protocol (NTP) [116] and

the IEEE 1588 Precision Time Protocol (PTP) [117]. As its name suggests, the

latter is a higher accuracy (potentially sub-microsecond) protocol than the former.

These protocols are further examples of those whose packets carry timestamps.

Importantly though, these protocols can form part of the implementation mechanism

for an FPGA-based module that provides absolute real timestamps.

4.1.4 Time Summary

This walk through the world of timing paradigms in networking (based on an

underlying survey and review of networking protocols) motivated the provision of

just three necessary and sufficient types of FPGA-based abstract timing modules: for

activity start timing; for activity finish timing; and for providing timestamps.

4.2 Configurable Timing Modules

4.2.1 Starting and finishing activities

A characteristic of many protocols is that there can be many simultaneous activities

at one time, corresponding to different contexts within the protocol. For example, in

the case of the TCP protocol, there is a collection of active connections between TCP

ports on the node being implemented and TCP ports elsewhere on the Internet, and

there are separate timers for each. Depending on the setting, there might be tens,

hundreds, or even thousands of concurrent activities. For this reason, the timing

89

modules for starting and finishing activities support multiple contexts, as it is not

efficient to use separate modules for each activity.

Figure 4.2 shows the interfaces and configurable features of the activity start timing

module that was designed. There is a request input interface and an event signaling

output interface. The basic timer request includes a start time offset value, meaning

that there should be an event signal output at the current time plus the offset value.

A repetitive timer request also contains a non-zero period value, meaning that there

should be periodic event signal outputs at times separated by the period value. There

is also a cancel type of request, used to cancel a currently scheduled timer request.

Each request and event signal includes an identifier, which is used to differentiate

between activities. An event signal has the identifier from the corresponding timer

request; a cancel request has the identifier of the timer request to be cancelled. There

are three configuration parameters for the module: the maximum number of

concurrent activities (a); the maximum time horizon (h); and the minimum time

quantum (q), which is the unit for the time values in requests and for the time

horizon.

Figure 4.3 shows the interfaces and configurable features of the activity finish timing

module that was designed. These are broadly similar to those of the activity start

timing module. The timer request includes a finish time offset value, meaning that

there should be an event signal output at the current time plus the offset value. There

is also a done type of request, used to indicate a (non timer caused) activity finish,

which has the effect of aborting a currently scheduled timer request. The three

configuration parameters are the same as those of the activity start timing module.

The structural similarity between the activity start and finish modules makes a

common implementation possible. In fact, the start module has a strict superset of the

capabilities of the finish module: the repetitive timer request is its (optional) extra

feature; and its cancel request is equivalent to the finish module’s done request.

90

Figure 4.4 shows a logical implementation of the activity start module as a set of

alarms, which can then have a physical calendar wheel implementation. Figure 4.5

shows the internal architecture of the timing module calendar wheel implementation.

A stored table contains the future time commitments for the timer requests in

progress: a completion time, and optionally a repetition period, for each activity. It

has a rows, each with width r⌈log2h⌉, where r=2 if repetitive requests are allowed and

r=1 otherwise. On Xilinx FPGAs, this can be stored in Block RAM (BRAM)

memory or in distributed LUT RAM memory. For a Virtex-5 FPGA, a single

BRAM can store 36K bits and a single LUT can store 64 bits, with the table

requiring a total ar⌈log2h⌉ bits. The timer request arbiter writes to the table to

schedule events based on incoming requests.

Figure 4.2: Activity start module

Figure 4.3: Activity finish module

91

Figure 4.4: Logical implementation of activity start module

Figure 4.5: Calendar wheel implementation of activity start and finish timing modules

A sweeper process scans through the table on a regular basis, checking for any timer

requests that have completed, and generating event-signaling outputs in such cases.

The sweeper spends a (deterministic) five cycles per table row on the check and any

follow-up. Therefore, if the maximum module hardware clock rate is c MHz, the

maximum scan frequency is c/5a million sweeps per second. This, in turn, imposes a

lower bound of 5a/c µs on the minimum time quantum q. So, for example, a single

Activity	
 Start	

Block

M
od
ul
e

M
od
ul
e

M
od
ul
e

Slow	
 part	
 in	
 software

Fast	
 part	
 in	
 hardware

Calendar	

wheel

Signal	
 event
•activity	
 id
•event	
 type

Requests
•activity	
 id
•start	
 time

One	
 alarm	
 clock	

per	
 activity

…

…

…

Logical	
 Implementation Example	
 implementation

92

module with a clock rate of just 125 MHz could support 25,000 activities using a 1

ms time granularity, which is more than ample for most networking protocol needs.

Note that a typical software implementation would use a more subtle data structure,

e.g. a sorted event list, but the method used here is well suited for hardware

implementation because it minimizes memory use.

Table 4.1 shows Xilinx Virtex-5 LXT implementation data for nine representative

configurations with repetitive requests allowed (r=2): time horizon width ⌈log2h⌉ =

16, 24, and 32 bits, and activity maximum a = 128, 1024, and 8192. Block RAM

was used for the table storage and for the signal output FIFO. It can be seen that the

LUT, FF, and slice counts increase with the time horizon width, because of the need

to store time values and to compare them to check for completion, and (less so) with

the number of activities, because of the need to use counters of ⌈log2a⌉ width. The

BRAM counts increase in line with the 2a⌈log2h⌉ formula for table size; the number

of BRAMs used in fact has the most impact on clock frequency because of fan-in

considerations.

Table 4.1: Xilinx Virtex-5 data for activity timing modules

Time
width
(bits)

Max. activities Lookup tables
(LUTs) Flip- flops (FFs) Virtex-5

slices

BRAM

(36Kb)

count

Clock freq.

(MHz)

16

128 322 329 185 2 299

1024 330 335 192 2 280

8192 375 364 224 9 236

24

128 412 435 247 3 281

1024 418 439 244 3 278

8192 466 438 271 13 201

32

128 502 504 259 3 263

1024 507 507 294 3 266

8192 571 473 299 17 195

93

4.2.2 Providing timestamps

Figure 4.6 shows the interface and configurable features of the timestamp-providing

module that was designed. Compared to the other modules, it has a simple interface.

This supports a simple register read request that returns a current timestamp. An

alternative would have been for the module to output a timestamp continuously.

Note that this module’s interface could support the Worker Time Interface (WTI)

profile of the OpenCPI open component portability infrastructure initiative [43].

The key configuration parameter for this module is whether it supplies its own

localized timestamp sequence, initialized at reset, or whether it supplies a real time-

of-day timestamp. The latter potentially involves a significantly more complex

implementation. For each case, derived parameters are then the maximum time

horizon, which determines the size of the timestamp, and the minimum time

quantum, which determines the accuracy of the timestamp. A final configuration

parameter is the number of read request interfaces that are supported. This multi-

port memory option is provided to relieve the module user of having to multiplex

read requests from several different client modules.

Figure 4.6: Timestamp providing module

In the case where the module supplies a localized timestamp sequence, the FPGA

implementation is trivial, since it just requires a simple counter of the appropriate

size that is incremented at the appropriate frequency, plus one or more standard

register read interfaces. With a module clock rate of 200 MHz, the lower bound on

the minimum time quantum is 5 ns, much smaller than needed in practice.

94

In the case where the module supplies a real time-of-day timestamp, there are

various different options. The simplest approach is to use a simple counter as just

described, initialized to a current time-of-day value. For example, it can be a 64-bit

counter of seconds since 1 January 1970 (as used in modern Unix), with an initial

value supplied as part of system configuration via a control register interface. Where

there is no in-system way of supplying the current time, a more elaborate approach

would be to embody a complete IEEE 1588 client within the module, for example

the IPClock IPC50000 networked slave clock block [118].

4.2.3 Activity diagrams

Activity diagrams are a novel graphical way to indicate which of the time modules

are needed for a particular activity and the actions within the activity. An example

activity diagram, illustrating the graphical notation, is shown in Figure 4.7. The gray

box represents the activity and inside it is a listing of the actions performed during

the activity. The list of actions is ordered according to their sequence. Time is

depicted as flowing left-to-right and so the activities and actions are displayed in

order left-to-right.

Labels above the gray box are used to indicate there is a requirement for a timing

module and that the action directly below it is dependent on using time. In the

example shown, action 1 requires the activity start module (START) and action n

requires the activity finish module (FINISH).

Figure 4.7: Activity diagram notation

An asterisk (e.g. START*) is used to denote that the activity repeats, and that start

module will be used to periodically signal the start of this activity. An example is

action n action 1 ...

 START FINISH

95

shown in Figure 4.8, which periodically transmits a packet (1DM frame), containing

a timestamp (TxTimestampf). The activity start module notifies the activity to begin

forming the 1DM frame. Next, a timestamp is obtained from the timestamp module

(STAMP). The TxTimestampf is a field of the 1DM frame. Finally, the 1DM frame

is transmitted, and the activity is complete.

Figure 4.8: Activity diagram with an asterisk

An activity does not necessarily need to use timing modules for beginning or ending

its actions. For example, the activity in Figure 4.8 is short, and it ends naturally after

transmitting the packet. As mentioned, the periodic nature of the activity means that

the start module will restart that activity after its period has elapsed. The example

activity shown in Figure 4.9 begins naturally, when a packet (LBM frame) is

received). The activity finish module is used to implement a timer to notify the

activity when the random wait period has expired. The notification from the finish

module triggers the transmission of a packet (LBR frame).

rx(LBM) wait(random) tx(LBR)

FINISH

Figure 4.9: Activity diagram of an activity that begins naturally, without the use of a timing module

Activity diagrams will be used in Chapter 5 to illustrate the timing requirements of

the main functions of the case study.

4.3 ShapeUp Context for Timing Modules

The three configurable timing modules were designed to fit within the ShapeUp

framework, to maximize their usability and reusability within modular networking

formFrame(1DM) getTime(TxTimestampf) tx(1DM)

STAMPSTART*

96

system (or other embedded system) designs. In fact, software implementations of

these modules could also be used in this setting. The specifications of the module

interfaces involve two of the five defined ShapeUp interface types: access, where a

primary module accesses data in a secondary module via read and write requests; and

notify, where a primary module passes messages to a secondary module.

The modules for starting and finishing activities have access type request input

interfaces, the module being the secondary and the interface having address-less and

write-only (writing an activity identifier and one or two time values) attributes.

Figure 4.10 shows the ShapeUp interface for the activity start module and the

activity finish module. They have notify type event signaling output interfaces, the

module being the primary and the messages carrying an activity identifier and an

event type indication. The module for providing timestamps has an access type

request interface, the module being the secondary and the interface having address-

less and read-only (reading a timestamp value) attributes. Figure 4.11 shows the

ShapeUp interface for the timestamp-providing module.

Figure 4.10: ShapeUp activity start and finish timing modules

Figure 4.11: ShapeUp timestamp providing module

to describe their design, in terms of the time
relationships at a high level. Activity is some task to
be performed, which has both a start and a finish.
Activities may be constrained according to actual time
by specifying when the start and finish take place. In
other words, activities have a start or finish that may
occur synchronously or asynchronously.
Activities span an interval or they occur as discrete
events. In our model, if an activity has both the same
start and finish time then it is considered to be a
discrete event. Activities with different start and
finish times describe the busy period of performing a
logical part of a computation. This period associates a
set of resources assigned to carry out the task,
considered to be in use throughout the activity.

Diagrams Model
Activity diagrams are used to simply show which of
the time modules are needed for a particular activity.
The gray box represents the activity and inside it is a
listing of the actions performed during the activity.
Any labels above the box are used to indicate a
dependency on one of the three time modules. An
asterisk (e.g. START*) is used to denote that the start
module will periodically determine and signal the start
of this activity.

action naction 1 ...

STAMPSTART FINISH

6. Prototype Mechanism implementation
Maybe_remove{Since there is no inherent notion of
time in Click+ descriptions, any such notion deriving
from the behavior of specific system modules. As a
basis for a useful Click+ library, we have developed a
set of programmable time modules that provide
mechanisms for starting activities, supplying
timestamps, and also timing out activities that do not
finish by their deadline. In the library, these modules
are respectively named: Start, Stamp, and Finish. }

In our model, activities are associated with time by
specifying their dependencies as one or more of the
following: (a) start, (b) finish, (c) use of timestamps.
Two programmable modules synchronize the activities
and their dependencies with respect to actual time.
A third module supplies the current time as a
reference.

Start Block

Activity
Start
Block

–
– start time

activity id

signal event

cancel request

– activity id
– event type

basic request

repetitive request

– activity id
– start time
– period

– activity id

Start

The Activity Start Block, shown in Figure 1(a), is used
to:
• Signal to an application module to begin an activity
at a specified time.
• The start module takes as input a request containing
the activity ID and the start time. Requests for
periodically reoccurring activity may also include the
period.
• The request can be canceled, if necessary, before the
start time.

Finish Block

Activity
Finish
Block

–
– finish time

activity id

basic request

– activity id

done

signal event

– activity id
– event type

Stop

The Activity Finish Block is shown in Figure 1(b).
The finish module signals if a particular activity
should eventually timeout. It takes in a request
containing an activity ID and finish time. In the case
that the activity completes itself before the finish time,
this is indicated to the finish block by signaling done.
The timestamp module, shown in Figure 1(c) serves as
a time reference and has an interface for providing the
current system time.

The three programmable time modules are used to
conveniently describe the time dependencies at a high
level, but when compiled they map into a more
detailed implementation. For example, the Activity
Start Block can be logically implemented as a set of
individual alarm clocks. An example optimized
hardware implementation of this might map the
individual alarms on to a calendar wheel
implementation.

Time Reference
Reference
 Timestamp

(Time Reference)
Block

current time

TimeRef

Stop%

Timestamp)

97

4.4 Summary

This work is a contribution to encouraging a higher-level approach to designing

FPGA-based networking systems. Timing is a feature of almost all communication

protocols but, as a review of networking showed, there are just a small number of

basic timing paradigms in use. This motivated the design of the collection of

configurable networking timing modules introduced in this chapter. These

components might have either software or hardware implementations, the latter

being necessary for an increasing number of applications as networking speeds grow

from gigabit rates towards terabit rates. Resource-efficient FPGA implementations

of the modules have been embedded within the new ShapeUp modular design

methodology. The fact that Click is used as a description language in ShapeUp

assists accessibility for networking researchers who are already familiar with Click

for modular software implementations. Although motivated by the needs of

networking, the new configurable timing modules have potential applications in

many types of real time embedded systems where there are events and activities that

are influenced by the passage of time. Thus, they represent one of a core set of

generic module libraries that contribute to the overall ShapeUp methodology.

To enable progress towards more flexible and modular design of networking

systems, the main contributions of the work described in this chapter are threefold:

• A wide-ranging review of the prevalent timing paradigms observed in

network protocols, which exposed and abstracted three basic timing functions

requirements. This is summarized in Section 4.1.

• The design and implementation of a set of three highly configurable timing

modules that provide a flexible solution for the identified basic requirements.

These are described in Section 4.2. Activity diagrams were created to show

time requirements and the use of the three timing modules as they relate to

individual activities. These are described in Section 4.2.3.

98

• The embedding of these modules within the experimental ShapeUp

methodology for modular system design, to allow seamless integration with

other modules. This is described in Section 4.3.

The next chapter describes the validation of the timing modules (and ShapeUp)

through use in real-life industrial-strength case studies of network processing

acceleration.

99

Chapter 5
Case study 1: A Scalable Modular System

Design for Ethernet OAM

In this chapter, the ShapeUp methodology and tools are validated on a Xilinx

customer design project. This case study concerns a modular reference design that

has been shared with a number of FPGA users in the telecommunications industry.

A key benefit of ShapeUp was the capability to have a set of modules, and then

easily assemble these in different configurations corresponding to specific system

requirements. The application is hardware acceleration of Ethernet Operations,

Administration and Maintenance (OAM) functions, an area of rapidly increasing

importance in modern carrier Ethernet. It was selected because of both its

importance and also its numerous and subtle uses of time.

Section 5.1 provides an overview of Ethernet OAM, including a description of the

network entities and the protocol functions. Section 5.2 provides an analysis of the

timing requirements in Ethernet OAM functions. Section 5.3 describes the overall

system architecture. Section 5.4 gives relevant background on the G language (used

for implementing this case study), and describes the library of G elements. Section

5.5 discusses the integration of the timing modules within the example designs.

Section 5.6 provides a Click description of one major part of the system: the

connectivity fault management (CFM). Section 5.7 describes how the ShapeUp

framework and tools and methodology enabled this CFM design. Section 5.8

summarizes the contributions of this chapter.

100

5.1 Ethernet OAM in a nutshell

Ethernet OAM is specified in the ITU-T Y.1731 [119] and IEEE 802.1ag [120]

standards. These standards address the scaling of service and maintenance across

different network domains. While Ethernet service networks scale to increasing

number of services and customers, it remains important for service providers to

guarantee their services with monitoring and maintenance. Ethernet OAM provides

a set of management services for administering Ethernet services across multiple

network domains. This helps to provide an organized environment for detecting and

reporting errors that occur across service levels. Example service levels are shown

in Figure 5.1. A maintenance entity (ME) is simply a network entity that requires

management. Functions are performed between ME groups (MEGs) that are peers

(i.e. they have the same service level), represented by colored rectangles and colored

circles in Figure 5.1. A MEG end point is abbreviated as MEP (represented by a

colored square), and a MEG intermediate point is abbreviated as MIP (represented

by a colored circle).

Figure 5.1: Ethernet OAM service levels, taken from [119]

This section will describe the functions and protocols that are described in ITU-T

recommendation Y.1731. There are two basic management aspects to Ethernet

101

OAM, consisting of: (a) fault management and (b) performance monitoring. The

fault management functions generally include: (a1) checking for lost continuity and

other defect conditions, (a2) configuring diagnostic testing modes, and (a3) signaling

alarms. The performance monitoring functions generally include: (b1) measuring

frame loss, (b2) measuring delay, and (b3) measuring throughput.

Fault Management consists of the functions for detecting various kinds of defect

conditions as well as functions for setting up modes in order to perform diagnostic

testing:

Continuity Check (ETH-CC) Used to check connection continuity by
periodically transmitting test frames and also
used to measure frame loss.

Loopback (ETH-LB) Used to verify bidirectional connection, with
ping-like request/reply function.

Link Trace (ETH-LT) Used to trace the path to a peer and to isolate
faults.

Alarm Indication Signal (ETH-AIS) Used to signal connection failures to next level
service.

Remote Defect Indication (ETH-RDI) Used to signal defect conditions from a remote
peer in the upstream direction.

