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ABSTRACT 

 

 

A Modular Approach to Adaptive Reactive Streaming Systems 

by 

Christopher E. Neely 

Doctor of Philosophy in Computer Engineering 

Santa Clara University, 2012 

Industrial Co-advisor:  Professor Gordon Brebner 

Academic Co-advisor:  Professor Weijia Shang 

 

The latest generations of FPGA devices offer large resource counts that provide the 

headroom to implement large-scale and complex systems.  However, there are 

increasing challenges for the designer, not just because of pure size and complexity, 

but also in harnessing effectively the flexibility and programmability of the 

FPGA.  A central issue is the need to integrate modules from diverse sources to 

promote modular design and reuse.  Further, the capability to perform dynamic 

partial reconfiguration (DPR) of FPGA devices means that implemented systems can 

be made reconfigurable, allowing components to be changed during 

operation.  However, use of DPR typically requires low-level planning of the system 

implementation, adding to the design challenge. This dissertation presents ReShape: 

a high-level approach for designing systems by interconnecting modules, which 

gives a ‘plug and play’ look and feel to the designer, is supported by tools that carry 

out implementation and verification functions, and is carried through to support 



 

   

 

ii 

system reconfiguration during operation.  The emphasis is on the inter-module 

connections and abstracting the communication patterns that are typical between 

modules – for example, the streaming of data that is common in many FPGA-based 

systems, or the reading and writing of data to and from memory modules.  ShapeUp 

is also presented as the static precursor to ReShape.  In both, the details of wiring 

and signaling are hidden from view, via metadata associated with individual 

modules.  ReShape allows system reconfiguration at the module level, by supporting 

type checking of replacement modules and by managing the overall system 

implementation, via metadata associated with its FPGA floorplan.  The methodology 

and tools have been implemented in a prototype for a broad domain-specific setting – 

networking systems – and have been validated on real telecommunications design 

projects.  
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Chapter 1  
Introduction 

 

Personal networked devices are ubiquitous. People carrying small electronic devices 

post updates to social networks, download the latest popular videos, or connect to 

each other through video chat. Smart phone users communicate instructions for 

processing on remote cloud servers. The public is placing growing dependence on 

the networking infrastructure that transparently enables these personalized services.  

In the modern Internet, application processing is moving away from host-end 

systems and into network clouds. This trend is due, in part, to limitations of mobile 

and portable devices, which are constrained by limited processing capabilities and 

stringent low-power requirements.  Major companies are continuing to invest in 

large data centers that farm content and services to a vast Internet audience. 

 

The popularity of the Internet is growing worldwide. There is rising demand for 

video and other services, which is causing increased traffic.  Network service 

providers are constantly upgrading their backbone and core networks, and changing 

from 40 Gb/sec to much higher bandwidths like 400 Gb/sec.  Processing of packets 

that ship this data requires keeping up with these increasing line rates, so there is 

need for programmability at hardware speeds.  Networks require adequate controls 

for maintenance, monitoring, and providing quality of service, e.g. by traffic shaping.  

These are important to network service providers and network carriers, as they 

continue to build up and enhance their networks.   
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The challenges that custom networking hardware and system designers generally 

face are that: (a) costs of producing application-specific integrated circuits are 

greatly rising, (b) their projects have short development cycles, (c) network standards 

are rapidly changing, and (d) their designs are increasing in complexity [1].  There is 

a need for new design methodologies that take advantage of programmability, while 

providing the required high performance and improving productivity.   

 

These industry trends are the impetus for this research.  The vast and growing array 

of Internet services create an insatiable demand for communications bandwidth.  

Concurrent with this demand for bandwidth there is a need for improving 

programmability towards designing systems that run at hardware speeds. 
 

1.1 Research Topic 

The key driving forces behind this research are high-speed networking and the need 

for improved programmability.  The focus of this research is thus on the area of 

programmable streaming systems that are reactive and adaptive.   

 

The choice of streaming systems means an emphasis on processing systems whose 

main characteristic is that of data flow through the system.  Digital signal processing 

systems and packet processing systems are examples of stream processing systems.  

This is in contrast to traditional von Neumann style data processing systems.  The 

topic of stream processing is attracting much attention in the parallel computing 

community at present, particularly as a way of harnessing multi-core processors, 

through such programming initiatives as Brook [2], CUDA [3], OpenCL [4], and 

StreamIt [5].  The research presented in this dissertation focuses on targeting and 

harnessing of programmable hardware technologies.  To provide further focus to the 

work, case studies are drawn from packet processing as a specific domain of 

streaming systems. 
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The reactive characteristic of the systems under study means that the systems react 

and execute in response to stimulus events from their environment, for example the 

arrival of packets over a communication channel.  These systems have an ongoing 

interaction with the environment, as opposed to systems that run to completion and 

produce a final result.  The adaptive characteristic refers to the possibility of a 

system adapting to changes in the environment.  Specifically, this refers to the 

possibility of reprogramming hardware while a system is in operation, to make 

architectural changes as opposed to just having adaptability within software.  An 

example would be to modify packet processing capabilities in response to changing 

data traffic patterns in a network. 

 

The goal of this research is to improve the ease of design of networking systems that 

require hardware-like performance. These network systems have great complexity as 

static designs and acquire additional complexity when they are required to adapt to 

changing environments. This dissertation proposes a programming methodology to 

mitigate design complexity by providing appropriate high-level abstractions that 

assist a modular design approach.  These systems may potentially incorporate the use 

of time in their specification, and they may also have dynamic behavior to adapt. 

This dissertation also presents two case studies demonstrating example reactive 

systems using the above-mentioned approaches: one non-adaptive and one adaptive.   

 

1.2 Outline 

This section provides an outline for the remainder of this dissertation, highlighting 

the contributions. 

 

Chapter 2 provides relevant background, in the form of a literature survey organized 

into four main categories: (a) FPGA architectures and tools, (b) relevant system 

design methodologies, (c) dynamic reconfiguration research related to supporting 
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adaptive systems, and (d) networking research involving reconfigurable hardware 

such as FPGAs.   This research is bridging and synthesizing these diverse areas. 

 

Chapter 3 presents the basic approach using a modular abstraction called ShapeUp.  

A set of interface abstractions and a modular design methodology is described based 

on abstractions of module interface behavior, from three programming paradigms. 

This research is novel in that there has been significant past work on abstracting 

behavior of module functions, but little on the abstraction of the interconnection of 

modules.  ShapeUp addresses this by abstracting the behavior of the interfaces and 

connections between the interfaces.  Several tools were developed that use general 

data driven mechanisms.  A brief introduction to the Click language, from MIT, is 

provided in Section 3.1 since it is extended by ShapeUp and used to describe 

systems.  The contributions of Chapter 3 include: 

• A set of abstractions of module interface behavior, featuring five types of 

interface that cover both streaming and procedural programming paradigms for 

modules.  These are presented in Section 3.2. 

• The use of metadata (and meta-metadata, in fact) to describe a module’s 

interfaces in terms of the defined abstractions, enabling the creation of module 

repositories.  This is described in Section 3.3. 

• A type checker that is used by the other tools to indicate the compatibility of two 

ports when forming a connection.  This is described in Section 3.4. 

• Tools that process (extended semantics) Click descriptions and module metadata 

in order to provide a high-level modular design experience.  These are described 

in Section 3.7.  

 

Chapter 4 presents a modular approach for timing functions, which are pervasive in 

networking.  A wide-ranging review leads to the design of modules for timing.  

These mechanisms are similarly flexible and modular, fitting in with the proposed 

design methodology, so it is not necessary to re-implement ad hoc timing capabilities 
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each time some network packet processing function is being accelerated using FPGA 

technology.   The contributions of Chapter 4 include: 

• A review of the prevalent timing paradigms observed in network protocols that 

exposed three basic timing functions requirements.  This is summarized in 

Section 4.1. 

• The design and implementation of a set of three highly configurable timing 

modules that provide a flexible solution for the identified basic requirements.  

These are described in Section 4.2.  Activity diagrams were created to show time 

requirements and the use of the three timing modules as they relate to individual 

activities.    These are described in Section 4.2.3. 

• The embedding of these modules within the ShapeUp methodology, to allow 

seamless integration with other modules.  This is described in Section 4.3. 

 

Chapter 5 presents a case study that incorporates these timing modules into the 

ShapeUp framework and tool flow. The insatiable demand for bandwidth, which was 

mentioned earlier as one of the driving forces, is requiring network providers to 

upgrade their core networks, including a move to carrier Ethernet.  Ethernet OAM, 

which stands for Ethernet Operations, Administration, and Maintenance, is an 

increasingly important standard in modern carrier Ethernet.  The main contributions 

of Chapter 5 are: 

• A thorough analysis of the complex timing needs of OAM protocols is presented 

in Section 5.2.  This is demonstrated by productive use of activity model and 

mapping to timing modules.   

• A high-level approach is carried throughout the programming methodology and 

framework, combining ShapeUp and the programming language G within the 

methodology.  This is described in Section 5.4. 

• Non-trivial Click descriptions (Y.1731 and CFM) were entered and processed 

with ShapeUp tools.  The results were flexible and maintainable designs, 

delivering required hardware performance.  These are described in Section 5.6. 
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Chapter 6 introduces the adaptive systems part of this work, which extends the 

ShapeUp framework to support dynamic modules in an extended methodology called 

ReShape.  This model allows: (a) modules to be substituted dynamically when the 

system is in operation, (b) brings benefits of abstraction and modularity to dynamic 

reconfiguration based on the latest partial reconfiguration (PR) tools, and (c) extends 

the ShapeUp framework from purely design-time use to lifetime use.  A key topic in 

this work is floorplanning, which physically constrains design placement. This 

chapter investigates the automatic floorplanning of modules and describes 

experiments measuring the performance of partition-based design flows.  This 

chapter also proposes an algorithm to constrain the placement of modules 

communicating in a linear pipeline. The contributions of Chapter 6 include: 

• An investigation of the characteristics of the backend PR tools, revealing 50% 

less internal fragmentation is achievable, compared with prior expectations.  The 

analysis of these results is presented in section 6.2. 

• A domain-specific floorplanning algorithm that provided a reliable basis for 

abstraction of the underlying dynamic partial reconfiguration mechanisms.  The 

algorithm is presented in Section 6.3. 

• Extending the ShapeUp methodology and tools into the more general ReShape 

methodology, illustrated concretely through a specific set of prototype tools that 

support dynamic reconfiguration of networking systems defined using Linear 

Click, a Click subset.  The methodology and the prototype tools are described in 

Section 6.4. 

 

Chapter 7 presents a case study from an adaptive high-speed (150 Gb/sec) 

networking, packet parser example.  Overall, the case study demonstrated the 

benefits of the ReShape approach, in terms of supporting the ‘system for life’ model 

and hiding the low-level details of FPGA partial reconfiguration from the user.  The 

main contributions of Chapter 7 are: 
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• Validation of the productivity gains from use of the ReShape methodology and 

the prototype tools on a real-life industrial-strength case study. A high-speed 

real-life system is described in Linear Click.  An example of the Programmable 

Packet Parser supporting dynamic behavior is described in Section 7.2. 

• Experiments using four configurations of the Programmable Packet Parser were 

conducted, comparing hard-coded, microcoded, and ReShape approaches.  A 

comparison of the results is presented in Section 7.3. 

• The case study demonstrated the benefits of the ReShape approach, in terms of 

supporting the ‘system for life’ model and hiding the low-level details of partial 

reconfiguration from the user.  This is discussed in Section 7.3. 

 

Chapter 8 presents the conclusions of this dissertation and suggests directions for 

future work.   

 
Overall, this dissertation shows that the ReShape methodology makes a significant 

contribution to encouraging a high-level modular approach to designing FPGA-based 

networking systems.  This work synthesizes builds upon results from four different 

areas: FPGAs, system-level design, dynamic reconfiguration, and networking, and 

some relevant background material introduced in the next chapter. 
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Chapter 2  
Background 

 

The dissertation spans four broad research categories and synthesizes ideas from a 

number of different directions. This chapter reviews the foundation for this work. 

 

Section 2.1 presents FPGA architecture and tools and provides an introduction 

to the underlying device technology that is being targeted for this research – its 

characteristics and current design methodologies in use.   The basic architecture of 

FPGAs and the current design flow for programming the technology are discussed.  

The dissertation extends current FPGA tool flow and programming. 

 

Section 2.2 presents Modular system design and provides an overview of tools 

and methodologies for performing system-level design, particularly targeting the 

hardware aspects of systems. The dissertation extends existing modular design flows 

for networking software to target programmable hardware.   

 

Section 2.3 presents Dynamic reconfiguration and provides an overview of 

research into the use of programmable hardware to support systems that have 

adaptive behavior at run time.  The dissertation focuses on harnessing the partial 

reconfiguration capability of FPGAs and suggests improvements in the programming 

framework for updating the FPGA’s programming at run time. 

 

Section 2.4 presents Packet processing using FPGAs and provides a review of 

past work involving the implementation of packet processing system functions using 

FPGA technology.  The dissertation suggests improvements in the programming of 

high performance networking applications targeted to FPGAs. 
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2.1 Field Programmable Gate Array (FPGA) 

architecture and tools 

The most recent general survey of this area, the 2002 paper by Compton and Hauck 

[6], gives excellent coverage of what the authors term “reconfigurable computing,” 

which is seen as filling a gap between hardware and software.  However, this survey 

is now ten years old in a rapidly evolving field. In the past decade there have been 

significant advances in FPGA technology and capabilities.   For example, there have 

been great increases in the logic density and in I/O speed. Furthermore, significant 

architectural improvements have been made for better design scalability. 

 

2.1.1 Basic FPGA Architecture 

The Field Programmable Gate Array (FPGA) is a type of Programmable Logic 

Device (PLD) technology that can be efficiently programmed to implement custom 

logic and systems on chip, and also has the ability to be reprogrammed repeatedly 

after it is deployed in the field.  The first FPGAs (in 1984) contained only 64 to 100 

programmable logic elements.  Modern FPGAs have over a million basic 

programmable logic elements. These FPGAs can be used in implementing complex 

embedded processor systems on chip, advanced signal processing applications for 

video or wireless, or high-speed (e.g. 100 Gb/sec) communications applications. 

 

Before the invention of FPGAs, programmable logic arrays (PLAs) were the 

mainstream PLD technology for providing the ability to implement custom logic 

functions.  PLAs were programmed by expressing logic functions as Boolean algebra 

expressions, in either sum of products form or product of sums form, depending on 

the technology.   Early PLAs were manually programmed by setting interconnection 

points between individual logic gates to build larger functions.  The programming 

process involved applying a current to destroy tiny fuses within the interconnection.  
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The fuses provided a choice of inputs to gates, and so fuses connecting undesired 

inputs were destroyed until only the desired connections remained.  The main 

disadvantage of these PLAs was that they could only be programmed once, so any 

changes required starting over with a new device.   The Complex Programmable 

Logic Device (CPLD) is a similar form of technology that improved upon early 

PLAs.  CPLDs also feature product-based programming, but use a non-volatile 

memory for configuration that can be reprogrammed.  The key advantage of FPGAs 

over PLAs and CPLDs is that they contain a more general programmable structure to 

implement logic functions that is capable of supporting reprogramming.  The 

fundamental characteristic of FPGAs is that logic programming is implemented 

using n-input lookup tables (LUTs) to implement programmed logic functions.  The 

LUTs can be connected in series to implement larger logic functions.  Another 

essential feature that FPGAs incorporate is a programmable switch box for creating 

interconnections between LUTs.  Memory-based configuration supports 

reprogramming by being implemented in SRAM.   

 

The LUTs are small memories for implementing bit-level logic functions.  An n-

input LUT contains 2n single-bit values, indexed by the input.  LUTs can either 

implement any n-input logic functions by configuring the set of truth table values, or 

be used as a small distributed single-bit memory unit with an n-bit address space.  

The chosen value of n varies by manufacturer and architecture, and has evolved over 

time, but is typically in the range of three to six [7] [8] [9] [10].   The earliest 

FPGAs had three- or four-input LUTs.  Modern, high-performance FPGAs, like the 

Xilinx Virtex-7 and the Altera Stratix V, have six-input LUTs.  There has been 

considerable research into the most beneficial LUT size, looking at tradeoffs 

between area, performance, power, and mapping efficiency for logic circuitry.  A 

seminal paper by Rose et al. in 1989 [11] made the case for the four-input LUT, 

which became dominant for over 15 years.  In fact, it also made a case for the three-

input LUT, but this was not adopted in practice.  The question was revisited by 

Ahmed and Rose in 2000 [12] given advances in FPGA technology, this time with 

the conclusion that up to six-input LUTs could be beneficial.  This research had a 
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direct impact on practice, first with the Altera Stratix II device, which introduced a 

six-input LUT architecture [13]. 

 

In most FPGA architectures, LUTs are clustered together in larger units.  The 

coupling of flip-flops (FFs) with LUTs, to combine storage with combinatorial logic, 

was another key recommendation by Rose et al. [11].  In Xilinx architectures, 

several LUTs and FFs are grouped together into ‘slices’.  For example, each Virtex-7 

slice contains four LUTs and eight FFs.  In turn, slices are grouped into larger 

‘configurable logic blocks’ (CLBs). Each Virtex-7 CLB contains two slices.  The 

CLBs then form the basic two-dimensional array architecture – the ‘A’ in the 

‘FPGA’. 

 

Aside from the LUTs and FFs for computing and storing logic function results, the 

other essential aspect of the FPGA is programmable interconnection, to allow logic 

circuitry to be built.  The basic component is the Programmable Interconnection 

Point (PIP).  This is a small programmable switchbox to select between 

interconnection paths.  The actual paths provided are a key feature of any FPGA 

architecture.  In early FPGAs, the paths were just between neighboring LUT clusters, 

giving limited scope for programmable switching.  Nowadays, a range of different 

paths, spanning different distances over the array and covering different directions, 

are provided.  In fact, typical FPGA silicon area can be 90% for the programmable 

interconnection and only 10% for functions [14], indicating the relative importance 

of this feature.  Much research has been carried out into the most beneficial styles of 

interconnection. For example, Lemieux and Lewis [14] discuss this issue in detail in 

their 2004 book.  

 

A final essential component of the FPGA is programmable input/output blocks for 

communicating with off-chip devices through the pins of the device.  They are 

programmable to support different I/O signaling standards, such as drive strengths 

and voltages.  These blocks have grown increasingly complex over FPGA 

generations, retaining support for legacy standards while gaining support for newer 
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standards.  A particular trend now is towards support for high-speed serial 

input/output channels, operating at rates of up to 28 Gb/sec, with higher rates in 

prospect.  

 

2.1.2 Advanced architectural elements 

The modern FPGA device is no longer a simple two-dimensional array of logic 

blocks with programmable interconnect and input/output blocks.  Additional features 

have been selectively hardened to improve performance for commonly used 

functions.  An early feature was explicit support for addition-carry chains between 

logic blocks; this arithmetic support was then broadened to include complete 

multiplication blocks; and now to fixed-point multiply-accumulate blocks for DSP 

acceleration. 

 

A key ingredient of FPGA architectures is a collection of embedded SRAM memory 

blocks, to give a more silicon-optimal storage option than building store out of LUTs 

and FFs.  For example, the largest Xilinx Virtex-7 device has 1,292 dual-port SRAM 

blocks, each storing 36 Kbits, giving a total of 46 Mb of on-chip storage.  Research 

has been carried out into the best ways of organizing embedded memory and 

integrating it with the basic logic fabric, notably by Wilton, Rose and Vranesic [15].  

 

Moving beyond hardened arithmetic support, some FPGA architectures feature 

embedded processors.  The Altera Excalibur and Xilinx Virtex-II Pro devices were 

the first FPGAs to contain a hard embedded processor core (ARM and PowerPC 

respectively) integrated with the logic fabric.  In tandem with these hardened 

developments though, the size of FPGA logic arrays has advanced so significantly 

that soft processors [16] [17] can be configured as an alternative solution to 

processor needs (in fact, up to hundreds with current technology).  Thus, hardened 

processors do not feature in recent Altera generations, and were not offered in the 

latest Xilinx (Virtex-7) generation.  Xilinx has recently released the processor-centric 

Zynq platform targeted to software developers and to non-hardware experts, 
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containing dual core ARM Cortex A9 processors coupled to a smaller programmable 

logic fabric, for implementing custom accelerators [18].  Altera has recently 

announced a similar ARM-based platform [19]. 

 

Other advanced programmable features sometimes available include digital clock 

managers for implementing programmable clock signals, voltage or temperature 

sensors, and communication blocks for widely used protocols (e.g. for Ethernet or 

PCI Express).  

 

2.1.3 Programming the FPGA 

The basic tools and methodologies for designing systems based on FPGAs are 

closely related to those used for ASIC design.  Thus, the FPGA programming 

experience today is very much a hardware-design style of experience, which presents 

a high entry barrier to those from a software background. On the other hand, FPGA 

tools differ from ASIC tools by generating information for hardware configuration of 

an FPGA instead of mask information for a silicon chip.   

 

Verilog and VHDL are the most popular hardware description languages (HDLs) 

used for describing FPGA designs at the register transfer level (RTL), which is the 

highest level of abstraction typically used.  Design at the lower logic gate level is 

relatively unusual nowadays except in specialized or critical circumstances, a fact 

that reflects the maturity and acceptance of RTL design.  The basic steps in the 

standard tool design flow are (a) compilation and synthesis, (b) technology mapping, 

and (c) placement and routing.   Modern computer aided design (CAD) tools and 

backend synthesis tools are used to compile and synthesize HDL descriptions. These 

HDL descriptions map the synthesized designs into logic gate level representations 

that can then be mapped onto FPGA resources: lookup tables, flip-flops, and 

interconnection between them. 
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The most time-consuming aspect of using standard FPGA tools is the assignment of 

the FPGA resource requirements to specific sites on the FPGA. This assignment 

includes placement of LUTs and FFs and routing of interconnections.  For large 

FPGA designs, this can take many hours, which is a major deterrent to users 

accustomed to the fast turnaround and hence frequent iteration possible with 

software compilers.  Improvement of placement and routing algorithms, for both run 

time and storage requirements, is an area of major ongoing research.  Chen, Cong, 

and Pan conducted an extensive survey of this area in 2006 [20].  A common 

approach to placement involves the use of simulated annealing as a heuristic 

technique to solve the NP-complete optimization problems involved. 

 

Floorplanning provides the means for mapping system modules to distinct physical 

FPGA regions. This topic has been extensively researched.  Algorithms for 

traditional ASIC floorplanning based on geometry and wire length were described by 

Adya and Markov [21] and Adya et al. [22]. Later, specialized algorithms targeting 

FPGAs with heterogeneous resources, were devised by Cheng and Wong [23], Feng 

and Mehta [24], and Banerjee [25].  The most recently published floorplanning 

algorithms further consider device capabilities, including granularity of 

reconfiguration and also resource distribution, for example the work of Montone et 

al. [26], Bolchini et al. [27], and Banerjee et al. [28].  This prior work has lent great 

insight to the domain-specific solution adopted for the work in Chapter 6.  

 

When embedded processors are included in the FPGA design, whether hard or soft, 

additional tool support is required to facilitate hardware-software co-design.  One 

component is a standard software development kit (SDK) for the embedded 

processor software.  The more challenging component is support for the hardware-

software interface.  In current practice, this is fairly low-level, in that the user must 

specify details of buses that connect the processor to peripheral blocks implemented 

in the logic fabric. Then, the user must adjust details such as address maps for the 

bus and software device drivers for the peripheral blocks.  Much research has been 

done on higher-level approaches to this hardware-software co-design, including 
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automated hardware-software partitioning and hiding of bus details, but this has not 

yet made its way into mainstream products from the FPGA vendors.  Aspects of such 

research are considered in more detail in the next section. 

 

A consequence of the ASIC-like design flow for FPGAs is that standard support for 

programming or reprogramming the FPGA is rudimentary: the tools generate a “bit 

stream” containing the programming information, and then this is loaded (via a 

relatively slow serial interface) into the FPGA.  Thus, implementing adaptive FPGA 

systems is slow – first because of the time needed to generate replacement bit 

streams via the CAD tool flow, and second because of the time needed to load the 

new bit stream (which can be of the order of 100s of milliseconds).  A notable 

feature of most Xilinx FPGAs is support for partial reconfiguration, where only 

selected parts of the FPGA are reprogrammed, thus reducing the loading time 

significantly when only small changes are being made.  However, this requires 

specialized tool support.  First, there is a need to indicate selected parts of the design 

that are subject to partial reconfiguration, and then there is a need to generate 

separate partial bit streams for these parts from the remaining background design.  