Locked Signal (ETH-LCK) Used to suppress alarms and for differentiating
an administrative mode used for performing
diagnostic testing.

Test Signal (ETH-Test) Used to send a test message for testing
throughput, to measure bit errors, or to detect out
of sequence delivery.

Automatic Protection Switching
(ETH-APS)

Used to control protection switching operations
to enhance reliability.

Maintenance Communication Channel
(ETH-MCC)

Used as a maintenance channel to request
maintenance functions from a remote peer.

102

Experimental OAM (ETH-EXP) Used to allow administrative functionality on a
temporary basis.

Vender Specific OAM (ETH-VSP) Used to allow vender specific Ethernet OAM
extensions.

Performance monitoring consists of the following basic performance measurement

functions:

Frame Loss Ratio (ETH-LM) Report of frames not delivered vs. frames delivered

Frame Delay (ETH-DM) Both unidirectional (with IEEE 1588) and
bidirectional/round-trip measurement functions for
computing frame delay.

Modern carrier class networks require systems supporting high aggregated

throughput, e.g. 25 Gb/sec. Parts of the OAM functions require hardware

acceleration due to these scaling line rates, including maintaining the ability to count

frames and also because many of these functions require highly accurate timestamps.

For example, ETH-CC is a key function that requires hardware acceleration because

the measurement rate has increased from every few seconds to more recently a

polling interval of every 3.3 ms. Furthermore, this polling may be required for up to

one thousand simultaneous contexts. Figure 5.2 shows an illustration of the ETH-

CC function, with a MEP transmitting continuity check (CC) frames to a peer MEP.

In this example, MEPs are represented using colored triangles. The ETH-CC

function is depicted, and the red arrow shows a flow of CC frames that are

transmitted from the blue MEP on the left to the blue MEP on the right.

Although the examples in Figure 5.1 and Figure 5.2 show the same simple network

topology, containing a few MEG peers, real deployments have more complex

topologies. For example, the topology might consist of multipoint-to-multipoint

networks, as shown in Figure 5.3. In this example, the ETH-CC function is shown,

and the red arrow shows three different flows of CC frames that are transmitted from

103

the blue MEP on the top left to the other peer MEPs. The OAM systems described

in this chapter are designed to support up to one thousand different flows.

Figure 5.2: Continuity check (CC) function tests the connection status between peer MEPs, shown as

triangles, taken from [121]

Figure 5.3: Continuity Check in a multipoint-to-multipoint network, taken from [121]

ITU-T Workshop “NGN and its Transport Networks“
Kobe, 20-21 April 2006 10

ITU-T

CC (Continuity Check) - 1

Customer
Equipment

Customer
Equipment

Operator A
Bridges

Operator B
Bridges

ETH

ETH or
SRV

1 2 3 4 5 6 7 8 9

Customer
Equipment

Customer
Equipment

Operator A
Bridges

Operator B
Bridges

ETH

ETH or
SRV

1 2 3 4 5 6 7 8 9

• MEP transmits CC frames periodically.

• If a MEP does not receive any CC frames for 3.5 times of the CC frame
transmission interval, it declares an alarm (loss of connectivity)

MEP MIP

CC frames

ITU-T Workshop “NGN and its Transport Networks“
Kobe, 20-21 April 2006 11

ITU-T

CC (Continuity Check) - 2

Each MEP sends CC
frames to all other MEPs

Each receiving MEP
detects loss of CC frames
and unexpected CC frames

CC can be used for defect detection in multipoint-to-multipoint networks.

MEP (MEG end point)

MIP (MEG intermediate point)

104

5.2 Analysis of Timing Requirements

This section presents an analysis of the timing requirements, expressed in terms of

the novel activity diagram notation, introduced in Section 4.2.3. As discussed

earlier, activity diagrams illustrate a summary of behavior over time. This is

required for each of the functions described in Section 5.1. The left column shows

the activity of the MEP sender. The right column shows the activity of the MEP

receiver. The formats for Ethernet OAM frames are organized by function and they

are referred to in the standard as protocol data units (PDUs). In general, there is

approximately one PDU format for each of these functions.

ETH-CC: The sender initiates the periodic transmission of continuity check

measurement (CCM) frames, requiring the START module, at one of the defined

rates, e.g. the CC_period equals every 3.3 ms. On the receiver side, ETH-CC, waits

3.5 times the CC_period to receive the expected incoming CCM frame from its peer

(the sender), before timing out, requiring the FINISH module. If a timeout occurs

the receiver signals a defect condition and initiates an alarm.

ETH-LB: The sender initiates the periodic transmission of loopback message

(LBM) frames, requiring the START module, and the sender completes when the

sender receives the loopback response (LBR) frame from the receiver or it times out,

requiring the FINISH module. The receiver receives the loopback response frame

and then waits for a random amount of time before transmitting the LBR to the

sender, requiring the FINISH module.

ETH-LT: The sender transmits a link trace measurement (LTM) frame and then

waits to receive a link trace response (LTR) frame. The sender times out if the LTR

is not received, requiring the FINISH module. When the receiver receives a LTM

frame it waits for a random amount of time before transmitting the LTR to the

sender, requiring the FINISH module.

105

ETH_CC

ETH_LB

ETH_LT

ETH_AIS

ETH_LCK

ETH_TST

ETH_1DM

ETH_DM

START*
tx(CCM)

FINISH

tx(LBM) rx(LBR) rx(LBM) wait(random) tx(LBR)

tx(LTM) rx(LTR) rx(LTM) wait(random) tx(LTR)

tx(AIS) [wait(3.5*AIS _period) rx(AIS)]*

tx(TST) rx(TST) { getTime(), check seq no. }

tx(1DM)getTime(TxTimestampf) rx(1DM) getTime(RxTimef)

tx(DMM)getTime(TxTimestampf) getTime(RxTimeb) rx(DMM)rx(DMR) tx(DMR)getTime(RxTimestampf) getTime(TxTimestampb)

[START]* FINISH FINISH

FINISH FINISH

START

tx(AIS) rx(AIS)

FINISH

tx(LCK)

START

tx(LCK)

STAMP

STAMPSTART* STAMP

STAMP STAMPSTART* STAMP STAMP

[wait(3.5*LCK_period) rx(LCK)]*rx(LCK)

FINISH

[wait(3.5*CC_period) rx(CCM)] *

Sender Receiver

Figure 5.4: Activity diagram for Ethernet OAM functions

106

ETH-AIS: The sender side during an alarm condition transmits an alarm indication

signal (AIS) frame to its relevant peers. Then the sender waits for the AIS_period

and then transmits another AIS frame, requiring the START module. After the

receiver receives an AIS, it waits for 3.5 * AIS_period expecting to receive another

AIS before timing out. If the timeout condition occurs, requiring the FINISH

module, then the alarm is canceled.

ETH-LCK: The sender side transmits an Ethernet administrative lock signal (LCK)

frame to its relevant peers. Then the sender waits for the LCK_period and then

transmits another LCK frame, requiring the START module. After the receiver

receives an LCK, it waits for 3.5 * LCK_period expecting to receive another LCK

before timing out. If the timeout condition occurs, requiring the FINISH module,

then the lock is canceled.

ETH-TST: The sender transmits the Ethernet test (TST) frame to the receiver.

When the receiver receives the TST, it uses the STAMP module to get the current

time, and then it checks the sequence number.

ETH-1DM: Initiated by the START module, he sender periodically gets the current

time using the STAMP module, inserts the timestamp into the one-way delay

measurement (1DM) test frame, and then transmits the 1DM to the receiver. When

the receiver receives the 1DM, it gets the current time, using the STAMP module

and calculates the one-way delay time.

ETH-DM: Initiated by the START module, the sender periodically gets the current

time using the STAMP module, inserts the timestamp into the round-trip delay

measurement (DMM) test frame, and then transmits the DMM to the receiver. When

the receiver receives the DMM, it gets the current time using the STAMP module,

and calculates the one-way delay time. Then the receiver gets the current time using

the STAMP module, and inserts it into the delay measurement response (DMR)

107

frame. The receiver transmits the DMR to the sender. When the sender receives the

DMR it gets the current time using the STAMP module, and calculates the round-trip

time.

5.3 System Architecture

A simplified view of the architecture is shown in Figure 5.5. The OAM capability is

independent of the line-side and system-side interfaces. A more detailed schematic

of the overall OAM subsystem framework (including the CPU interface) is shown in

Figure 5.6. The block in the center shows how the OAM subsystem framework

connects to the line-side and system-side interfaces. The line-side interface contains

an Ethernet MAC interface. The system-side interface includes a CPU interface, a

loopback interface, and a data plane interface. The OAM subsystem framework is

flexible in the functions that are accelerated, depending on the design. OAM

subsystems can be assembled from the OAM elements described in the next section.

Figure 5.5: Setting for the OAM design

Line-­‐side OAM System-­‐
side

108

Figure 5.6: Detailed schematic of the overall OAM framework

5.4 OAM Elements, and the G Language

The individual modules (Click elements) in the OAM case study were implemented

using the G 2007 language [86]. G is a high-level, domain-specific language for

describing modules that perform packet processing functions. G is complementary

to the overall ShapeUp framework because it raises the level of abstraction for

designing individual modules, which are then used to build networking systems

targeting programmable hardware. G was designed to share the same abstractions

for module interfaces from ShapeUp. G descriptions can be compiled into RTL code

that has efficient FPGA implementations. G can be used to create new elements for

expanding the ShapeUp library. Together, the ShapeUp framework and tools, along

with G, provide an efficient framework for designing, integrating, and validating

packet processing functions, all at a high level of abstraction.

OamShimTx

Time Stamp Insert
+

Count Insert

OID,
Opcode,
Data SP

DataPlaneTx

CPU

CpuTx

Loopback

Time

OamShimRx

Time Stamp Insert
+

Loss Math

Time

OAM
Classifier

&
Policy Engine

OID,
Opcode,
Data

Data

Data

OamMux

OamDeMux

Loopback

StatsTx

DataPlaneRx

CPU

CpuRx

OID,
Opcode,
Data

MAC
w/Stats

RGMII

Protocol
Convertion

RGMII

OAM
Classifier

&
Policy Engine

Data

StatsRx

Y.1731 OAM Block

OAM
DL

Data

Data

Ethernet OAM

Elements

109

5.4.1 Overview of the G language

G 2007 descriptions consist of two main parts: (a) packet data formats and (b) a

handler. The handler performs a set of operations on incoming packets. The format

of incoming packets is declared at the top of the handler. A G 2007 module may

contain one incoming stream port and multiple output stream ports. G modules are

reactive in that the handler is triggered by the arrival of packets on the input packet

port. The handler typically performs packet surgery and then forwards the packet on

a selected output stream port. The set of modification operations for performing

packet surgery generally consists of: insert, edit, and remove operations applied to

the fields of the packet header.

Figure 5.7: G module UML interaction diagram

Figure 5.7 shows a UML-style interaction diagram of a G module and an auxiliary

module. The example shows the G module receiving a packet, which triggers the

module’s handler to begin processing the packet header. As shown, the processing

may additionally include interaction between a G module and auxiliary modules that

have an access interface, which allows the G module to e.g. read from lookup tables

G	
 module

 tim
e

Packet	
 is	

forwarded	

to	
 next	

module

Handler	

processes	
 packet

[
 reads,	
 writes	
]

Auxiliary	
 module

 …

Packet	

arrives

110

or to perform stateful processing like updating frame counters. After processing, the

packet is forwarded on its output stream interface to the next module in the design,

e.g. to the next stage within a packet processing pipeline.

The reactive behavior of G modules is sufficient for many protocols, however, as

discussed in Chapter 4, network protocols often require the use of time. Some high-

level protocols may involve timeouts, e.g. TCP, where a timeout is an event that

triggers data retransmission. Additionally, some networking systems may require

proactive behavior, e.g. polling to monitor the state of a network peer. However, G

2007 did not include syntax or built in mechanisms to function according to time.

This case study shows how the G modules were used, in conjunction with the timing

modules from Chapter 4, to enable the necessary proactive behavior. A ShapeUp

library of elements was created for Ethernet OAM, with modules implemented in G,

facilitating the creation of two OAM reference designs.

5.4.2 Ethernet OAM reference designs

Two reference designs were implemented as example ShapeUp systems that use the

OAM library elements. The first system is the Y.1731 reference design, which

implements functionality that does not require the start and finish modules. To

summarize, the Y.1731 OAM reference design performs the following functions:

a) parses incoming packets

b) classifies between the OAM frames and the user frames

c) counts the “in-profile” OAM frames

d) inserts a timestamp and sequence number information in OAM frames

e) inserts loss math into overloaded fields for upstream collection of the CCM

PDU

f) delivers OAM frames to an upstream function

111

The second system is the CFM reference design that extends the Y.1731

functionality by adding functions that require the start and finish modules. The CFM

design additionally:

g) generates CCM continuity check frames for transmission

h) checks incoming CCM frames against a table of expected values

i) detects defect conditions associated with CCM reception and informs the

software controller

j) supports programmable time intervals, for example: 3.3ms, 10ms, 100ms, 1s

The focus in this chapter is on the second system because it has the timing module

interest.

Appendix A contains a description for each of the OAM library elements that were

used in the example reference designs. Appendix B contains the G source code for

an example implementation of one of these elements.

5.5 Integration of the timing modules

This section describes how the timing modules are integrated into the CFM system.

ActivityStart and ActivityFinish are instances of the timing modules from Chapter 4.

Figure 5.8 shows the interaction between the timing modules and the CCM modules.

The start module activates the CCM generator to read a partial frame from memory

and to transmit the new CCM frame. When a CCM frame arrives at the CCM

checker, it resets the corresponding Activity Finish module’s timer. If one of the

Activity Finish module’s timer expires, then it signals the CCM checker to report the

defect condition.

Figure 5.9 shows a view of the interaction between the Activity Start module, the

CCM generator, and the control processor. The Activity Start module manages

alarms for each of the contexts. The alarms are programmable to 100 µs accuracy

(for a 3.3 ms interval). Either the CCM Generator or the control processor

112

configures the timers, for example, in the current implementation the control

processor configures the timers. The Activity Start module signals an event message,

containing: an activity ID, a 16-bit timestamp, an event type, and a reserved field.

The arrival of the event message triggers the CCM generator to produce a new CCM

frame. The contents of the CCM frame are based on values read from local on-chip

memory tables.

Figure 5.8: Interaction diagram for CFM design showing the system interaction between the timing

modules and the OAM modules

Figure 5.10 shows a view of the interaction between the Activity Finish module, the

CCM checker, and the control processor. The ActivityFinish module manages

timers for each of the contexts. Similarly, the timers are programmable to 100 µs

accuracy and either the CCM checker or the control processor configures the timers.

The activity finish module signals an event message, containing: an activity ID, a 16-

bit timestamp, an event type, and a reserved field. The event message is sent to the

control processor. The CCM checker resets the timer, when the corresponding CCM

frame is received.

CCM	

generator

tim
e

e.g.	
 transmits	

new	
 CCM

Handler	
 reads	

frame	
 and	
 sends

[
 reads	
]

Memory

 …

START

FINISH

e.g.	
 indicates	

CCM	
 did	
 not	

arrive

CCM	

checker

 timer	

expires

[
 resets	
 timer	
]	

(waits)

reports	

defect

[e.g.	

periodic]

CCM	

arrives
start	

event

113

Figure 5.9: Start module activates the CCM generator to periodically transmit CCM frames to peer

MEP

Figure 5.10: Finish module polices the reception of CCM frames from peer MEPs and times out if no

CCM frame is received

Memory	
 	

w/	
 CCM	

Frames

CCM	

Generator

Event

High-level language descriptions Click element

START

CCM frames

Start times configured by
SW using an access port

Control	
 Processor

 format NotifyFrame =(
 activityID : 16,
 timestamp : 16,
 event_type : 16,
 reserved : 16);

FINISH

Expected	
 values

CCM	

checker

Timeout
event

frames

High-level language description Click element

Control	
 Processor

Timer reset

CCM frames

Defect
indication

frames

114

5.6 Click description

The Click for the CFM design is shown in Figure 5.11, continued in Figure 5.12. In

this example, OAM frames are received from line side, processed, then forwarded to

system side; when expected OAM CCM frames are not received, timeouts are used

to inform the system side. In the opposite direction, stimulated by a periodic timer,

OAM CCM frames are constructed and transmitted to line side. These activities are

steered by consulting various lookup tables.

Certain features of the Click description are worthy of attention. In lines 1 to 17,

instances of Click elements are declared. Each element class name has a

configuration string (Click terminology) denoting its source language, e.g. “TYPE

G” means written in the G language [86]. The implementation of each of the

modules written in G is described in Appendix A. The example also shows types

“C” and “VHDL”. For example this mixed-language information is also useful for

the validator tool to guide it in how high-level simulation models should be used.

Following the declarations, this example includes four of the five interface types, the

plain type not being required. Hungarian-notation port names indicate the type.

Lines 20 to 34 show the two main streaming data paths in the system, “FromDevice”

and “ToDevice” being Click conventional names for receivers and transmitters

respectively. The remaining connections involves access and compute type

interfaces, the final line showing a connection that allows the cfm_in module to call

a function in the controller module, which is actually a software module written in C.

At line 11 of the Click description, an activity start timing module is declared with

the name “start”. This is used to cause the periodic generation of outgoing OAM

CCM frames. In the reference design, there could be up to 1024 OAM flows at any

time, and so the start timing module was configured for 1024 activities. The time

between frames could vary from flow to flow, being one of 3.3 ms, 10 ms, 100 ms,

or 1 s. To support this, the module was configured with a 100 µs time quantum and

14-bit time horizon width. The repetitive timer requests originate from an embedded

115

controller (declared at line 17), and line 55 shows the connection made between this

module and the timing module. Here, “A_request” is the name of the request input

interface, with the “A_” being Hungarian notation to indicate that it is of the access

interface type. The timing module sends event signals to a packet generation module

(declared at line 9), and line 29 shows the connection made between the modules,

“N_signal” being the name of the (notify type) event signaling output interface.

At line 12 of the Click design, an activity finish timing module is declared with the

name “finish”. This is used to generate a timeout signal when no incoming OAM

CCM frame is received on a flow for a time period of 3.5 times the flow’s inter-

CCM time. The configuration of this module was the same as for the start module,

except for having an increased 16-bit time horizon width. Line 40 shows the

connection between a packet reception module and the timing module. A new

timeout request is made each time a frame is received; note that a new request

automatically aborts any existing scheduled request for the same activity. Line 56

shows the connection between the timing module and the embedded controller, to

signal any timeout events for software handling.

A timestamp-providing module is declared at line 13, and lines 43 and 44 show

connections to it from packet reception and transmission modules respectively. This

module provides 64-bit localized timestamp values. In the former case, this value is

used for checking a timestamp in an incoming frame; in the latter, it placed as a

timestamp in an outgoing frame. The module was configured with two request

interfaces (named “A_time1” and “A_time2” here).

116

Figure 5.11: Click description of the connectivity fault management (CFM) design

1. /* Declare element instances */

3. y1731_cl_in :: VlanClassifier(TYPE G);

4. y1731_cl_out :: VlanClassifier(TYPE G);

5. y1731_in :: OAM_Y1731_In(TYPE G);

6. y1731_out :: OAM_Y1731_Out(TYPE G);

7. cfm_in :: CheckCcm(TYPE G);

8. cfm_out :: GenerateCcm(TYPE G);

9. preread :: CalcAddress(TYPE G);

10. ccm_reader :: FrameReader(TYPE VHDL);

11. start :: StartActivity(TYPE VHDL);

12. finish :: FinishActivity(TYPE VHDL);

13. timeref :: TimeStamp(TYPE VHDL);

14. contextIDs :: ContextsIdTable(TYPE VHDL);

15. vlanProfiles :: VlanProfileTable(TYPE VHDL);

16. melContexts :: MelContextsMem(TYPE VHDL);

17. controller :: EmbeddedController(TYPE C);

18.

20. /* Inbound frame handling path */

21. FromDevice(LineSide)

22. -> [S_in]y1731_cl_in[S_out]

23. -> [S_in]y1731_in[S_out]

24. -> [S_in]cfm_in[S_out]

25. -> ToDevice(SystemSide);

26.

28. /* Generates outbound CCM frames */

29. start[N_signal] -> [N_in]preread[N_out]

30. -> [N_in]ccm_reader1[S_out]

31. -> [S_in]cfm_out[S_out]

32. -> [S_in]y1731_cl_out[S_out]

33. -> [S_in]y1731_out[S_out]

34. -> ToDevice(LineSide);

117

Figure 5.12: Continued Click description of the CFM design

5.7 Results

The ShapeUp tool suite was used to implement both the Y.1731 design and the

described CFM design. These reference designs both contained numerous modules,

side connections, and a software control interface. The Pop design environment and

visualizer were used to enter the description.

35.

37. /* Auxiliary connections*/

39. /* Reset timer when CCM arrives */

40. cfm_in[A_reset_timer] -> [A_request]finish;

41.

42. /* Connections to timestamp reference */

43. y1731_in[A_timestamp] -> [A_time1]timeref;

44. y1731_out[A_timestamp] -> [A_time2]timeref;

45.

46. /* Connections to shared lookup tables */

47. y1731_cl_in[A_pTbl] -> [A_pTbl1]vlanProfiles;

48. y1731_cl_out[A_pTbl] -> [A_pTbl2]vlanProfiles;

49. y1731_cl_in[A_cTbl] -> [A_cTbl1]contextIDs;

50. y1731_cl_out[A_cTbl] -> [A_cTbl2]contextIDs;

51. y1731_in[A_mTbl] -> [A_mTbl1]melContexts;

52. y1731_out[A_mTbl] -> [A_mTbl2]melContexts;

53.

54. /* Connections to embedded controller */

55. controller[A_CCM_req] -> [A_request]start;

56. finish[N_signal] -> [N_CCM_timout]controller;

57. cfm_in[C_defects] -> [C_report]controller;

118

Interface type matching was straightforward since G uses the same ShapeUp

interface type abstractions. When the modules were compiled from G, the compiler

generated interfaces that matched supplied interface metadata. For the modules

written in G (lines 3 to 9), EDL descriptions of the interface metadata were already

available, being part of the standard G development flow. For example, all the G

modules used a 64-bit data width at their streaming type interfaces. For the other

modules, EDL descriptions were created separately prior to making the module

collection available in a repository. Note that the modules declared at lines 14 to 16

were on-FPGA memory blocks containing lookup information, and so just had

standard Xilinx BlockRAM read and write interfaces.

The ShapeUp linker was used to generate complete VHDL system descriptions for

this example (and any other desired system configurations), including wiring to

implement the connections specified in the Click descriptions. In this case, 1570

additional lines of VHDL were generated automatically. This code was exactly as

would have been written in an efficient hand implementation – most of the wiring

was not subtle, just detailed and tedious for a human to undertake. Targeted at a

Xilinx Virtex-5 LXT device, the resulting system occupied 4126 slices, though this

area stems from the chosen modules, the linker just adding necessary wiring area. Of

these, 348 slices were used for the three timing modules, which is 8% of the total.

This version of the reference design supported Ethernet OAM operating at up to a 25

Gb/sec line rate, providing hardware acceleration that allowed 1024 flows in both

directions, each one with a 3.3 ms inter-CCM rate. The final system clock frequency

was 125 MHz, which was in line with the minimum individual module frequency,

indicating that no time overhead was introduced by the automated linking.

The ShapeUp validator was extensively used during the validation of this example,

using exactly the same test data files for each implementation level. For the highest

level of simulation, a G-specific simulator was used to model the modules written in

G, and simple Perl scripts were adequate to model all of the other modules. For the

lowest level of validation, this particular example was run on a Xilinx ML505

119

development board, handling real traffic received and transmitted over a standard

external Ethernet interface.

5.8 Summary

Overall, use of the ShapeUp methodology and tool suite proved beneficial in terms

of developing and evolving a very modular reference design that tracked rapidly

emerging standardization in the telecommunications industry. Ethernet OAM is an

increasingly important standard in carrier Ethernet. This case study lead to a single

ShapeUp description of the system, which previously would have been described

using separate tools.

This chapter described the validation of the overall ShapeUp framework and the

timing modules. The main contributions of the case study described in this chapter

are the following:

• A demanding real-life example is presented that is relevant to network

service providers for monitoring network functionality and performance.

This is described in Section 5.1.

• A thorough analysis of complex timing needs of OAM protocols is presented

in Section 5.2. This is demonstrated by productive use of activity model and

mapping to timing modules.

• A high-level approach is carried throughout the programming methodology

and framework, combining ShapeUp and G within the methodology. This is

described in Section 5.4.

• Non-trivial Click descriptions (Y.1731 and CFM) were entered and processed

with ShapeUp tools. The results were flexible and maintainable designs,

delivering required hardware performance. These are described in Section

5.5.

120

121

Chapter 6
Dynamic Modular Systems with Adaptable

Behavior

This chapter introduces ReShape, which builds on the design approach of ShapeUp

and carries through to support system reconfiguration during operation. This setting

allows system reconfiguration at the module level, by supporting type checking of

replacement modules and by managing the overall system implementation, via

metadata associated with its FPGA floorplan. The methodology and tools have been

implemented in a prototype for a broad domain-specific setting – networking

systems – and have been validated on real telecommunications design projects. The

development of ReShape required fundamental extensions to ShapeUp in order to

allow fluidity of modules within adaptive and reactive systems. Support for system

modification was focused on to allowing the substitution of modules within the

system during its operation.

The main underpinning for implementing this capability is using dynamic partial

reconfiguration of an FPGA to effect the substitution of a module. In essence, the

hardware module is ‘hot swapped’ in a working system. This use model for partial

reconfiguration is somewhat different from the widespread use model over the past

15 years or more. Historically, small FPGA devices meant that programmable logic

was a scarce resource. Thus research has largely focused on a task-based use model,

where an operating system or other run-time system manages a collection of tasks

that are sharing the resource over time, for example the work of: Hadley and

Hutchings [58], Brebner [60], Diessel and ElGindy [61], and Walder and Platzner

[122]. In many cases, these tasks are assumed independent; in some cases,

122

infrastructure for communication between tasks is provided, for example Majer et al.

[63].

Nowadays, FPGAs are significantly larger, so very substantial systems can be

implemented without the need to conceive of resource sharing. This has tracked the

earlier evolution of memory in computer systems, from shared scarce resource to

abundant resource. So, analogously, the headline issue for FPGAs today is more

management of the resource rather than sharing of it. The ReShape approach is

pioneering this view, adopting a system-based use model for partial reconfiguration.

The central technical challenge to enabling the system-based use model is allowing

the user to work in terms of a system and its inter-connected modules, while the

implementation involves partial reconfiguration of an FPGA that works in terms of

modifying physical regions of the device. That is, it is necessary to bridge between a

higher-level logical description view and a lower-level physical implementation

view, and – importantly – without blighting system performance and/or resource use.

Given the characteristics of current physical design tools for FPGAs and, in

particular, the tools supporting partial reconfiguration, the basic solution to the

technical challenge is the use of floorplanning. Floorplanning provides the means

for mapping system modules to distinct physical FPGA regions. Traditionally, doing

manual floorplanning is the realm of the FPGA expert, whereas achieving the

ReShape user experience goal requires automation of floorplanning.

Section 6.1 presents an introduction to the new Xilinx partial reconfiguration design

flow, which is based on using partitions. Section 6.2 presents experiments on internal

fragmentation and the floorplanned PR methodology. Section 6.3 presents the

ReShape floorplanning algorithm for networking systems, which performs low-level

device specific floorplanning, introduced earlier in Section 2.3.4. Section 6.4

presents the design flow for ReShape, which extends the ShapeUp design flow by

adding support for dynamic changes to Click descriptions.

123

The approach is to use a domain-specific system floorplanning component in the tool

flow, so that system-level module interconnection characteristics can be taken into

account. In the ReShape prototype, this floorplanning was tailored towards the

system architectures typically used for high-speed networking: pipelines connected

by wide data paths. The prior floorplanning research provided great insight to the

general capabilities of the domain-specific floorplanning component, in terms of

targeting contemporary FPGA architectures with heterogeneous resources and with

certain obstacles to regularity.

6.1 Partial Reconfiguration Design Flow

This work was targeted at the Xilinx partial reconfiguration (PR) mechanisms, using

the latest tool support for PR in the ISE design suite version 13.1 [123]. The general

front-end modular system concepts though would be applicable to other open tools

for PR, for example the work of Suris et al. [67] [124] and by Koch et al. [125]

[126]. In order to explain fully how the overall ReShape methodology works, some

background information on the underlying Xilinx PR methodology is given in this

section.

The PR methodology centers on identifying and listing dynamic regions, which are

the potentially reconfigurable parts of an overall design. The surrounding circuitry,

which includes interfaces to dynamic regions and any through wiring across dynamic

regions, is treated as the static part of the design. Floorplanning is a necessary step

in this PR design flow, and this involves using the PlanAhead tool. Some basic

knowledge of the FPGA architecture is needed because the floorplanning involves

setting up area constraints for where dynamic modules are to reside.

Starting in PlanAhead 12.1, Xilinx introduced a new hierarchical methodology for

design preservation. This was enhanced in version 13.1 to support incremental

design and team-based design, by introducing a new notion of partitions. In terms of

the overall tool flow, partitions provide layers to the design, and are used as an

124

ordering to the design tools. Partitions are created in PlanAhead by selecting one or

more netlists and defining a new partition that includes these netlists. A netlist is the

low-level output description from the synthesis tool, describing the design as a

collection of FPGA primitives connected by wires. During the initial phase of the

design tools, placement and routing is performed for a first partition. Then, for the

second phase, the first partition results (placement and, optionally, routing results)

are imported into the design tools, and then placement and routing for a second

partition is run. In general, for the k-th phase, the previous (k-1) results are imported

before placing and routing the k-th partition. The benefit of this approach is seen

when performing incremental design updates that affect only a single partition,

because there is a resulting saving in runtime through not recomputing the placement

and routing of the other partitions.

The PR methodology is based on the partition-based approach, and adds a special

type of partition called a reconfigurable partition (RP). The interconnect for the

design includes partition pins at the boundary of each RP. These are similar to the

‘bus macros’ that featured at boundaries in the earlier Xilinx partial reconfiguration

flow, but are hidden from the user. The PR flow requires that each RP has an

AREA_GROUP constraint to specify the physical resources that belong to the RP.

This is where knowledge of the device architecture is necessary. Moreover, the

physical floorplanning mandates a different floorplan for each target FPGA, since

the available resources and the reconfiguration arrangements vary significantly.

In PlanAhead, an indication of whether or not a project involves partial

reconfiguration is specified at project creation. Currently, this requires that the

design be a netlist-based project design, created by imported pre-synthesized netlist

files. When creating a partition within a partial reconfiguration project, the user

indicates whether the partition is reconfigurable or not. The PR flow then involves

specifying lists of reconfigurable modules (RMs) that are assigned to each of the

reconfigurable partitions. This is done individually by selecting an RP and then

adding an RM to it. The different RMs are the different choices for populating the

125

partition. The netlist files for RMs can be omitted at project creation if desired, in

which case they are then just represented as unpopulated black boxes.

A key goal of the ReShape methodology is to hide the cumbersome low-level details

of the underlying PR flow by providing a system-level front end focused on

automatic floorplanning, and then the automatic generation of the required RP and

RM data for PlanAhead and the PR flow. It is of course important that this approach

does not introduce undue inefficiency either in resource usage or in system

performance.

6.2 Internal Fragmentation and the

Floorplanned PR Methodology

While the partition-based methodology has user benefits compared with a traditional

‘flatten the whole design’ approach, a concern is the possible adverse impact of

explicit floorplanning of partitions that introduces internal fragmentation within

bounding boxes. Therefore, experiments were carried out to assess the interplay

between internal fragmentation, performance, and tool run time.

Three sets of experiments investigated the effects of using the partition-based flow

for a representative pipelined dataflow design containing equally sized pipeline

stages, with each stage being implemented as a separate partition. The

interconnection between the pipeline stages had a 512-bit wide data path, as is found

in high speed (100 Gb/sec) packet processing applications. The experiments targeted

a Xilinx Virtex-6 HX380T FPGA, and used the Xilinx ISE version 13.1 tools

running under Windows XP on a 2.8 GHz Intel Core2 Duo T9600 processor with

4GB of RAM.

Existing guidelines for floorplanning with the Xilinx PlanAhead tool recommended

only approximately 60% slice utilization within bounding boxes for best results

126

[127]. Motivated by this advice, the purpose of the first experiment was to

investigate the effect of changing the size of the bounding box for each floorplanned

stage partition on both the quality of results and the tool run time. The size was

varied so that the slice percent utilization, abbreviated here as the PUT, within each

bounding box varied between 50% and 80%. Earlier experience reports had

indicated that utilizations above 80% generally lead to unsuccessful implementation

results. For this experiment, no timing constraints on the implementation were

specified.

To introduce additional controlled variability into the experiment, three data points

were taken for each PUT (except at 50%), by slightly varying the area constraints for

the set of pipeline registers located along the interconnect between each stage. These

three variations are shown in Figure 6.1. In the stretched variant, the registers are

spaced over the entire inter-stage height; in the centered variant, they are placed

more tightly in the inter-stage height; and in the alternating variant, they are placed

more tightly higher, then lower, between alternating stages. The choices were

practical, being made to consider the possible impact of different positioning of the

data path inputs and outputs in each stage.

Figure 6.1: Variations in positioning registers on interconnect between stages

The PUT was determined to be an important factor on both quality of results and

implementation tool run time. Figure 6.2 shows the clock frequencies achieved,

showing an increase as the PUT increases. At first sight, this trend may seem

0 1 2Stretched

0 1 2Centered

0 1 2Alternating

127

counter-intuitive because available routing may be more limited when the partition is

more densely packed. However, the observation indeed makes sense because the

paths within each partition are constrained to become shorter, with consequent

benefit for timing. It can be seen that PUT at 75% represented a transition point, with

discrimination in timing that favored the stretched register variant.

Figure 6.3 shows the impact of the PUT on tool runtime, showing a trend that run

time gets longer for tighter area constraints. A clear threshold between shorter and

longer run time appeared at a PUT of 72%. Additionally, the experiments showed

that position of the registers on the interconnect between stages caused relatively

minor differences in performance, except for PUT at 75%, which straddled the

threshold for a more than doubled increase in run time. There, the lowest run time

was for the stretched interconnect, which resulted because its placement was less

constrained than for the centered or alternating variations. It should be noted that the

reported run times were for implementing the complete pipeline system as an initial

run. Because of the use of partitions, run time savings are to be expected during

incremental design updates affecting single partitions.

To explore these observations further, the experiments were repeated for four-stage

and five-stage pipelines, which provided larger and differently shaped designs, and

similar results and trends were observed for both performance and tool run time.

The second set of experiments investigated the impact on resource use (in slices) of

meeting this timing constraint across all PUT choices. Furthermore, these

experiments checked on the effect of different floorplanning choices, by varying the

orientation and location of the pipeline design. The two orientations were horizontal

and vertical, and the locations were top, middle and bottom (for horizontal) and left

and right (for vertical). The middle case for horizontal orientation was the version

that was used in the first experiments. The middle case for vertical orientation was

omitted due to an obstruction (the configuration block) in the FPGA architecture.

128

Figure 6.2: Effect of using partitions on clock frequency of implementation

Figure 6.3: Effect of using partitions on implementation tool run time

0	

50	

100	

150	

200	

250	

300	

50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	

Fr
eq
ue
nc
y	

(M
H
z)
	

Percent	
 Utilization	
 (PUT)	

PUT	
 vs.	
 Clock	
 frequency	

0	

10	

20	

30	

40	

50	

60	

70	

50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	

Ru
nt
im
e	

(m
in
ut
es
)	

Percent	
 Utilization	
 (PUT)	

PUT	
 vs.	
 Tool	
 runtime	

129

Figure 6.4 shows the resulting area of the designs for the different floorplans of the

three-stage pipeline design at different PUT settings. The variation in slices used

was relatively small, which indicated that the total resource use is largely insensitive

to position or orientation in the floorplan, and also to the particular choice of PUT at

a fixed performance point. Tool run time was not affected by the choice of

orientation or location of the pipeline.

The experiments were repeated for four-stage and five-stage pipelines. The total

area increased proportionally to the size of the extra stage(s) added, but again

showed little variation across the different floorplans and PUT choices.

Taken together, the results of the first two experiments gave insight into the effects

of some basic floorplanning choices when working within the partition-based

methodology. In particular, a PUT of around 80% emerged as a sweet spot

delivering the best clock frequency and total area with acceptable tool run time. This

is much more positive than the generic PlanAhead guidance, and indeed halves

internal fragmentation. This choice of PUT was incorporated into the ReShape tools.

The third set of experiments was conducted to quantify the actual impact of using

both partitions and floorplanning, compared to a more traditional ‘flat logic’

approach. The figures of merit continued to be clock rate, tool run time, and total

area in slices.