JBits [29] was an early gate-level design tool that was supported by Xilinx until 

2004.  Since then, a Xilinx partial reconfiguration (PR) flow [30] has been made 

available as an add-on to the standard design tools. However, PR requires non-trivial 

manual floorplanning of the design layout by the user to define FPGA regions that 

are to be partially reconfigured.  

 

2.2 Modular System Design 

Modular design involves partitioning a system design into modules of smaller 

complexity or building a system out of smaller preexisting sub-modules.  Such 

designs involve two types of programmed description: for the structural network and 

for the behavioral modules.   The structural description contains a listing of the 

modules and connections formed by wires or other communication pathways 

between modules.   The behavioral descriptions describe the processing within the 
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modules, which is typically specified as a function reading a pattern of inputs to 

generate a programmed pattern of outputs.  A modular approach to system design 

involves system modeling methods, inter-module interfaces, and tools and 

methodologies for modular system design. 

 

2.2.1 System Modeling 

A plethora of hardware and software system models have been proposed for 

exposing and abstracting different behavioral aspects of concurrent designs.   Some 

of the early models for concurrent systems include formal models such as Hoare’s 

Communicating Sequential Processes (CSP) [31] and Milner’s Calculus of 

Communicating Systems (CCS) [32].  These models are useful for analyzing the 

behavior of concurrent software for undesirable properties like deadlock and 

livelock.  Petri nets [33] graphically illustrate concurrent interaction and highlight 

synchronization barriers.  The Unified Modeling Language (UML) [34] is a set of 

graphical models that illustrate separate design concerns, for example: class 

relationships, state charts, block diagrams, and interaction. 

 

Ptolemy [35] is an influential research project conducted at UC Berkeley that 

features heterogeneous formal models, reflecting the practical desire to mix different 

models within one design.  In Ptolemy terminology, the type or domain of the model 

is called the “Model of Computation” (MoC).  Examples of MoCs are continuous 

time (CT), discrete event (DE), synchronous dataflow (SDF), and Hoare’s CSP.  The 

Ptolemy system model is hierarchical, like a tree composed of sub-models at each 

level, in order to constrain interactions between components.  Lee et al. use formal 

models to define interface automata that describe the communication states of 

interfaces, as well as MoC specific parameters.  Ptolemy has a simulation framework 

that supports building complex applications composed of heterogeneous models.  In 

[35], a Ptolemy simulation was used to describe an SDF application that included 

DE components targeted to an FPGA.  
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System modeling is becoming an increasingly important aspect of designing for 

FPGAs, as modular approaches become mandatory to cope with target system 

complexity.  There are a variety of different models in use, and understanding and 

verifying the interaction between modules to detect unintended behavior can be 

extremely difficult.  This is exacerbated by the fact that programming applications 

for FPGAs exposes different levels of programming abstraction and high levels of 

concurrent execution.  Practical models used in designing applications for FPGAs 

currently fall into three categories:  dataflow programming, embedded system-on-

chip (SoC) programming, and RTL programming.  Dataflow models describe 

relationships between modules that indicate there is a movement of data between a 

first processing module and a second processing module, forming a pipeline.  

Dataflow models are at a higher level of abstraction than the target hardware, 

abstracting away wire signaling details.    SoC models describe architectures in terms 

of a bus topology where modular components are connected to shared buses.  

Interactions are typically between a master component like a processor and multiple 

peripheral components, and a bus represents an abstraction of the wires that 

implement a data path, and the handshaking signals used for control.  RTL system 

descriptions are at a lower level of abstraction and describe physical ports and 

individual wires that form connections.  RTL descriptions additionally include low-

level connection details like clocks and resets. 

 

2.2.2 Module Interfaces 

In most research on design at the system level, the focus is on the structural network, 

rather than the behavioral modules, which are treated as black boxes.  However, it 

should be noted that there is also an extensive body of research on higher-level 

abstraction for modules.  For example, there is a trend for higher-level tools to create 

behavioral hardware modules, notably electronic system level (ESL) tools that 

synthesize high-level C-like languages into RTL descriptions.  These tools are 

informally called “C to gates” tools, and take a “C-like” description that usually 

contain extra pragmas that help to guide the high-level synthesis tools to 
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automatically extract parallelism from the “C-like” descriptions.   AutoESL [36], 

Bluespec [37], Impulse C [38], and Synphony C [39] are some examples of high-

level synthesis tools. 

 

To reduce design complexity and enable productivity at the system level, standard 

module interfaces that facilitate “design reuse” are important.  Traditionally, IP 

(intellectual property) cores have been tied to a particular technology or vendor 

because they use proprietary interfaces and metadata describing interfaces.  For 

example, Coral [40] was a pioneering project on automated interface synthesis by 

IBM Research that involved synthesis of virtual SoC interconnections into physical 

bus structures, including synthesizing any necessary glue logic.  It featured a tree 

classification for describing the functional, structural, and electrical attributes of 

module interfaces, and pin constraint matching for type checking compatibility of 

pins. 

 

More recently, there has been an industry drive for standard ways to describe 

interfaces so that IP cores can be used interchangeably between different tool 

vendors.  Initial work on describing module interfaces was done by the Virtual 

Socket Interface Alliance (VSIA) [41], which was an industry initiative to promote 

IP reuse and standardize terminology and models for SoC integration.  IP-XACT 

[42], by the SPIRIT Consortium, now merged with Accellera, is a current initiative 

by leading EDA companies to develop a standard specification of design metadata, 

which will allow IP vendors to more easily exchange IP cores, and system design 

tools to more easily interoperate with tools from other vendors.  IP-XACT was 

influenced by VSIA’s work on Virtual Component Transfer, describing what types 

of data to include when packaging modules, called virtual components, for use by 

other companies.  The IP-XACT object model supports transaction-level models 

(TLM), which are at a higher level of abstraction, in addition to RTL models.  IP-

XACT v1.5 was approved as IEEE standard 1685 in December 2009. 
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OpenCPI [43] is an open standard under development that is centered on the 

importance of interface abstraction for interoperability.  It describes IP component 

interface descriptions that are abstracted into five interface-type categories: worker 

control, worker time, worker stream, worker message, and worker memory. These 

type abstractions form profiles for the Open Core Protocol (OCP) [44], which is an 

openly licensed interface standard for SoC integration.  OCP is a functional superset 

of VSIA’s Virtual Component Interface, adding configurable protocol options for 

sideband signaling and test harness signals.   OpenCPI adds a thin layer of metadata 

for patterns of control, memory, data, and time to the Open Core Protocol. 

   

CHREC [45] is a current research project in which an XML schema is used to create 

a portable IP interface description that can be used with multiple tools, and is 

intended to enhance IP-XACT’s capabilities when FPGAs are being targeted 

specifically.    CHREC XML comprises three layers: the RTL layer, the data type 

layer, and the interface operation information layer.  The RTL layer describes low-

level details of the core, the list of parameters for the core, and the related 

mathematical expressions for parameters.  The data type layer describes high-level 

data types such as string, integer, floating point, fixed point, character, and boolean.  

The interface operation information layer contains information for high-level 

interface synthesis, for example to enable a tool to reason about the timing of signals, 

data dependencies, and latencies of signals.  Recently, CHREC XML was further 

aligned with IP-XACT by describing metadata extensions for different types of 

parameterization of modules [46].  Some of the CHREC ideas have also been 

applied to descriptions of interfaces of heterogeneous CPU/FPGA systems for 

wireless [47]. 

 

2.2.3 System-level FPGA design tools 

As mentioned earlier, system models for targeting FPGAs fall into three categories: 

dataflow programming, embedded SoC programming, and RTL programming.  

Current system-level design tools correspond to these three models.  There is also 
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some support for integrating system designs that are constructed using the different 

types of tools, although this falls somewhat short of the grand vision of, for example, 

Ptolemy. 

 

Tools for dataflow design are typically used to build stream-processing applications 

with spatial or temporal data parallelism that can be pipelined.  Such tools often have 

a Digital Signal Processing (DSP) focus at present.  The Mathworks Simulink [48] 

and National Instruments LabView [49] are examples of tools that can be used for 

constructing data flow applications that target FPGAs.  Xilinx System Generator for 

DSP [50] is a toolbox for the Simulink based design environment that can be used to 

build fixed-point signal processing applications like DSP filters.  Simulink provides 

libraries of modular filter blocks that can be simulated at a high level, and System 

Generator for DSP provides libraries of fixed-point blocks that have efficient FPGA 

implementations.  Examples of System Generator blocks are FFTs blocks, adders, 

and multipliers.   The System Generator blocks can be connected within Simulink to 

build a dataflow model and then the application can be compiled for FPGA 

implementation. LabVIEW offers a similar dataflow design environment to 

Simulink, but with a focus on designing laboratory instruments for data acquisition 

and diagnostic purposes.  Much research on tools for packet processing using FPGAs 

(e.g. [51]) has used Click [52], which is a dataflow language for describing 

networking applications that was developed at MIT.  Click, which is described in 

more detail in the next chapter, can be used, for example, to describe programmable 

routers in terms of simple descriptions that expose the main forwarding paths of 

packets. 

 

SoC tools tend to be focused on building embedded processor-based designs.  One 

example embedded design environment is Xilinx Platform Studio (XPS) [53], used 

for integrating embedded processor subsystems into FPGA applications.  In XPS, 

modular components represent, for example, PowerPC and Microblaze processor 

cores, UART and Ethernet peripheral cores, and bus interconnect generators.  The 

programmer builds the system on chip description by selecting components from a 
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library, specifying bus connections, and programming the address maps.  Altium 

Designer [54] is another similar SoC design tool that features a schematic entry 

view, a graphical bus-based entry view, and a printed-circuit-board design view.  

Altium Designer supports a range of different embedded processors and also features 

an interactive FPGA diagnostic probe tool. 

 

RTL structural descriptions typically instantiate modular RTL components, while the 

programmer specifies wire connections between them using RTL.  The components 

are typically either static or parameterizable.  Xilinx Core Generator and Altera 

MegaWizard are example of tools for generating specific RTL components drawn 

from parameterized library components. 

 

Regardless of the original system model and design description, the analysis and 

verification of implemented systems must often be carried out at the lower RTL level 

only.   Thus, validating designs typically involves compiling high-level models into 

RTL-equivalent models and then running RTL level simulations.  It is less usual to 

‘back compile’ RTL-level models to higher-level models, and then verify everything 

at a higher level.  Designs are typically simulated to show functional correctness at 

edge conditions.  RTL simulations are discrete event simulations, typically with 

waveform visualization to inspect signals within the implementation.  Examples of 

RTL simulators are Mentor Graphics Modelsim and Synopsys VCS.  Aside from the 

loss of any higher-level abstraction, it can be a very tedious and time-consuming 

process if there are many edge conditions.  Some tools, like System Generator for 

DSP, allow simulation at a high-level functional level that respects the original 

dataflow model for the design.    

 

2.3 Dynamic Reconfiguration 

For researchers, a compelling feature of FPGA technology has long been the 

capability to build systems wherein the hardware can be modified during operation, 

that is, post design time.  The availability of partial reconfiguration, where only 
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selected parts of the FPGA are updated, allows the option of more delicate, 

minimally invasive surgery.  Research proposals range from fine-grain extremes, 

where tiny hardware features are updated on a very frequent basis, to coarse-grain 

extremes, where large hardware features are updated on a more occasional basis.  

While the former style offers more novel and exciting prospects, the latter style is 

more often seen in practical examples.  This section overviews some significant 

research into mechanisms to support dynamic reconfiguration.   

 

2.3.1 Hardware 

The mainstream commercial hardware vehicles for dynamic reconfiguration are the 

Xilinx FPGA families.  As mentioned earlier, physical programming of the FPGA is 

performed by writing a complete circuit configuration to SRAM after the device is 

powered on.  Partial reconfiguration (PR), which is unique to Xilinx devices, 

involves modifying the circuit behavior at run time by writing an updated portion of 

the circuit configuration.  Xilinx introduced partial reconfiguration in 1995 as a 

feature of the XC6200 FPGA family.  This allowed very fine-grain partial 

reconfiguration support at the level of individual logic gates.  When the XC6200 

family was discontinued in 1998, the Virtex family became the mainstream FPGA 

architecture supporting partial reconfiguration.  The original Virtex, and then Virtex-

II, device architectures supported column-based reconfiguration of frames, in which 

columns spanning the entire device were grouped into coarse-grain units called 

frames that could be individually reconfigured.  In the later Virtex-4 and Virtex-5, 

frames are smaller regions that no longer had to span entire device columns.  

However, a legacy of the earlier Virtex families was that many researchers still focus 

on reconfigurable designs that have a physical columnar structure. 

 

The Virtex-II, and later, devices have three different physical interfaces for loading 

partial bitstreams into the FPGA fabric: JTAG, SelectMap, and internal 

configuration access port (ICAP).  JTAG is the slowest programming interface.  

SelectMAP is an external interface for a coprocessor to write configuration frames.  
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ICAP is a wider internal port for an embedded controller to write updated 

configuration frames, and is the fastest programming interface. 

 

Trimberger et al investigated an alternative FPGA architecture in [55].  This 

research proposed a time-multiplexed FPGA, which increased the configuration 

memory per logic region in order to multiplex configurations over time, for example 

eight configurations per region.  Then, the time multiplexed FPGA emulated a single 

large FPGA, using time as a third dimension to the two-dimensional logic gate array.  

Its logic engine consisted of regions that switched configurations every micro-period, 

thus giving dynamic reconfiguration every clock cycle.  Hence, the same regions 

could implement successive combinatorial logic before storing the result in flip-

flops.  Two other modes for logic regions were a time-share mode and a static mode.  

More recently and in fact 12 years later, Tabula, a startup company, announced a 

similar style of time-multiplexed architecture [56]. 

 

In another notable research project, Nagami proposed the Plastic Cell Architecture 

(PCA) [57], which was a cross between an FPGA architecture and a coarser-grain 

architecture, having a homogeneous cell structure.  Each cell consisted of two parts: 

a static built-in part having fixed functionality and a programmable plastic part.  

Each cell also contained basic routing infrastructure to transmit between each part 

and to transmit to neighboring cells.  The PCA offered the capability of provide 

highly flexible processing elements through the use of dynamic reconfiguration.  

 

2.3.2 Software 

As mentioned earlier, there has always been some basic Xilinx tool support for 

dynamic reconfiguration.  However, these tools required the user to be fully aware of 

the physical floorplan of a design on the FPGA.  The user was also wholly 

responsible for the organization and management of dynamically reconfigurable 

parts of the system being implemented.  A historical analog of this situation was the 



 

   

 

25 

need for early programmers to directly manage memory overlays for programs and 

data.  In general, this was not an attractive situation for the FPGA user.  

 

Consequently, a major research focus over the past 15 years has involved 

approaching dynamic reconfiguration from an operating system angle, particularly 

bringing ideas from virtual memory management and translating these into 

mechanisms for virtual hardware management.  This introduces two particular extra 

complications: first, two-dimensional FPGA regions must be managed, as opposed to 

one-dimensional pages or segments; and second, it is often necessary to provide 

physical connectivity between different regions, corresponding to connections 

between modules. 

 

Some of the earliest research was by Hutchings et al.  In [58], Hadley and Hutchings 

presented a design methodology for partial runtime reconfiguration, specifically for a 

runtime reconfigurable artificial neural network.  Their methodology aimed to 

maximize static circuitry and minimize dynamic circuitry, and they implemented a 

feed-forward multiplier as a case study.  In [59], Hutchings and Wirthlin compared 

two types of reconfiguration: compile-time reconfiguration and run-time 

reconfiguration.  They presented different strategies for run-time reconfiguration: 

global and local.  The global strategy involved total reconfiguration, based on a 

phased partition of the design, whereas the local strategy involved the use of partial 

reconfiguration, based on a functional partition of the design.  This work was also 

targeted at an artificial neural network. 

 

More general research on managing two-dimensional regions followed this 

pioneering work, and still continues.  Brebner [60] proposed a virtual hardware-

programming model consisting of swappable logic units (SLUs).   SLUs were 

considered as virtual hardware components, with the motivation of extending a 

conventional operating system to manage SLUs in a similar manner to virtual 

memory.   Two models were considered: the sea of accelerators, where SLUs were 

heterogeneous and not inter-connected, and the parallel harness, where SLUs were 
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homogeneous and tiled to allow nearest-neighbor connectivity.  Diessel and ElGindy 

[61] also considered the two-dimensional placement problem, and in particular 

presented a complex two-dimensional compaction algorithm to reclaim free area 

after fragmentation occurred over time.  This improved the utilization of the FPGA, 

and also the time taken for tasks to be executed using the dynamically configured 

blocks.  A shortcoming of this early research is that it largely ignores the problem of 

implementing inter-module connectivity. 

 

Partly motivated by the fact that the earlier Virtex family FPGAs only supported 

whole-column reconfiguration, but also motivated by the complexity of managing 

two-dimensional regions, many researchers have focused only on the one-

dimensional problem of managing regions that span the whole height of the FPGA.  

For example, Brebner and Diessel [62] presented a scheme for removing 

fragmentation along a one-dimensional array of blocks, implemented using the 

FPGA itself.  Blocks were arranged in a one-dimensional array of columns having 

variable width, and could either be allocated to tasks or left free.  Unused available 

blocks were found using a first fit allocation scheme, implemented using a hardware-

based string match for a set of n consecutive zeros on a binary string representing 

used or unused columns.  A compaction algorithm was also provided, which shifted 

used blocks to the left in order to move free blocks together.  In this way, the 

management of the FPGA was offloaded from operating software onto the FPGA 

itself.    

 

Under the auspices of a national research program on dynamic reconfiguration 

funded by the German government, two notable examples of complete one-

dimensional (“slot-based”) reconfigurable architectures emerged.  Majer et al 

introduced an extended FPGA architecture called the Erlangen Slot Machine [63] 

containing a configurable communications switch, which avoids the problem of feed-

through paths. Feed-through paths occur when a module must reserve a circuit path 

cutting through a module, for example to provide access to external pins.  Feed-

through paths create a problem because they make reconfigurable modules less 
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portable.  Ullmann, Hübner, and Becker [64] present an on-demand FPGA run time 

system for flexible and dynamic reconfiguration using a slot-based architecture for 

inter-module communication.  This run-time system is implemented on a MicroBlaze 

soft processor and uses the ICAP for partial reconfiguration.  The run-time system 

loads modules that have been compressed using LZSS compression and the loader 

decompresses partial bitstreams. 

 

Wigley et al. presented ReConfigMe [65], the first complete operating system with 

runtime support for dynamic reconfiguration.   The overall framework was 

partitioned into three levels of abstraction:  platform tier, operating system tier, and 

user tier.   The prototype was implemented using a coprocessor host to manage 

reconfiguration. 

 

More recent research has focused on means of adding more flexibility to the 

implementation of communication paths between dynamically reconfigured 

modules.  Koh and Diessel [66] proposed merging of communication graphs so that 

the communication infrastructure reuses wire paths.  Using a fixed wiring harness 

and merged communication paths they reduced reconfiguration time.  Suris, 

Patterson, and Athanas [67] presented WoD, a run-time router that can create routes 

between modules arranged in a slot array.  At run time, new modules are placed in 

empty slots, and the router calculates new routes to and from the new module.  This 

routing calculation takes four orders of magnitude less computation time than used 

by traditional design-time routers. 

 

2.3.3 Theoretical models 

Theoretical analysis of the computational capabilities and properties of dynamically 

reconfigurable systems has been a somewhat neglected research activity to date.  The 

practical aspects of the field are still sufficiently immature that identifying 

underlying principles is difficult.  One candidate for a computational model has been 

the Reconfigurable Mesh (RMESH) model [68] from the parallel computing world, 

which has some apt properties, such as an underlying two-dimensional grid, but 
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other less apt properties, such coarse-grain processing elements and per-cycle 

reconfiguration.  

 

Lange and Middendorf have investigated the notion of ‘hyperreconfiguration’ [69], 

where dynamic reconfiguration is layered hierarchically, that is, one can structure 

reconfigurable regions.  Hyperreconfiguration involves reconfiguring a larger area so 

that it supports smaller reconfiguration within its boundaries.  A central problem is to 

determine when hyperreconfiguration steps should be taken, and how to define the 

reconfiguration potential in order to minimize the time for hyperreconfiguration of a 

computation.  They showed that the Partition into Hypercontexts (PHC) problem is 

NP-hard in general, but can be solved for certain practical cases in polynomial time. 

 

Malik and Diessel have defined the notion of the entropy of an FPGA 

reconfiguration [70].  This measures the entropy of a circuit that is to be configured, 

which leads to practical bounds on the minimum number of reconfiguration bits that 

need to be written to the FPGA in order to effect dynamic reconfiguration.  This 

theoretical notion has important practical consequences, given the limited bandwidth 

available on FPGA configuration ports.  They use Golomb encoding, which is a 

variant of run-length encoding, as a practical compression technique, and showed 

that the results were within 1 to 10% of the theoretical bound for a wide range of 

representative circuits. 

 

2.4 Packet Processing using FPGAs 

Traditionally, FPGAs have featured in a supporting role in networking systems: for 

providing physical interface logic or general glue logic.  In recent years, this 

situation has changed significantly, with FPGAs assuming mainstream packet-

processing roles, reflecting the need for hardware performance at increasing 

transmission rates, but coupled with programmability.  The Internet commonly 

requires multi-gigabit data line rates in access networks and multi-terabit switches in 

the core networks.  For example, the Cisco CRS-3 core router has a switching 
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capacity of 322Tb/sec.  Modern, high performance FPGAs can be used to implement 

packet-processing functions at line rates surpassing 100 Gb/sec and packet switching 

at rates greater than 1 Tb/sec. 

 

Telecommunication-equipment vendors, such as Alcatel Lucent, Cisco, Huawei and 

Juniper, perform much of the leading-edge research and development internally. 

Consequently, the work remains largely unpublished, although visible to FPGA 

vendors, such as Xilinx.  However, there is an increasing quantity of published 

academic research in this area too.  This section overviews some hardware platforms 

for FPGA-based networking research, packet processing functions that benefit from 

the use of FPGA technology, and comparison with other processing technologies. 

 

 
Figure 2.1: Example of a telecommunication line card  

 

2 .4.1 FPGA-based platforms 

In real-life networking equipment, FPGAs usually feature as a part of 

telecommunication line cards, an example is shown in Figure 2.1.  These plug into a 

switching backplane via high-speed interfaces, an example backplane being shown in 

Figure 2.2.  Packets arrive on an input connection into one line card, are processed 

there, then passed to the switch, and emerge onto another (perhaps on the same) line 

card for further processing before departing on an output connection.  In research 

settings, FPGAs more often feature on standalone cards that include any switching 
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capability as an integral on-board feature.  Such cards often plug into standard 

computer workstations. 

 

 
Figure 2.2: Example of a switch backplane, which seats multiple line cards 

 

Here, three major academic research platforms are described, which are all public 

domain and have found widespread usage in the international networking community 

for both research and teaching.   However, there are other instances of specific 

boards being built for particular research projects, or the use of standard boards 

available from FPGA vendors.  

 

The pioneering platform was the Field-programmable Port eXtender (FPX) 

developed at Washington University in St. Louis [71].  This platform was a plug-in 

line card that sat between a 2.5 Gb/sec line interface and the switch backplane of a 

multi-gigabit router.   The FPX could be deployed within a core router or an edge 

network – though line rates have now increased significantly since the FPX’s 

introduction.  It has been used by researchers to implement accelerated versions of 

many networking applications ranging from fast Internet Protocol lookup, to content 

scanning and replacement, to network intrusion detection, and to streaming video 

processing.   
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NetFPGA [72] is an ongoing project at Cambridge University and Stanford 

University, incorporating ideas from FPX, and currently providing the standard 

worldwide research platform.  The original version was a plug-in PC card with four 1 

Gb/sec Ethernet interfaces and one PCI interface.   In early 2012, there were around 

2200 of these cards in use worldwide.  The second-generation version, NetFPGA 

10G, was completed in 2010.  It improves upon the original platform by using a 

more modern and much larger FPGA, four 10 Gb/sec Ethernet interfaces and one 

PCI Express interface. 

 

NetCOPE [73] is a networking platform that was developed by Brno University of 

Technology in the Czech Republic.  Like NetFPGA, it plugs into a standard PC, and 

one application for it is as a high-speed host-based network interface card (NIC).  As 

well as the hardware board, NetCOPE comes with a firmware abstraction layer that 

includes common modules required in networking applications. 