Table 6.1 shows the results of these experiments. The three scenarios were: no

partitions and no floorplanning; partitions but no floorplanning; and (as in the

previous experiments) partitions and floorplanning. Each scenario was tested with

and without the specification of an explicit timing constraint. Given that use of

partitions and floorplanning is necessary for the PR methodology, the reassuring

outcome is that there was no dramatic performance or resource hit. The noticeable

impact though is on tool run time. However, as noted earlier, this is the run time for

130

Figure 6.4: Effect of using partitions on total area in slices

the initial implementation of the whole design, and subsequent updates to particular

partitions will be faster because there is no need to re-implement other partitions that

are unchanged.

Table 6.1: Quality of results, with and without partitions and floorplanning

Partitions Floorplanning
Timing

constraint

Frequency

(MHz)

Run time

(mins)

Total

area

(slices)

No No No 271 21 7988

Yes No No 246 19 7913

Yes Yes (80% PUT) No 245 55 7301

No No Yes 240 18 7991

Yes No Yes 241 18 7767

Yes Yes (80% PUT) Yes 241 42 8164

7000	

7500	

8000	

8500	

9000	

9500	

10000	

50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	

Ar
ea
	
 (s
lic
es
)	

Percent	
 Utilization	
 (PUT)	

PUT	
 vs.	
 Total	
 area	

top	
 horizontal	

middle	
 horizontal	

bottom	
 horizontal	

left	
 vertical	

right	
 vertical	

131

6.3 ReShape Floorplanning Algorithm for

High-speed Networking Systems

In general, automatic floorplanning is a well-known NP-complete problem, which is

of course why tools such as Xilinx PlanAhead act primarily as assistants to human

users who are determining the actual floorplan choices. However, in order to

achieve the ReShape goal of hiding floorplanning details, the automation of the

floorplanning task is a key pre-requisite. The solution adopted for the prototype was

to adopt a domain-specific approach that takes into account the typical nature of

Click descriptions targeted at FPGA implementations. The future plan for ReShape

is to allow different domain-specific floorplanners to be included as plug-ins to the

overall framework. This is in contrast to adopting a more general-purpose approach

of seeking to devise heuristics that tackle the unconstrained floorplanning problem.

Specifically, the ReShape prototype involves constraining the Click system

description to be in a form called Linear Click. In Linear Click, the structure of any

directed sub-graph containing multiple dynamic elements must be a linear chain of

elements. The ReShape floorplanning algorithm was then based upon tackling the

problem of floorplanning a linear chain of dynamic Click elements. Linear Click

proves to be general enough to represent a wide class of pipelined processing

systems or subsystems. Notably, in networking and telecommunications applications

for FPGAs, there are two main data flow pipelines, for ingress from line side to

system side, and for egress from system side to line side. With ReShape, each of the

pipelines within a system’s architecture can be made dynamically configurable, with

other associated system infrastructure, such as memory controllers, being static. The

overall networking system, containing a small number (typically between six and

eight) of top-level components, is given a crude overall floorplan by the designer in

the normal manual way, and then the locations allocated for the individual Linear

Click subsystems are input as bounding boxes to the ReShape floorplanner.

132

The context for the floorplanning algorithm is a model of the target physical FPGA

architecture. Detailed models of device architectures are used behind the scenes by

the standard FPGA design tools. Rather than seeking access to such internal models,

a simplified device architecture model based on openly available Xilinx data was

devised. The basic model consisted of a two-dimensional array of Configurable

Logic Blocks (CLBs), with specific embedded resource types, such as Block RAM,

DSP blocks, and input/output blocks incorporated at their physical positions within

the array. Certain other features, such as the reconfiguration controller and PCI

Express blocks, were incorporated as anonymous obstacles at their positions.

The floorplanning thus takes into account the heterogeneous FPGA architecture.

One subtlety – often overlooked – is that the Xilinx Virtex-6 architecture features

two different types of logic slices within CLBs: the SLICEL and the SLICEM. The

former are logic-only, while the latter also have memory. There are few SLICEMs

in the center of the architecture, and so the treats this area as a further obstruction, so

that a balanced density of SLICELs and SLICEMs can be assumed.

Figure 6.5: Example horizontal zig-zag layout of ten-stage linear pipeline

0 1 2 3

6 5 47

98

Unused	
 area

Fragmented	

area

133

The floorplanning algorithm places the linearly-connected modules as a set of

rectangles on this two-dimensional device model. As its output, it generates area

constraints based on the coordinates of the rectangles, and these are then directly

used by the standard partition-based partial reconfiguration flow. Specifically, the

algorithm places the modules as adjacent blocks within a rectangular area that fits

within a specified rectangular region. To do this, the algorithm imposes a zig-zag

layout, as illustrated in Figure 6.5. The zig-zag approach first places stages in order

along a row (alternatively: along a column, depending on an overall orientation

choice). When a module reaches the boundary of the region, there is a reversal of

direction, and that stage begins a new row (alternatively: column), running in the

opposite direction. In cases where a module requires Block RAM or other specialist

resources, or placement in a separate reconfigurable area, the algorithm places the

module at the next available specialist region. An overall goal is to minimize

external fragmentation in the rectangular pipeline layout, as shown in Figure 6.5.

The unused area outside this rectangle is not wasted, being made available for other

system uses.

The overall floorplanning algorithm is best explained in two steps. The inner step,

PlacePipeline, takes a list of pipeline stages, with a rectangular bounding box given

for each stage, and then applies the zig-zag placement algorithm. The other inputs

are an orientation – whether the layout is to be horizontal or vertical – and the initial

pipeline direction along that orientation – right or left for horizontal, up or down for

vertical. The algorithm returns the list of pipeline stages, with the placed coordinates

of the bounding box for each stage. It also returns the percentage of fragmented area

within the enclosing rectangle for the placed pipeline, as a measure of goodness of

the layout. Pseudo-code for this algorithm is given in Algorithm 6.1.

One particular concern is the handling of obstacles. Two approaches are used: either

stretching one module over the obstacle to obtain sufficient resource density, or

adding wiring between two modules to span the obstacle, the choice depending on

the current pipeline layout status and the extent of the obstacle. In the latter case, a

134

concern is that there may be routing difficulties when non-trivial inter-stage wiring is

needed. Given the nature of the FPGA architecture, this problem can be more acute

for vertical pipelines because most obstacles are higher than they are wide.

Algorithm 6.1 PlacePipeline

Input: List of bounding boxes of pipeline stages, orientation, initial direction
Outputs: List of coordinates of placed pipeline stages, fragmentation percentage of layout

if empty list return SUCCESS;

// Based on orientation and direction, determine proposed coordinates for first stage in list
// If stage has specific resource requirements or configuration requirements, adjust coordinates
// Check for overlap of draft coordinates with obstacles and skip over them if necessary
if bounding box exceeds boundary of orientation in current direction
 // This stage is too wide for a whole row (or too high for a whole column), so fail
 if no stages yet placed in current row or column return FAILURE;
 // Otherwise, reverse direction in zig-zag
 PlacePipeline (list, orientation, reverse (initial direction));
else
 // Save coordinates of this stage, and update overall bounding box for pipeline
 // Place rest of pipeline recursively, continuing in same direction
 PlacePipeline (tail (list), orientation, initial direction);

Figure 6.6: Performance vs. vertical separation between stages

0.0	

50.0	

100.0	

150.0	

200.0	

250.0	

300.0	

350.0	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	

Fr
eq
ue
nc
y	

(M
H
z)
	

Vertical	
 separation	
 (CLB	
 rows)	

Performance	
 from	
 varying	
 the	
 distance	
 of	
 vertical	
 separation	

between	
 2nd	
 and	
 3rd	
 stages	
 in	
 four-­‐stage	
 pipeline	

135

To assess this concern, an experiment was carried out to ascertain the performance

impact of vertical separation to avoid obstacles. For this experiment, a vertical 512-

bit wide data pipeline consisting of four stages, each with a square bounding box,

was created. Then the distance of separation between the bottom two abutting

blocks and the upper two abutting blocks was varied, in order to investigate the

impact on the overall performance. The target FPGA was a Xilinx Virtex-6 HX380T

device, which has 360 CLB rows in its architecture. The results of the experiment

are shown in Figure 6.6. It can be seen that performance was unaffected up to 50

rows of separation. Thereafter, there was a steady decline in the overall

performance. To calibrate the significance of the number of rows, note that a clock

region, and a minimum-height reconfigurable partition, is 40 rows high, and so

within the unaffected range. The highest obstruction on this FPGA is in fact a

configuration memory center block that is 80 rows high. The results of this

experiment assisted in implementing additional heuristics in the pipeline layout

algorithm. These concerned making a good compromise between skipping over

obstacles without performance penalty and deciding that a particular obstacle

rendered a particular layout unviable by forming too large an obstruction.

The overall floorplanning algorithm involves calling Algorithm 6.1 repeatedly with

different combinations of pipeline stage bounding boxes and different pipeline

orientations. The pseudo-code for this enclosing algorithm is given in Algorithm

6.2.

The goal of Algorithm 6.2 is to find a pipeline floorplan that involves the smallest

percentage of area lost to external fragmentation within the rectangular bounding box

for the floorplan (as illustrated in Figure 6.5). Note that all of the candidate pipeline

layouts have the same internal fragmentation within stages: a PUT of 80% was used

for defining stage bounding boxes in line with the discussion in Section 6.2.

The outer loop of Algorithm 6.2 tests both horizontal and vertical orientations for the

pipeline. The experiments of Section 6.2 had indicated that there was little total area

136

Algorithm 6.2 Overall floorplanning of Linear Click pipeline

Input: Set of sizes (slices) of pipeline stages, and coordinates of bounding rectangle for layout
Output: List of area constraints for placed pipeline stages, with minimally fragmented layout

// Form histogram of sizes of the stages and sort into bins
// Determine candidate set of aspect ratios for pipeline stages
for each pipeline orientation: horizontal or vertical
 for each combination of pipeline stage aspect ratios drawn from candidate set
 // Place pipeline using zig-zag approach, by calling PlacePipeline (Algorithm 1)
 PlacePipeline (list of stage bounding boxes, orientation, direction forward);
 // If successful, insert results into list sorted by percentage of fragmented area

// Select the result with minimum fragmented area (if none, then fail completely)
// Generate area constraints based on selected pipeline placement

and performance difference between different positions and orientations of pipeline

floorplans in this domain, and so these candidate orientations provided

differentiation based on their respective external fragmentation scores. The inner

loop involves choosing different combinations of different layouts for the individual

stages.

Potentially, there are a huge number of possible candidates for the inner loop to

explore, and so this search space was constrained in two ways. First, a limited range

of different bounding box aspect ratios was considered for each pipeline stage.

Second, a limited number of combinations of stage layouts were considered for the

overall pipeline. The approach to choosing the range of aspect ratios and for

bounding the number of combinations was based upon two experiments customized

to the particular domain-specific setting of this pipeline floorplanning algorithm.

137

Figure 6.7: Performance vs. aspect ratio, stretching vertically and horizontally

Figure 6.7 shows a summary of the results of this experiment. The left-hand side

shows the impact on performance of vertical stretching, where the aspect ratio has

width less than or equal to the height. At the extremities of this stretching, the data

points marked by a diamond indicate that a purely horizontal layout resulted because

of the large stage heights. At the other points, the normal two-dimensional zig-zag

layout could be used. The right-hand side shows the impact of horizontal stretching,

where the aspect ratio has width greater than or equal to the height. At the

extremities of this stretching, the points marked by a triangle indicate that a purely

vertical layout was necessary because of the large stage widths. It can be seen that,

stretching vertically, there was a significance performance decrease beginning after

the 1:8 aspect ratio. Stretching horizontally, there was a performance decrease at the

6:1 aspect ratio. The reason for the decrease in performance was further investigated

in PlanAhead, and the CLB metrics showed that routing congestion significantly

increased in each dimension as stretching increased along that dimension. As an

example, the highlighted regions in Figure 6.8 show the great difference in vertical

routing congestion between 1:4 and 1:48 aspect ratios for vertical stretching.

Since the experiments indicated that high performance was maintained for the mid

range of aspect ratios, the following set of six aspect ratios was chosen as a

configuration for the automatic floorplanning exploration: {0.125, 0.25, 0.5, 1, 2, 4}.

0	

50	

100	

150	

200	

250	

300	

350	

400	

0.015625	
 0.03125	
 0.0625	
 0.125	
 0.25	
 0.5	
 1	

Fr
eq
ue
nc
y	

(M
H
z)
	

Aspect	
 Ratio	
 X:Y	

Frequency	
 vs.	
 Aspect	
 Ratio:	
 	

Stretching	
 vertically	

0	

50	

100	

150	

200	

250	

300	

350	

400	

1	
 2	
 4	
 8	
 16	
 32	

Fr
eq
ue
nc
y	

(M
H
z)
	

Aspect	
 Ratio	
 X:Y	

Frequency	
 vs.	
 Aspect	
 Ratio:	

Stretching	
 horizontally	

138

Figure 6.8: Vertical routing congestion: (a) ratio 1:4, (b) ratio 1:48

It is not feasible to try all combinations of aspect ratios for each stage, because this

approach does not scale well as the number of stages increases. Specifically, the

number of combinations is exponential given by rn, where r is the number of aspect

ratios and n is the number of stages, i.e., 6n for the chosen set of six aspect ratios.

Instead, Algorithm 6.2 groups the stages by similarity of size into a smaller number

of size bins. The number of aspect ratio combinations is still exponential, but

reduced to rb, where b is the number of size bins.

In practice, pipelines have a relatively small number of stages and the sizes of the

stages are relatively similar, so a small number of bins, for example b = 2 or 3,

seemed reasonable. However, to check for asymptotic trends under more extreme

and synthetic conditions, the second experiment investigated the impact of the

number of bins on four example 21-stage pipelines with randomly generated stage

sizes between 1 and 500 slices. This experiment was solely concerned with relative

floorplan quality, not the routability of the resulting floorplan. Figure 6.9 shows how

the amount of external fragmentation, as measured by the relative size of the

fragmented area in the best floorplan generated by Algorithm 6.2, decreased as the

number of size bins increases. Based on this experiment, seven bins were used as a

139

Figure 6.9: Minimizing the area of pipeline designs by adding size bins

more conservative choice for the automated floorplanning exploration, which meant

that 67 = 279,936 combinations of aspect ratios are checked by Algorithm 6.2. The

run time for the algorithm with this setting was under one minute for a 21-stage

pipeline.

It is important to note that these two experiments were conducted in order to guide

heuristic choices that bound the search space of Algorithm 6.2, and the first

experiment in particular does not necessarily give guidance on desirable aspect ratios

for blocks in general. A less domain-specific study of the impact of aspect ratio was

carried out by Kalte et al. [128], although this was confined to stretching in a single

dimension. In general, this indicated that, for smaller designs, extreme vertical

stretching (in fact, extreme horizontal compression) had a negative impact on

performance and power consumption, but had a negligible impact on larger designs.

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0	
 2	
 4	
 6	
 8	

Pe
rc
en
t	
 o
f	
 f
ra
gm

en
te
d	

ar
ea
	
 (P
FA
)	

Number	
 of	
 size	
 bins	

Floorplanning	
 area	
 results	
 from	
 changing	

number	
 of	
 size	
 bins	

Pipeline	
 4	

Pipeline	
 3	

Pipeline	
 2	

Pipeline	
 1	

140

Figure 6.10: Three example floorplanned designs targeting Virtex-6

There are of course also other factors that could feed into floorplan exploration,

further complicating the search space. For example, Carver et al. [129] showed that

the algorithmic placement of the bus macros used in the old Xilinx PR flow had

significant impact on performance, whereas this work relied on the inbuilt quality of

placement of the hidden partition pins in the new Xilinx PR flow.

Figure 6.10 shows three examples of generated floorplans, targeting the Xilinx

Virtex-6 380 HXT FPGA. The first two designs were 21-stage pipelines, and were

given vertical and horizontal orientations respectively, each following a zig-zag

pattern. The third design is a 24-stage pipeline that required memory at every stage,

and so it was given a vertical orientation and placed along a BRAM column.

Figure 6.11 shows the floorplanning process in action for a five-stage 512-bit wide

packet parsing pipeline example that will be introduced in detail in the case study of

Chapter 7. The pipeline has a horizontal zig-zag orientation, as follows: first stage at

the bottom left, second stage at the bottom right, third stage at the middle right,

fourth stage at the middle left, and fifth stage at the top left. First, Figure 6.11(a)

shows a visualization generated by the floorplanner after Algorithm 6.2 had been

applied. Notably, this shows a central obstruction, in black. This region

corresponded to a combination of a configuration block real obstruction and a sparse

141

SLICEM virtual obstruction (as discussed at the beginning of this section). Because

of this, the first and second stages, and the third and fourth stages, have

interconnections that span this obstruction. The floorplanner generates area

constraints in a UCF file for PlanAhead, and Figure 6.11(b) shows the imported

floorplan in a PlanAhead view. Finally, Figure 6.11(c) shows the placed and routed

pipeline in an FPGA Editor view. The stages are shown in alternating shades for

clarity, and have 80% slice utilization. Note the inter-stage interconnection wiring,

shown in the darkest shade. The floorplanning algorithm positions the stages only,

since they are dynamic regions for partial reconfiguration and so have to be within

known bounding boxes. The interconnection is part of the static region and does not

have to be floorplanned explicitly, though of course its good placement and routing

by the standard tools is important to the performance of the pipeline.

One final detail, reflected in this example, is that Xilinx partial reconfiguration is

performed in units of ‘frames’ which are of 40x1 CLB size on the Virtex-6 FPGA,

and that reconfigurable partitions must not share frames. Therefore, Algorithm 6.2

takes these frame boundaries into account as an additional factor. This can be seen

in Figure 6.11(b), where the bounding boxes for the stages are aligned with the

horizontal lines that denote 40x1 CLB clock regions on the FPGA.

142

Figure 6.11: Five-stage pipeline layout: (a) Floorplanner, (b) PlanAhead, (c) FPGA Editor

143

6.4 ReShape design tools

The original ShapeUp tools support a modular design time methodology based on

high-level Click descriptions. The central purpose of the ReShape extensions is to

support the minimally intrusive updating of systems in operation. Clearly, with only

the ShapeUp tools described in Chapter 3, it is possible to update systems over time,

by just creating a new implementation of the complete system and then loading it by

completely reconfiguring an FPGA. The contribution of ReShape is to enable

selective change, through partial reconfiguration of the FPGA, reducing the time

needed for updates and also allowing uninterrupted operation of the overall system

during updating of particular components.