 

 

 
Figure 2.3: Types of packet processing functions of a line card 
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2.4.2 Packet processing functions 

Functions in the main packet processing data plane can be divided into three broad 

groups: classification, editing, and traffic management, as shown in Figure 2.3.  

Classification involves some parsing and checking of a packet to ascertain its 

relevant properties or ownership.  Editing involves changing fields in packet headers 

(or trailers), inserting or removing fields, splitting and joining packets, or completely 

dropping packets.  Traffic management involves queuing and scheduling of packet 

departures to meet quality of service goals.  FPGAs find application for all these 

functions, particularly when they are on the “fast path” where a function is applied to 

all packets passing through (at high speed).  Associated with these packet processing 

functions are management activities like gathering statistics and maintenance, which 

may be orchestrated by embedded processors on an FPGA. 

 

Classification has attracted much attention in the research community, particularly to 

exploit the ability of FPGAs to perform high-speed table lookups or pattern 

matching.  Basic classification to determine packet forwarding through a switch 

involves extracting one or more packet header fields, and using these as a key into a 

lookup table containing forwarding information.  These tables are typically 

implemented as Ternary Content Addressable Memory (TCAM), the ternary aspect 

allowing wild cards in table entries.  Commodity TCAM devices are available, but 

these consume higher power compared to using FPGAs together with on-chip or off-

chip memory.  High speed, power-efficient FPGA-based approaches have been 

demonstrated using pipeline architectures [74] or hash-based techniques [75]. 

 

Security applications, such as network intrusion detection, typically require not just 

inspecting packet headers, but also scanning the contents of packet payloads.  The 

latter is often referred to as deep packet inspection (DPI).  Efficient ways to 

implement content scanning applications involving regular expression matching have 

been well researched (e.g. [76] [77] [78] [79] [80]).  Because they require checking 

an incoming packet against a large database of rules for content, they are easy to 

accelerate by checking the rules in parallel using an FPGA.  Snort [81] is an 
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example open source software program for network intrusion detection, and the 

standard Snort rule database has been a frequently used example rule set for 

benchmarking FPGA implementations.  The basic implementation of regular 

expression matching normally involves execution of an equivalent deterministic 

finite automaton (DFA) or non-deterministic finite automaton (NFA).   In [76] for 

example, Hutchings presents a regular expression matching application implemented 

on an FPGA using an NFA approach, which was tested on regular expression rules 

derived from the Snort database.  Bloom filters have been used as a different 

approach to implementing DPI [82].  Parallel Bloom filters used for dictionary 

lookup were chained together to implement string matching for thousands of rules, as 

a series of probabilistic hash functions.  In addition to scanning for content, some 

researchers have also included packet modification to actively decontaminate 

packets.  For example, Moscola et al. [78] scan packets for Internet viruses and spam 

and then neutralize infected packets by removing the malicious data.    

 

Other research has focused on high performance protocol handling though packet 

parsing and editing.  Fallside and Smith [83] demonstrated FPGA implementations 

of networking protocol layers, implementing the standard ARP, IP, TCP and UDP 

protocols over an Ethernet connection.  Schuehler [84] presented a TCP splitter for 

stateful monitoring of thousands of TCP/IP flows.  Marcus et al. [85] described 

“protocol boosters”, a general approach to implementing protocols on FPGAs.  

Protocol boosters were based on the idea that new protocols can easily be 

constructed by incrementally adding inline protocol booster components to 

accelerate a baseline protocol.  Brebner [86] presented a high-level language and 

compiler for automatically building high-performance packet parsing and editing 

pipelines on an FPGA.  Soviani and Hadzic [87] also presented research on high-

level synthesis and optimization of packet processing pipelines. 

 

Comparatively little research on traffic management has been published, although 

this area is of great importance to networking equipment providers and has generated 

many patents.  Zhang et al. [88] presented a programmable traffic manager (TM) 
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architecture for supporting simultaneous scheduling of uni- and multi-cast traffic in a 

packet switch.  This had a modular architecture, allowing flexible configuration in 

terms of number of packet queues, scheduling algorithms, etc. 

 

2.4.3 Networked FPGA programming 

A notable converged-application area is the dynamic reconfiguration of FPGAs at a 

distance, over networks. Casselman [89] presented an API for a networked FPGA 

that can be remotely reconfigured with new bitstreams.  Horta and Lockwood [90] 

partitioned the application FPGA within the FPX platform into two logical halves so 

that each half could be reprogrammed at runtime using partial bitstreams transmitted 

over a network.  Circlets [91] were proposed as a model for networked FPGA 

programming, inspired by the runtime portability enabled by Java applets.  Circlets 

involve programmed circuit descriptions made portable by targeting an abstract 

FPGA two-input LUT.  Each such LUT was then dynamically mapped on to an 

actual FPGA’s n-input LUT implementation. 

 

2.4.4 Comparison with other technologies 

FPGAs are well suited for accelerating packet processing functions because modern 

networking often requires very fast transmission rates, but also offers a high amount 

of potential independent data parallelism.   Networking applications tend to have a 

high number of contexts or flows, which can be processed with parallelism across 

different contexts, as well as between individual packets within flows.  Compared to 

general-purpose microprocessors, FPGAs can be used to program new custom 

architectures to implement parallel functions with low latency and high throughput.   

FPGAs can effectively implement thousands of concurrent operations mapped onto 

the logic gate resources, whereas current generation general-purpose 

microprocessors have only 2 to 8 cores for implementing thread-level and 

instruction-level parallelism.   
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Network processors (network processing units: NPUs) are a high performance 

alternative for packet processing.  They are programmed using C and/or assembly 

level programming of their functional components, which may be pipeline stages, 

micro-engines, or specialized function units.  There is currently a wide diversity of 

NPU architectures and a lack of standards for programming NPUs, which is a 

negative point since it hinders porting and reuse of NPU firmware.  Some NPUs 

support instruction and thread level parallelism since they also contain multiple 

processor cores.  For example, the Intel IXP 2800 [92] has 16 programmable micro-

engine cores for performing packet inspection and traffic shaping for line rates up to 

10 Gb/sec.  Other NPUs feature programmable packet processing pipelines.  For 

example, the Xelerated X10q NPU [93] can perform packet processing at line rates 

up to 40 Gb/sec.  Newer network processors such as EZchip’s NP-5 is targeted for 

200Gb/sec packet processing, and acceleration of a variety of traffic management 

and Carrier Ethernet functions [94].  Cavium’s Octeon III contains up to 48 2.5 GHz 

MIPS64 cores for processing multiple lanes of 40Gb/sec traffic [95]. 

 

Designing application specific integrated circuits (ASICs) for networking can 

potentially offer the highest level of performance, but ASICs in general require 

involve much higher engineering costs and more time to design, fabricate, and test 

than using FPGAs.   ASICs require high initial mask costs that are continuing to rise. 

FPGAs present a higher unit cost, with no initial cost, and so they are preferred for 

lower volume production.  FPGAs can have the performance advantage that, because 

of high volume production they can leverage the latest silicon process technologies 

before they are available to new ASICs [96]. 

 

In practice, mixtures of technologies are often used when implementing complete 

networking or telecommunications systems.  FPGAs can be programmed with 

standard external interfaces to connect directly to other networking devices such as 

ASICs or NPUs, as well as to general-purpose CPUs.  This way, FPGAs can be 

selectively used to implement the particular functions that are best suited to the 
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capabilities of technology.  The work presented in dissertation could be used to 

target the FPGA portion of these hybrid systems. 

 

FPGAs have an attractive technological case for networking systems, but the current 

design methodologies are a barrier to entry. Currently FPGAs operate at a fairly low-

level of abstraction.  This dissertation presents a design methodology and tools to 

bring the four main categories of this chapter together in order to raise the level of 

abstraction. 
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Chapter 3  
ShapeUp: A High-Level Design Approach 

to Simplify Module Interconnection  

 

 This chapter introduces ShapeUp, a high-level approach for designing systems by 

interconnecting modules, that gives a ‘plug and play’ look and feel to the designer 

and is supported by tools that carry out implementation and verification 

functions.  The emphasis is on the inter-module connections and abstracting the 

communication patterns that are typical between modules – for example, the 

streaming of data that is common in many FPGA-based DSP or networking systems, 

or the reading and writing of data to and from memory modules.  The details of 

wiring and signaling are hidden from view, via metadata associated with individual 

modules.  The ShapeUp tool suite includes a module interface type checker and a 

design environment with a novel visualizer. 

 

Custom computing has come of age with the advent of large Field Programmable 

Gate Array (FPGA) devices that enable the implementation of complex application-

specific configurable systems.  For example, the largest Xilinx FPGA device has 

around two million programmable logic cells, with larger devices to be expected in 

the future.  The double-edged sword is that actually designing these now-feasible 

systems is an increasingly complex engineering task, and so methodologies above 

and beyond traditional FPGA design flows are required to improve designer 

productivity.  Learning from other disciplines, modular design and reuse are essential 

to make progress, along with higher levels of abstraction in design specification.  

While considerable research energy has been focused on abstraction of functional 

descriptions of modules, the complementary topic of abstraction of module 
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interconnection has been somewhat neglected.  This chapter describes work that 

addresses the hitherto neglected area of ‘system plumbing’. 

 

Xilinx has adopted the term “plug and play IP” to refer to a vision of modules – IP 

(Intellectual Property) blocks – that can be used together in a plug-and-play manner 

without the need for significant effort.  To make this modular vision real and 

incorporated into design methodologies (for both static and dynamically 

reconfigurable systems), three key module interconnection enablers are required.   

The first is increased standardization of module interfaces, to replace the plethora of 

legacy ways in which candidate modules have been interfaced to their environment.  

The second is standardization of metadata formats used to describe the nature of 

module interfaces (and modules themselves).  The third is high-level tools that can 

interpret such metadata in order to provide assistance with building systems from 

modules by making connections between module interfaces. 

 

While increased standardization of interfaces is welcome, complete standardization 

is not seen to be achievable, or indeed desirable, and one aim of the work reported in 

this chapter is to provide assistance in connecting interfaces that have compatible 

semantics but may have different ‘syntaxes’.  A simple FPGA example is where two 

interfaces have a similar role, but have different data widths, e.g. one is 32-bit wide 

and the other is 128-bit wide. 

 

For expressing module metadata, the increasingly influential IP-XACT standard [97] 

from Accellera [98] (which absorbed the work of the Spirit Consortium in 2009) is a 

most appropriate approach, and is the chosen substrate for this work as it progresses.  

In earlier research prototypes, custom metadata formats were devised and used but 

these have now been superseded by alignment with the IP-XACT standard – and 

indeed they have suggested some possible future extensions to the standard. 

 

The ShapeUp approach to providing higher-level tools that assist in higher-level 

modular system design has been founded upon the definition of a clean, but 
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pragmatic, set of abstractions of module interface behavior.  This set captures the 

semantics of standard (or less standard) interfaces, and is associated with a standard 

metadata format that is used to describe these semantics.  Thus, the modules 

themselves are treated as black boxes, and the focus is entirely upon their interfaces 

and connections between these interfaces.  Not surprisingly then, the work has a 

networking flavor to it, being concerned with respecting and implementing 

communication protocols between interconnected modules.  

 

Current tools for assisting FPGA-based module interconnection can be divided into 

three broad categories, each with very different natures.  The first are traditional 

HDL level tools targeted at the hardware design specialist, for example Mentor HDL 

Designer [99].  Here, there is no interconnection abstraction above Verilog or 

VHDL hand wiring between blocks.  The second are tools targeted at embedded 

system design, and strongly influenced by ASIC system-on-chip methodologies, for 

example Xilinx Platform Studio [100].  Here, there is a setting of processors, buses, 

and peripherals, in other words a specialized style of module interconnection.  The 

third are tools targeted at the DSP domain, for example Xilinx System Generator for 

DSP [50].  Here, there is a domain-specific setting of DSP components and 

streaming dataflow between them.  Complete systems are typically constructed using 

all three types of tools in tandem, perhaps uncomfortably.  ShapeUp was designed to 

provide the basis for a more uniform tool framework, in terms of both level of 

abstraction and breadth of application. 

 

One requirement for ShapeUp is a notation by which a user can describe the 

connections made between module interfaces.  The Click language [52] was chosen 

for this purpose, continuing its use from earlier FPGA-targeted research [51].  Click 

originated at MIT, and is much used in the networking research community for 

describing software systems built out of modular components that are ‘clicked 

together’.  An overview of Click is given in Section 3.1.  Aside from one minor 

generalization, ShapeUp uses the Click syntax as is; however, a significantly 
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generalized underlying semantics has been added in order to broaden the 

applicability of this domain-specific language. 

 

In terms of recent research in this area, the ShapeUp work has closest relationships 

with the CHREC XML work of Wirthlin et al. [101] [102], discussed in Section 

2.2.2.  This features an XML data schema that goes beyond current IP-XACT to 

address module metadata requirements for reconfigurable computing.  A simple 

demonstration module integration and reuse tool based on CHREC XML metadata is 

presented in [45]. 

 

3.1 The Click Language and Extensions 

There was nothing deeply profound about the particular language choice in Click.  

Click is a declarative language for representing a directed graph of connected 

communicating elements.  However, other benefits include: both graphical and 

textual representations; hierarchical graphs; and parameterization of vertex 

properties.  All of these extras are useful for the practical requirements of ShapeUp 

descriptions.   

 
This section briefly describes the Click language and provides simple examples 

written in Click.  Routers are devices that guide packets from one network to another 

by classifying incoming packets and forwarding them towards their destination.  

Click simplifies the designs of software-based routers: (a) by providing modular 

abstraction of the software, (b) by exposing the main forwarding path of packets as 

they are processed and buffered by the router, and (c) by providing an open source 

library of reusable modules.  A full description of Click can be found in [52].  The 

Click short examples that follow are taken from [103]. 

 

In Click terminology, the graph vertices are called elements (which are modules) and 

the edges are called connections. Elements process packets, and packets flow over 
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connections.  Elements can have an arbitrary set of input and output ports.  

Connections are made between ports on elements (which are module interfaces).  So 

packets are transmitted at output ports and received at input ports, and this 

constitutes the complete interconnection semantics of standard Click.  Elements have 

an optional configuration string, which contains parameters for initializing the 

element.   

 

A simple textual example is shown below.  Since Click is a declarative language, a 

description consists of declarations of: (a) elements and (b) connections between 

elements.   

 

 

An example configuration string is “eth0”, indicating that the src will capture 

packets from the eth0 device interface. 

 

This Click example could be reduced to just one line using Click syntactic sugar, for 

example: 

 

src :: FromDevice(eth0) -> ctr :: Counter -> sink :: Discard; 

 

When elements have multiple input and/or output ports, port numbers are used to 

identify them, for example: 

 

src[2] -> [0]ctr; 

 

// Declare three elements ... 

src :: FromDevice(eth0); 

ctr :: Counter; 

sink :: Discard 

// ... and connect them together 

src -> ctr; 

ctr -> sink; 
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Figure 3.1 illustrates the graphical Click syntax. The first example (a) shows the 

graphical syntax of an element where a box represents an instance of an element, and 

symbols represent the ports, text describes the element class and also the 

configuration string.  The second example (b) shows Click graphical connection 

syntax, where arrows between boxes represent connections. 

 

 

 

 
Figure 3.1: Simple Click examples: (a) A sample element.  Triangular ports are inputs and rectangular 

ports are outputs; (b) A simple graphical Click example of a three element pipeline 

 

The standard implementation of Click is in software, and C++ objects represent 

elements.  Elements have one or more method interfaces e.g. for obtaining 

information about packets and packet transfer between elements.  An undesirable 

feature is that sometimes elements have behind-the-scenes interactions through other 

method calls, and these interactions are not explicit in the provided Click description, 

which captures only packet dataflow. 
 

Click’s model supports hierarchical designs.  Elements can be either simple elements 

or compound elements, and they are stored in a library.   Compound elements consist 

of an aggregate group of elements, which is treated as a single element.   The Click 

programmer can create new compound elements from existing library elements.   A 

textual example of a compound element is shown on the next page, with one input 

port and one output port.  The corresponding graphical example of the same 

compound element is shown in Figure 3.2. 
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Tee(2)input port output ports

element class

configuration string

Fig. 1. A sample element. Triangular ports are inputs and rectangular ports are outputs.

FromDevice(eth0) Counter Discard

Fig. 2. A router configuration that throws away all packets.

in parentheses; the ‘2’ in ‘Tee(2)’ is interpreted by Tee as a request for two
outputs. Method interfaces are not shown explicitly, as they are implied by the
element class. Figure 2 shows several elements connected into a simple router
that counts incoming packets, then throws them all away.

2.1 Push and Pull Connections

Click supports two kinds of connections, push and pull. On a push connection,
packets start at the source element and are passed downstream to the destina-
tion element. This corresponds to the way packets move through most software
routers. On a pull connection, in contrast, the destination element initiates
packet transfer: it asks the source element to return a packet, or a null pointer
if no packet is available. This is the dual of a push connection. (Clark called
pull connections upcalls [Clark 1985].) Each of these forms of packet transfer
is implemented by one virtual function call.

The processing type of a connection—whether it is push or pull—is deter-
mined by the ports at its endpoints. Each port in a running router is either
push or pull; connections between two push ports are push, and connections
between two pull ports are pull. Connections between a push port and a pull
port are illegal. Elements set their ports’ types as the router is initialized. They
may also create agnostic ports, which behave as push when connected to push
ports and pull when connected to pull ports. When a router is initialized, the
system propagates constraints until every agnostic port has been assigned to
either push or pull.1 In our configuration diagrams, black ports are push and
white ports are pull; agnostic ports are shown as push or pull ports with a
double outline. Figure 3 shows how push and pull work in a simple router.

Push processing is appropriate when unsolicited packets arrive at a Click
router—for example, when packets arrive from a device. The router must han-
dle such packets as they arrive, if only to queue them for later consideration.
Pull processing is appropriate when the Click router needs to control the timing
of packet processing. For example, a router may transmit a packet only when
the transmitting device is ready. In Click, transmitting devices are elements

1The simplest way of creating an agnostic port causes each packet handoff to that port to take two
virtual function calls rather than one. The first calls a general push or pull method, which is a
wrapper that calls the element’s “agnostic” method.
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Figure 3.2: Click compound element example of a simple switch 

 

Another aspect of Click connections is the push and pull abstraction for ports, 

illustrated in the example in Figure 3.3.  A port on an element can be either push or 

pull, which indicates which side of the connection controls the movement of data. 

Push ports are indicated as black symbols and pull ports are indicated by white 

symbols.  A third type of port control flow is agnostic, which is used when the port 

matches either push or pull behavior of the port directly connected to it.  An agnostic 

port is shown on the null element in the example, represented by a double outline.  

This is an important feature of the software implementation because it also directly 

indicates control compatibility between the ports of two modules.  However, this 

feature is less relevant to hardware implementations, where the control flow is 

normally agnostic. 

 

elementclass SFQ {
hash :: HashSwitch(...);
rr :: RoundRobinSched;
input -> hash;
hash[0] -> Queue -> [0]rr;
hash[1] -> Queue -> [1]rr;
rr -> output;

}

HashSwitch(...)

RoundRobin...

Figure 3.3—A simple compound element class.

elementclass Example4 {
s1 :: InfiniteSource; s2 :: RatedSource;
s1 -> [0]output; s2 -> [0]output;

}
e :: Example4 -> d :: Discard;

will expand into this flattened configuration:

e/s1 :: InfiniteSource; e/s2 :: RatedSource; d :: Discard;
e/s1 -> d; e/s2 -> d;

An input port may also be connected directly to an output port. For example,
the following Example5 element disappears when flattened:

elementclass Example5 {
input -> output;

}
FromDevice(eth0) -> Example5 -> Discard;

expands into

FromDevice(eth0) -> Discard;

It is an error to use an input port of input or an output port of output, or
to leave a particular input or output port unused when a higher-numbered
port was used.

36

elementclass SFQ { 

  hash :: HashSwitch(…); 

  rr :: RoundRobinSched; 

  input -> hash; 

  hash[0] -> Queue -> [0]rr; 

  hash[1] -> Queue -> [1]rr; 

  rr-> output; 

} 
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Figure 3.3: Click example featuring both push (black ports), pull (white ports) 

 

 

For ShapeUp, the implementation of Click might be in either software or hardware, 

or both.  On the hardware side, packets are transmitted over wiring that forms 

connections between hardware modules.  Between hardware and software, 

interfacing elements are based on software device drivers.  Aside from these 

implementation aspects of connections though, the significant semantic change to 

Click was in allowing connections to represent a much wider range of element 

interactions than just the transmission of packets, as will be described in Section 

3.2.4.  This generality is based on the module interface abstractions presented in the 

next section. To aid clarity, the only (tiny) syntax change in ShapeUp was to allow 

alphanumeric port identifiers, not just numerical.   
 

3.2 Abstractions of Module Interface Behavior 

To motivate the desire for greater abstraction, Figure 3.4 shows a simple example 

drawn directly from the world of the hardware designer.  It concerns a module, 

which is a FIFO for packet data with parameterizable depth.  This FIFO has a 64-bit 

data path width, and uses the Xilinx LocalLink [104] standard for its input and 

output interfaces. Figure 3.4(a) shows the actual schematic for the FIFO, featuring 

the detailed input and output wiring detail (over which LocalLink standard signaling 

is carried out).  Figure 3.4(b) shows a graphical Click description of this FIFO 

FromDevice Null Null ToDevice

push(p) push(p)

return
return

pull()
pull()
return p return p

receive
packet p

enqueue p
ready to
transmit

dequeue p
and return it

send p

Figure 2.3—Push and pull control flow. This diagram shows functions called as a packet
moves through a simple router; time moves downwards. During the push, control flow
starts at the receiving device and moves forward through the element graph; during the pull,
control flow starts at the transmitting device and moves backward. The packet p always
moves forward.

The type of a connection is determined by the ports at its endpoints. Each
port in a running router is either push or pull. Connections between two push
ports are push, and connections between two pull ports are pull; connections
between a push port and a pull port are illegal. Elements set their ports’ types
as the router is initialized. They may also create agnostic ports, which behave
as push when connected to push ports and pull when connected to pull ports.
In our configuration diagrams, black ports are push and white ports are pull;
agnostic ports are shown as push or pull ports with a double outline.

Figure 2.3 shows how push and pull work in a simple router. This router
forwards packets unchanged from one network interface to another. The
central element in the figure is a Queue. This element enqueues packets on a
FIFO queue as they are pushed to its input, and yields packets from the front
of that queue as it receives pull requests on its output. The two Null elements,
which pass packets through unchanged, demonstrate agnostic ports.

Push connections are appropriate when unsolicited packets arrive at a
Click router—for example, when packets arrive from a device. The router
must handle such packets as they appear, if only to queue them for later con-
sideration. Pull connections are appropriate when the Click router needs to
control the timing of packet processing. For example, a router may transmit
a packet only when the transmitting device is ready. In Click, transmitting de-
vices are elements with one pull input. They use pull requests to initiate packet
transfer only when ready to transmit. Agnostic ports model the common case
that neither kind of processing is inherently required.

Pull connections also model the scheduling decision inherent in choosing
the next packet to send. A Click packet scheduler is simply an element with
multiple pull inputs and one pull output. It responds to a pull request by
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abstracted, with just ‘stream type’ input and output ports.  The abstracted version 

might have either a hardware or software implementation. Automatically bridging 

the gap between the Click abstraction and the implementation is the goal of this 

research. 

 

ShapeUp is intended to go far beyond support for just the traditional Click packet 

type of interactions between modules, however.  Figure 3.5 shows a larger example 

depicting the interface of an Ethernet MAC module.  This features three other 

interface types that will be introduced in the next subsections.   

 

Since modules are treated as black boxes, the range of interface abstractions is based 

on broad observations about overall module behavior and how this is programmed.   

Three basic programming paradigms were identified: (i) hardware programming; (ii) 

communications programming; and (iii) procedural programming.  These, and their 

impacts on interface behavior, are described in turn below, together with one, two, 

and two, derived interface abstractions respectively.  Each of these module interface 

abstractions has an (open-ended) set of attributes associated with it, used to specify 

the characteristics of particular instances of the type.  

 

 

 

         
Figure 3.4: (a) Schematic view of FIFO; (b) ShapeUp view of FIFO 

 

ll_fifo_64	
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Figure 3.5: (a) Schematic view of Ethernet MAC; (b) ShapeUp view of Ethernet MAC 

 

 

3 .2.1 Hardware-programmed modules 

This paradigm is somewhat less deep than the other two, being the placeholder for 

hardware modules that exhibit some arbitrary pattern of signaling over wires at their 

interfaces.  In short, it leads to a lower-level interface abstraction included as a 

fallback option for module interfaces that are not conveniently described using the 

other, more sophisticated, abstractions.  This interface abstraction is termed plain, 

and its basic attribute is that a logical vector of bits is transmitted unidirectionally 

over the interface.  An important additional implementation attribute is whether 

transmission is synchronous or asynchronous.  In synchronous mode, communication 

is by polling at agreed times.  In asynchronous mode, changes in bit vector values are 

explicitly communicated, for example, using an edge-triggered signaling approach at 

the receiver. 

 

ShapeUp we are not concerned with the internal behavior of 
blocks, only how they communicate.  In this respect, our blocks 
are essentially black boxes.  Block hierarchal abstraction is 
supported, and it is similar to hierarchy in Click. 
Blocks are an abstraction over architectural blocks which may be: 
IP cores, blocks generated from high level language descriptions, 
and other architectural components. An implementation of a block 
is called an instance.  
The Click+ textual syntax for a block instance named 
“ll_fifo_64”,  shown in Figure 3.  The FIFO is configured by the 
string “depth=128.”  The Click+ graphical syntax for the same 
block instance for ll_fifo is shown in 4a.   
To peek below the abstraction we, uncovering the schematic 
representation in Figure 4b.  In this view we see pins representing 
the signal interface of the block.  The Click+ instance in 4a 
abstracts the pins from 4b into a port symbol.  Ports mode is 
depicted on the port symbol by a small circle, to indicate either 
master or target to indicate the direction of control relationship.  
The port type selection will be discussed in detail in the next 
section. 

myfifo::ll_fifo_64 (“depth=128”); 
Figure 3. (a) Schematic view of a simple block;  

(b) ShapeUp view of the simple block 

 

 

 
(a) (b) 

Figure 4. (a) ShapeUp view of a simple block; 
 (b) Schematic view of the simple block  

3.2 Ports  
As mentioned earlier, the main feature of this programming model 
is emphasis on specialized port types to abstract common patterns 
of interconnection for a path to efficient mapping onto FPGA-
based implementations.  In this section we preset the type 
abstraction is used to smooth over small differences in signaling 
and provide semantics that programmers can use for 
differentiation.  

 

 

(a) (b) 

 
(c) 

Figure 5. (a) Schematic view of a complex block; 
(b) port type symbols; (c) ShapeUp view of the complex block 

 
In order to simplify interconnect patterns into meaningful types; 
we have selected familiar programming abstractions consistent 
with three influential programming paradigms.  These paradigms 
were chosen out of engineering compromise for the most part, to 
provide a practical set for building real systems.  The set covers a 
range to support expert system designers as well as novices and 
software programmers. 
Our selection of interface types was based on characterizing 
FPGA-based streaming systems.  This represented a convergence 
of three well-known paradigms: 1) RTL programming, 2) 
communications programming, and 3) procedural programming.  
Each interface type can be viewed as embodying a programmed 
protocol that describes the inter-block interaction over the 
interface.  The protocols are programmable in the sense that they 
allow one to describe variations in behavior. 

3.2.1 RTL Programming: Plain  
In our model, RTL programmed interfaces form the base layer.  
We represent signal interfaces with our interface type called plain.  
Plain is the basic 'fall-back' option in protocol terms when 
selecting a type because it has no prescribed semantics, for 
example this can be used when the type is not specified or it does 
not appear to fit in the other categories.  The data format of plain 
is a logical vector of bits. The master assigns a value to a bit 
vector to communicate in one direction to a target. The bit vector 
may reflect the concurrent or serial presentation of one or more 
data values or control signals.  A subset of the data, in this case a 
slice of bits can be selected from the complete vector, by 
specifying the high and low indices. 

Communication can occur either synchronously or 
asynchronously. In synchronous mode, the master and target are 
synchronized so that the master outputs a value and the target 
inputs that value at a prearranged time.  In asynchronous mode, 
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3.2.2 Communications-programmed modules 

This paradigm captures modules that process streaming data, for example, DSP 

samples or network packets.  Two interface abstractions are defined, corresponding 

to the connectionless (datagram) and connection-oriented (virtual circuit) styles that 

are universal in data communications. 

 

The connectionless interface abstraction is termed notify, and its basic attribute is 

that atomic messages are passed unidirectionally over the interface.  A typical usage 

is that these messages are used to signal the occurrence of events.  Communication 

of messages between two modules connected via notify interfaces is lossless and 

sequenced.  This interface type can be seen as the next higher level of abstraction 

above the plain interface type, adding a little data structuring above basic bit vector 

transmission. 

 

The connection-oriented interface abstraction is termed stream, and its basic attribute 

is that a stateful stream of atomic packets (equivalently: samples or tokens) is passed 

unidirectionally over the interface.  An important additional attribute is that there can 

be a flow control mechanism for the stream, to police the rate of transmission.  

Typically, flow control is applied by the receiving module to avoid data loss, though 

explicit flow control by the transmitting module is also possible. 

 

For both the notify and stream types, the atomic data units transmitted have various 

attributes.  These include implementation attributes, such as parallel data widths and 

start/finish indications, and structural attributes, such as data formats and 

interpretations. 

 

3.2.3 Procedural-programmed modules 

This paradigm captures modules that embody the standard software programming 

mechanisms of accessing variables and calling functions.  Two interface abstractions 

are defined, corresponding to these mechanisms 
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The first interface abstraction is termed access, and its basic attribute is that a 

primary module accesses data in a secondary module via read and write requests, for 

example, processing that interacts with memory, or processing that uses input/output 

devices.  A particular attribute is whether the accesses are addressless (e.g. to a 

register or a FIFO) or addressed (e.g. to a memory array).  Another implementation 

attribute is whether read or write requests can be grouped together into bursts. 

 

The second interface abstraction is termed compute, and its basic attribute is that a 

primary module calls a function in a secondary module by passing arguments and 

receiving results back.  This is analogous to the networking notion of a remote 

procedure call.  A particular attribute is how the target function is specified. 

 

In both cases, there is a simple two-stage handshake protocol between the primary 

and secondary modules (though the second stage of the handshake may not be 

explicitly required for access writes).  This is analogous to the flow control 

capability of the stream interface type. 

 

As for the notify and stream types, the atomic data units transmitted (read or written 

values, function arguments and results, respectively) have both implementation 

attributes and structural attributes. 

 

3.2.4 Module interface types and Click semantics 

Figure 3.6 shows a summary of the five interface abstractions indicating the basic 

interactions between two modules connected using each of the five types.  This also 

indicates that there are three basic layers of abstraction: plain; then notify; then 

stream, access, and compute.  Aside from plain, the interface abstractions are 

applicable to both hardware and software implementations of modules.  Note that 

notify corresponds to the common notion of message passing between modules in 

software implementations. 
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In the standard Click semantics, a connection denotes streaming packet dataflow 

from one module to another and so, in either the textual or graphical representation, 

an arrow denotes direction of data flow.  For ShapeUp, the meaning of a connection 

arrow is generalized to denote a primary-secondary relationship: a primary element 

initiates an interaction with a secondary element.  In the particular case of the stream 

interface type, this is equivalent to the standard Click semantics.  In the case of the 

access interface type for example though, the arrow shows the direction in which 

read and/or write requests are made.  So, for a write request, data flows in the 

direction of the arrow.  However, for a read request, data flows against the direction 

of the arrow.  In the case of the compute type, data flows in both directions. 

 

Note that no extension was made to the Click syntax in order to explicitly indicate 

the interface type associated with element ports.  However, given that port name 

syntax was generalized to allow alphanumeric identifiers, something like Hungarian 

notation [105] can be systematically used: prefix the port name with an indication of 

type (e.g. “P_” for plain). 

 

3.3 Interface Metadata  

The ShapeUp design environment requires that each module has metadata associated 

with it, describing its interfaces in terms of the abstract interface types and their 

attributes.  Thus, repositories of modules available for use and reuse store this 

information alongside other metadata about the modules (for example, descriptions, 

creation times, etc.).  When users create new custom modules, then the appropriate 

interface metadata must be created at the same time.  With maturity of the ShapeUp 

flow, higher-level tools used for module creation can also be made to generate the 

required metadata automatically. 
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Figure 3.6: Module interaction with five interface abstractions 
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The interface metadata is described using the ShapeUp Element Description 

Language (EDL).  This follows a data schema giving, for each interface on a module 

(i.e., for each port on a Click element), the required information.  The two essential 

pieces of information are the interface type, and whether the interface is primary or 

secondary.  These provide the most basic type-checking capability: to determine 

whether a legal connection can be made between two modules using their respective 

interfaces.  Basically, both have to have the same type, and one has to be primary 

and the other has to be secondary. 

 

Beyond the basic interface metadata, the EDL description includes more detailed 

information about the various attribute values that apply for the particular interface 

type instance.  These can be used for more detailed type checking, as well as to guide 

the operation of the various ShapeUp tools, as described in the next section.  To give 

a feel for the potential descriptive power of the metadata, the current ShapeUp 

prototype has 24 defined available attributes for the stream interface type, and 38 

attributes for the access type.  (The larger number for access is a reflection of greater 

tool experimentation using this interface type.) 

 

To make the mechanism as flexible and table-driven as possible, the EDL data 

schema is itself described using meta-metadata described in the ShapeUp Interface 

Description language (IDL).  This follows a data schema giving, for each defined 

abstract interface type, the required metadata information.  So, it expresses the basic 

behavior of an interface type, together with its attributes, giving type and range 

information, and default information, for each.  Thus, the chosen five types need not 

be seen as being tablets of stone, but as an initial pragmatic selection that can be 

easily evolved and upgraded based on practical experience and learning.  Ultimately, 

certain knowledge of the interface type behavior is built into the tools that process 

EDL descriptions, since it is not practicable to make IDL a language that can express 

all conceivable interface behaviors. 
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3.3.1 Stream attributes example 

Example attributes for the stream interface type are provided in Figure 3.7.  Stream 

is of particular focus since it is necessary for describing packet processing systems. 

These attributes were based on characterizing the behavior of typical streaming 

interface protocols of modules, e.g. Xilinx’s LocalLink, ATM Aurora, ARM’s AXI-

stream, etc.   The attributes describe both the format of data and the behavior of the 

transmission.  A short example of the IDL for the stream interface type is shown in 

Figure 3.8.  A corresponding example of EDL for an element is shown in Figure 3.9, 

which has a stream input port.  

 

For each of the interface types there are attributes for describing the behavior of the 

interaction.  Each connection forms a control relationship connecting a primary 

(controller) to a secondary (target).  As mentioned, the basic functions of a stream 

interface are to transmit and to receive network packets or tokens.  Packets or tokens 

are transmitted by the primary to the secondary for one-way communication.  The 

control plane of stream allows the secondary to throttle the transmission rate by 

asserting flow control/backpressure to pause the transmission in order to avoid data 

loss.  The following is a more detailed description of the stream behavioral attributes.  

 

There are attributes for indicating the word length and endianness in the 

transmission.   The packet length, and whether the packet can be segmented into 

smaller chunks or cells is also indicated.  The method of specifying the length of the 

packet is also described. 

 

The method for indicating packet boundaries chunk boundaries is also an attribute.  

For example, the start of packet can be indicated by (a) a marker that is a signal or by 

a reserved position in a packet header, (b) the assertion of a ready signal, (c) ready 

plus a status or control word, (d) determined by a time slice, or (e) determined by 

some other encoding.  The start of a chunk may also be indicated by these encodings.  

The end of packet can be indicated by (a) a marker that is a signal or by a reserved 

position in a packet header, (b) the assertion of a ready signal, (c) a length field, (d) 
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determined by a time slice, or (e) determined by some other encoding.  The last word 

of the packet is indicated either by a specified length or remainder signal that 

indicates how many bytes are valid in the last word of the packet, called rem.  The 

rem may have different encodings, for example the number of bytes can be 

expressed in binary or as a byte enable. 

 

There is a timing relationship between the primary and the secondary.  Flow control, 

or backpressure, can be asserted by the secondary to indicate to the primary to pause 

the sending of any more data until the secondary releases the backpressure.  The 

transmitter also signals its readiness, and the primary can pause transmission by 

deasserting data enable or its ready signal.  

 

In terms of a transaction, the transmission of the packet or token is either all or 

nothing.  The transmitter, or primary, can abort the transmission of the current packet 

by asserting its abort signal.  The receiver, or secondary, can similarly abort the 

transmission of the current packet by asserting its discontinue signal.  A transmission 

of packets or tokens is order preserving, meaning that the data is received in the 

same order as it was transmitted.  

 

Stream interfaces may have an associated logical identifier that can be used for 

different purposes, e.g. identifying channels or unique identifier for each interface. 

Channels are typically a grouping for packets based on a low-level physical 

transmission property, e.g. channels are found in wireless transmission based on 

frequency or optical transmission based on wavelength.  Grouping by flow identifier 

is more common for packets.  

  

For preserving data integrity, whether the transmission interface supports parity bits 

is described.  Alternatively whether the entire packet or chunk contains a checksum, 

e.g. CRC, is also described. 
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Figure 3.7: Example attributes for the Stream interface type 

 

Relationship of Endpoint (primary | secondary)  
 
Stream Data Format                                            
In tra-word                                                                    
                1.Size of word (specify: bytes | bits; specify min & max) 
                2.Structure: 
                                a) byte order    
                                b) bit order      
                                c) Method of specifying the completeness of a word (or less than max bytes)  
                                                (rem | byte enable | length)                      
 

Chunks /  Shor t Inter -word  /  Hor izontal    (Chunk = Cell / Burst / Segment) 
                0. Supported by Protocol                                                                              
                1. Size of chunk (specify words | bytes | bits; specify: min & max)  
                2. Structure:                       
                                a) method of specifying start of chunk   
                                               ( marker { signal | reserved position within hdr } |  
                                                                assertion of ready signal |  
                                                                ready plus a status/ctrl word |  
                                                                determined by time slice | other encoding) 
                                b) method of specifying completion of chunk     
                                                ( marker { signal | reserved position in trailer } |  
                                                                  deassertion of ready signal |  
                                                                  length field | determined by time slice | other encoding) 
                3. Uses Data Offset (Y & specify value | N) 
 

Packets  /  Long Inter-word  /  Aggregate Horizontal 
                1. Size of packet (specify chunks | words | bytes | bits; specify: min & max) 
                2. Structure:  
                                a) method of specifying start of packet  
                                               ( marker { signal | reserved position within hdr } |  
                                                                 assertion of ready signal | ready plus a status/ctrl word |           
                                                                 determined by time slice | other encoding) 
                                b) method of specifying completion of packet    
                                                ( marker { signal | reserved position in trailer } |  
                                                                  deassertion of ready signal | length field |  
                                                                  determined by time slice | other encoding) 
                3. Uses Data Offset (Y & specify value | N) 
 

Transmission Behavior                                  
                Intra-word Data Enable (Y & specify signal | N)                    
                Chunks Data Enable (Y & specify signal | N) 
                Chunks Flow Control (Y & specify signal | N) 
                Packet Data Enable (Y & specify signal | N) 
                Packet Flow Control (Y & specify signal | N) 
                Abort (Y & specify Granularity (F2 | F3) & specify mechanism: signal | encoded msg) | N) 
                AbortResponseAction(proceed to transmit partial data | discard partial data) 
                Uses Channels (Y & specify max number | N) 
                Uses Parity (Y & specify width | N) 
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Figure 3.8: IDL stream type interface attributes example 

 

 
Figure 3.9: EDL stream type port attributes example 

  

/* IDL definition for Stream */ 
Stream::$Definition1 [Set of experimental behavioral attributes]::Attributes( 
 Format[Details of the formats and organization of control information] ( 
  Words[Format of words] ( 
   *size:(int|intlist|expr) with units ("bits":1 | "bytes":8)  
          with range(0:128), 
   byte_order:choice("Big Endian"|"Little Endian"), 
   bit_order:choice("high to low"|"low to high"), 
   *indicate_completion:choice( 
     rem(sz[size of the encoded value]:int,       
               signal_valid:choice("active high"|"active low")) | 
         byte_enable(sz:int) | length(sz:int) 
         ) 
   ), 
  Chunks[Format of chunks]  ( 
   *required:bool, 
   *supported:bool, 
   size:(int|intlist|expr) with units("bits":1|"bytes":8), 
   indicate_start:choice("marker" | 
    "assertion of ready signal" | 
    "ready plus a status ctrl word" | 
    "determined by time slice" | 
    "other encoding" 
    ), 
   indicate_completion:choice("marker" | 
         "assertion of ready signal" | 
         "ready plus a status ctrl word" | 
         "determined by time slice" | 
         "other encoding" 
         ) 
   ),  
 

Element TestElement { 
 
/* Secondary (input) port*/ 
Input in_port Stream :: $ localLink :: Attributes( 
 
 Format ( 
  Words ["intrawords"]  ( 
   size:1 bytes, 
   byte_order:"Big Endian", 
   bit_order:"high to low", 
   indicate_completion:rem/*help?*/(sz:4, signal_valid:"active high")), 
  Chunks["this doesnt support chunks"]  ( 
   required:false,  
   supported:false 
   ), 
  Packets["format of streams"]  ( 
   size:1500 bytes, 
   indicate_start:"assertion of ready signal", 
   indicate_completion:"assertion of ready signal" 
   ) 
  ), 
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3.3.2 Metadata representation and packaging 

The ShapeUp prototype implementation used custom XML representations for both 

EDL and IDL descriptions, to allow easy experimentation.  For the future, EDL is 

being aligned with the IP-XACT standard for expressing module interface metadata.  

IP-XACT at present is very bus-centric in terms of inter-module connections, and so 

a certain amount of artificiality, and some use of ‘vendor-specific extensions’ is 

necessary to map the more general model of ShapeUp connections onto the IP-

XACT data schema.   A small sample of the XML version of the EDL is shown in 

Figure 3.10. 

 

The interface metadata is bundled with each element to support table-driven tools 

that assist the designer with making connections between modules.  Figure 3.11 

shows the flow for adding a new element to the ShapeUp element library.  The 

module source files, e.g. RTL descriptions, are packaged along with the interface 

metadata and then stored in the element library.  The metadata for the interfaces is 

specified either by the designer of the module or auto-generated by a high-level 

language compiler.   The ShapeUp suite of tools described in the next section uses 

this element library and metadata for raising the level of abstraction. 

 

 
Figure 3.10: XML EDL example with two stream ports and two access ports 

 

<interfaces>  
    <Stream direction="input" technology="LocalLink" name="streamin">  
      <data maximumLength="1024" minimumLength="32" width="32"/>  
      <speed units="Gbps" value="20"/>  
    </Stream>  
    <Stream direction="output" technology="LocalLink" name="streamout"> 
      <data maximumLength="1024" minimumLength="32" width="32"/>  
      <speed units="Gbps" value="20"/>  
    </Stream>  
    <Access direction="input" technology="fifo" name="stats"        
     writeable="true">  
      <data width="16"/>  
      <speed units="MHz" value="133"/>  
    </Access>  
    <Access direction="input" technology="register" name="ctrl"  
     readable="true"> 
      <data width="32"/>  
      <speed units="MHz" value="133"/>  
    </Access>  
  </interfaces> 
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Figure 3.11: Flow for adding a new element to the ShapeUp element library 

 

3.4 Type Checker  

Type checking is central to the ShapeUp framework.  A fundamental requirement is 

to check whether two element ports match, and so determine whether it is possible to 

make a connection between them.  This involves testing whether the two ports have 

the same type, and then that they have matching attributes for that type.  The 

approach is in the same spirit as earlier research of Bergamaschi et al. [40] in 

checking pin compatibility, but tackles a much more general interface checking 

problem. The main goal is that by characterizing and capturing the signaling 

behaviors of these interfaces, system designers will no longer need to check the 

detailed behavior, and some tool can usefully automate the process and indicate 

compatibility.  An algorithm was developed to carry out this type checking 

operation.  Since ShapeUp uses a data-driven model for the interface types, whereby 

their characteristics are described using meta-metadata, some details of how both 

IDL and EDL descriptions are processed are relevant to understanding the type 

checking algorithm itself.  
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Interface type attributes are organized hierarchically: at the top level is the type, and 

then there are main groups of attributes, then sub-groups, etc.  The particular 

structure is defined in the IDL description of each type.  Particular attributes have 

data types, which can include ranges of allowed values or enumerated values.  Each 

attribute is flagged as whether or not it is compulsory. If not, then a default value can 

be specified in the IDL.  All of these aspects are taken account of by the type 

checker. 

 

The internal data structure used for storing an IDL description is shown in Figure 

3.12.  If the IDL file parses correctly, the main feature is the interface list, which 

contains the defined interfaces.  For the standard case, there are five on the list: plain, 

notify, stream, access, and compute.  For each interface, its name is stored (e.g. 

“plain”), together with an optional subtype name to allow derivative interface 

profiles to be defined (e.g. “stream” “LocalLink”), and an optional description string 

for documentation.  Then there is an attribute list for the interface.  Each attribute has 

a name and an optional description string.  As mentioned, there is an indication of 

whether the attribute is compulsory, and there is also an indication of its sort.  One 

sort is that the attribute is a node in a hierarchy, and then a list of sub-attribute 

children is stored.  The other sort is that the attribute is a leaf, and then a list of type 

choices for the attribute value is stored.  For each such type, information is stored on 

any characteristics or restrictions on values of that type. Figure 3.13 shows an 

abstracted example representing the IDL as a tree of attributes. 

 

The internal data structure used for storing an EDL description is shown in Figure 

3.14.  When a description is processed, it is first parsed to check syntax, and then 

parsed against the stored IDL description to check interface types.  The main feature 

of the data structure is the port list, which contains the defined ports of the element.  

For each port, its name and direction are stored, together with its type name and 
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optional subtype name, and an optional description.  Then there is an attribute list for 

the port.   

 

 

 
Figure 3.12: Internal data structure for storing IDL description 

 

IDL data structure 
• File name  (string) 

• Parse error count  (integer) 
• Interfaces  (Inte rface list) 

 
Inte rface data structure 

• Type name  (string) 

• Subtype name  (string) 
• Description  (string) 

• Attributes  (Attribute list) 
 
Att ribute data structure 

• Name  (string) 
• Description  (string) 

• Compulsory  (boolean) 
• Sort  (ATTRIB, LIST) 
• Union of sort characteristics, as relevant: 

– Node sub-attributes (Attribute list) 
– Leaf type choices  (Type  list) 

 
Type data structure 

• Type  (BOOL, INT, STRING, CHOICE_STRING, CHOICE_ATTRIB) 
• Union of type characteristics, as relevant: 

– Integer units and allowed range  (Unit  list, integer, integer) 

– Choice strings  (string list) 
– Choice attributes  (Attribute list) 

 
Unit  data structure 

• Name  (string) 

• Multiplicative factor  (integer) 
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Figure 3.13: Example of IDL attribute tree 

 

Two attribute data structures are shown: one used before the parsing against the IDL, 

and the other used for the final EDL representation.  The port type name and subtype 

name are used to select the appropriate IDL interface type and subtype to check 

against.  The checking involves ensuring that all compulsory attributes are present, 

no unknown attributes are present, and the attribute hierarchy matches structurally.  

Each leaf attribute is checked to ensure it has a legal type and a legal value for that 

type.  The final EDL data structure indicates whether each leaf attribute has an 

unassigned, wildcard, or assigned value. 

 

The port type checking algorithm involves comparing two stored EDL port data 

structures.  Pseudo-code for the algorithm is given in Figure 3.15.  The two ports are 

first checked to ensure they have the same type and the same subtype if it is used.  