Figure 6.12: Click element packaging

Figure 6.12 and Figure 6.13 show the two parts of the ShapeUp design flow,

described in Chapter 3, with specific additions for ReShape shown enclosed within

	

Element	
 packager

Interface	
 metadata Module	
 RTL

Slice	

estimatio

Add	
 to	
 element	
 library

Metadata RTL Metadata

144

dotted boxes. Figure 6.12 shows the process of transforming an RTL (e.g. Verilog or

VHDL) description of a module into a Click element within the library used by the

Click-based system implementation flow shown in Figure 6.13. An element

packager is used to associate metadata with the module. In the original ShapeUp

flow, this metadata is supplied by the user, and describes the characteristics of the

module’s interfaces, as outlined in Section 3.3. In the extended ReShape flow,

additional metadata is included to describe the resource use (in slices) of the module.

This information is obtained by synthesizing the module and then processing it with

the Xilinx Map tool, for one or more target devices. An estimate of slice use can be

obtained with lighter weight tool use, either through PlanAhead resource estimation

based on the RTL or through synthesis-only estimation of LUT/FF use, but Map

gives a more accurate result.

Figure 6.13 shows the ShapeUp design methodology, including tools for entering,

checking, and validating Click system descriptions, and the stitching tool for

generating RTL descriptions of the wiring for connecting elements together. The

new feature for ReShape is a domain-specific floorplanner, incorporating the

floorplanning algorithm discussed in Section 6.3. This inclusion of a floorplanning

step for partial reconfiguration is similar to that seen in the ReCoBus design flow

[125] for example. The floorplanner reads in a Click description and element

metadata, and it outputs a set of physical placement constraints for the modules, e.g.

in UCF format.

The other new feature is the retention of system information for later use when

updating the system over time. There are two types of new metadata:

• Results from the PlanAhead/ISE tool flow: information about partitions and

their implementation.

• Results from the floorplanner: locations and size of bounding boxes for each

module.

145

Figure 6.13: Full system implementation flow

Note that there are in fact some potential benefits of introducing floorplanning for

the ShapeUp methodology alone, through introducing predictability into the

implementation. These include the ability to provide system performance guarantees

directly derived from the performance of individual elements, and also to allow

higher-level debugging in terms of individual elements.

One important question concerned whether extensions to the Click syntax or

semantics would be necessary in order to support the desired ReShape methodology.

Here, there was no inspiration from the traditional software version of Click, which

System	
 entry	
 and	

visualization

Validation:	
 multi-­‐level	

simulation

Click	
 description

System	

	
 RTL	
 	

PlanAhead	
 using	
 PR	

ISE	
 (XST,	
 Map,	
 PAR,	
 Bitgen)

Element	
 library

Floorplanner Linker

 Constraints	
 	

Full	
 bitstream	
 	

All-­‐partition	
 ISE	
 results
Saved	
 system	
 metadata	
 	

146

does not have the notion of dynamic updating of only selected parts of the system.

Dynamic changes to Click descriptions are realized by hot swapping the entire

system. This includes preserving state, by moving any in-transit packets from the

old version of the system to the new version. In short, the slower-speed and less

time-critical Click systems implemented in software had not provided motivation for

considering partial updating of systems in operation.

In fact, no extensions to Click are strictly necessary in order to enable the basic

ReShape methodology. The use model is that there are successive versions of a

Click description as a system evolves over time. The ReShape tools can analyze the

differences between two versions in order to ascertain whether partial updating is

feasible, or whether complete system reimplementation and full reconfiguration is

required. The details can be entirely hidden from the user, except as reflected by

differences in the observed implementation and configuration time. In the ReShape

prototype, there are two requirements for partial updating to be feasible:

• The structure of the Click graph – elements and connections – is unchanged;

• Any substitute elements are both interface and floorplan compatible with

their predecessor elements.

Slackening of the first requirement is a topic of future research, and centers around

supporting dynamic system structures: adding or removing elements, and adding or

removing connections. One approach could be to harness past research on task-

based reconfiguration, treating elements as a collection of resident tasks. This must

ensure that the direct connections of Click system architectures are efficiently

mapped to any generic inter-task communication harness. Policing, and then acting

upon, the second requirement has been the main focus of the initial ReShape tool

effort.

To support arbitrary substitution of Click elements, each element must be mapped to

a floorplanned module. For cases where it is known that complete flexibility is not

147

required, ReShape allows the user to add information to the Click description in two

different ways, to reflect two varieties of less dynamic systems:

• Specific element substitution. Here, the default is reversed: elements are not

dynamic, and the user indicates explicitly which elements are. This can be

done without any change to the Click syntax. Any element declaration can

include a configuration string that specifies parameters for that particular

element instance. The semantic addition is to support the interpretation of an

extra keyword DYNAMIC in configuration strings of dynamic elements, for

example:

ccm_reader :: FrameReader(TYPE VHDL, DYNAMIC);

• Static element selection. Here, a fixed selection of choices can be specified

for a particular element at design time. This is a common approach taken for

partially reconfigurable systems with a static collection of module choices. A

syntax extension to Click was the cleaner way to express this case,

generalizing an element declaration to list the multiple element types

allowed, for example:

proc :: Proc1 | Proc2 | Proc3 ;

The practical benefit of these schemes is to facilitate a more optimized

implementation, with the non-dynamic parts of the system being considered as a

single unchanging static region with a flattened implementation.

Figure 6.13 shows the ReShape implementation flow for updates to the ‘system for

life’. The main notable features are three tests to ascertain whether an update to the

Click system description is amenable to partial reconfiguration, or whether full

system re-implementation and reconfiguration is required. The first test checks

whether the input Click system graph is isomorphic to the previous version of the

graph that is retained as saved system metadata. If the elements or the connections

between elements (including the types of the connections), has changed, then the full

re-implementation flow is triggered. In ShapeUp, the type checker was concerned

148

just with checking that two interfaces are compatible, so that a connection can be

made between them. For ReShape, this function is extended to provide a check that

two elements are compatible, that is, one element can replace another. To do this, it

is necessary to check that both elements have completely compatible sets of

interfaces, which can be done using the original per-interface type checker.

The second test checks whether substitute elements fit into the existing floorplan of

the system. The first test has already covered interface compatibility, so this test just

compares the slice count of the substitute element(s) with the slice counts of the

existing element(s). The resource use of the substitute element(s) is given by the

metadata attached to these elements in the library, and the resource use of the

existing element(s) is held as saved system metadata. If the first two tests are passed,

the PlanAhead-based PR flow is used to update the reconfigurable partitions for the

element(s) being replaced.

After this, the third test checks that the resulting system still meets the performance

of the existing system. This performance information is held as saved system

metadata. All of the floorplanning metadata, and the ShapeUp module interface

metadata, are retained throughout a system’s lifetime to allow for updates.

No major changes were made to the existing validator and visualizer. When there is

a system update, the validator operates with the distinct versions of the system

separately. At present, the prototype does not include any validation of system

behavior during reconfiguration, although it is hoped that a later version can benefit

from recent research into this topic, for example [130]. A visualizer extension is to

indicate whether or not the system under construction is compatible with a previous

version of the system, in other words, whether the update will be simple (with partial

reconfiguration) or complex (with full implementation).

149

Figure 6.14: ReShape system update implementation flow

The final piece of the ReShape methodology is a tool to perform the partial

reconfiguration of the system during operation. This uses the standard Xilinx PR

mechanism, rather than a custom runtime system, e.g. [64].

System	
 update

Click	
 graph	

unchanged?

Yes

No

System	
 entry	
 and	
 visualization
Connection	
 type	
 checking

Validation:	
 multi-­‐level	
 simulation

Click	

description

Element	

library

PlanAhead	
 using	
 PR	
 flow

ISE	
 (XST,	
 Map,	
 PAR,	
 Bitgen)

Partial	

bitstream	
 	

Per-­‐partition	
 ISE	
 results
Saved	
 system	
 metadata	
 	

	
 	

Yes

No Substitute	

elements	
 	
 fit?

Yes

No Performance	

maintained?

Full	

system	

flow

Full	

system	

flow

150

6.5 Summary

Chapter 6 introduced the adaptive systems part of this work, extending the ShapeUp

framework to support dynamic modules in an extended methodology called

ReShape. This model allows: (a) modules to be substituted dynamically when the

system is in operation, (b) brings benefits of abstraction and modularity to dynamic

reconfiguration based on the latest partial reconfiguration (PR) tools, and (c) extends

the ShapeUp framework from purely design-time use to lifetime use. A key topic in

this work was floorplanning, which physically constrains design placement. This

chapter investigated the automatic floorplanning of modules and described

experiments measuring the performance of partition-based design flows. This

chapter also proposed an algorithm to constrain the placement of modules

communicating in a linear pipeline.

The main contributions of this chapter are:

• Section 6.1 presented a concise summary of the new Xilinx partial

reconfiguration design flow, which is based on using partitions.

• Section 6.2 presented experiments on internal fragmentation and the

floorplanned PR methodology, which guided tactics for the new floorplanner.

• Section 6.3 presented the ReShape floorplanning algorithm for networking

designs described in Linear Click, using a zig-zag layout. Experiments on

varying the aspect ratio and floorplanning examples provided heuristics for

the new floorplanner.

• Section 6.4 presented the design flow for ReShape that supports dynamic

changes to the design. This illustrated how the new floorplanner is integrated

into the ShapeUp design flow. Additional metadata is stored about the

resource use of the modules. Notably, the type checking process is extended

to check whether two elements are compatible, and whether a new element

can replace the existing one.

151

The next chapter describes the validation of the ReShape through use in a real-life

industrial-strength case study of network processing acceleration.

152

153

Chapter 7
Case Study 2: An Adaptive High

Performance Network System

The original ShapeUp methodology and now the extended ReShape methodology

have been evaluated on a number of real-life, industrial-strength case studies. These

have been drawn from the networking and telecommunications area, the application

domain within which FPGAs find the greatest application. The aim was to

demonstrate that the user productivity gains seen using a higher-level system design

approach did not introduce unacceptable losses in quality of results. In particular,

the implemented systems had to meet the performance targets for networking

functions at data rates ranging between 1 and 200 Gb/sec.

A main case study for the full ReShape methodology involved a programmable

packet parsing (PPP) system, required to operate at a data rate of up to 150 Gb/sec on

a Xilinx Virtex-6 FPGA. The full specification of the PPP system, and the detailed

discussion of a prototype version that did not involve the use of ShapeUp or

ReShape, have appeared in an earlier publication by Attig and Brebner [131]. In

fact, the results demonstrated a data rate of up to 400 Gb/sec on the most recent PPP

version that was targeted at a Xilinx Virtex-7 FPGA. This case study was based on

an earlier version, although it is anticipated that it can scale up to the faster version

without issues.

Section 7.1 presents the background on the programmable packet parser that was

used for this case study. This background section is adapted from [131], with the

permission of the authors. Section 7.2 presents ReShape Linear Click examples

154

describing the PPP. Section 7.3 presents the results of this case study. Section 7.4

summarizes the contributions of this chapter.

7.1 High-speed Programmable Packet Parser

As the Internet evolves, there is a growing need for non-trivial packet parsing at all

points in the networking infrastructure, including the core carrier networks. Parsing

is central to packet classification in order to identify flows and implement quality of

service goals. Increasingly, it is also important to guide deeper packet inspection in

order to implement security policies. Of course, packet parsing also continues to

have a central role in the implementation of end-to-end communication protocols.

With core networks increasing towards 400 Gb/sec rates, packet parsing at line rate

poses a major problem. A further complication is that parsing requirements can

change frequently as network traffic patterns evolve and protocols are introduced,

modified or replaced. This demands dynamic flexibility within networking

equipment.

A packet in transit consists of a stack of headers, a data payload, and – optionally – a

stack of trailers. At an end system, a packet might begin with a stack of Ethernet, IP

and TCP headers, for example. In a core network, a packet might begin with a stack

of various Carrier Ethernet or MPLS headers, reflecting en-route encapsulation, for

example. The basic parsing problem can be formulated as traversing a stack of

headers in order to:

• Extract a key from the stack (e.g., a 16-bit packet type field or a TCP/IP five-

tuple); and/or

• Ascertain the position of the data payload (e.g. to enable deeper packet

inspection).

The traversal is guided by a parsing algorithm consisting of rules for interpreting

different types of header format. Note that, without loss of generality, this approach

155

can be extended to the parsing of packet trailers, if required. The parsing process

must also smoothly handle failures of parsing, indicating unsupported packet forms.

The results of parsing feed into other network processing components. These can

include key lookup engines for packet classification, and regular expression

matching engines for deep packet inspection.

Traditional approaches to providing the required flexibility in packet parsing involve

using general purpose servers as a basis for network nodes. However, these may not

be capable of providing the required performance. To address this, the combination

of general purpose processors and specialized high-performance network processors

is possible. However, the increasing specialization of network processors can thwart

goals of flexibility and scalability. The Field Programmable Gate Array (FPGA) is

an alternative technology that can fulfill the necessary requirements for high-speed

concurrent packet processing, and which can be harnessed in tandem with

complementary general-purpose processors.

The main goal of the FPGA-based Programmable Packet Parser (PPP) was to

achieve packet throughput in the 100s of Gb/sec range, employing a scalable

approach that would not require substantial re-engineering with each new step in

required throughput. The physical constraints were the amount of programmable

logic available on target FPGA devices, and the achievable clock rates for such logic.

The setting involves the streaming of packet data through the PPP system, using a

very wide data path, for example, 512 bits wide to achieve a 150 Gb/sec data rate. In

some cases, this packet data might just consist of the relevant header part, following

payload offload to temporary memory; in other cases, notably initial packet

classification, this data is the entire packet. The packet parsing is performed on the

fly as the packets stream through. In other words, the module has cut-through

operation, rather than store and forward, which would introduce higher packet

processing latency. In order to achieve clock frequencies in the desired range,

pipelining is deployed extensively.

156

Figure 7.1: Packet parsing pipeline architecture

Figure 7.1 shows the top-level pipelined architecture. There is a natural mapping

between the parsing algorithm and the pipeline: one pipeline stage for each level in a

packet header stack. As a packet advances through the pipeline, one header is parsed

at each stage. In steady state operation, multiple packets are being parsed

simultaneously in the pipeline. Each stage has a fixed internal microarchitecture,

which has microcoding to provide a degree of programmability when the system is in

operation.

When a packet starts to arrive at the input of a header parsing stage, it comes in

tandem with the header type identifier, the offset in the data stream, and a key being

constructed. The stage microarchitecture has five components. A header type

lookup component uses the input header type identifier to fetch customized

microcode that programs the remaining components in the stage to be able to handle

the particular header type. Meanwhile, the input header offset within the packet

stream is forwarded to a locate component that finds the header within the input

packet stream. The locate component works in tandem with an extract component

that contains customized shifting and masking logic to isolate header fields for use in

parsing computations, and key building. A compute component contains

customized, heavily pipelined, logic to perform operations associated with the

parsing algorithm, including computing the next header and the header size. Results

of the compute component can also be forwarded to an optional key builder

component that constructs a revised parsing key.

Stage Noffset

hdr type

data
packet packet

data

header
final

offset
final

data
packet

final keykey

initial
header

initial
offset

Header
Parsing
Stage 0

Header
Parsing
Stage 1

Header
Parsing

157

Microcode instructions are used to control the behavior of the five components

within each parsing pipeline stage. This allows the same set of resources to be

shared for each of the different header types being processed by a stage. The exact

microcode format is specific to the set of components contained in a particular stage.

The size of the stored microcode depends on the complexity of the components.

Figure 7.2: Pipeline stage microcode organization

The general format of the microcode is shown in Figure 7.2. It consists of four

sections. The first section consists of zero or more extract size-offset pairs. These

correspond to different fields that may be extracted from the packet in order to parse

a header. The size indicates the bit width of the field, and the offset indicates its bit

position from the start of the header segment. The second section consists of

compute operations and input selectors. One compute operation entry exists for each

stage in a compute unit pipeline. The supported operations are encoded as unique

integer identifiers. The compute input selectors program a multiplexer to enable the

appropriate inputs to reach a compute unit. Multiplexer inputs could be the different

extracted fields or constants from the microcode. The third section consists of zero

or more sources for data to be appended to the packet's context key. The final

Size

Size Offset
ExtractExtract

InputOp
Compute Compute

Op
Key

Constant

Key
Source

Source

158

section consists of constants, occurring in the header object description and then used

directly in computations. Constants can be of variable size.

The microcoded PPP system was evaluated using a benchmark suite drawn from

examples required in practical networking situations. These fell into two broad

categories: carrier (wide area and metro area networks), and end system (access and

enterprise settings). In turn, these categories correspond to layer-two and below, and

layer-three and above, protocol settings respectively. Experimental results for the

FPGA implementation confirmed that packets could be parsed at very high line rates,

of 100 Gb/s and higher.

7.2 ReShape Linear Click Descriptions

A key feature of the PPP is that its parsing algorithms must be modifiable at run

time, in other words the header parsing stages must be programmable. This is so that

a network administrator can make changes to support different types of network

traffic as requirements evolve. The existing version of the PPP accommodated this

need by including specialized microcoding within the parsing stages, and an

interface to update the control stores containing the microcode.

The PPP thus offered a valuable case study for the ReShape methodology. The

architecture was well suited for the Linear Click setting, being representative of the

packet processing pipeline with wide data path style that is very common in high

speed networking implementations on FPGAs. Moreover, it had an essential

requirement for modifying the system at run time, and presented the opportunity to

compare an approach based on partial reconfiguration with the existing approach

based on microcoding.

In ReShape terms, the case study involved the most general use case for dynamic

elements. There was no fixed set of pre-defined Click elements because new

159

elements needed to be created and then incorporated in order to satisfy evolving

requirements in the field. So the PPP presented a genuine ‘system for life’ use case.

Three versions of the PPP were used in experiments, to assess not just the benefits of

ReShape, but also the advantages or disadvantages of using partial reconfiguration.

The three versions had different degrees of programmability. The first was a

hardcoded reference version that did not allow reprogramming after FPGA

implementation. The second was the standard microcoded version, which allowed

reprogramming within the constraints of the microcode and the internal architecture

driven by the microcode. The third was the ReShape version, which allowed the

most general reprogramming through the complete change of the parsing stage logic.

The first two versions were modeled with the static ShapeUp methodology. An

example Click description of a three-stage instance of the hardcoded version is:

FromDevice(MAC) ->

stage0 :: ParseEthernet ->

stage1 :: ParseIPv4orIPv6 ->

stage2 :: ParseTCPorUDP->

ToDevice(MAC);

Here the three fixed elements are for parsing an Ethernet header, either an IP version

4 or IP version 6 header, and either a TCP or UDP header, respectively.

An example Click description of a three-stage instance of the microcoded version is:

FromDevice(MAC) ->

[S_in] stage0 :: MicrocodedStageSize1 [S_out] ->

[S_in] stage1 :: MicrocodedStageSize2 [S_out] ->

[S_in] stage2 :: MicrocodedStageSize2 [S_out] ->

ToDevice(MAC);

160

Controller [A_update0] -> [A_control_store] stage0;

Controller [A_update1] -> [A_control_store] stage1;

Controller [A_update2] -> [A_control_store] stage2;

Here, there are two different microcoded elements in the main pipeline, one used at

the first stage, the other used at the second and third stages. These reflect different

provisioning in terms of the complexity of functions carried out, and the

corresponding microcode. The final three connections represent the interfaces used

for updating the microcode in the stages, by a controller that writes to the internal

control stores in the elements. As in earlier examples, Hungarian notation is used to

denote the type of the element ports: “S” for stream and “A” for access.

An example Click description of a three-stage instance of the ReShape version

would be exactly the same as that shown for the hardcoded version. This could

represent an initial instance. Then, an updated version might be presented to

ReShape:

FromDevice(MAC) ->

stage0 :: ParseEthernet ->

stage1 :: ParseVLANorIPv4orIPv6 ->

stage2 :: ParseIPv4orIPv6orNull ->

ToDevice(MAC);

Here, the parser is being changed to handle an optional Ethernet VLAN header, and

to discontinue TCP/UDP header handling. The first stage is unchanged, and the

second and third stages can be reconfigured (assuming that they fit of course).

7.3 Experiments and Results

Experiments were carried out using four PPP instances. Designs 1 and 2 contained a

three-stage pipeline, and Designs 3 and 4 contained a five-stage pipeline. These

instances handled parsing of different combinations of Ethernet, VLAN, IP, and TCP

161

protocols, exact details of these not being relevant here. The hardcoded versions had

separate implementations for the four designs. The microcoded and ReShape

versions both had one (three-stage) implementation for Designs 1 and 2 and another

(five-stage) implementation for Designs 3 and 4. The implementations were created

using the Xilinx ISE tools version 13.2, and targeted a XilinxVirtex-6 HX380T

FPGA.

Table 7.1 shows the implementation results from these experiments. The first row

for each design shows the overall system resource use and the performance. In the

hardcoded versions, the system implementations were flattened, that is, no logical

structure was preserved in the physical layout. This allowed global optimization over

the whole pipeline, in the traditional manner of placement and routing tools. These

results form a baseline in terms of the best possible results for each design. Note

however that these hardcoded versions fail the requirement for run-time

programmability – unless of course one allows complete re-implementation as a

form of programmability, which was not the case in the driving application. All of

the hardcoded designs achieved clock rates in excess of 400 MHz, which was

considerably in excess of the actual requirement of 300 MHz to satisfy a 150 Gb/sec

data rate. It can be seen that the resource use, in terms of both lookup tables (LUTs)

and flip-flops (FFs), was directly proportional to the pipeline length.

The overall system implementation results for the microcoded and ReShape versions

of the four designs indicate the cost of adding programmability, in terms of resources

and performance. The resource use for the ReShape versions takes into account the

entire bounding box for the reconfigurable partition for each stage, not just the actual

resources used within it. The total bounding box resources are then added to the

resources used for the static region to give the numbers in the table.

It can be seen that both versions of each design met the required performance target

of 300 MHz. As might be expected, the ReShape versions, with the highest degree

of programmability, had the lowest clock rates. The microcoded versions, with a

162

lesser degree of programmability, were intermediate in clock rate between the

ReShape versions and the hardcoded versions. A similar continuum can be seen

when considering the use of LUTs, showing the logic price paid for

programmability. When considering the use of FFs, the ReShape version is

penalized because of flip-flops ‘trapped’ within bounding boxes, as opposed to being

used actively in the implementation. In general the three versions use fairly similar

numbers of FFs.

Table 7.1: PPP instances: hardcoded (HC), microcoded (uC), and ReShape (RS) versions

Module

HC

LUTs

HC

FFs

HC

Freq.

uC

LUTs

uC

FFs

uC

Freq.

RS

LUTs

RS

FFs

RS

Freq.

Design1 11,832 14,000 404 14,304 16,101 364 26,165 36,496 354

Stage0 3,833 3,253 4,665 4,281 6,080 12,160

Stage1 3,167 3,697 6,267 6,740 5,928 11,856

Stage2 3,810 3,304 4,701 4,387 6,240 12,480

Design2 11,921 14,023 435 14,304 16,101 364 26,165 36,496 333

Stage0 3,833 3,253 4,665 4,281 6,080 12,160

Stage1 4,280 3,652 6,267 6,740 5,928 11,856

Stage2 3,810 3,304 4,701 4,387 6,240 12,480

Design3 19,166 23,172 411 25,530 28,158 361 38,645 66,531 336

Stage0 3,833 3,253 4,665 4,281 6,080 12,160

Stage1 4,246 3,718 6,292 6,837 5,928 11,856

Stage2 4,256 3,725 7,004 7,748 6,240 12,480

Stage3 4,243 3,707 6,435 7,066 6,552 13,104

Stage4 3,810 3,304 4,701 4,387 5,928 11,856

Design4 19,185 23,269 422 25,530 28,158 361 38,645 66,531 329

Stage0 3,833 3,253 4,665 4,281 6,080 12,160

Stage1 4,261 3,735 6,292 6,837 5,928 11,856

Stage2 4,272 3,741 7,004 7,748 6,240 12,480

Stage3 4,257 3,725 6,435 7,066 6,552 13,104

Stage4 3,810 3,304 4,701 4,387 5,928 11,856

163

Table 7.1 also shows the resources used for the individual stages. The stages do not

have independent existences in the hardcoded and microcoded versions, but the data

allows comparison with the stages in the ReShape versions, which are the

independent modules used for reconfiguration. It is interesting to note that the

microcoded versions show wide variability between stages compared to the other

two versions. This is because each stage was provisioned for a different worst-case

programming possibility. In particular, some stages required more resource in the

microcoded version than in the ReShape version. The ReShape resource use was

compared with the hardcoded resource use in more detail. While there was a large

headline increase in LUTs and FFs due to the bounding box effect, the actual

increase in utilized resource was ~25% in LUTs and zero in FFs. The LUT increase

was because each partition pin is implemented by a LUT1 and there were ~1100 nets

crossing in or out of each reconfigurable partition.

The reprogramming times of the microcoded and ReShape approaches were

compared for a five-stage PPP instance, and are shown in Table 7.2. In the

microcoded version, an update can be done by writing 64-bit words into the control

store for a stage. For the ReShape version, the number of reconfiguration frames for

each stage was computed, and hence the size of the partial bitstream needed for the

update. The ICAP and SelectMAP interfaces for partial reconfiguration are 32-bit

and have a maximum frequency of 100 MHz for the Xilinx Virtex-6 architecture,

which severely limits the speed of reconfiguration [30]. Note that researchers have

successfully run these interfaces at higher rates (for example [132]), but a

conservative quantification is used here.

As can be seen from Table 7.2, there is a significant difference between the two

approaches in terms of reprogramming time: nanosecond time versus millisecond

time. However, this reflects the wide difference in programmability, between the

modest tweaks possible with microprogramming and the complete architecture

change possible with ReShape. In fact, given that parser updates are likely to be

very infrequent, it is not unacceptable that a reconfiguration takes around 1 ms.

164

Table 7.2: Reprogramming time for microcode and ReShape approaches

Stage Microcode

update

data (bits)

Microcode

update

time (ns)

No.

config

frames

Partial

bitstream

size (bytes)

ReShape

update

time (us)

0 39 3 26 355,104 888

1 57 3 27 366,768 917

2 84 6 29 417,312 1,043

3 82 6 28 378,432 946

4 62 3 26 413,424 1,034

Module RTL source files and metadata were generated using a high-level language

compiler for the PP language, described in [131]. Additional metadata, including

the area estimates for the FPGA, was determined by running synthesis (XST) and

resource mapping (MAP). This metadata was also packaged with the element RTL

source, as illustrated in Figure 6.12.

The ReShape design tools were used to create the case study FPGA implementation,

as shown in Figure 6.13. The floorplanning tool was used to apply the floorplanning

algorithm, described in Section 6.3, to both the three-stage Design 1 and five-stage

Design 3 example pipelines. The floorplanner processed the initial Click description

and determined the physical placement constraints for each of the modules. The

linker was used to create the top-level structural description of the system. The

structural description and the placement constraints were loaded into PlanAhead to

create a PR implementation of the design. The ISE tools were used to create the full,

static bitstream, for configuring the FPGA. The validator was used to simulate the

behavior.

The modified Click descriptions for Design 2 and Design 4 were used to perform

system updates, as shown in Figure 6.14. The updated Click was processed by the

floorplanner, and the Click graph remained unchanged between versions, and the

165

substitute elements were checked to confirm that they fit. The PlanAhead PR flow

was used along with ISE to produce a partial bitstream. (As an alternative example,

updating from Design 1 to Design 3 would have had a different number of elements

in the Click graph, which would have required using the full system flow.)

PlanAhead used the partition-based design flow to implement only the updated

partitions in the design, which meant that the previous implementation results for

stage 0 and stage 4 were imported.

The ReShape design tools raised the level of abstraction, so that the implementation

of the examples did not require the tedious and error prone task of manual

floorplanning.

7.4 Summary

Overall, the case study demonstrated the benefits of the ReShape approach, in terms

of supporting the ‘system for life’ model and hiding the low-level details of partial

reconfiguration from the user. It was possible to work from a single high-level Click

description, using the various tools in the ReShape suite. The implementation results

showed that the target performance for a 150 Gb/sec data rate could be achieved

using a 512-bit data path at over 300 MHz, how the resource use compared with a

non-floorplanned and flattened implementation, and how the reprogramming time

compared with a microcoded implementation.

The main contributions of the case study described in this chapter are the following:

• A high-speed real-life system is described in Linear Click. An example of

the Programmable Packet Parser supporting dynamic behavior is described in

Section 7.2.

• Experiments using four configurations of the Programmable Packet Parser

were conducted, comparing the hard-coded, microcoded, and ReShape

approaches. A comparison of the results is presented in Section 7.3.

166

• The case study demonstrated the benefits of the ReShape approach, in terms

of supporting the ‘system for life’ model and hiding the low-level details of

partial reconfiguration from the user. This is discussed in Section 7.3.

167

Chapter 8
Conclusions

The ShapeUp methodology is a significant contribution to encouraging a high-level

modular approach to designing FPGA-based systems. This is very necessary, given

the increasing complexity of such systems. The ShapeUp methodology is founded

upon a small set of abstractions of module interface behavior, chosen to be

comprehensive yet compact, and principled yet pragmatic. To make these

abstractions practical, a metadata format was developed to describe instances of the

interface data schemas. This is aligned with the emergent IP-XACT standard. The

metadata is then used by a variety of tools, which contribute to a high-level modular

design flow. The Click language, with a fundamental generalization of the semantics

of connections, is employed for system description. The new configurable timing

modules represent one of a core set of generic module libraries that contribute to the

overall ShapeUp methodology. Although motivated by the needs of networking, the

new configurable timing modules have potential applications in many types of real

time embedded systems where there are events and activities that are influenced by

the passage of time.

The ReShape methodology extends the modular approach to apply throughout the

lifetime of a system. It provides a consistent high-level view that hides the

intricacies of using dynamic partial reconfiguration of FPGAs to perform system

updates. This is underpinned by automated floorplanning to act as the bridge

between the logical system description and the physical FPGA implementation. This

automation has been prototyped for Linear Click, a variant that is well suited to the

broad domain of networking applications. The ReShape framework is designed to

allow other domain-specific floorplanners to be incorporated in the future. The

168

overall methodology has been successfully applied to a number of real-life case

studies involving networking at very high data rates. This confirms that ReShape is

not a ‘toy’ approach, but gives a practical way of hiding low-level detail while not

compromising the quality of results unduly. This helps to reinforce the notion of the

FPGA as a mainstream programmable technology.

8.1 Main Contributions and Impact

The main contributions of this dissertation are:

• Synthesis of background research results from four different areas: FPGAs,

system-level design, dynamic reconfiguration, and networking

• ShapeUp research:

o Contributions:

 Analysis of inter-module communication, and abstraction of

interface behaviors;

 Definition of data-driven approach using metadata and meta-

metadata;

 Creation of innovative interface type checking algorithm;

 Building of methodology and tool flow for module-based

system design

o Impacts:

 New Xilinx product under development for high-level

modular design, featuring “plug-n-play” interfaces

 Two patents:

• Interface type checking for integrated circuit design

• Novel graphical interface for the Pop design

environment

169

 Conference paper at 18th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2010)

[133]

• Timing research:

o Contributions:

 Analysis of time-related functions in computer and networking

systems, with particular focus on communication protocols,

and abstraction of timing behaviors;

 Definition of a small set of standard timing modules;

 Incorporation of modules into ShapeUp methodology;

 Demonstration on high-speed telecommunications examples

o Impacts:

 Customer reference designs for Ethernet OAM, resulting in

design wins for Xilinx

 Conference paper at 20th International Conference on Field

Programmable Logic and Applications (FPL 2010) [134]

• ReShape research:

o Contributions:

 Analysis of behavior of existing partial reconfiguration

techniques, and halving of expected internal fragmentation;

 Creation of innovative floorplanning algorithm tuned for high-

speed networking;

 Building of methodology and tool flow for high-level adaptive

system design;

 Demonstration on high-speed telecommunication examples

o Impacts:

 Xilinx customer engagements

 Patent pending

170

 Journal paper accepted for the ACM Transactions on

Reconfigurable Technology and Systems (TRETS), pending

publication

 Floorplanning extension to the IP-XACT standard

In summary, this dissertation has presented several important contributions that

encourage a modular, high-level approach to designing FPGA-based

networking/streaming systems that also simplifies reconfiguration in order to

facilitate adaptive behavior.

8.2 Future work

There are three main directions suggested for future work, which are expanded upon

in the discussion following:

1. Incorporating ShapeUp interface abstractions and timing abstractions into

tools for module creation from high-level descriptions.

2. Supporting adaptive systems beyond pipelines, and dynamic graph structures.

3. Generalization of mappings between Click elements/connections and

modules interconnect.

One step in further raising the level of abstraction is building upon the experimental

work of (a) incorporating ShapeUp interface type abstractions into the G language

and (b) coupling ShapeUp timing modules with G modules, in order to build the

ShapeUp system view into languages for describing system modules, and their

compilers. This will lessen the system integration challenges posed to tools like the

linker and validator, by providing harmonious modules that are ShapeUp ready.

Another step is generalizing the prototype ReShape capabilities. One aspect is

providing alternative plug-in floorplanners that are specialized for important

domains. The other aspect is extending the tools to deal with dynamic Click graphs:

171

where vertices and edges can be added or deleted. This would allow for more radical

Click description changes to be handled using partial reconfiguration.

A third step would be to loosen up the strict one-one mapping of system modules and

connections to hardware blocks and wiring, which is the setting that this dissertation

has focused on. In general, more complex mappings are possible. Individual

modules may be mapped to multiple implementation entities, maybe hardware or

software, or several modules might be mapped to the same entity. Here, much of

prior research has been done, in the general area of hardware-software partitioning.

Also, connections might be mapped to more complex underlying entities, for

example, networks-on-chip [135]. Here, one can learn much from conventional

networking, where the norm is to implement point-to-point connections using

complex underlying networking like the Internet.

172

173

Appendix A

Ethernet OAM Element Library

This appendix consists of concise descriptions for each of the G library elements

contained in the case study design in Chapter 5.

For reference, only partial CCM frames are stored in this implementation, which

helps compress CCM data to fit within the available on-chip memory (BRAM). This

is important because by using on-chip memory, the OAM designs are able to

consume less power than they would by using off-chip memory.

- VlanClassifier.g -

VlanClassifier is an element for classifying incoming frames as either OAM frames

or data frames, based on their frame type and whether the frame is determined to be

in-profile. The downstream OAM handler requires this classification.

The OAM handling supports the existence of zero or more VLAN tags. The VLAN

tag presence is ascertained by inspecting the TPID. The classifiers support two

configurable TPID values for VLAN tag identification. The OAM block uses the

type/length fields to identify the existence of an OAM frame. It supports two

configurable values to identify OAM frames.

The OAM handler maintains contexts for different VLANs. The VLAN ID,

contained in the VLAN header is used to lookup the assigned context ID for input

frames. For each context, there is a set of values that specify how to perform the in-

profile determination step. In-profile determination is used in separating OAM

frames and data frames.

174

The in-profile determination is made based on either the discard eligible (DE) bit or

the priority code point (PCP) bits. The selection between DE and PCP bits is

configurable on a per MEG basis. The PCP option supports the four standard profiles

as defined by Provider Bridging (PB). The profile selection is configurable on a per-

MEG basis.

The context information is added to the beginning of the output frame as a

Context_t header shim, described in “MyContextFormats.g”.

- Oam_y1731_in.g -

 OAM_Y1731_IN is an element for manipulating OAM frames, with Context_t

header shims, from the line-side interface to the system-side interface, for the

following performance monitoring functions: CCM, LMM, LMR, 1DM, DMM,

DMR.

The output CCM frame is manipulated (to make results available for later software

handling) by:

• The far-end frame loss result is inserted in the RxFCb field

• The near-end frame loss result is inserted in the TxFCf field

The output LMM frame is manipulated by inserting the following values:

• RxFCf

• The near-end frame loss result is inserted in the TxFCb field

The output LMR frame is manipulated by inserting the following values:

• The near-end frame loss result is inserted in the TxFCb field

• The far-end frame loss result is inserted in the RxFCf field

The output 1DM frame is manipulated by inserting the following value:

• RxTimeStampf

175

The output DMM frame is manipulated by inserting the following value:

• RxTimeStampf

The output DMR frame is manipulated by inserting the following value:

• RxTimeStampb

 All other OAM frames are transparently passed through the service level OAM

manipulation components.

 - Oam_y1731_out.g -

OAM_Y1731_OUT is an element for manipulating OAM frames, with Context_t

header shims, from the system-side interface to the line-side interface, for the

following performance monitoring functions: CCM, LMM, LMR, 1DM, DMM,

DMR.