Then the attribute lists of the two ports are compared, attribute by attribute, to ensure 

that they match.  The comparison of two attributes involves first checking that the 

attribute names match, and then that the attribute values are consistent.  If either 

attribute has a wildcard value, or both attributes have unassigned values, then they 

are deemed to match.  Note that, as discussed earlier, more elaborate approximate 

matching tests can be included here, depending on the nature of the attributes.  If it is 

a leaf attribute, the two values are compared directly if they are scalar or are 

compared recursively if they are themselves attributes.  If it is a node attribute, the 

next level of the hierarchy is compared recursively. 
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Figure 3.14: Internal data structure for storing EDL description 

 

EDL data structure 

• File name  (string) 

• Parse error count  (integer) 
• Element name  (string) 
• Ports  (Port  list) 

 

Port  data structure 

• Port name  (string) 
• Direction  (string) 

• Type name  (string) 
• Subtype name (string) 
• Description  (string) 

• Attributes  (Attribute list) 
 

Att ribute data structure 1 – before parsing against IDL 

• Name  (string) 

• Description  (string) 
• Type  (UNASSIGNED, WILDCARD,  INT, STRING, ATTRIB, 

ATTRIB_LIST) 
• Union of values, as relevant: 

– Integer value and units  (integer) 
– String value  (string) 
– Attribute value  (Attribute) 

– Attribute list value  (Attribute list) 
 

Att ribute data structure 2 – after parsing against IDL 

• Name  (string) 

• Description  (string) 
• Type  (BOOL, INT, STRING, ATTRIB, ATTRIB_LIST) 
• Value sort  (UNASSIGNED, WILDCARD, ASSIGNED) 

• Union of values, as relevant: 
– Boolean value  (boolean) 

– Integer value  (integer) 
– String value  (string) 
– Attribute value  (Attribute) 

– Attribute list value  (Attribute list) 
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Figure 3.15: Pseudo-code for type checking of two ports 

 

Note that the algorithm used to parse an EDL port description against a stored IDL 

interface description has a very similar organization to this type checking algorithm.  

It also involves the recursive traversal of the attribute hierarchy tree, but with more 

complicated operations carried out at each stage: both checking and matching, and 

also building the final attribute data structures.  

 

The original IDL and EDL parsing algorithms, and the port type checking 

algorithms, were implemented in Java.  Later, when transferred into product 

development at Xilinx, they were reimplemented in C++. 

 

boolean compare_ports (port1, port2) 
{ 
   return false if type1 != type2 || subtype1 != subtype2; 
   return compare_attribute_lists (attributes1, attributes2); 
} 
 
boolean compare_attribute_lists (list1, list2) 
{ 
   for (a1=first1,a2=first2; a1 != last1 && a2 != last2; a1++,a2++) 
      return false if ! compare_attribues (a1, a2); 
   return (a1 == last1 && a2 == last2); 
}  
 
boolean compare_attributes (attribute1, attribute2) 
{ 
   return false if name1 != name2; 
   return true if sort1 == wildcard || sort2 == wildcard; 
   return true if sort1 == unassigned && sort2 == unassigned; 
   return false if sort1 == unassigned || sort2 == unassigned; 
   switch (type) { 
      bool:        return (value1 == value2); 
      int:         return (value1 == value2); 
      string:      return (value1 == value2); 
      attrib:      return compare_attributes (value1, value2); 
      attrib_list: return compare_attribute_list (value1, value2); 
   } 
} 
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A simple type checking example is presented in Figure 3.16.  Here, the connections 

almost match, but are not an exact match. The primary stream port, (a), and the 

secondary stream port, shown in (b) differ in both their width and size of rem, and so 

do not exactly match.  However, they approximately match if tools are available to 

bridge the differences.  Automatically generating shims with bridging logic is 

discussed in Section 3.8.2.  As well as giving a true or false result, the type checker 

can also supply a list of things that did not match exactly. 

 
 

 

 

 
Figure 3.16: Type checking example: (a) primary port; (b) secondary port 

 

The stitcher basically consists of checking the connections 
between ports, if necessary generating “shim”  glue  logic  to  make  
the connection compatible, and generating the connection signals 
to implement the connection.  The remainder of this section 
describes how the stitcher: (a) uses the semantics of port attributes 
for   type   checking   (b)   automatically   generates   a   “shim”   between  
ports to make the connection compatible, and lastly provides some 
example results. 

4.2.1 Connection compatibility checking example 
To describe the behavior and the format of transmitted data a tree 
of attributes is used to characterize the behavior. Behavioral 
abstraction: as programmed-protocols Flavor of attributes; what is 
unique about each, a couple simple examples of each 

Another way to look at this is that with further characterizing and 
documenting of the signaling behaviors of interfaces, users will no 
longer need to check information at that level directly, and some 
automatic tool could usefully serve that purpose.  Prototype tools 
are described in the next section. 

As mentioned earlier in 4.1, the listing of ports and their attributes 
are specified in the EDL file.  We provide a simple graphical 
example of how the experimental prototype tool checks 
connections: first by port type, second by attributes.  We provide 
an illustrated example to simplify discussion rather than involving 
the format of our experimental attribute language or the XML, 
since conveying the basic ideas is more important than learning 
syntax. 

  
Figure 9. Graphical symbol notation for attribute example  

Figure 9 illustrates the organization and symbols used for the 
simple example.  The figure depicts a tree organization to 
attributes, where a root is the port type.  The next levels down 
represent attributes that describe structure and format features and 
attributes that describe the behavioral temporal protocol features.  
This is how attributes are organized first as a schema in the 
experimental IDL into format and behavioral categories.  Second 
in the experimental EDL, each block has ports, and each port has 
assigned values for attributes.  

The symbols are used represent finer detail in the structure of the 
organization of attributes. As shown, attributes may be contained 
in a list reflecting a grouping. Attributes may also be organized as 
a multiple choice, where the EDL selects only one of the choices 
that are presented in the IDL.  

The experimental EDL allows for attributes to be left undefined, 
in this case the EDL specification would just leave those attributes 
out of the description.  It is possible, however, to declare some 
attributes  as  required  with  a  “compulsory”  tag  in  the  IDL.    In  that  
case they must be included in every EDL and have an assigned 
value. In the case that a block is agnostic to an attribute, in the 
EDL  the  attribute  can  be  assigned  to  have  a  “don’t  care”  value.     

 

(a) 

 

(b) 

Figure 10. Attribute checking example: (a) master; (b) slave  
 

 Figure 11. Pseudo code for connection checking 
Pseudo code for the performing connection compatibility 
checking appears in Figure 11.   Connection compatibility can be 
checked quickly with the typeCheck(..).  Alternatively it can be 
checked based on comparing the attributes, attributeCheck(..). In a 
prototype implementation we implemented the check with a depth 
first search and recursive checking function, but the details are 
beyond the scope of this paper.  The experimental EDL type 
checking was implemented initially in a Java prototype, and later 
also implemented in a C++ version of the stitcher. 

 
/* Quickly check connection compatibility */ 
boolean typeCheck(port Master, port Target){ 
 return (Master.type == Target.type); 
} 
/* Attribute check for behavior compatibility */ 
differences[] attributeCheck(port Mstr, port Trgt) { 
  Attrib a = Mstr.getRoot(); 
  a.compareTo(Trgt.getRoot()); 
} 
 
int compareTo(Attrib a) // Class interface for Attrib 
/* recursive function that checks that the  attributes 
starting from leaf checking backwards to root */ ... 
 
/* Note that wildcard prunes the comparison */ 
/* compareTo(...) has polymorphic implementation 
depending on subclass of Attrib */ 
... 
 
{/* After checking, possibly generate shim */ 
  switch(resultOfComparison) { 
  case 1: // compatible, directly connect signals 
    ... 
  case 2: // generate a shim and then connect  
    ... 
  case 3: // incompatible, so signal an error  
    ... 
  }  
} 
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The stitcher basically consists of checking the connections 
between ports, if necessary generating “shim”  glue  logic  to  make  
the connection compatible, and generating the connection signals 
to implement the connection.  The remainder of this section 
describes how the stitcher: (a) uses the semantics of port attributes 
for   type   checking   (b)   automatically   generates   a   “shim”   between  
ports to make the connection compatible, and lastly provides some 
example results. 

4.2.1 Connection compatibility checking example 
To describe the behavior and the format of transmitted data a tree 
of attributes is used to characterize the behavior. Behavioral 
abstraction: as programmed-protocols Flavor of attributes; what is 
unique about each, a couple simple examples of each 

Another way to look at this is that with further characterizing and 
documenting of the signaling behaviors of interfaces, users will no 
longer need to check information at that level directly, and some 
automatic tool could usefully serve that purpose.  Prototype tools 
are described in the next section. 

As mentioned earlier in 4.1, the listing of ports and their attributes 
are specified in the EDL file.  We provide a simple graphical 
example of how the experimental prototype tool checks 
connections: first by port type, second by attributes.  We provide 
an illustrated example to simplify discussion rather than involving 
the format of our experimental attribute language or the XML, 
since conveying the basic ideas is more important than learning 
syntax. 

  
Figure 9. Graphical symbol notation for attribute example  

Figure 9 illustrates the organization and symbols used for the 
simple example.  The figure depicts a tree organization to 
attributes, where a root is the port type.  The next levels down 
represent attributes that describe structure and format features and 
attributes that describe the behavioral temporal protocol features.  
This is how attributes are organized first as a schema in the 
experimental IDL into format and behavioral categories.  Second 
in the experimental EDL, each block has ports, and each port has 
assigned values for attributes.  

The symbols are used represent finer detail in the structure of the 
organization of attributes. As shown, attributes may be contained 
in a list reflecting a grouping. Attributes may also be organized as 
a multiple choice, where the EDL selects only one of the choices 
that are presented in the IDL.  

The experimental EDL allows for attributes to be left undefined, 
in this case the EDL specification would just leave those attributes 
out of the description.  It is possible, however, to declare some 
attributes  as  required  with  a  “compulsory”  tag  in  the  IDL.    In  that  
case they must be included in every EDL and have an assigned 
value. In the case that a block is agnostic to an attribute, in the 
EDL  the  attribute  can  be  assigned  to  have  a  “don’t  care”  value.     

 

(a) 

 

(b) 

Figure 10. Attribute checking example: (a) master; (b) slave  
 

 Figure 11. Pseudo code for connection checking 
Pseudo code for the performing connection compatibility 
checking appears in Figure 11.   Connection compatibility can be 
checked quickly with the typeCheck(..).  Alternatively it can be 
checked based on comparing the attributes, attributeCheck(..). In a 
prototype implementation we implemented the check with a depth 
first search and recursive checking function, but the details are 
beyond the scope of this paper.  The experimental EDL type 
checking was implemented initially in a Java prototype, and later 
also implemented in a C++ version of the stitcher. 

 
/* Quickly check connection compatibility */ 
boolean typeCheck(port Master, port Target){ 
 return (Master.type == Target.type); 
} 
/* Attribute check for behavior compatibility */ 
differences[] attributeCheck(port Mstr, port Trgt) { 
  Attrib a = Mstr.getRoot(); 
  a.compareTo(Trgt.getRoot()); 
} 
 
int compareTo(Attrib a) // Class interface for Attrib 
/* recursive function that checks that the  attributes 
starting from leaf checking backwards to root */ ... 
 
/* Note that wildcard prunes the comparison */ 
/* compareTo(...) has polymorphic implementation 
depending on subclass of Attrib */ 
... 
 
{/* After checking, possibly generate shim */ 
  switch(resultOfComparison) { 
  case 1: // compatible, directly connect signals 
    ... 
  case 2: // generate a shim and then connect  
    ... 
  case 3: // incompatible, so signal an error  
    ... 
  }  
} 
 

 

 

root: port type

List of attributes Choice of attributes

xattribute yattribute z attribute

k

awidth

Port_type e.g. stream

Data Format and 
Interface 
Structure 
attributes list

Temporal Protocol and 
Signaling attributes list

f
Fixed length

!(Method for signaling end of packet) // ! = compulsory 

g Last Word has Marker plus REM

Size of REM = 2

16

b MTU
4096

x

nwidth

Port_type e.g. stream

Data Format and 
Interface 
Structure 
attributes list

Temporal Protocol and 
Signaling attributes list

s
Fixed length

!(Method for signaling end of packet) // ! = compulsory 

t Last Word has Marker plus REM

Size of REM = 4

32

o

MTU
*  //  don’t  care
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Figure 3.17 shows a more in-depth example using example EDL attributes showing 

compatible interfaces.  This example contains a comparison of two implementations 

of LocalLink interfaces, which are represented as stream ports.  The interface 

metadata for this example is arranged in columns.  Green highlighting indicates 

compatible behavioral attributes.  Yellow highlighting indicates attributes that are 

similar and can be bridged in order to be compatible.  The Xilinx XAPP536 

ll_temamac_v1_00_c, or ll_temac, is connected to an XAPP691 LocalLink FIFO, or 

ll_fifo.  There are three differences in the EDL attributes that can be bridged in order 

to make the interfaces compatible.  First, they signal the rem, which indicates how 

many bytes are valid in the last word of the packet, differently.  The ll_temac signals 

rem using a four bit encoding (byte enable encoding) and the ll_fifo uses a two bit 

encoding (binary encoding).  Second, the ll_temac has a minimum size to the frames 

that it transmits and the ll_fifo has a maximum size to the frames that it accepts.  The 

bridging logic needs to check that the frames from the ll_temac do not exceed the 

maximum size frames to the ll_fifo.  Third, the ll_temac uses a data offset, and the 

ll_fifo does not, however, this information can be passed through.  

 

Figure 3.18 shows a comparison of two implementations of LocalLink ports, 

arranged in columns, having incompatible behavioral attributes.  Again, the yellow 

highlighting indicates attributes with similar behavior that can be bridged.  The red 

highlighting indicates attributes that are incompatible and cannot be bridged.  The 

LocalLink GMAC, or ll_gmac, is connected to a LocalLink IPOptionizer, or 

ipoptionizer.  There are four sets of attributes that are similar and can be bridged, and 

there are two sets that are incompatible and cannot be bridged.  The first 

incompatible attribute is that the ll_gmac does not support chunks, and the 

IPOptionizer requires segmentation support.  The second related incompatible 

attribute is that the IPOptionizer requires the use of channel identifiers, and the 

ll_gmac does not have this support, and so the compiler cannot automatically bridge 

these two interfaces.  Therefore, the two versions of these modules are incompatible 

and cannot be automatically used together, without the user manually creating a 

custom wrapper to reconcile the differences and make them compatible. 
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Figure 3.17: Example 1: compatible interfaces 

 

XAPP536 ll_temac_v1_00_c XAPP691 FIFO 

Primary Secondary 

Format Format 

F1 (Word) F1 (Word) 

1. 32 bits      1. 8, 16, 32, 64, 128 bits 

     2. a) Big Endian b) 31:0      2. a) N/A b) N/A 

         c) rem (4 bits encoded value,  
                      active high) 

          c) rem (2 bits encoded value,  
                       active high) 

F2 (Chunk) F2 (Chunk) 

     0. Y      0. Doesn't care 

1. min( 9, C_RX_FIFO_KBYTE)  
# in k bytes  

     2. a) marker(signal, ll_sop_n)  

          b) marker(signal, ll_eop_n)  

F3 (Packet) F3 (Packet) 

1. min( 9, C_RX_FIFO_KBYTE)  
# in k bytes 

1. max(BRAM_MACRO_NUM *  
         F1.width) 

     2. a) marker (signal, ll_sof_n)      2. a) marker (signal, sof_in_n) 

          b) marker (signal, ll_eof_n)           b) maker (signal, eof_in_n) 

Behavior Behavior 

     F1 Data Enable = Y, (based on rem,  
                              only valid with ll_eop_n) 

     F1 Data Enable = Y, (based on rem,  
                                 only valid with eof_in_n) 

     F2 Data Enable = Y, ll_src_rdy_n      F2 Data Enable = Y, src_rdy_in_n 

     F2 Flow_Control = Y, ll_dst_rdy_n      F2 Flow_Control = Y, dst_rdy_in_n 

     F3 Data Enable = Y, ll_src_rdy_n      F3 Data Enable = Y, src_rdy_in_n 

     F3 Flow_Control = Y, ll_dst_rdy_n      F3 Flow_Control = Y, dst_rdy_in_n 

     Abort(N)      Abort(N) 

     Uses Channels(N)      Uses Channels(N) 

     Uses Parity(N)      Uses Parity(N) 

     Uses Data Offset(Y for F2,  
                                 protocol specific)      Uses Data Offset(N) 
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Figure 3.18: Example 2: incompatible interfaces 

 

 

LocalLink GMAC IPOptionizer 

Primary Secondary 

Format Format 

F1 (Word) F1 (Word) 

1. 8 bits      1. 128 bits 

     2. a) Big Endian b) 7:0      2. a)  Big Endian b) 127:0 

         c) rem (1 bit encoded value,  
                     active high)           c) length 

F2 (Chunk) F2 (Chunk) 

     0. N      0. Y, requires 

           1. 8 words   

           2. a) ready plus a status/ctrl word 

               b) ready plus a status/ctrl word 

F3 (Packet) F3 (Packet) 

     1. 1500 bytes      1. Not specified 

     2. a) marker (signal, ll_sof_n)      2. a) ready plus a status/ctrl word 

          b) marker (signal, ll_eof_n)          b) ready plus a status/ctrl word 

Behavior Behavior 

     F1 Data Enable = Y, (based on rem,  
                                only valid with ll_eof_n)      F1 Data Enable = N 

     F2 Data Enable = Y, ll_src_rdy_n      F2 Data Enable = N 

     F2 Flow_Control = Y, ll_dst_rdy_n 
     F2 Flow_Control = Y,  
 in0_backpressure or in0_status_backpressure 

     F3 Data Enable = Y, ll_src_rdy_n      F3 Data Enable = N 

     F3 Flow_Control = Y, ll_dst_rdy_n 
     F3 Flow_Control = Y,  
 in0_backpressure or in0_status_backpressure 

     Abort(Y, ll_src_dsc_n),  
     Response( discard, sender retransmit) 

     Abort(Y, encoded in status/ctl word),     
     Response(discard, sender retransmit) 

     Uses Channels(N)      Uses Channels(Y requires, 6) 

     Uses Parity(N)      Uses Parity(N) 

     Uses Data Offset(N)      Uses Data Offset(N) 
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This work on type checking was patented as part of US Patent #7,852,117: 

“Hierarchical Interface for IC system” [106]. 

 

3.5 ShapeUp Design Tools 

In ShapeUp, systems are specified using a (possibly hierarchical) Click description 

of the component modules and their interconnections.  Then, module interface 

metadata based on the defined behavioral abstractions can be used by a variety of 

design tools that aid in system implementation and testing.  Three initial ShapeUp 

tools are described here: a design entry tool and visualizer, a linker, and a validator.  

The tool flow is shown in Figure 3.19.  Each of the three ShapeUp tools makes use 

of the type checker, which is abbreviated as “TC” in the figure.  

 

Section 3.6 will describe a novel Click entry environment and visualizer, another key 

topic in this chapter, which uses the type checking in order to suggest possible 

connections.  The visualizer shows connection possibilities and which ports have 

already been connected.  The interface for this design environment was patented as 

US Patent #8,121,826: “Graphical interface for system design” [107]. 

 

Section 3.7 will describe two additional tools for producing the output structural 

description and for performing system-level validation.  The validator runs a system 

level simulation, using a simple protocol to pass data between multiple module level 

simulators.  The linker is used to create a top level RTL structural description of the 

design. 

 

The resulting system RTL design is fed as input to the standard FPGA tool flow, 

discussed in Section 2.1.3, consisting of synthesis (e.g. XST), mapping the 

synthesized netlist onto FPGA primitives (e.g. MAP), and placement and routing 

(e.g. PAR).  Lastly, the Xilinx ISE tools produce the final FPGA configuration 

bitstream, which is used to program the FPGA device. 
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These prototype tools have been used together practically on some real FPGA-based 

product designs in the telecommunications industry, forming the system design level 

of an experimental packet processing design tool suite developed by Xilinx Research 

Labs [86].  The point tools were embedded in an Eclipse-based Integrated 

Development Environment (IDE). 

 

 

 

 

Figure 3.19: ShapeUp tool flow diagram 
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3.6 Design Entry Environment and Visualizer  

The entry environment and visualizer, called Pop, is an interactive tool that provides 

visualization of emergent systems as the user enters their Click description.  It is 

somewhat the reverse of a traditional schematic editor, which would have graphical 

input and textual output.  Rather, it has textual Click input and graphical 

visualization output.  This is because a Click description is often most conveniently 

entered in a textual form.  However, since Click is a declarative language, i.e. 

declarations and connections can be written in any order, an ongoing visualization 

aids the user in ensuring that all connections are entered and that only valid 

connections are made.  Because of this, the visualizer is connection-centric rather 

than module-centric in terms of its operation. 

 

Figure 3.20 shows a screenshot from the visualizer.  In the lower part of the screen is 

the textual Click description being entered by the user.  The upper part of the screen 

shows the visualization of the system in progress.  Individual element ports, and 

connections between them, are shown separately.  That is, the ports of a particular 

element may be distributed over the visualization, rather than clumped together in a 

display of that element.  This is the key connection-centric feature of the visualizer. 

 

Ports are represented by shapes that correspond to the different interface types (plain, 

notify, stream, access, and compute).  Each element is assigned a different color, and 

this is used for all the port shapes for that element, which allows the user to see each 

element in its distributed form.  Connections in the Click description are shown as 

arrows between the port shapes.  Real-time type checking is carried out during Click 

entry, to check that only valid connections are made between elements.  Beneath this 

display, currently unconnected ports for declared elements are shown, as an aide 

memoire to the user. 

 

The visualizer deploys various heuristics to determine the placement of port shapes 

and arrows on the screen, and these were evolved after experimentation with test 

users.  For example, for communication-style systems dominated by stream type 
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ports, left-to-right placement of connections on a single line is used to highlight 

streaming dataflow.  This can be seen in the first line of the display in Figure 3.20. 

 

The concise syntax of Click makes it easy to read, however, the concise nature of 

port identifiers can potentially lead to connecting mismatched ports. The user must 

be familiar enough with components to specify the names of ports and match their 

types against that of other ports when forming connections.  This is unsurprisingly 

more difficult than working with the original Click, which had integer-only 

identifiers for ports and only packet interfaces.  Exposing the additional port types 

that were once hidden, due to cross-element method calls not shown in the Click 

graph, can lead to the user having to specify more connections in their design 

overall, but at the same time they also need to keep track of what is unconnected.  

The first problem is that the Click programmer writes statements to form 

connections, however, the ports that are not connected do not appear in the 

description—it is up to the programmer to keep track of them.  The second problem 

is that Click’s independence of connection statements allows connections to be 

arbitrarily arranged within the description, and their arrangement impacts the 

readability of the code.  The third problem, which is related to the first, is that in both 

complex designs and even simple ones, unless the programmer is familiar with each 

of the elements, to the point that they can keep track of all the ports, it is possible to 

forget to specify one (or more) connections without noticing this from their Click 

description.   

 

Pop automatically solves each of these problems by providing real time assistance, as 

the user types in their description.  The compiler reads the metadata for ports and 

assists the user when forming connections.  Pop identifies possibilities for forming 

connections by suggesting names according to the interface type.  Pop also checks 

the interface types across connections to make sure that detailed attributes of the 

interfaces are correctly matched.  Pop graphically shows what has been connected 
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Figure 3.20: Real-time visualization of Click design entry 

 

and what remains to be connected, and it shows this information arranged by port 

type.  This is intended to help the user gauge the level of completeness of their 

description.  Pop also performs auto-completion of port-name and element-name 

statements. 

 

The most novel feature of Pop is the kind of visualization that it provides.   The 

visualization format was developed from examining traditional block diagrams for 

some example systems and also the textual Click descriptions for the same systems.  

In a block diagram view like the one shown in the top half of Figure 3.21, boxes are 

color-coded and represent elements.  Ports are drawn on the sides of the boxes.  

Depending on convention, the input ports are indicated by symbols (or labels) on the 

left and the outputs are similarly shown on the right.  The boxes importantly provide 

association between the ports from the same element as well as giving an abstract 

representation of some embedded functionality.   

12 Pop: A ClickPlus Entry Assistant

visualization

ClickPlus entry

status
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Figure 3.21: Top half shows block diagram view of system; bottom half shows directed graph view of 

the same system with boxes removed and second connection formed to the yellow element 

 

Two properties of Click that are relevant to mention here are: (a) connections are just 

between ports on elements and (b) connection statements are independent.  Because 

of the independence of statements in Click, the ordering of connections is not 

necessarily based on the adjacency of ports.  Some elements may even be artificial in 

terms of their dataflow, depending on how they are used within a system. 