The output CCM frame is manipulated by inserting the following values in their

appropriate fields:

• TxFCf

• RxFCb

• TxFCb

The output LMM frame is manipulated by inserting the following value:

• TxFCf

The output LMR frame is manipulated by inserting the following values:

• TxFCb

 The output 1DM frame is manipulated by inserting the following value:

• TxTimeStampf

The output DMM frame is manipulated by inserting the following value:

176

• TxTimeStampf

The output DMR frame is manipulated by inserting the following value:

• TxTimeStampb

All other OAM frames are transparently passed through the service level OAM

manipulation components.

- GenerateCcm.g -

 GenerateCCM is an element for completing CCM frames, after they are read from

memory. The partial CCM frame data stored in memory has certain zero-valued

fields omitted in order to compress the frames to fit within available BRAM. The

incoming frames to this module are partial CCM frames. This element inserts the

missing fields and sets the CCM period to be 3.3 ms. The output frames are entire

CCM frames.

- CheckCcm.g -

CheckCCM is an element for checking incoming CCM frames for several defect

conditions, wherein a defective frame is forwarded to the control processor for

further inspection. The potential defect conditions are:

 - A. Loss of Continuity

 - B. Unexpected MEG level

 - C. Unexpected MEG ID

 - D. Mismerge (inconsistent MEG ID and MEP ID)

 - E. Unexpected Period

A. Loss of continuity is detected and signaled separately by the Finish module

B. If the incoming MEG level is lower than the configured MEG level, then it

is marked with "Unexpected MEG Level defect" tag in the defect field of the

context shim.

C. Similarly to B, if the MEG ID is different from the stored MEG ID, then the

177

frame is marked with a "Mismerge defect".

D. Similarly to B, if the MEP ID is different from the stored MEP ID, then the

frame is marked with an "Unexpected MEP defect" tag.

E. Similarly to B, if the CCM Period is different from the stored Period, then

the frame is marked with an "Unexpected Period defect" tag.

Each of the defect conditions are described in more detail in the Y.1731

specification.

The incoming CCM frames contain a Context_t header shim, added by the local

classifier element. The Context_t header shim provides the context ID for the

incoming CCM. This element should connect to a reference memory with a table of

expected CCM values. Certain fields in the incoming CCM are checked against the

expected values, when checking for defects.

The output frames contain an updated Context_t header shim, wherein a CCM

containing a defect is marked to indicate the defect type in the updated Context_t

header shim.

The defect checking functions described here are implemented in hardware, in order

to support a large number of contexts at the 3.3 ms service interval.

- RemoveShim.g -

 RemoveShim is an element for removing the Context_t header shim, inserted by the

classifier element. The input frame is an OAM or data frame prepended with the

Context_t header shim, containing local control information. The Context_t header

shim is removed, and the output frames return to their original length.

178

- CalcAddress.g -

CalcAddress is an element for calculating the address necessary for reading partial

CCM frames from memory. The input is a 'notify' frame from the Start element.

This contains the activityID (in this design the activityID = contextID). The partial

CCM frames for this

version are packed in chunks of 18, 32-bit words.

The outgoing frame is formatted for the downstream FrameReader. The first word

of the output frame contains: (a) the address value for the start of the frame and (b)

the length of the partial CCM frame to be read.

179

Appendix B

Example G element description

- CheckCcm.g -

/*===*/
/* Ethernet OAM Functions - OAM CFM (CCM.Rx) */
/* cneely */
/*---*/

element CheckCcm {

 /* ShapeUp interface types */
 input framein : stream;
 output frameout : stream;
 output request : access;
 output ccmRefs : access;

#define DEF_UNEXPECTED_MEG_LEV 1
#define DEF_MISMERGE 2
#define DEF_UNEXPECTED_MEP 3
#define DEF_UNEXPECTED_PERIOD 4

 format ContextShim_t =(
 contextValid : bool,
 contextID : 9,
 isOAMframe : bool,
 isDefective : bool,
 defectType : 3,
 inProfile : bool
); // totals 2-octets

 format EthernetHeader = (
 destAddr : 48,
 srcAddr : 48,
 tpid : 16);

 format VlanHeader =(
 userPriority : 3,
 cfi : 1,
 vlanID : 12);

 format CcmFlags_t =(
 rdi : 1,
 reserved : 4,
 period : 3);

180

 format OamHeader =(
 megLevel : 3,
 version : 5,
 opcode : 8,
 flags : CcmFlags_t,
 tlvOffset : 8);

 format CcmPdu=(
 seqNum : nat,
 mepID : 16,
 megID : 384,
 TxFCf : nat,
 RxFCb : nat,
 TxFCb : nat,
 Reserved : nat,
 endTlv : 8);

 format NotifyFrame =(
 activityID : 16,
 timestamp : 16,
 event_type : 16,
 reserved : 16);

 format FinishReq = (
 active : bool,
 relativeFinish : bool,
 activityID : 12,
 finishTime : 16);

 format CcmFrame =(
 shim : ContextShim_t,
 ethHdr : EthernetHeader,
 vlanHdr : VlanHeader,
 etype : bit[16],
 oamHdr : OamHeader,
 ccm : CcmPdu);

 format CcmReference =(
 megLevel : 3,
 megID : 384,
 mepID : 16,
 period : 3);

 handle CcmFrame on framein {

 /* general vars */
 var myFinish : FinishReq;
 var ref : CcmReference;

 /* Check for the following defect conditions (from ITU-T Y.1731): */
 /* - If no CCM frames from a peer MEP are received within
 * the interval equal to 3.5 times the receiving MEP's
 * CCM transmission period, "loss of continuity" with peer
 * MEP is detected.
 */

 /* Handle this using timers for every MEG level context.

181

 * The defect message (on timeout) is sent directly
 * to the Control processor, bypassing this module.
 */

 /* Our action: on receiving a CCM frame, reset the timer
 * for this context */
 set myFinish.active = true;
 set myFinish.relativeFinish = true;
 set myFinish.activityID = shim.contextID;
 set myFinish.finishTime = 0x70; // 3.5 * CCM period from now
 write myFinish to request;

 set shim.isDefective = false;
 read ref from ccmRefs[shim.contextID];
 /* - If a CCM frame with a MEG Level lower than the receiving
 * MEP's MEG Level is received, "Unexpected MEG Level"
 * is detected.
 */

 [oamHdr.megLevel < ref.megLevel] {
 set shim.isDefective = true;
 set shim.defectType = DEF_UNEXPECTED_MEG_LEV;
 }

 | [oamHdr.megLevel == ref.megLevel] {

 /* - If a CCM frame with same MEG Level but with a
 * MEG ID different than the receiving MEP's own MEG ID
 * is received, "Mismerge" is detected.
 */
 [ccm.megID != ref.megID] {
 set shim.isDefective = true;
 set shim.defectType = DEF_MISMERGE;

 } | {
 /* - If a CCM frame with the same MEG Level and a correct
 * MEG ID but with an incorrect MEP ID, including
 * receiving MEP's own MEP ID, is received,
 * "Unexpected MEP" is detected.
 */
 [ccm.mepID != ref.mepID] {
 set shim.isDefective = true;
 set shim.defectType = DEF_UNEXPECTED_MEP;
 }
 }
 }
 /* - If a CCM frame is received with a correct MEG Level,
 * a correct MEG ID, a correct MEP ID, but with a period field
 * value different than the receiving MEP's own CCM transmission
 * period, "Unexpected Period" is detected.
 */

 [oamHdr.flags.period != ref.period] {
 set shim.isDefective = true;
 set shim.defectType = DEF_UNEXPECTED_PERIOD;
 }
 /* A receiving MEP must notify the equipment fault management process

182

 * when it detects the above defect conditions.
 */

 [shim.isDefective] forward on frameout;
 }
}

183

References

[1] T. Erjavec, "Introducing the Xilinx Targeted Design Platform: Fulfilling

the Programmable Imperative," Xilinx, Inc., Whitepaper WP306, 2009.

[2] I. Buck et al., "Brook for GPUs: Stream Computing on Graphics

Hardware," ACM Transactions on Graphics, vol. 23, pp. 777-786, 2004.

[3] NVIDIA. (2008, June) NVIDIA CUDA Compute Unified Device

Architecture Programming Guide. [Online].

http://www.nvidia.com/object/cuda_develop.html

[4] Khronos. (2010, September) OpenCL 1.1 Specification. [Online].

http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[5] W. Thies, M. Karczmarek, and S. P. Amarasignhe, "StreamIT: A Language

for Streaming Applications," in Proceedings of the 11th International

Conference on Compiler Construction, vol. 2304, London, 2002, pp. 179-

196.

[6] K. Compton and S. Hauck, "Reconfigurable Computing: A Survey of

Systems and Software," ACM Computing Surveys, pp. 171-210, June

2002.

[7] Xilinx, Inc. (2012, January) Virtex-6 Family Overview. [Online].

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

[8] Altera. Altera Stratix 4 device handbook. [Online].

http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf

[9] Actel. Actel ProASIC3 data sheet. [Online]. http://www.actel.com

[10] Lattice. Lattice ECP3. [Online]. http://www.lattice.com

184

[11] J. S. Rose, R. J. Francis, P. Chow, and D. Lewis, "The Effect of Logic

Block Complexity on Area of Programmable Gate Arrays," in Proceedings

of the IEEE Custom Integrated Circuits Conference (CICC), San Diego,

1989, pp. 5.3.1-5.3.5.

[12] E. Ahmed and J. Rose, "The Effect of LUT and Cluster Size on Deep-

submicron FPGA Performance and Density," in Proceedings of the 2000

ACM/SIGDA eighth International Symposium on Field Programmable

Gate Arrays (FPGA), 2000, pp. 3-12.

[13] Lewis et al., "The Stratix II Logic and Routing Architecture," in

Proceedings of the ACM/SIGDA 13th International Symposium on Field

Programmable Gate Arrays (FPGA), 2005, pp. 14-20.

[14] G. Lemieux and D. Lewis, Design of Interconnection Networks for

Programmable Logic.: Springer (formerly Kluwer Academic Publishers),

2004.

[15] S. J. E. Wilton, J. Rose, and Z. G. Vranesic, "Memory/Logic Interconnect

Flexibility in FPGAs with Large Embedded Memory Arrays," in

Proceedings of the IEEE Custom Integrated Circuits Conference, 1996.

[16] Xilinx, Inc. Microblaze Soft Processor Core. [Online].

http://www.xilinx.com/tools/microblaze.htm

[17] Altera. NIOS II Processor. [Online].

http://www.altera.com/products/ip/processors/nios2/ni2-index.html

[18] Xilinx, Inc. Zynq-7000 Extensible Processing Platform. [Online].

http://www.xilinx.com/products/silicon-devices/epp/zynq-7000/index.htm

[19] Altera. Dual-Core ARM Cortex-A9 MPCore Processor. [Online].

http://www.altera.com/devices/processor/arm/cortex-a9/m-arm-cortex-

a9.html

[20] D. Chen, J. Cong, and P. Pan, "FPGA Design Automation: A Survey,"

Foundations and Trends in Electronic Design Automation, vol. 1, no. 3, pp.

185

195-330, November 2006.

[21] S. N. Adya and I. L. Markov, "Fixed-Outline Flooplanning: Enabling

Hierarchical Design," IEEE Transactions on Very Large Scale Integrated

Systems, vol. 11, no. 6, pp. 1120-1135, December 2003.

[22] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L. Markov,

"Unification of Partitioning, Placement and Floorplanning," in Proceedings

of the IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), 2004, pp. 550-557.

[23] L. Cheng and M. D. F. Wong, "Floorplan Design for Multimillion Gate

FPGAs," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 25, no. 12, pp. 2795-2805, December 2006.

[24] Y. Feng and D. Mehta, "Heterogeneous Floorplanning for FPGAs," in

Proceedings of the Conference on VLSI Design, 2006, pp. 257-262.

[25] P. Banerjee, S. Sur-Kolay, and A. Bishnu, "Fast Unified Floorplan

Topology Generation and Sizing on Heterogeneous FPGAs," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 28, no. 5, pp. 651-661, May 2009.

[26] A. Montone, M. D. Santambrogio, D. Sciuto, and S. O. Memik, "Placement

and Floorplanning in Dynamically Reconfigurable FPGAs," ACM

Transactions on Reconfigurable Technology and Systems, vol. 3, no. 4,

November 2010.

[27] C. Bolchini, A. Miele, and C. Sandionigi, "Automated Resource-Aware

Floorplanning of Reconfigurable Areas in Partially-Reconfigurable FPGA

Systems," in Proceedings of the 21st International Conference on Field-

Programmable Logic and Applications (FPL), 2011, pp. 532-538.

[28] P. Banerjee, M. Sangtani, and S. Sur-Kolay, "Floorplanning for Partially

Reconfigurable FPGAs," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 30, no. 1, pp. 8-17, January 2011.

186

[29] S. Guccione, D. Levi, and P. Sundararajan, "JBits: Java-based Interface for

Reconfigurable Computing," in Proceedings of the 2nd Annual Military

and Aerospace Applications of Programmable Devices and Technologies

Conference (MAPLD), 1999.

[30] Xilinx, Inc. (2011, November) Partial Reconfiguration User Guide.

[Online].

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/ug7

02.pdf

[31] C. A. Hoare, "Communicating Sequential Processes," Communications of

the ACM, vol. 21, no. 8, August 1978.

[32] R. Milner, A Calculus of Communicating Systems. New York: Springer-

Verlag, 1982.

[33] T. Murata, "Petri Nets: Properties, Analysis and Applications," Proceedings

of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[34] Unified Modeling Language. [Online]. http://www.uml.org

[35] J. Eker et al., "Taming Heterogeneity--The Ptolemy Approach,"

Proceedings of the IEEE, vol. 91, no. 1, pp. 127-144, January 2003.

[36] Xilinx, Inc. AutoESL. [Online]. http://www.xilinx.com/tools/autoesl.htm

[37] Bluespec. Bluespec. [Online]. http://www.bluespec.com/index.htm

[38] Impulse. Impulse C. [Online].

http://www.impulseaccelerated.com/products_universal.htm

[39] Synopsys. http://www.synopsys.com/Tools/SLD/HLS/Pages/SynphonyC-

Compiler.aspx.

[40] A. Bergamaschi et al., "Automating the Design of SOCs Using Cores,"

IEEE Design Test, vol. 18, no. 5, pp. 32-45, September 2001.

[41] Virtual Socket Interface Alliance (VSIA). [Online]. http://www.vsi.org

[42] SPIRIT Consortium, "IP-XACT User Guide: IP-XACT Draft

187

Specifications version 1.4 (beta one)," 2007.

[43] J. Kulp and S. Siegel, "Worker Interface Profiles (WIP) Functional

Specification: Profiles for OCP," 2010.

[44] Open Core Protocol. [Online]. http://www.ocpip.org

[45] A. Arnesen, N. Rollins, and M. Wirthlin, "A Multi-layered XML Schema

and Design Tool for Reusing and Integrating FPGA IP," in Proceedings of

the International Conference on Field Programmable Logic and

Applications (FPL), 2009, pp. 472-475.

[46] A. Arnesen et al., "Increasing Design Productivity Through Core Reuse,

Meta-data Encapsulation, and Synthesis," in Proceedings of the

International Conference on Field-Programmable Logic and Applications

(FPL), 2010, pp. 538-543.

[47] T. Perry, R. Walke, and K. Benkrid, "An Extensible Code Generation

Framework for Heterogeneous Architectures Based on IP-XACT," in

Proceedings of the Southern Conference on Programmable Logic (SPL),

2011, pp. 81-86.

[48] Mathworks. Simulink. [Online].

http://www.mathworks.com/products/simulink

[49] National Instruments. LabVIEW. [Online]. http://www.ni.com/labview

[50] Xilinx, Inc. System Generator. [Online].

http://www.xilinx.com/tools/sysgen.htm

[51] C. Kulkarni, G. Brebner, and G. Schelle, "Mapping a Domain-specific

Language to a Platform FPGA," in Proceedings of the 41st ACM/SIGDA

Design Automation Conference , 2004, pp. 924-927.

[52] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, "The Click

Modular Router," ACM Transactions on Computer Systems, vol. 18, no. 3,

pp. 263-297, August 2000.

[53] Xilinx, Inc. EDK. [Online].

http://www.xilinx.com/ise/embedded/edk_docs.htm

188

[54] Altium. Altium Designer. [Online].

http://www.altium.com/products/altiumdesigner/

[55] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, "A Time-

multiplexed FPGA," in Proceedings of the IEEE Symposium on FPGAs for

Custom Computing Machines (FCCM), 1997, pp. 22-29.

[56] Tabula. [Online]. http://www.tabula.com

[57] K. Nagami, K. Oguri, T. Shiozawa, H. Ito, and R. Konishi, "Plastic Cell

Architecture: Towards Reconfigurable Computing for General-Purpose," in

Proceedings of the IEEE Symposium on FPGAs for Custom Computing

Machines (FCCM), 1998, p. 68.

[58] J. D. Hadley and B. L. Hutchings, "Design Methodologies for Partially

Reconfigured Systems," in Proceedings of the IEEE Symposium on FPGAs

for Custom Computing Machines (FCCM), 1995, pp. 78-84.

[59] B. Hutchings and M. Wirthlin, "Implementation Approaches for

Reconfigurable Logic Applications," in Proceedings of the International

Conference on Field-Programmable Logic and Applications (FPL), 1995,

pp. 419-428.

[60] G. Brebner, "The Swappable Logic Unit: a Paradigm for Virtual

Hardware," in Proceedings of the IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM), 1997, pp. 77-86.

[61] O. Diessel and H. ElGindy, "Run-time Compaction of FPGA Designs," in

Proceedings of the International Conference on Field-Programmable Logic

and Applications (FPL), 1997, pp. 131-140.

[62] G. Brebner and O. Diessel, "Chip-Based Reconfigurable Task

Management," in Proceedings of the International Conference on Field-

Programmable Logic and Applications (FPL), 2001, pp. 182-191.

[63] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, "The Erlangen Slot

Machine: A Dynamically Reconfigurable FPGA-based Computer," VLSI

189

Signal Processing, vol. 47, no. 1, pp. 15-31, 2007.

[64] M. Ullmann, M. Hübner, and J. Becker, "On-demand FPGA Run-time

System for Flexible and Dynamical Reconfiguration," IJES, vol. 1, no. 3/4,

pp. 193-204, 2005.

[65] G. B. Wigley, D. A. Kearney, and M. Jasiunas, "ReConfigME: A Detailed

Implementation of an Operating System for Reconfigurable Computing,"

IPDPS, 2006.

[66] S. Koh and O. Diessel, "Module Graph Merging and Placement to Reduce

Reconfiguration Overheads in Paged FPGA Devices," in Proceedings of

the International Conference on Field-Programmable Logic and

Applications (FPL), 2007, pp. 293-298.