 

For example, the yellow element in the top half of Figure 3.21 is shown connected 

between the purple and pink elements.  Its remaining ports would be connected in the 

area circled in red, between the green and blue elements.  However, if these two new 

connections were to be drawn, a very cluttered layout would result.  In fact, because 

the yellow element features at both the beginning and end of the main pipeline, there 

is no ideal place to position it.  The key insight embodied into Pop was that the ports 

and connections matter more to the user than the actual elements.  In particular, the 

user needs to be able to easily determine what ports remain to be connected in the 

design.  Therefore, the visualization style shown in the lower half of Figure 3.21 was 

adopted instead.  Here, ports have independent existences from their 

elements.  However, all ports of the same element have the same color to allow easy 

identification.  Where it is convenient to collocate the all the ports of an element, it is 

done, as can be seen for most of the elements in the figure.  But, the yellow element 

is now seen in a distributed visualization: two ports are to the left, and two ports are 

to the right.  The overall effect is to focus on the system dataflow. 
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Experiments were conducted to see what effect color selection had to the readability 

of the diagrams, when color is used as a primary means to associate ports by their 

parent element. Figure 3.22(a,b) show some of the pseudo-random test patterns that 

were generated. Figure 3.22(a) shows a large test pattern to check readability of 

randomly generated colors for port symbols.  Figure 3.22(b) shows a smaller test 

pattern to see if reducing number of ports improved readability.  The test patterns are 

considered pseudo-random because a hash-based function was used to ensure that 

colors were somewhat dissimilar, in that they did not produce the same hash value as 

any of the other randomly selected colors, when comparing respective luminance and 

chrominance values. To help make elements easier to identify, a second color is 

assigned to the symbol outline and also the thickness of the outline is varied.   

 

In Figure 3.22(a,b,d), triangles represent output ports and circles represent input 

ports, which was done only for early stages of testing color choice.  Later, specific 

symbol shapes were selected to represent the port types instead of direction, as seen 

in Figure 3.22(c).  This image shows the symbols that were assigned to each of the 

five interface types in our experiments.  To keep things simple, the same shape is 

used for both inputs and outputs.  The symbol choice like the plus symbol for 

compute, for example, helps to make the description somewhat easier to read  

through symbol association. However, color alone might not be sufficient to 

associate ports that belong to the same element, particularly if the programmer is 

colorblind or has difficulty with matching colors.  As a result, an option to label the 

symbols with the element name and port name makes association easier for the 

programmer. 
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Figure 3.22: Visualization color experiments and symbol choices: Counter-clockwise from upper-left: 

(a) large test pattern;  (b) small test pattern; (c) chosen port symbols; (d) column layout for ports 
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The port symbols are drawn in two columns, at the time the programmer types the 

instantiation of an element, as shown in Figure 3.22(d).  The ports per element are 

arranged with inputs to the left and outputs to the right.   

 

The visualization pane in Figure 3.23 shows both connected and unconnected ports 

to help user gauge progress while entering the design.  This indicates the overall 

completeness of the description.  A dotted horizontal line separates the ports that 

have been connected in the upper portion from the ports that have not yet been 

connected in the lower portion.  This way, the programmer can quickly see what 

remains by scanning below the line.  Checking a schematic diagram for an 

unconnected port requires a scan over the diagram, whereas in this visualization 

there is a partition to directly show what is not connected.  In this view, the relative 

number of unconnected ports can be seen right away. A small circle is added to each 

symbol to the left or right indicate whether it is an input or output port.  The set of 

ports for a single element are drawn in columns going left to right, as they are 

instantiated.   

 

Each row above the line corresponds to a line of Click that the user typed.  At the 

time the user forms a connection, port symbols are moved down into new rows if 

they are not used in the connection, so that anything unconnected rests below the 

horizontal line.   
 

 

Figure 3.23: Visualization pane shows both connected and unconnected ports to help user gauge 

progress 
 

Ports symbols arranged 
in real time as user 
types in click

Dotted line sort of 
vertical cursor

Unconnected ports below
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Arrows are drawn between port symbols used in the connection and an animation 

takes place to rearrange the drawing, so that the order of ports and connections 

matches the textual Click description.   The Piccolo Zoomable User Interface (ZUI) 

construction kit [108], developed by the University of Maryland, was used in the 

implementation of the visualization pane to draw and animate the symbols. 

 

The Click entry pane, shown in Figure 3.24, is the text editor area where the user 

types in their description.  The entry pane also helps to suggest the names of ports, 

with a pop-up context menu, as the user is typing their connection.  When the user 

selects a port from the context menu, the text in the description is automatically 

generated and inserted at the text cursor position.  Only unconnected ports are 

suggested, and when the user is prompted for the input port on the right hand side of 

an arrow it will suggest only ports of the appropriate type.  

 

The status pane, shown in Figure 3.25, provides an activity log that displays an 

incremental record of how the user has constructed the system model.  The activity 

log has statements for each action; with the number of unconnected ports remaining 

in the design after each action is performed.  This is another place to indicate if there 

are errors detected in the design with an error or warning message.  This is also a 

place to print summary messages about the library of elements and the also to 

provide any resource estimates for the design. 

 

To summarize this section, the Pop development environment is different from 

existing approaches in that the Pop environment interactively draws and checks the 

system as the user types in their description.  Pop addresses a difficulty introduced 

by the extension to Click.   The real-time, line-by-line visualization is made possible 

because Click is a declarative language.  The fact that descriptions can be 

conveniently checked on a line-by-line basis helps to reinforce our view that Click is 

an appropriate language to use for the stitching task of designing modular  
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Figure 3.24: Click entry pane helpfully prompts as the user types in their description 

 

 

 
Figure 3.25: Status pane provides a textual description of the actions performed to the system model 

and other status 

 

architectures.  The graphical enhancement of textual focus provided by Pop conveys 

useful information about progress and the remaining ports. The visualization, overall, 

very closely resembles graphical Click syntax, and the port symbols provide 

symbolic help to interpret the ShapeUp design. 

 

3.7 Additional ShapeUp Tools 

The following two tools were implemented by others, fitting within the overall 

ShapeUp framework.  Both of these tools incorporated the ShapeUp type checker. 

Auto completion fills in port names
Suggests only compatible unconnected ports
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3.7.1 ShapeUp validator 

The validator is the main testing tool for systems built from component modules.  It 

encompasses multi-level (including mixed-level) simulation and on-FPGA operation.  

This allows validation prior to any FPGA implementation steps, after ShapeUp 

linking, after synthesis, after place-and-route, or running on a real FPGA. 

The ShapeUp validator takes a Click description of the target system, and the data 

and metadata for the constituent modules.  It then has a variety of options, depending 

on the validation level required. 

 

The highest level of validation is prior to any explicit assembly of the system from 

its constituent modules.  A distributed simulation framework corresponding to the 

Click interconnection graph is constructed.  Each node in the framework is 

responsible for the simulation of one module, and these nodes communicate to 

simulate interactions between modules.  Standard Unix TCP/IP sockets are used as 

the communication mechanism.  A master process is responsible for creating the 

simulation nodes, and then making TCP/IP connections between them.  The use of 

TCP/IP means that nodes need not all be running on the same computer, allowing 

genuine parallel simulation. 

 

The simulation at each node requires some model for the module.  This might be 

simple, for example a Perl script, or more accurate, for example a SystemC model or 

the actual RTL.  The validator uses the module interface metadata and module model 

metadata to ensure accurate emulation of the interactions between modules.    

 

Figure 3.26 shows how the validator can generate a framework that allows validation 

across different implementation levels, in this case for a system with a streaming 

packet input and a streaming packet output.  The same packet data source is used for 

each level, and the same format of output packet data is produced for each level.  

This allows automated comparison of results between the levels to ensure correctness 

of implementation steps. There are three levels of RTL simulation using ModelSim, 

corresponding to HDL generated by the ShapeUp linker, by the synthesized netlist 
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from this HDL, and by the placed-and-routed layout from the netlist.  Finally, there 

is ‘hardware in the loop’ operation, where the system is exercised on the target 

FPGA with real input and output. 
 

 

 

Figure 3.26: Multi-level validation environment for streaming systems 

 

3 .7.2 ShapeUp linker 

The linker is the main implementation tool for system assembly from component 

modules.  The term ‘linker’ is drawn from the analogous software design flow, 

envisaging that compilers are used to generate the modules, and then the linker is 

used to connect them together into a whole. 

 

The ShapeUp linker takes a Click description of the target system, and the data and 

metadata for the constituent modules, and generates the structural RTL design (in 

Verilog or VHDL) of the complete description.  Standard synthesis and place-and-

route tools can then process the design. 
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The main action of the linker is to type-check the Click description and then to create 

wiring that implements the required connections between the hardware modules.  

Type checking is as described in Section 3.4.  The linker can also generate wiring for 

specific module requirements, such as clocks and resets.  Finally, it can ensure that 

wiring is consistent with board-level constraints on FPGA input/output pin 

placement.  All of this is guided by module interface metadata, other module 

metadata, and board-level metadata that is supplied to the linker. 

 

The basic benefit of this wiring activity is to relieve the user of the tedious and 

sometimes intricate task of gathering all necessary module interface information and 

then writing HDL code to connect interface pins together.  It also simplifies 

maintainability and evolvability, by allowing simple changes to be made at a high 

level without the need to rewrite and recheck low-level HDL code. 

 

A significant additional function of the linker is ‘auto-bridging’.  When the type 

checker indicates that two interfaces approximately match, rather than strictly match, 

the linker is able to bridge certain differences by inserting one or more additional 

conversion blocks between two modules.  This is illustrated in Figure 3.27.  Here, 

one module has a LocalLink packet interface with a 32-bit data path that is to be 

connected to another module with a LocalLink interface with a 128-bit data path.  

The linker inserts a block that accumulates four successive 32-bit words and then 

forwards them as a single 128-bit word.  If the first module is not clocked at four 

times the rate of the second module, then the block must also assert LocalLink flow 

control as appropriate. 

 

In the current prototype version of the linker, there is a pre-canned repository of 

available parameterized conversion blocks and metadata for them.  A future 

aspiration is to support the automated generation of conversion blocks based on the 

exact needs identified by the attribute mismatch(es) between the connected module 

interfaces.  One approach is to build upon earlier work of Passerone et al. on 

automated synthesis of interfaces between incompatible protocols [109]. 
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Figure 3.27: Insertion of width converter block between two modules 

 

 

An aspect of improving the overall modular design experience is to import the 

ShapeUp interface abstraction into the tools that are used to generate modules 

themselves.  This has been done for the experimental G packet processing language 

[86], so that its typing of input and output ports matches the ShapeUp typing.  The 

impact is to produce modules that are ‘ShapeUp ready’, and thence pose fewer 

bridging problems for the linker and validator tools to overcome. Chapter 5 will 

discuss an integrated example, with programming in G and Click, and founded on 

ShapeUp. 

 

3.8 Summary  

Chapter 3 presented the basic approach using a modular abstraction called ShapeUp.  

A set of interface abstractions and a modular design methodology was described 

based on abstractions of module interface behavior, from three programming 

paradigms. This research is novel in that there has been significant past work on 

abstracting behavior of module functions, but little on the abstraction of the 

interconnection of modules.  ShapeUp addressed this by abstracting the behavior of 

the interfaces and connections between the interfaces.  Several tools were developed 

that use general data driven mechanisms. 
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The main contributions of the ShapeUp work described in this chapter are the 

following: 

• Section 3.2 presents a set of abstractions of module interface behavior, 

featuring five types of interface that cover both streaming and procedural 

programming paradigms for modules.   

• Section 3.3 presents interface metadata (and meta-metadata, in fact) to 

describe a module’s interfaces in terms of the defined abstractions, enabling 

the creation of module repositories.   

• Section 3.4 presents the type checker that is used by the other tools to 

indicate the compatibility of two ports when forming a connection. 

• Section 3.5 provides an overview of the ShapeUp tool flow. 

• Section 3.6 presents the Pop Click entry and visualization environment 

• Section 3.7 presents additional tools that were enabled by the  (extended 

semantics) Click descriptions and module metadata and completed the high-

level modular design experience. 

 

Chapter 4 describes a practical addition to the ShapeUp library, modules for 

performing timing functions.  These modules enable time-triggered behavior 

important to many networking systems.  Chapter 5 describes the validation of the 

‘plug-and-play IP’ productivity gains from use of the ShapeUp methodology and the 

prototype tools on a real-life industrial-strength case study involving building real 

high performance networking systems. 
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Chapter 4  
Flexible and Modular Support for Timing 

Functions in High-performance Systems 

 

Field programmable logic is increasingly used to provide the high performance and 

flexible acceleration needed for network processing functions at multi-gigabit rates.  

Almost all such functions feature the use of clocks and timers in control and/or data 

roles, and these are typically implemented in an ad hoc manner.  This chapter 

introduces a set of three configurable timing modules that are based on abstractions 

of the prevalent timing paradigms observed in network protocols.  The modules fit 

within the experimental ShapeUp methodology for modular FPGA-based system 

design, and so can be easily integrated with other modules that are tailored for 

specific networking functions.  The use and benefits of the new modular approach 

are demonstrated in Chapter 5 by an example of a flexible FPGA reference design 

that has been made available for real-life use by telecommunication equipment 

providers. 

 

A characteristic of numerous computing and networking functions is the use of 

clocks and timers.  A broad survey was conducted showing that time is used 

extensively in computing, for example: to schedule processing to start or to meet 

deadlines; to schedule the sharing of resources; for synchronization; to keep track of 

events; to model performance, realistic delay, or phenomena; and for security.  

Similarly, time is used extensively within networking.    Figure 4.1 depicts a collage 

representing the diverse areas of the conducted survey. 
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Figure 4.1: Survey of time in networking and computing 

 

In networking, time is used at the physical interface level; hardware clocking is 

directly used for signaling functions.  Above this level though, less direct timing is 

used.  For example, many network protocols involve timeout mechanisms, which 

specify actions to be taken if a time period has elapsed without some communication 

event taking place.  This requires an alarm clock style of timer to be implemented.  

Other protocols require explicit timestamps to be placed in packets to guarantee 

properties such as freshness or uniqueness.  This requires a real time clock to be 

implemented.   

 

In these early days of FPGA acceleration of sophisticated networking functions, the 

various required clocks and timers are usually implemented on an ad hoc basis, 

closely integrated with the rest of the system design.  This is not desirable in terms of 

providing maintainable and extensible systems that can evolve with changing 

requirements.  Aside from the drawbacks of monolithic designs, this is counter to 

any attempts at higher-level design specification techniques. 
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The aim of this work was to demonstrate that it is not necessary to incur the 

overhead of re-implementing ad hoc timing capabilities each time some network 

packet processing function is being accelerated using FPGA technology. 

 

Although this research has focused initially on the particular needs of the important 

domain of network processing, it has potential application much more widely for 

other types of real time embedded systems implemented on FPGAs.  In essence, it 

can be seen as a higher level of timing abstraction above the standard digital clock 

manager blocks that feature in FPGA architectures.  

 

4.1 Timing Paradigms in Networking 

At first sight, there is a plethora of ways in which clocks and timers are used in 

networking.  However, if one adopts a time-centric viewpoint of what is happening, 

as opposed to a protocol-centric viewpoint, the situation becomes dramatically 

simplified.  Indeed, one fairly obvious observation, noted in the past (e.g., in [110]), 

explains almost the whole picture.  This is that communication between two or more 

parties can be seen as an activity over time with a start point and a finish point.  

There may be structuring of activities, into sub-activities, sub-sub-activities, etc. 

conducted over time.  Ultimately, an atomic leaf-node activity (in the digital world) 

could be the communication of a single bit of data between two parties. 

4.1.1 Timers and activities 

Considering the start points of activities, two main use cases can be identified: 

• Activities scheduled at some specific time. 

• Missing events recognized after some time period. 

 

The first case includes activities that are deliberately delayed for some time or those 

that are periodic in nature.   
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A few standard examples will make the above general description more tangible.  

The well-known CSMA/CD approach used in Ethernet [111] involves checking for 

the transmission medium to become idle, and then waiting for a random amount of 

time before transmitting.  In this case, a start point is scheduled for the transmission 

ready time plus this random time period.   

 

Many control or management protocols, for example the RIP routing protocol [112], 

involve sending messages at fixed time intervals to provide status information to 

another entity; in this case, a start point is scheduled for the previous sending time 

plus this fixed time interval.   

 

The widely used technique of polling deals with expected, but missing, events.  

When an entity has seen no communication from another entity for some period of 

time, it starts a polling communication to check on the status of this entity; in this 

case, the start point is at some fixed time after the last seen communication.  The 

Internet Transmission Control Protocol (TCP) [113] keepalive is an example of 

polling behavior. 

 

For the finish points of activities, the two main use cases are: 

• Lack of activity recognized after some time period. 

• Activities terminating at some specific time. 

 

Many communication protocols, notably TCP for example, embody the notion of 

timeouts used by one entity to recognize when another entity has not responded 

within some period of time chosen to be longer than the maximum possible response 

time.  In each of these cases, a finish time is scheduled for the start time plus the 

timeout period.  Note that this time-related finish point is nullified whenever an 

activity finishes naturally through a communication event.   

 

Many security protocols, for example the SIP session protocol [114], embody the 

notion of an expiry time which limits the duration of activities in order to bound the 
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time for which an authorization lasts; in this case, a finish point is scheduled 

corresponding to the expiry time. 

 

When considering the implementation of some specific protocol, it is just necessary 

to observe where these use cases arise in order to situate timing functions correctly.  

Then the goal of this work is to provide generic configurable FPGA-based timing 

modules that can be correspondingly situated as part of modular protocol 

implementations.  The benefit of such hardware modules in general is to provide 

accuracy and responsiveness that may not be possible with software timing 

implementations.  In some applications, for example the case study presented in 

Chapter 5, just acceleration of the timing functions is motivation for an FPGA-based 

implementation. 

 

4.1.2 Clocks and timestamps 

The only other significant timing paradigm is the use of clocks is to provide 

timestamp values, which are included as data within communication activities.  

These serve a number of purposes in network protocols, including: 

• Indicating the time when a message was sent. 

• Indicating the time when a message expires. 

• Differentiating cases when exactly the same message has been sent more than 

once. 

• Measuring communication times 

 

This use case points to the need for a generic FPGA-based timing module to supply 

absolute timestamps.  These may be absolute times-of-day or relative internal clock 

values. 

 

A prime example of timestamp use is the Real Time Protocol (RTP) [115], which is 

concerned with sending real time data, such as audio or video, over the standard 

Internet best-effort service.  RTP packets carry monotonically increasing timestamps 
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with application-specific time granularity, so that the receiver can deal with packet 

delay variation.  The associated RTCP control protocol uses packets with timestamps 

in seconds since 1 January 1900.   

 

4.1.3 Time protocols 

A special category of protocols is concerned with communicating information about 

time itself.  The principal examples are the Network Time Protocol (NTP) [116] and 

the IEEE 1588 Precision Time Protocol (PTP) [117].  As its name suggests, the 

latter is a higher accuracy (potentially sub-microsecond) protocol than the former.  

These protocols are further examples of those whose packets carry timestamps.  

Importantly though, these protocols can form part of the implementation mechanism 

for an FPGA-based module that provides absolute real timestamps. 

 

4.1.4 Time Summary 

This walk through the world of timing paradigms in networking (based on an 

underlying survey and review of networking protocols) motivated the provision of 

just three necessary and sufficient types of FPGA-based abstract timing modules: for 

activity start timing; for activity finish timing; and for providing timestamps. 

 

4.2 Configurable Timing Modules 

4.2.1 Starting and finishing activities 

A characteristic of many protocols is that there can be many simultaneous activities 

at one time, corresponding to different contexts within the protocol.  For example, in 

the case of the TCP protocol, there is a collection of active connections between TCP 

ports on the node being implemented and TCP ports elsewhere on the Internet, and 

there are separate timers for each.  Depending on the setting, there might be tens, 

hundreds, or even thousands of concurrent activities.  For this reason, the timing 
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modules for starting and finishing activities support multiple contexts, as it is not 

efficient to use separate modules for each activity. 

 

Figure 4.2 shows the interfaces and configurable features of the activity start timing 

module that was designed.  There is a request input interface and an event signaling 

output interface.  The basic timer request includes a start time offset value, meaning 

that there should be an event signal output at the current time plus the offset value.  

A repetitive timer request also contains a non-zero period value, meaning that there 

should be periodic event signal outputs at times separated by the period value.  There 

is also a cancel type of request, used to cancel a currently scheduled timer request.   

 

Each request and event signal includes an identifier, which is used to differentiate 

between activities.  An event signal has the identifier from the corresponding timer 

request; a cancel request has the identifier of the timer request to be cancelled.  There 

are three configuration parameters for the module: the maximum number of 

concurrent activities (a); the maximum time horizon (h); and the minimum time 

quantum (q), which is the unit for the time values in requests and for the time 

horizon.  

 

Figure 4.3 shows the interfaces and configurable features of the activity finish timing 

module that was designed.  These are broadly similar to those of the activity start 

timing module. The timer request includes a finish time offset value, meaning that 

there should be an event signal output at the current time plus the offset value.  There 

is also a done type of request, used to indicate a (non timer caused) activity finish, 

which has the effect of aborting a currently scheduled timer request.  The three 

configuration parameters are the same as those of the activity start timing module. 

 

The structural similarity between the activity start and finish modules makes a 

common implementation possible. In fact, the start module has a strict superset of the 

capabilities of the finish module: the repetitive timer request is its (optional) extra 

feature; and its cancel request is equivalent to the finish module’s done request.   
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Figure 4.4 shows a logical implementation of the activity start module as a set of 

alarms, which can then have a physical calendar wheel implementation.  Figure 4.5 

shows the internal architecture of the timing module calendar wheel implementation. 

 

A stored table contains the future time commitments for the timer requests in 

progress: a completion time, and optionally a repetition period, for each activity.  It 

has a rows, each with width r⌈log2h⌉, where r=2 if repetitive requests are allowed and 

r=1 otherwise.  On Xilinx FPGAs, this can be stored in Block RAM (BRAM) 

memory or in distributed LUT RAM memory.  For a Virtex-5 FPGA, a single 

BRAM can store 36K bits and a single LUT can store 64 bits, with the table 

requiring a total ar⌈log2h⌉ bits.  The timer request arbiter writes to the table to 

schedule events based on incoming requests. 

 

 

 
Figure 4.2: Activity start module 

 

 
Figure 4.3: Activity finish module 
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Figure 4.4: Logical implementation of activity start module  

 

 
Figure 4.5: Calendar wheel implementation of activity start and finish timing modules 

 

A sweeper process scans through the table on a regular basis, checking for any timer 

requests that have completed, and generating event-signaling outputs in such cases.  

The sweeper spends a (deterministic) five cycles per table row on the check and any 

follow-up. Therefore, if the maximum module hardware clock rate is c MHz, the 

maximum scan frequency is c/5a million sweeps per second. This, in turn, imposes a 

lower bound of 5a/c µs on the minimum time quantum q.  So, for example, a single 
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module with a clock rate of just 125 MHz could support 25,000 activities using a 1 

ms time granularity, which is more than ample for most networking protocol needs.  

Note that a typical software implementation would use a more subtle data structure, 

e.g. a sorted event list, but the method used here is well suited for hardware 

implementation because it minimizes memory use. 

 

Table 4.1 shows Xilinx Virtex-5 LXT implementation data for nine representative 

configurations with repetitive requests allowed (r=2): time horizon width ⌈log2h⌉ = 

16, 24, and 32 bits, and activity maximum a = 128, 1024, and 8192.  Block RAM 

was used for the table storage and for the signal output FIFO.  It can be seen that the 

LUT, FF, and slice counts increase with the time horizon width, because of the need 

to store time values and to compare them to check for completion, and (less so) with 

the number of activities, because of the need to use counters of ⌈log2a⌉ width.   The 

BRAM counts increase in line with the 2a⌈log2h⌉ formula for table size; the number 

of BRAMs used in fact has the most impact on clock frequency because of fan-in 

considerations.  

 

Table 4.1: Xilinx Virtex-5 data for activity timing modules 

Time 
width 
(bits) 

Max. activities Lookup tables 
(LUTs) Flip- flops (FFs) Virtex-5 

slices 

BRAM 

(36Kb) 

count 

Clock freq. 

(MHz) 

16 

128 322 329 185 2 299 

1024 330 335 192 2 280 

8192 375 364 224 9 236 

24 

128 412 435 247 3 281 

1024 418 439 244 3 278 

8192 466 438 271 13 201 

32 

128 502 504 259 3 263 

1024 507 507 294 3 266 

8192 571 473 299 17 195 
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4.2.2 Providing timestamps 

Figure 4.6 shows the interface and configurable features of the timestamp-providing 

module that was designed.  Compared to the other modules, it has a simple interface. 

This supports a simple register read request that returns a current timestamp.  An 

alternative would have been for the module to output a timestamp continuously.  

Note that this module’s interface could support the Worker Time Interface (WTI) 

profile of the OpenCPI open component portability infrastructure initiative [43].  

The key configuration parameter for this module is whether it supplies its own 

localized timestamp sequence, initialized at reset, or whether it supplies a real time-

of-day timestamp.  The latter potentially involves a significantly more complex 

implementation.  For each case, derived parameters are then the maximum time 

horizon, which determines the size of the timestamp, and the minimum time 

quantum, which determines the accuracy of the timestamp.  A final configuration 

parameter is the number of read request interfaces that are supported.  This multi-

port memory option is provided to relieve the module user of having to multiplex 

read requests from several different client modules. 

 

 
Figure 4.6: Timestamp providing module 

 

 

In the case where the module supplies a localized timestamp sequence, the FPGA 

implementation is trivial, since it just requires a simple counter of the appropriate 

size that is incremented at the appropriate frequency, plus one or more standard 

register read interfaces.  With a module clock rate of 200 MHz, the lower bound on 

the minimum time quantum is 5 ns, much smaller than needed in practice. 



 

   

 

94 

 

In the case where the module supplies a real time-of-day timestamp, there are 

various different options.  The simplest approach is to use a simple counter as just 

described, initialized to a current time-of-day value.  For example, it can be a 64-bit 

counter of seconds since 1 January 1970 (as used in modern Unix), with an initial 

value supplied as part of system configuration via a control register interface.  Where 

there is no in-system way of supplying the current time, a more elaborate approach 

would be to embody a complete IEEE 1588 client within the module, for example 

the IPClock IPC50000 networked slave clock block [118]. 

 

4.2.3 Activity diagrams 

Activity diagrams are a novel graphical way to indicate which of the time modules 

are needed for a particular activity and the actions within the activity.  An example 

activity diagram, illustrating the graphical notation, is shown in Figure 4.7.  The gray 

box represents the activity and inside it is a listing of the actions performed during 

the activity.   The list of actions is ordered according to their sequence.  Time is 

depicted as flowing left-to-right and so the activities and actions are displayed in 

order left-to-right.  

 

Labels above the gray box are used to indicate there is a requirement for a timing 

module and that the action directly below it is dependent on using time.  In the 

example shown, action 1 requires the activity start module (START) and action n 

requires the activity finish module (FINISH). 

 

 
Figure 4.7: Activity diagram notation 

 

An asterisk (e.g. START*) is used to denote that the activity repeats, and that start 

module will be used to periodically signal the start of this activity.  An example is 

action n action 1             ... 

 START FINISH 
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shown in Figure 4.8, which periodically transmits a packet (1DM frame), containing 

a timestamp (TxTimestampf).  The activity start module notifies the activity to begin 

forming the 1DM frame.  Next, a timestamp is obtained from the timestamp module 

(STAMP).  The TxTimestampf is a field of the 1DM frame.  Finally, the 1DM frame 

is transmitted, and the activity is complete. 

 

 
Figure 4.8: Activity diagram with an asterisk 

 

An activity does not necessarily need to use timing modules for beginning or ending 

its actions.  For example, the activity in Figure 4.8 is short, and it ends naturally after 

transmitting the packet.  As mentioned, the periodic nature of the activity means that 

the start module will restart that activity after its period has elapsed.  The example 

activity shown in Figure 4.9 begins naturally, when a packet (LBM frame) is 

received).  The activity finish module is used to implement a timer to notify the 

activity when the random wait period has expired.  The notification from the finish 

module triggers the transmission of a packet (LBR frame).     

 

rx(LBM) wait(random) tx(LBR)

FINISH

 
Figure 4.9: Activity diagram of an activity that begins naturally, without the use of a timing module 

 

Activity diagrams will be used in Chapter 5 to illustrate the timing requirements of 

the main functions of the case study. 

 

4.3 ShapeUp Context for Timing Modules 

The three configurable timing modules were designed to fit within the ShapeUp 

framework, to maximize their usability and reusability within modular networking 

formFrame(1DM)   getTime(TxTimestampf)    tx(1DM) 

STAMPSTART*
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system (or other embedded system) designs.  In fact, software implementations of 

these modules could also be used in this setting.  The specifications of the module 

interfaces involve two of the five defined ShapeUp interface types: access, where a 

primary module accesses data in a secondary module via read and write requests; and 

notify, where a primary module passes messages to a secondary module. 

 

The modules for starting and finishing activities have access type request input 

interfaces, the module being the secondary and the interface having address-less and 

write-only (writing an activity identifier and one or two time values) attributes.  

Figure 4.10 shows the ShapeUp interface for the activity start module and the 

activity finish module.  They have notify type event signaling output interfaces, the 

module being the primary and the messages carrying an activity identifier and an 

event type indication.  The module for providing timestamps has an access type 

request interface, the module being the secondary and the interface having address-

less and read-only (reading a timestamp value) attributes.  Figure 4.11 shows the 

ShapeUp interface for the timestamp-providing module.   

 

 

 

 

Figure 4.10: ShapeUp activity start and finish timing modules 

 

 
Figure 4.11: ShapeUp timestamp providing module 

 

to describe their design, in terms of the time 
relationships at a high level.   Activity is some task to 
be performed, which has both a start and a finish.  
Activities may be constrained according to actual time 
by specifying when the start and finish take place.  In 
other words, activities have a start or finish that may 
occur synchronously or asynchronously.   
Activities span an interval or they occur as discrete 
events.  In our model, if an activity has both the same 
start and finish time then it is considered to be a 
discrete event.    Activities with different start and 
finish times describe the busy period of performing a 
logical part of a computation.  This period associates a 
set of resources assigned to carry out the task, 
considered to be in use throughout the activity.   
 
Diagrams Model 
Activity diagrams are used to simply show which of 
the time modules are needed for a particular activity.  
The gray box represents the activity and inside it is a 
listing of the actions performed during the activity.  
Any labels above the box are used to indicate a 
dependency on one of the three time modules.  An 
asterisk (e.g. START*) is used to denote that the start 
module will periodically determine and signal the start 
of this activity. 
 

 

action naction 1             ...

STAMPSTART FINISH

 
 

 
 

6. Prototype Mechanism implementation 
Maybe_remove{Since there is no inherent notion of 
time in Click+ descriptions, any such notion deriving 
from the behavior of specific system modules. As a 
basis for a useful Click+ library, we have developed a 
set of programmable time modules that provide 
mechanisms for starting activities, supplying 
timestamps, and also timing out activities that do not 
finish by their deadline. In the library, these modules 
are respectively named: Start, Stamp, and Finish. } 
 
In our model, activities are associated with time by 
specifying their dependencies as one or more of the 
following: (a) start, (b) finish, (c) use of timestamps.  
Two programmable modules synchronize the activities 
and their dependencies with respect to actual time.     
A third module supplies the current time as a 
reference. 

 
Start Block 
 

Activity
Start
Block

–  
–  start  time

activity id

signal event

cancel request

–  activity  id
–  event type

basic request
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The Activity Start Block, shown in Figure 1(a), is used 
to: 
•  Signal to an application module to begin an activity 
at a specified time. 
• The start module takes as input a request containing 
the activity ID and the start time.  Requests for 
periodically reoccurring activity may also include the 
period.   
• The request can be canceled, if necessary, before the 
start time. 
 
Finish Block 
 

Activity
Finish
Block

–  
–  finish  time

activity id

basic request

–  activity id

done

signal event

–  activity  id
–  event type

Stop

 
The Activity Finish Block is shown in Figure 1(b).   
The finish module signals if a particular activity 
should eventually timeout.  It takes in a request 
containing an activity ID and finish time.  In the case 
that the activity completes itself before the finish time, 
this is indicated to the finish block by signaling done. 
The timestamp module, shown in Figure 1(c) serves as 
a time reference and has an interface for providing the 
current system time. 
 
The three programmable time modules are used to 
conveniently describe the time dependencies at a high 
level, but when compiled they map into a more 
detailed implementation.  For example, the Activity 
Start Block can be logically implemented as a set of 
individual alarm clocks.  An example optimized 
hardware implementation of this might map the 
individual alarms on to a calendar wheel 
implementation. 
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4.4 Summary  

This work is a contribution to encouraging a higher-level approach to designing 

FPGA-based networking systems.  Timing is a feature of almost all communication 

protocols but, as a review of networking showed, there are just a small number of 

basic timing paradigms in use.  This motivated the design of the collection of 

configurable networking timing modules introduced in this chapter.  These 

components might have either software or hardware implementations, the latter 

being necessary for an increasing number of applications as networking speeds grow 

from gigabit rates towards terabit rates.  Resource-efficient FPGA implementations 

of the modules have been embedded within the new ShapeUp modular design 

methodology.  The fact that Click is used as a description language in ShapeUp 

assists accessibility for networking researchers who are already familiar with Click 

for modular software implementations.  Although motivated by the needs of 

networking, the new configurable timing modules have potential applications in 

many types of real time embedded systems where there are events and activities that 

are influenced by the passage of time.  Thus, they represent one of a core set of 

generic module libraries that contribute to the overall ShapeUp methodology.   

 

To enable progress towards more flexible and modular design of networking 

systems, the main contributions of the work described in this chapter are threefold: 

• A wide-ranging review of the prevalent timing paradigms observed in 

network protocols, which exposed and abstracted three basic timing functions 

requirements.  This is summarized in Section 4.1. 

• The design and implementation of a set of three highly configurable timing 

modules that provide a flexible solution for the identified basic requirements.  

These are described in Section 4.2.  Activity diagrams were created to show 

time requirements and the use of the three timing modules as they relate to 

individual activities.    These are described in Section 4.2.3. 



 

   

 

98 

• The embedding of these modules within the experimental ShapeUp 

methodology for modular system design, to allow seamless integration with 

other modules.  This is described in Section 4.3. 

 

The next chapter describes the validation of the timing modules (and ShapeUp) 

through use in real-life industrial-strength case studies of network processing 

acceleration.   
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Chapter 5  
Case study 1: A Scalable Modular System 

Design for Ethernet OAM  

 

In this chapter, the ShapeUp methodology and tools are validated on a Xilinx 

customer design project.  This case study concerns a modular reference design that 

has been shared with a number of FPGA users in the telecommunications industry.  

A key benefit of ShapeUp was the capability to have a set of modules, and then 

easily assemble these in different configurations corresponding to specific system 

requirements.  The application is hardware acceleration of Ethernet Operations, 

Administration and Maintenance (OAM) functions, an area of rapidly increasing 

importance in modern carrier Ethernet.  It was selected because of both its 

importance and also its numerous and subtle uses of time.   

 

Section 5.1 provides an overview of Ethernet OAM, including a description of the 

network entities and the protocol functions. Section 5.2 provides an analysis of the 

timing requirements in Ethernet OAM functions.  Section 5.3 describes the overall 

system architecture.  Section 5.4 gives relevant background on the G language (used 

for implementing this case study), and describes the library of G elements.  Section 

5.5 discusses the integration of the timing modules within the example designs.  

Section 5.6 provides a Click description of one major part of the system: the 

connectivity fault management (CFM). Section 5.7 describes how the ShapeUp 

framework and tools and methodology enabled this CFM design.  Section 5.8 

summarizes the contributions of this chapter. 
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5.1 Ethernet OAM in a nutshell  

Ethernet OAM is specified in the ITU-T Y.1731 [119] and IEEE 802.1ag [120] 

standards.  These standards address the scaling of service and maintenance across 

different network domains.  While Ethernet service networks scale to increasing 

number of services and customers, it remains important for service providers to 

guarantee their services with monitoring and maintenance.  Ethernet OAM provides 

a set of management services for administering Ethernet services across multiple 

network domains.  This helps to provide an organized environment for detecting and 

reporting errors that occur across service levels.  Example service levels are shown 

in Figure 5.1.  A maintenance entity (ME) is simply a network entity that requires 

management.  Functions are performed between ME groups (MEGs) that are peers 

(i.e. they have the same service level), represented by colored rectangles and colored 

circles in Figure 5.1.  A MEG end point is abbreviated as MEP (represented by a 

colored square), and a MEG intermediate point is abbreviated as MIP (represented 

by a colored circle).       

 

 
Figure 5.1: Ethernet OAM service levels, taken from [119] 

 

This section will describe the functions and protocols that are described in ITU-T 

recommendation Y.1731.  There are two basic management aspects to Ethernet 
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OAM, consisting of: (a) fault management and (b) performance monitoring. The 

fault management functions generally include:  (a1) checking for lost continuity and 

other defect conditions, (a2) configuring diagnostic testing modes, and (a3) signaling 

alarms.  The performance monitoring functions generally include: (b1) measuring 

frame loss, (b2) measuring delay, and (b3) measuring throughput.   

 

Fault Management consists of the functions for detecting various kinds of defect 

conditions as well as functions for setting up modes in order to perform diagnostic 

testing: 

 

 

Continuity Check (ETH-CC) Used to check connection continuity by 
periodically transmitting test frames and also 
used to measure frame loss. 

Loopback (ETH-LB) Used to verify bidirectional connection, with 
ping-like request/reply function. 

Link Trace (ETH-LT) Used to trace the path to a peer and to isolate 
faults. 

Alarm Indication Signal (ETH-AIS) Used to signal connection failures to next level 
service.  

Remote Defect Indication (ETH-RDI) Used to signal defect conditions from a remote 
peer in the upstream direction. 

Locked Signal  (ETH-LCK) Used to suppress alarms and for differentiating 
an administrative mode used for performing 
diagnostic testing. 

Test Signal (ETH-Test) Used to send a test message for testing 
throughput, to measure bit errors, or to detect out 
of sequence delivery. 

Automatic Protection Switching 
(ETH-APS) 

Used to control protection switching operations 
to enhance reliability. 

Maintenance Communication Channel 
(ETH-MCC) 

Used as a maintenance channel to request 
maintenance functions from a remote peer.   
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Experimental OAM (ETH-EXP) Used to allow administrative functionality on a 
temporary basis. 

Vender Specific OAM (ETH-VSP) Used to allow vender specific Ethernet OAM 
extensions. 

 

Performance monitoring consists of the following basic performance measurement 

functions: 

Frame Loss Ratio (ETH-LM) Report of frames not delivered vs. frames delivered 

Frame Delay (ETH-DM) Both unidirectional (with IEEE 1588) and 
bidirectional/round-trip measurement functions for 
computing frame delay. 

 

Modern carrier class networks require systems supporting high aggregated 

throughput, e.g. 25 Gb/sec.  Parts of the OAM functions require hardware 

acceleration due to these scaling line rates, including maintaining the ability to count 

frames and also because many of these functions require highly accurate timestamps.  

For example, ETH-CC is a key function that requires hardware acceleration because 

the measurement rate has increased from every few seconds to more recently a 

polling interval of every 3.3 ms.  Furthermore, this polling may be required for up to 

one thousand simultaneous contexts.  Figure 5.2 shows an illustration of the ETH-

CC function, with a MEP transmitting continuity check (CC) frames to a peer MEP.  

In this example, MEPs are represented using colored triangles.  The ETH-CC 

function is depicted, and the red arrow shows a flow of CC frames that are 

transmitted from the blue MEP on the left to the blue MEP on the right.  

 

Although the examples in Figure 5.1 and Figure 5.2 show the same simple network 

topology, containing a few MEG peers, real deployments have more complex 

topologies.  For example, the topology might consist of multipoint-to-multipoint 

networks, as shown in Figure 5.3.  In this example, the ETH-CC function is shown, 

and the red arrow shows three different flows of CC frames that are transmitted from 
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the blue MEP on the top left to the other peer MEPs.  The OAM systems described 

in this chapter are designed to support up to one thousand different flows.  

 

 
Figure 5.2: Continuity check (CC) function tests the connection status between peer MEPs, shown as 

triangles, taken from [121] 

 

 

 
Figure 5.3: Continuity Check in a multipoint-to-multipoint network, taken from [121] 
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5.2 Analysis of Timing Requirements  

This section presents an analysis of the timing requirements, expressed in terms of 

the novel activity diagram notation, introduced in Section 4.2.3.  As discussed 

earlier, activity diagrams illustrate a summary of behavior over time.  This is 

required for each of the functions described in Section 5.1.  The left column shows 

the activity of the MEP sender.  The right column shows the activity of the MEP 

receiver.  The formats for Ethernet OAM frames are organized by function and they 

are referred to in the standard as protocol data units (PDUs).   In general, there is 

approximately one PDU format for each of these functions. 

 

ETH-CC:  The sender initiates the periodic transmission of continuity check 

measurement (CCM) frames, requiring the START module, at one of the defined 

rates, e.g. the CC_period equals every 3.3 ms.  On the receiver side, ETH-CC, waits 

3.5 times the CC_period to receive the expected incoming CCM frame from its peer 

(the sender), before timing out, requiring the FINISH module.  If a timeout occurs 

the receiver signals a defect condition and initiates an alarm. 

 

ETH-LB:  The sender initiates the periodic transmission of loopback message 

(LBM) frames, requiring the START module, and the sender completes when the 

sender receives the loopback response (LBR) frame from the receiver or it times out, 

requiring the FINISH module.  The receiver receives the loopback response frame 

and then waits for a random amount of time before transmitting the LBR to the 

sender, requiring the FINISH module. 

 

ETH-LT: The sender transmits a link trace measurement (LTM) frame and then 

waits to receive a link trace response (LTR) frame.  The sender times out if the LTR 

is not received, requiring the FINISH module.  When the receiver receives a LTM 

frame it waits for a random amount of time before transmitting the LTR to the 

sender, requiring the FINISH module. 
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ETH_CC

ETH_LB
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Figure 5.4: Activity diagram for Ethernet OAM functions 
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ETH-AIS: The sender side during an alarm condition transmits an alarm indication 

signal (AIS) frame to its relevant peers.  Then the sender waits for the AIS_period 

and then transmits another AIS frame, requiring the START module.  After the 

receiver receives an AIS, it waits for 3.5 * AIS_period expecting to receive another 

AIS before timing out.  If the timeout condition occurs, requiring the FINISH 

module, then the alarm is canceled. 

 

ETH-LCK:  The sender side transmits an Ethernet administrative lock signal (LCK) 

frame to its relevant peers.  Then the sender waits for the LCK_period and then 

transmits another LCK frame, requiring the START module.  After the receiver 

receives an LCK, it waits for 3.5 * LCK_period expecting to receive another LCK 

before timing out.  If the timeout condition occurs, requiring the FINISH module, 

then the lock is canceled. 

 

ETH-TST: The sender transmits the Ethernet test (TST) frame to the receiver.  

When the receiver receives the TST, it uses the STAMP module to get the current 

time, and then it checks the sequence number. 

 

ETH-1DM: Initiated by the START module, he sender periodically gets the current 

time using the STAMP module, inserts the timestamp into the one-way delay 

measurement (1DM) test frame, and then transmits the 1DM to the receiver.  When 

the receiver receives the 1DM, it gets the current time, using the STAMP module 

and calculates the one-way delay time. 

 

ETH-DM: Initiated by the START module, the sender periodically gets the current 

time using the STAMP module, inserts the timestamp into the round-trip delay 

measurement (DMM) test frame, and then transmits the DMM to the receiver.  When 

the receiver receives the DMM, it gets the current time using the STAMP module, 

and calculates the one-way delay time.  Then the receiver gets the current time using 

the STAMP module, and inserts it into the delay measurement response (DMR) 
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frame.  The receiver transmits the DMR to the sender.  When the sender receives the 

DMR it gets the current time using the STAMP module, and calculates the round-trip 

time. 

 

5.3 System Architecture  

A simplified view of the architecture is shown in Figure 5.5. The OAM capability is 

independent of the line-side and system-side interfaces.  A more detailed schematic 

of the overall OAM subsystem framework (including the CPU interface) is shown in 

Figure 5.6.  The block in the center shows how the OAM subsystem framework 

connects to the line-side and system-side interfaces.  The line-side interface contains 

an Ethernet MAC interface.  The system-side interface includes a CPU interface, a 

loopback interface, and a data plane interface.  The OAM subsystem framework is 

flexible in the functions that are accelerated, depending on the design.  OAM 

subsystems can be assembled from the OAM elements described in the next section.   

 

 

 

 

 
Figure 5.5: Setting for the OAM design 
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Figure 5.6: Detailed schematic of the overall OAM framework 

 

5.4 OAM Elements, and the G Language 

The individual modules (Click elements) in the OAM case study were implemented 

using the G 2007 language [86].  G is a high-level, domain-specific language for 

describing modules that perform packet processing functions.  G is complementary 

to the overall ShapeUp framework because it raises the level of abstraction for 

designing individual modules, which are then used to build networking systems 

targeting programmable hardware.  G was designed to share the same abstractions 

for module interfaces from ShapeUp.  G descriptions can be compiled into RTL code 

that has efficient FPGA implementations.  G can be used to create new elements for 

expanding the ShapeUp library. Together, the ShapeUp framework and tools, along 

with G, provide an efficient framework for designing, integrating, and validating 

packet processing functions, all at a high level of abstraction.  
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5.4.1 Overview of the G language 

G 2007 descriptions consist of two main parts: (a) packet data formats and (b) a 

handler.  The handler performs a set of operations on incoming packets.  The format 

of incoming packets is declared at the top of the handler.  A G 2007 module may 

contain one incoming stream port and multiple output stream ports.  G modules are 

reactive in that the handler is triggered by the arrival of packets on the input packet 

port.  The handler typically performs packet surgery and then forwards the packet on 

a selected output stream port.    The set of modification operations for performing 

packet surgery generally consists of: insert, edit, and remove operations applied to 

the fields of the packet header.  

 

 
Figure 5.7: G module UML interaction diagram 

 

Figure 5.7 shows a UML-style interaction diagram of a G module and an auxiliary 

module.   The example shows the G module receiving a packet, which triggers the 

module’s handler to begin processing the packet header.  As shown, the processing 

may additionally include interaction between a G module and auxiliary modules that 

have an access interface, which allows the G module to e.g. read from lookup tables 

G	
  module 

 tim
e 

Packet	
  is	
  
forwarded	
  
to	
  next	
  
module 

 
Handler	
  

processes	
  packet 

[	
  reads,	
  writes	
  ] 

Auxiliary	
  module 

 … 

Packet	
  

arrives 



 

   

 

110 

or to perform stateful processing like updating frame counters.  After processing, the 

packet is forwarded on its output stream interface to the next module in the design, 

e.g. to the next stage within a packet processing pipeline. 

 

The reactive behavior of G modules is sufficient for many protocols, however, as 

discussed in Chapter 4, network protocols often require the use of time.  Some high-

level protocols may involve timeouts, e.g. TCP, where a timeout is an event that 

triggers data retransmission.  Additionally, some networking systems may require 

proactive behavior, e.g. polling to monitor the state of a network peer.  However, G 

2007 did not include syntax or built in mechanisms to function according to time.  

This case study shows how the G modules were used, in conjunction with the timing 

modules from Chapter 4, to enable the necessary proactive behavior.  A ShapeUp 

library of elements was created for Ethernet OAM, with modules implemented in G, 

facilitating the creation of two OAM reference designs.  

 

5.4.2 Ethernet OAM reference designs 

Two reference designs were implemented as example ShapeUp systems that use the 

OAM library elements.  The first system is the Y.1731 reference design, which 

implements functionality that does not require the start and finish modules.  To 

summarize, the Y.1731 OAM reference design performs the following functions: 

a) parses incoming packets  

b) classifies between the OAM frames and the user frames 

c) counts the “in-profile” OAM frames 

d) inserts a timestamp and sequence number information in OAM frames 

e) inserts loss math into overloaded fields for upstream collection of the CCM 

PDU 

f) delivers OAM frames to an upstream function 
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The second system is the CFM reference design that extends the Y.1731 

functionality by adding functions that require the start and finish modules.  The CFM 

design additionally:  

g) generates CCM continuity check frames for transmission 

h) checks incoming CCM frames against a table of expected values 

i) detects defect conditions associated with CCM reception and informs the 

software controller 

j) supports programmable time intervals, for example: 3.3ms, 10ms, 100ms, 1s 

 

The focus in this chapter is on the second system because it has the timing module 

interest. 

 

Appendix A contains a description for each of the OAM library elements that were 

used in the example reference designs.  Appendix B contains the G source code for 

an example implementation of one of these elements. 

 

5.5 Integration of the timing modules 

This section describes how the timing modules are integrated into the CFM system.  

ActivityStart and ActivityFinish are instances of the timing modules from Chapter 4.  

Figure 5.8 shows the interaction between the timing modules and the CCM modules.  

The start module activates the CCM generator to read a partial frame from memory 

and to transmit the new CCM frame.  When a CCM frame arrives at the CCM 

checker, it resets the corresponding Activity Finish module’s timer.  If one of the 

Activity Finish module’s timer expires, then it signals the CCM checker to report the 

defect condition.  