[67] J. Suris, C. Patterson, and P. Athanas, "An Efficient Run-time Router for

Connecting Modules in FPGAs," in Proceedings of the International

Conference on Field-Programmable Logic and Applications (FPL), 2008,

pp. 125-130.

[68] Miller, Prasanna, Reises, and Stout, "Meshes with Reconfigurable Buses,"

in Proceedings of the 5th MIT Conference on Advanced Research in VLSI,

1988, pp. 163-178.

[69] S. Lange and M. Middendorf, "The Partition into Hypercontexts Problem

for Hyperreconfigurable Architectures," in Proceedings of the International

Conference on Field-Programmable Logic and Applications (FPL), 2004,

pp. 251-260.

[70] U. Malik and O. Diessel, "The Entropy of FPGA Reconfiguration," in

Proceedings of the International Conference on Field-Programmable Logic

and Applications (FPL), 2006, pp. 1-6.

[71] J. W. Lockwood, J. S. Turner, and D. E. Taylor, "Field Programmable Port

Extender (FPX) for Distributed Routing and Queuing," in Proceedings of

the ACM International Symposium on Field Programmable Gate Arrays

(FPGA), 2000, pp. 137-144.

190

[72] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown,

"NetFPGA---An Open Platform for Teaching How to Build Gigabit-Rate

Network Switches and Routers," IEEE Transactions on Education, vol. 51,

no. 3, pp. 364-369, August 2008.

[73] M. Zadnik, J. Korenek, P. Kobiersky, and O. Lengal, "Network Probe for

Flexible Flow Monitoring," in 11th IEEE Workshop on Design and

Diagnostics of Electronic Circuits and Systems, 2008, pp. 1-6.

[74] H. Le, W. Jiang, and V. K. Prasanna, "A SRAM-based Architecture for

Trie-based IP Lookup Using FPGA," in Proceedings of the 16th IEEE

Symposium on Field Programmable Custom Computing Machines

(FCCM), 2008.

[75] H. Song, F. Hao, M. Kodialam, and T. V. Lakshman, "IPv6 Lookups using

Distributed and Load Balanced Bloom Filters for 100Gbps Core Router

Line Cards," in Proceedings of the IEEE INFOCOM, Rio De Janeiro, 2009.

[76] B. L. Hutchings, R. Franklin, and D. Carver, "Assisting Network Intrusion

Detection with Reconfigurable Hardware," in Proceedings of the 10th

IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2002, p. 111.

[77] R. Sidhu and V. K. Prasanna, "Fast Regular Expression Matching Using

FPGAs," in Proceedings of the IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), 2001.

[78] J. Moscola, M. Pachos, J. W. Lockwood, and R. P. Loui, "FPsed: A

Streaming Content Search-and-Replace Module for an Internet Firewall,"

in 11th Symposium on High Performance Interconnects, 2003, p. 122.

[79] Y. Cho, S. Navab, and W. Mangione-Smith, "Specialized Hardware for

Deep Network Packet Filtering: Reconfigurable Computing is Going

Mainstream," in Proceedings of the 12th International Conference on Filed-

Programmable Logic and Applications, 2002, pp. 452-461.

191

[80] Z. K. Baker, H. J. Jung, and V. K. Prasanna, "Regular Expression Software

Deceleration for Intrusion Detection System," in Proceedings of the 16th

International Conference on Field-Programmable Logic and Applications

(FPL), 2006.

[81] Sourcefire. Snort Open Source Network Intrusion Prevention and Detection

System. [Online]. http://www.snort.org

[82] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lockwood,

"Deep Packet Inspection Using Parallel Bloom Filters," IEEE Micro, pp.

52-61, January/February 2004.

[83] H. Fallside and M. J. S. Smith, "Internet Connected FPL," in Proceedings

of the 10th International Conference on Field-Programmable Logic and

Applications, 2000, pp. 48-57.

[84] D. V. Schuehler and J. W. Lockwood, "TCP Splitter: A TCP/IP Flow

Monitor in Reconfigurable Hardware," IEEE Micro, pp. 54-59,

January/February 2003.

[85] W. S. Marcus, I. Hadzic, A. J. McAuley, and J. M. Smith, "Protocol

Boosters: Applying Programmability to Network Infrastructures," IEEE

Communications Magazine, vol. 36, no. 10, pp. 79-83, October 1998.

[86] G. Brebner, "Packets Everywhere: The Great Opportunity for Field

Programmable Technology," in Proceedings of the International

Conference on Field-Programmable Technology (FPT), 2009, pp. 1-10.

[87] C. Soviani, I. Hadzic, and S. A. Edwards, "Synthesis and Optimization of

Pipelined Packet Processors," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 28, no. 2, pp. 231-244,

February 2009.

[88] Q. Zhang, A. Marshall, and R. Woods, "A Traffic Manager for Integrated

Queuing and Scheduling of Unicast and Multicast IP Traffic," in

Proceedings of the 16th International Conference on Telecommunications,

192

Marrakech, Morocco, 2009, pp. 65-70.

[89] S. Casselman and J. Schewel, "Net Aware BitStreams that Upgrade FPGA

Hardware Remotely Over the Internet," in Proceedings of SPIE, vol. 4867,

Boston, MA, 2002.

[90] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, "Dynamic

Hardware Plugins in an FPGA with Partial Run-time Reconfiguration," in

Proceedings of the ACM/SIGDA Design Automation Conference (DAC),

New Orleans, LA, 2002, p. 24.2.

[91] G. Brebner, "Circlets: Circuits as Applets," in Proceedings of the IEEE

Symposium on FPGAs for Custom Computing Machines, 1998, p. 300.

[92] Intel. IXP 2800 Programming. [Online].

http://www.intel.com/intelpress/ixp2800/

[93] Xcelerated. [Online]. http://www.xelerated.com/en/core-x10

[94] EZchip. NP-5 Network processor. [Online]. http://www.ezchip.com

[95] Cavium. Octeon Plus MIPS64 Processors. [Online].

http://www.cavium.com/OCTEON_MIPS64.html

[96] J. W. Lockwood, C. Neely, C. Zuver, and D. Lim, "Automated Tools to

Implement and Test Internet Systems in Reconfigurable Hardware," ACM

SIGCOMM Computer Communications Review (CCR), vol. 33, no. 3, pp.

103-110, July 2003.

[97] V. Berman, "Standards: the P1685 IP-XACT IP Metadata Standard," IEEE

Design & Test of Computers, vol. 23, no. 4, pp. 316-317, April 2006.

[98] Accellera. [Online]. http://www.accellera.org

[99] Mentor Graphics. HDL Designer. [Online].

http://www.mentor.com/products/fpga/hdl_design/hdl_designer_series/

[100] Xilinx, Inc. (2011, November) Platform Studio. [Online].

http://www.xilinx.com/platform.htm

[101] M. Wirthlin et al., "OpenFPGA CoreLib Core Library Interoperability

Effort," Journal of Parallel Computing, vol. 34, no. 4-5, pp. 231-244, May

193

2008.

[102] N. Rollins, M. Wirthlin, and A. Arnesen, "An XML Approach to

Facilitating IP Core Reuse," in Proceedings of the National Aerospace and

Defense Conference, 2008.

[103] E. Kohler, The Click Modular Router.: Ph.D. thesis, MIT, 2000.

[104] Xilinx, Inc., "LocalLink Interface Specification," Xilinx Specification

Paper SP006, 2005.

[105] C. Simonyi, "Hungarian Notation," Report 1999.

[106] J. S. Lo, C. E. Neely, and G. J. Brebner, "Hierarchical Interface for IC

system," 7,852,117.

[107] C. E. Neely, G. J. Brebner, and J. S. Lo, "Graphical user interface for

system design," 8,121,826.

[108] Piccolo Zoomable User Interface (ZUI) Construction Kit website. [Online].

http://www.cs.umd.edu/hcil/jazz/

[109] R. Passerone, J. Rowson, and A. Sangiovanni-Vincentelli, "Automatic

Synthesis of Interfaces Between Incompatible Protocols," in Proceedings of

the ACM/SIGDA 35th Design Automation Conference (DAC), 1998, pp.

8-13.

[110] G. Brebner, Computers in Communication.: McGraw-Hill International,

1997.

[111] R. Metcalfe and D. Boggs, "Ethernet: Distributed Packet Switching for

Local Computer Networks," Communications of the ACM, vol. 19, no. 7,

pp. 395-404, July 1976.

[112] G. Malkin, "RIP version 2," RFC 2453, 1998.

[113] J. Postel, "Transmission Control Protocol," RFC 793, 1981.

[114] J. Arkko, V. Torvinen, G. Camarillo, A. Niei, and T. Haukka, "Security

Mechanism Agreement for the Session Initiation Protocol (SIP)," RFC

3329, 2003.

194

[115] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: A

Transport Protocol for Real-time Applications," RFC 3550, 2003.

[116] D. Mills, "Network Time Protocol version 4," Technical Report 06-6-1,

2006.

[117] Institute of Electrical and Electronic Engineers (IEEE), "1588-2008

Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and Control Systems," IEEE, Standard 1588-2008, 2008.

[118] IPClock, "IPC 50000 IEEE1588v2 Slave Ordinary Clock," Product brief

R3.01, 2010.

[119] International Telecommunications Union (ITU-T), "Y.1731: OAM

Functions and Mechanisms for Ethernet-based Networks," Standard 2008.

[120] Institute of Electrical and Electronic Engineers (IEEE), "802.1ag Standard

for Local and Metropolitan Area Networks Virtual Bridged Local Area

Networks, Amendment 5: Connectivity Fault Management," Standard

802.1ag, 2007.

[121] Hiroshi Ohta. (2006, April) Ethernet OAM and Protection Switching.

[Online]. http://www.itu.int/ITU-

T/worksem/ngn/200604/presentation/s7_ohta.pdf

[122] H. Walder and M. Platzner, "Non-preemptive Multitasking on FPGAs:

Task Placement and Footprint Transform," in In Proceedings of the 2nd

International Conference on Engineering of Reconfigurable Systems and

Algorithms (ERSA), 2002, pp. 24-30.

[123] Xilinx, Inc. (2011, November) ISE Design Suite. [Online].

http://www.xilinx.com/products/design-tools/ise-design-suite/

[124] J. Suris, A. Recio, and P. Athanas, "Enhancing the Productivity of Radio

Designers with RapidRadio," in Proceedings International Conference on

ReConFigurable Computing and FPGAs (ReConFig), 2009.

[125] D. Koch, C. Beckhoff, and J. Teich, "ReCoBus-Builder: A Novel Tool and

Technique to Build Statically and Dynamically Reconfigurable Systems for

195

FPGAs," in Proceedings of the 18th International Conference on Field

Programmable Logic and Applications (FPL), 2008, pp. 119-124.

[126] D. Koch, C. Beckhoff, and J. Torrison, "Advanced Partial Run-Time

Reconfiguration on Spartan-6 FPGAs," in Proceedings of the International

Conference on Field-Programmable Technology (FPT), 2010, pp. 361-364.

[127] Xilinx, Inc. (2011, November) PlanAhead Software Design Analysis and

Floorplanning Tutorial. [Online].

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/Pla

nAhead_Tutorial_Design_Analysis_Flooplan.pdf

[128] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert, "Study on Wise Design

Compaction for Reconfigurable Systems," in Proceedings of the IEEE

International Conference on Field-Programmable Technology (FPT), 2004,

pp. 413-416.

[129] J. Carver, R. Pittman, and A. Forin, "Automatic Bus Macro Placement for

Partially Reconfigurable FPGA Designs," in Proceedings of the 17th ACM

SIGDA International Symposium on Field-Programmable Gate Arrays

(FPGA), 2009, pp. 269-272.

[130] L. Gong and O. Diessel, "Modeling Dynamically Reconfigurable Systems

for Simulation-Based Functional Verification," in Proceedings of the IEEE

19th International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2011, pp. 9-16.

[131] M. Attig and G. Brebner, "400 Gb/s Programmable Packet Parsing on a

Single FPGA," in Proceedings of the ACM/IEEE Seventh Symposium on

Architectures for Networking and Communication Systems (ANCS), 2011,

pp. 12-23.

[132] D. Koch, C. Beckhoff, and J. Torrison, "Fine-Grained Partial Runtime

Reconfiguration on Virtex-5 FPGAs," in Proceedings of the 18th IEEE

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2010, pp. 69-72.

196

[133] L. Benini and G. De Micheli, "Networks on Chips: A New SoC Paradigm,"

IEEE Computer, vol. 35, no. 1, pp. 70-78, January 2002.

[134] C. E. Neely, G. Brebner, and W. Shang, "ShapeUp: A High-Level Design

Approach to Simplify Module Interconnection on FPGAs," in Proceedings

of the IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2010.

[135] I. Hadzic and J. Smith, "P4: A Platform for FPGA Implementation of

Protocol Boosters," in Proceedings of the International Workshop on Field-

Programmable Logic and Applications, London, England, 1997, pp. 438-

447.

[136] IPBlaze, "High speed 10G Ethernet and TCP/IP Offload Engine (TOE),"

Product brief PR004, 2008.

[137] J. Halak, "Multigigabit Network Traffic Processing," in Proceedings of the

International Conference on Field-Programmable Logic and Applications

(FPL), 2009, pp. 521-524.

[138] W. Jiang and V. K. Prasanna, "Large-scale Wire-speed Packet

Classification on FPGAs," in Proceedings of the ACM Symposium on

Field-Programmable Gate Arrays (FPGA), 2009, pp. 219-228.

[139] G. Watson, N. McKeown, and M. Casado, "NetFPGA: A Tool For

Network Research and Education," in Proceedings of Workshop on

Architecture Research using FPGA Platforms, Austin, TX, 2006.

[140] T. Becker, W. Luk, and P. Y. K. Cheung, "Enhancing Relocatability of

Partial Bitstreams for Run-Time Reconfiguration," in Proceedings of the

15th IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2007, pp. 35-44.

[141] G. Brebner, "Live In-Service Modification of Optical Network Elements

Implemented with Xilinx FPGAs," in National Fiber Optic Engineers

Conference, OSA Technical Digest (CD), 2011.

197

[142] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, "A Communication

Aware Online Task Scheduling Algorithm for FPGA-Based Partially

Reconfigurable Systems," in Proceedings of the 18th IEEE Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2010, pp. 65-68.

[143] C. E. Neely, G. Brebner, and W. Shang, "Flexible and Modular Support for

Timing Functions in High Performance Networking Acceleration," in

Proceedings of the International Conference on Field-Programmable Logic

and Applications (FPL), 2010, pp. 513-518.

[144] Xilinx, Inc. (2011, November) PlanAhead Software Partial

Reconfiguration Tutorial. [Online].

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/Pla

nAhead_Tutorial_Partial_Reconfiguration.pdf

[145] W. Kruijtzer et al., "Industrial IP Integration Flows Based on IP-XACT

Standards," in Proceedings of the Conference on Design, Automation, and

Test in Europe (DATE), 2008, pp. 32-37.

198

199

Vita

Christopher E. Neely

Date of Birth November 18, 1979

Place of Birth Saint Louis, Missouri

Degrees B.S. Computer Engineering, May 2002
 M.S. Computer Engineering, May 2004
 Ph.D. Computer Engineering, June 2012 (anticipated)

Publications

C. Neely, G. Brebner, W. Shang. “Reshape: Towards a High-
Level Design Approach to Simplify Module Interconnection
on FPGAs”, ACM Transactions on Reconfigurable
Technology and Systems (TRETS), Accepted and pending
publication.

C. Neely, G. Brebner, W. Shang. “Flexible and Modular
Support for Timing Functions in High Performance
Networking Acceleration”, Field-Programmable Logic and
Applications (FPL’10), August/September 2010, pp.513-518.

C. Neely, G. Brebner, W. Shang. “ShapeUp: A High-Level
Design Approach to Simplify Module Interconnection on
FPGAs”, IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’10), May 2010, pp.141-148.

T. Sproull, G. Brebner, and C. Neely. “Mutable Codesign for
Embedded Protocol Processing”, Field-Programmable Logic
and Applications (FPL’05), Tampere, Finland, Paper 1C, Aug
24-26, 2005.

J. W. Lockwood, C. Neely, C. Zuver, J. Moscola,
S. Dharmapurikar, and D. Lim. “An Extensible, System-On-
Programmable-Chip, Content-Aware Internet Firewall”, Field-
Programmable Logic and Applications (FPL’03), Lisbon,
Portugal, Paper 14B, Sep 1-3, 2003.

200

J. W. Lockwood, C. Neely, C. Zuver, and D. Lim.
“Automated Tools to Implement and Test Internet Systems in
Reconfigurable Hardware”, ACM SIGCOMM Computer
Communication Review (CCR), vol 33, no 3, July 2003, pp
103-110.

D. Lim, C. E. Neely, C. K. Zuver, J. W. Lockwood. “Internet-
based Tool for System-on-Chip Integration”, IEEE Computer
Society International Conference on Microelectronic Systems
Education (MSE'03), Anaheim, CA, June 2003

C. K. Zuver, C. E. Neely, J. W. Lockwood. “Internet-based
Tool for System-On-Chip Project Testing and Grading”, IEEE
Computer Society International Conference on
Microelectronic Systems Education (MSE'03), Anaheim, CA,
June 2003

Patents

US Patent #8,121,826
Neely; Christopher E. (San Jose, CA), Brebner; Gordon
J. (San Jose, CA), Lo; Jack S. (Santa Clara, CA) “Graphical
user interface for system design”

US Patent #7,852,117.
Lo; Jack S. (Santa Clara, CA), Neely; Christopher E. (San
Jose, CA), Brebner; Gordon J. (San Jose, CA) "Hierarchical
Interface for IC system"

US Patent #7,784,014.
Brebner; Gordon J. (Los Gatos, CA), Neely; Christopher
E. (San Jose, CA), James-Roxby; Philip B. (Longmont, CO),
Keller; Eric R. (Boulder, CO), Kulkarni; Chidamber R. (Santa
Clara, CA), Baxter; Michael A. (Sunnyvale, CA), Styles;
Henry E. (San Jose, CA), Schelle; Graham F. (Boulder, CO)
"Generation of a specification of a network packet processor "

Service
Program Committee Member for 23rd IEEE International
Conference on Application-specific Systems, Architectures,
and Processors (ASAP’2012)

Program Committee Member for 2011 International
Conference on ReConFigurable Computing and FPGAs
(ReConFig’2011)

June 2012

	Santa Clara University
	Scholar Commons
	5-19-2012

	A Modular Approach to Adaptive Reactive Streaming Systems
	Christopher E. Neely
	Recommended Citation

	Dissertation_draft6p_static