 

Figure 5.9 shows a view of the interaction between the Activity Start module, the 

CCM generator, and the control processor.  The Activity Start module manages 

alarms for each of the contexts. The alarms are programmable to 100 µs accuracy 

(for a 3.3 ms interval).  Either the CCM Generator or the control processor 
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configures the timers, for example, in the current implementation the control 

processor configures the timers. The Activity Start module signals an event message, 

containing: an activity ID, a 16-bit timestamp, an event type, and a reserved field.  

The arrival of the event message triggers the CCM generator to produce a new CCM 

frame.  The contents of the CCM frame are based on values read from local on-chip 

memory tables. 

 

 

 

Figure 5.8: Interaction diagram for CFM design showing the system interaction between the timing 

modules and the OAM modules 

 

Figure 5.10 shows a view of the interaction between the Activity Finish module, the 

CCM checker, and the control processor.  The ActivityFinish module manages 

timers for each of the contexts. Similarly, the timers are programmable to 100 µs 

accuracy and either the CCM checker or the control processor configures the timers.  

The activity finish module signals an event message, containing: an activity ID, a 16-

bit timestamp, an event type, and a reserved field.  The event message is sent to the 

control processor.  The CCM checker resets the timer, when the corresponding CCM 

frame is received. 
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Figure 5.9: Start module activates the CCM generator to periodically transmit CCM frames to peer 

MEP 

 

 
Figure 5.10: Finish module polices the reception of CCM frames from peer MEPs and times out if no 

CCM frame is received 
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5.6 Click description  

The Click for the CFM design is shown in Figure 5.11, continued in Figure 5.12.  In 

this example, OAM frames are received from line side, processed, then forwarded to 

system side; when expected OAM CCM frames are not received, timeouts are used 

to inform the system side.  In the opposite direction, stimulated by a periodic timer, 

OAM CCM frames are constructed and transmitted to line side.  These activities are 

steered by consulting various lookup tables. 

 

Certain features of the Click description are worthy of attention.  In lines 1 to 17, 

instances of Click elements are declared.  Each element class name has a 

configuration string (Click terminology) denoting its source language, e.g. “TYPE 

G” means written in the G language [86].  The implementation of each of the 

modules written in G is described in Appendix A.  The example also shows types 

“C” and “VHDL”.  For example this mixed-language information is also useful for 

the validator tool to guide it in how high-level simulation models should be used. 

 

Following the declarations, this example includes four of the five interface types, the 

plain type not being required.  Hungarian-notation port names indicate the type.  

Lines 20 to 34 show the two main streaming data paths in the system, “FromDevice” 

and “ToDevice” being Click conventional names for receivers and transmitters 

respectively.  The remaining connections involves access and compute type 

interfaces, the final line showing a connection that allows the cfm_in module to call 

a function in the controller module, which is actually a software module written in C.  

 

At line 11 of the Click description, an activity start timing module is declared with 

the name “start”.  This is used to cause the periodic generation of outgoing OAM 

CCM frames.  In the reference design, there could be up to 1024 OAM flows at any 

time, and so the start timing module was configured for 1024 activities.  The time 

between frames could vary from flow to flow, being one of 3.3 ms, 10 ms, 100 ms, 

or 1 s.  To support this, the module was configured with a 100 µs time quantum and 

14-bit time horizon width. The repetitive timer requests originate from an embedded 
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controller (declared at line 17), and line 55 shows the connection made between this 

module and the timing module.  Here, “A_request” is the name of the request input 

interface, with the “A_” being Hungarian notation to indicate that it is of the access 

interface type.  The timing module sends event signals to a packet generation module 

(declared at line 9), and line 29 shows the connection made between the modules, 

“N_signal” being the name of the (notify type) event signaling output interface. 

 

At line 12 of the Click design, an activity finish timing module is declared with the 

name “finish”.  This is used to generate a timeout signal when no incoming OAM 

CCM frame is received on a flow for a time period of 3.5 times the flow’s inter-

CCM time.  The configuration of this module was the same as for the start module, 

except for having an increased 16-bit time horizon width.  Line 40 shows the 

connection between a packet reception module and the timing module.  A new 

timeout request is made each time a frame is received; note that a new request 

automatically aborts any existing scheduled request for the same activity.  Line 56 

shows the connection between the timing module and the embedded controller, to 

signal any timeout events for software handling. 

 

A timestamp-providing module is declared at line 13, and lines 43 and 44 show 

connections to it from packet reception and transmission modules respectively.  This 

module provides 64-bit localized timestamp values.  In the former case, this value is 

used for checking a timestamp in an incoming frame; in the latter, it placed as a 

timestamp in an outgoing frame.  The module was configured with two request 

interfaces (named “A_time1” and “A_time2” here). 

 

 



 

   

 

116 

 
Figure 5.11: Click description of the connectivity fault management (CFM) design 

1.  /* Declare element instances */ 

3.  y1731_cl_in :: VlanClassifier(TYPE G); 

4.  y1731_cl_out :: VlanClassifier(TYPE G); 

5.  y1731_in :: OAM_Y1731_In(TYPE G); 

6.  y1731_out :: OAM_Y1731_Out(TYPE G); 

7.  cfm_in :: CheckCcm(TYPE G); 

8.  cfm_out :: GenerateCcm(TYPE G); 

9.  preread :: CalcAddress(TYPE G); 

10. ccm_reader :: FrameReader(TYPE VHDL); 

11. start :: StartActivity(TYPE VHDL); 

12. finish :: FinishActivity(TYPE VHDL); 

13. timeref :: TimeStamp(TYPE VHDL); 

14. contextIDs :: ContextsIdTable(TYPE VHDL); 

15. vlanProfiles :: VlanProfileTable(TYPE VHDL); 

16. melContexts :: MelContextsMem(TYPE VHDL); 

17. controller :: EmbeddedController(TYPE C); 

18. 

20. /* Inbound frame handling path */ 

21. FromDevice(LineSide) 

22. -> [S_in]y1731_cl_in[S_out] 

23. -> [S_in]y1731_in[S_out] 

24. -> [S_in]cfm_in[S_out] 

25. -> ToDevice(SystemSide); 

26. 

28. /* Generates outbound CCM frames */ 

29. start[N_signal] -> [N_in]preread[N_out] 

30. -> [N_in]ccm_reader1[S_out] 

31. -> [S_in]cfm_out[S_out] 

32. -> [S_in]y1731_cl_out[S_out] 

33. -> [S_in]y1731_out[S_out] 

34. -> ToDevice(LineSide); 
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Figure 5.12: Continued Click description of the CFM design 

 

5.7 Results 

The ShapeUp tool suite was used to implement both the Y.1731 design and the 

described CFM design.  These reference designs both contained numerous modules, 

side connections, and a software control interface.  The Pop design environment and 

visualizer were used to enter the description.   

 

35. 

37. /* Auxiliary connections*/ 

39. /* Reset timer when CCM arrives */ 

40. cfm_in[A_reset_timer] -> [A_request]finish; 

41. 

42. /* Connections to timestamp reference */ 

43. y1731_in[A_timestamp] -> [A_time1]timeref; 

44. y1731_out[A_timestamp] -> [A_time2]timeref; 

45. 

46. /* Connections to shared lookup tables */ 

47. y1731_cl_in[A_pTbl] -> [A_pTbl1]vlanProfiles; 

48. y1731_cl_out[A_pTbl] -> [A_pTbl2]vlanProfiles; 

49. y1731_cl_in[A_cTbl] -> [A_cTbl1]contextIDs; 

50. y1731_cl_out[A_cTbl] -> [A_cTbl2]contextIDs; 

51. y1731_in[A_mTbl] -> [A_mTbl1]melContexts; 

52. y1731_out[A_mTbl] -> [A_mTbl2]melContexts; 

53. 

54. /* Connections to embedded controller */ 

55. controller[A_CCM_req] -> [A_request]start; 

56. finish[N_signal] -> [N_CCM_timout]controller; 

57. cfm_in[C_defects] -> [C_report]controller; 
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Interface type matching was straightforward since G uses the same ShapeUp 

interface type abstractions.  When the modules were compiled from G, the compiler 

generated interfaces that matched supplied interface metadata. For the modules 

written in G (lines 3 to 9), EDL descriptions of the interface metadata were already 

available, being part of the standard G development flow.  For example, all the G 

modules used a 64-bit data width at their streaming type interfaces.  For the other 

modules, EDL descriptions were created separately prior to making the module 

collection available in a repository.  Note that the modules declared at lines 14 to 16 

were on-FPGA memory blocks containing lookup information, and so just had 

standard Xilinx BlockRAM read and write interfaces. 

 

The ShapeUp linker was used to generate complete VHDL system descriptions for 

this example (and any other desired system configurations), including wiring to 

implement the connections specified in the Click descriptions.  In this case, 1570 

additional lines of VHDL were generated automatically.  This code was exactly as 

would have been written in an efficient hand implementation – most of the wiring 

was not subtle, just detailed and tedious for a human to undertake.  Targeted at a 

Xilinx Virtex-5 LXT device, the resulting system occupied 4126 slices, though this 

area stems from the chosen modules, the linker just adding necessary wiring area. Of 

these, 348 slices were used for the three timing modules, which is 8% of the total.  

This version of the reference design supported Ethernet OAM operating at up to a 25 

Gb/sec line rate, providing hardware acceleration that allowed 1024 flows in both 

directions, each one with a 3.3 ms inter-CCM rate.  The final system clock frequency 

was 125 MHz, which was in line with the minimum individual module frequency, 

indicating that no time overhead was introduced by the automated linking. 

 

The ShapeUp validator was extensively used during the validation of this example, 

using exactly the same test data files for each implementation level.  For the highest 

level of simulation, a G-specific simulator was used to model the modules written in 

G, and simple Perl scripts were adequate to model all of the other modules.  For the 

lowest level of validation, this particular example was run on a Xilinx ML505 
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development board, handling real traffic received and transmitted over a standard 

external Ethernet interface. 

 

5.8 Summary 

Overall, use of the ShapeUp methodology and tool suite proved beneficial in terms 

of developing and evolving a very modular reference design that tracked rapidly 

emerging standardization in the telecommunications industry.  Ethernet OAM is an 

increasingly important standard in carrier Ethernet.  This case study lead to a single 

ShapeUp description of the system, which previously would have been described 

using separate tools.   

 

This chapter described the validation of the overall ShapeUp framework and the 

timing modules.  The main contributions of the case study described in this chapter 

are the following: 

• A demanding real-life example is presented that is relevant to network 

service providers for monitoring network functionality and performance.  

This is described in Section 5.1. 

• A thorough analysis of complex timing needs of OAM protocols is presented 

in Section 5.2.  This is demonstrated by productive use of activity model and 

mapping to timing modules.   

• A high-level approach is carried throughout the programming methodology 

and framework, combining ShapeUp and G within the methodology.  This is 

described in Section 5.4. 

• Non-trivial Click descriptions (Y.1731 and CFM) were entered and processed 

with ShapeUp tools.  The results were flexible and maintainable designs, 

delivering required hardware performance.  These are described in Section 

5.5. 

 



 

   

 

120 



 

   

 

121 

 

 

Chapter 6  
Dynamic Modular Systems with Adaptable 

Behavior 

 

This chapter introduces ReShape, which builds on the design approach of ShapeUp 

and carries through to support system reconfiguration during operation.   This setting 

allows system reconfiguration at the module level, by supporting type checking of 

replacement modules and by managing the overall system implementation, via 

metadata associated with its FPGA floorplan.  The methodology and tools have been 

implemented in a prototype for a broad domain-specific setting – networking 

systems – and have been validated on real telecommunications design projects.  The 

development of ReShape required fundamental extensions to ShapeUp in order to 

allow fluidity of modules within adaptive and reactive systems.  Support for system 

modification was focused on to allowing the substitution of modules within the 

system during its operation. 

 

The main underpinning for implementing this capability is using dynamic partial 

reconfiguration of an FPGA to effect the substitution of a module.  In essence, the 

hardware module is ‘hot swapped’ in a working system.  This use model for partial 

reconfiguration is somewhat different from the widespread use model over the past 

15 years or more.  Historically, small FPGA devices meant that programmable logic 

was a scarce resource.  Thus research has largely focused on a task-based use model, 

where an operating system or other run-time system manages a collection of tasks 

that are sharing the resource over time, for example the work of: Hadley and 

Hutchings [58], Brebner [60], Diessel and ElGindy [61], and Walder and Platzner 

[122].  In many cases, these tasks are assumed independent; in some cases, 
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infrastructure for communication between tasks is provided, for example Majer et al. 

[63].   

 

Nowadays, FPGAs are significantly larger, so very substantial systems can be 

implemented without the need to conceive of resource sharing.  This has tracked the 

earlier evolution of memory in computer systems, from shared scarce resource to 

abundant resource.  So, analogously, the headline issue for FPGAs today is more 

management of the resource rather than sharing of it.  The ReShape approach is 

pioneering this view, adopting a system-based use model for partial reconfiguration. 

 

The central technical challenge to enabling the system-based use model is allowing 

the user to work in terms of a system and its inter-connected modules, while the 

implementation involves partial reconfiguration of an FPGA that works in terms of 

modifying physical regions of the device.  That is, it is necessary to bridge between a 

higher-level logical description view and a lower-level physical implementation 

view, and – importantly – without blighting system performance and/or resource use. 

 

Given the characteristics of current physical design tools for FPGAs and, in 

particular, the tools supporting partial reconfiguration, the basic solution to the 

technical challenge is the use of floorplanning.  Floorplanning provides the means 

for mapping system modules to distinct physical FPGA regions. Traditionally, doing 

manual floorplanning is the realm of the FPGA expert, whereas achieving the 

ReShape user experience goal requires automation of floorplanning.   

  

Section 6.1 presents an introduction to the new Xilinx partial reconfiguration design 

flow, which is based on using partitions. Section 6.2 presents experiments on internal 

fragmentation and the floorplanned PR methodology.  Section 6.3 presents the 

ReShape floorplanning algorithm for networking systems, which performs low-level 

device specific floorplanning, introduced earlier in Section 2.3.4. Section 6.4 

presents the design flow for ReShape, which extends the ShapeUp design flow by 

adding support for dynamic changes to Click descriptions.  



 

   

 

123 

The approach is to use a domain-specific system floorplanning component in the tool 

flow, so that system-level module interconnection characteristics can be taken into 

account. In the ReShape prototype, this floorplanning was tailored towards the 

system architectures typically used for high-speed networking: pipelines connected 

by wide data paths.  The prior floorplanning research provided great insight to the 

general capabilities of the domain-specific floorplanning component, in terms of 

targeting contemporary FPGA architectures with heterogeneous resources and with 

certain obstacles to regularity.   

 

6.1 Partial Reconfiguration Design Flow  

This work was targeted at the Xilinx partial reconfiguration (PR) mechanisms, using 

the latest tool support for PR in the ISE design suite version 13.1 [123].  The general 

front-end modular system concepts though would be applicable to other open tools 

for PR, for example the work of Suris et al. [67] [124] and by Koch et al. [125] 

[126].  In order to explain fully how the overall ReShape methodology works, some 

background information on the underlying Xilinx PR methodology is given in this 

section. 

 

The PR methodology centers on identifying and listing dynamic regions, which are 

the potentially reconfigurable parts of an overall design.  The surrounding circuitry, 

which includes interfaces to dynamic regions and any through wiring across dynamic 

regions, is treated as the static part of the design.  Floorplanning is a necessary step 

in this PR design flow, and this involves using the PlanAhead tool.  Some basic 

knowledge of the FPGA architecture is needed because the floorplanning involves 

setting up area constraints for where dynamic modules are to reside. 

 

Starting in PlanAhead 12.1, Xilinx introduced a new hierarchical methodology for 

design preservation.  This was enhanced in version 13.1 to support incremental 

design and team-based design, by introducing a new notion of partitions.  In terms of 

the overall tool flow, partitions provide layers to the design, and are used as an 
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ordering to the design tools.  Partitions are created in PlanAhead by selecting one or 

more netlists and defining a new partition that includes these netlists.  A netlist is the 

low-level output description from the synthesis tool, describing the design as a 

collection of FPGA primitives connected by wires. During the initial phase of the 

design tools, placement and routing is performed for a first partition.  Then, for the 

second phase, the first partition results (placement and, optionally, routing results) 

are imported into the design tools, and then placement and routing for a second 

partition is run.  In general, for the k-th phase, the previous (k-1) results are imported 

before placing and routing the k-th partition.  The benefit of this approach is seen 

when performing incremental design updates that affect only a single partition, 

because there is a resulting saving in runtime through not recomputing the placement 

and routing of the other partitions.  

 

The PR methodology is based on the partition-based approach, and adds a special 

type of partition called a reconfigurable partition (RP).  The interconnect for the 

design includes partition pins at the boundary of each RP.  These are similar to the 

‘bus macros’ that featured at boundaries in the earlier Xilinx partial reconfiguration 

flow, but are hidden from the user.  The PR flow requires that each RP has an 

AREA_GROUP constraint to specify the physical resources that belong to the RP.  

This is where knowledge of the device architecture is necessary.  Moreover, the 

physical floorplanning mandates a different floorplan for each target FPGA, since 

the available resources and the reconfiguration arrangements vary significantly.  

 

In PlanAhead, an indication of whether or not a project involves partial 

reconfiguration is specified at project creation. Currently, this requires that the 

design be a netlist-based project design, created by imported pre-synthesized netlist 

files.  When creating a partition within a partial reconfiguration project, the user 

indicates whether the partition is reconfigurable or not.  The PR flow then involves 

specifying lists of reconfigurable modules (RMs) that are assigned to each of the 

reconfigurable partitions.  This is done individually by selecting an RP and then 

adding an RM to it.  The different RMs are the different choices for populating the 
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partition.  The netlist files for RMs can be omitted at project creation if desired, in 

which case they are then just represented as unpopulated black boxes. 

 

A key goal of the ReShape methodology is to hide the cumbersome low-level details 

of the underlying PR flow by providing a system-level front end focused on 

automatic floorplanning, and then the automatic generation of the required RP and 

RM data for PlanAhead and the PR flow.  It is of course important that this approach 

does not introduce undue inefficiency either in resource usage or in system 

performance. 

 

6.2 Internal Fragmentation and the 

Floorplanned PR Methodology 

While the partition-based methodology has user benefits compared with a traditional 

‘flatten the whole design’ approach, a concern is the possible adverse impact of 

explicit floorplanning of partitions that introduces internal fragmentation within 

bounding boxes.  Therefore, experiments were carried out to assess the interplay 

between internal fragmentation, performance, and tool run time.   

 

Three sets of experiments investigated the effects of using the partition-based flow 

for a representative pipelined dataflow design containing equally sized pipeline 

stages, with each stage being implemented as a separate partition.  The 

interconnection between the pipeline stages had a 512-bit wide data path, as is found 

in high speed (100 Gb/sec) packet processing applications.  The experiments targeted 

a Xilinx Virtex-6 HX380T FPGA, and used the Xilinx ISE version 13.1 tools 

running under Windows XP on a 2.8 GHz Intel Core2 Duo T9600 processor with 

4GB of RAM. 

 

Existing guidelines for floorplanning with the Xilinx PlanAhead tool recommended 

only approximately 60% slice utilization within bounding boxes for best results 
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[127].  Motivated by this advice, the purpose of the first experiment was to 

investigate the effect of changing the size of the bounding box for each floorplanned 

stage partition on both the quality of results and the tool run time.  The size was 

varied so that the slice percent utilization, abbreviated here as the PUT, within each 

bounding box varied between 50% and 80%.  Earlier experience reports had 

indicated that utilizations above 80% generally lead to unsuccessful implementation 

results.  For this experiment, no timing constraints on the implementation were 

specified. 

   

To introduce additional controlled variability into the experiment, three data points 

were taken for each PUT (except at 50%), by slightly varying the area constraints for 

the set of pipeline registers located along the interconnect between each stage.  These 

three variations are shown in Figure 6.1. In the stretched variant, the registers are 

spaced over the entire inter-stage height; in the centered variant, they are placed 

more tightly in the inter-stage height; and in the alternating variant, they are placed 

more tightly higher, then lower, between alternating stages.  The choices were 

practical, being made to consider the possible impact of different positioning of the 

data path inputs and outputs in each stage. 

 

 

 

Figure 6.1: Variations in positioning registers on interconnect between stages 

 

The PUT was determined to be an important factor on both quality of results and 

implementation tool run time.  Figure 6.2 shows the clock frequencies achieved, 

showing an increase as the PUT increases.  At first sight, this trend may seem 

0 1 2Stretched

0 1 2Centered

0 1 2Alternating
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counter-intuitive because available routing may be more limited when the partition is 

more densely packed.  However, the observation indeed makes sense because the 

paths within each partition are constrained to become shorter, with consequent 

benefit for timing. It can be seen that PUT at 75% represented a transition point, with 

discrimination in timing that favored the stretched register variant.   

 

Figure 6.3 shows the impact of the PUT on tool runtime, showing a trend that run 

time gets longer for tighter area constraints. A clear threshold between shorter and 

longer run time appeared at a PUT of 72%.  Additionally, the experiments showed 

that position of the registers on the interconnect between stages caused relatively 

minor differences in performance, except for PUT at 75%, which straddled the 

threshold for a more than doubled increase in run time. There, the lowest run time 

was for the stretched interconnect, which resulted because its placement was less 

constrained than for the centered or alternating variations.  It should be noted that the 

reported run times were for implementing the complete pipeline system as an initial 

run.  Because of the use of partitions, run time savings are to be expected during 

incremental design updates affecting single partitions. 

 

To explore these observations further, the experiments were repeated for four-stage 

and five-stage pipelines, which provided larger and differently shaped designs, and 

similar results and trends were observed for both performance and tool run time. 

 

The second set of experiments investigated the impact on resource use (in slices) of 

meeting this timing constraint across all PUT choices.  Furthermore, these 

experiments checked on the effect of different floorplanning choices, by varying the 

orientation and location of the pipeline design.  The two orientations were horizontal 

and vertical, and the locations were top, middle and bottom (for horizontal) and left 

and right (for vertical).  The middle case for horizontal orientation was the version 

that was used in the first experiments.  The middle case for vertical orientation was 

omitted due to an obstruction (the configuration block) in the FPGA architecture. 
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Figure 6.2: Effect of using partitions on clock frequency of implementation 

 

 

 
Figure 6.3: Effect of using partitions on implementation tool run time 
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Figure 6.4 shows the resulting area of the designs for the different floorplans of the 

three-stage pipeline design at different PUT settings.  The variation in slices used 

was relatively small, which indicated that the total resource use is largely insensitive 

to position or orientation in the floorplan, and also to the particular choice of PUT at 

a fixed performance point.  Tool run time was not affected by the choice of 

orientation or location of the pipeline. 

 

The experiments were repeated for four-stage and five-stage pipelines.  The total 

area increased proportionally to the size of the extra stage(s) added, but again 

showed little variation across the different floorplans and PUT choices. 

 

Taken together, the results of the first two experiments gave insight into the effects 

of some basic floorplanning choices when working within the partition-based 

methodology.  In particular, a PUT of around 80% emerged as a sweet spot 

delivering the best clock frequency and total area with acceptable tool run time. This 

is much more positive than the generic PlanAhead guidance, and indeed halves 

internal fragmentation.  This choice of PUT was incorporated into the ReShape tools. 

 

The third set of experiments was conducted to quantify the actual impact of using 

both partitions and floorplanning, compared to a more traditional ‘flat logic’ 

approach.  The figures of merit continued to be clock rate, tool run time, and total 

area in slices. 

 

Table 6.1 shows the results of these experiments.  The three scenarios were: no 

partitions and no floorplanning; partitions but no floorplanning; and (as in the 

previous experiments) partitions and floorplanning.  Each scenario was tested with 

and without the specification of an explicit timing constraint.  Given that use of 

partitions and floorplanning is necessary for the PR methodology, the reassuring 

outcome is that there was no dramatic performance or resource hit.  The noticeable 

impact though is on tool run time.  However, as noted earlier, this is the run time for  
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Figure 6.4: Effect of using partitions on total area in slices 

 

 

the initial implementation of the whole design, and subsequent updates to particular 

partitions will be faster because there is no need to re-implement other partitions that 

are unchanged. 

 

Table 6.1: Quality of results, with and without partitions and floorplanning 

Partitions Floorplanning 
Timing 

constraint 

Frequency 

(MHz) 

Run time 

(mins) 

Total 

area 

(slices) 

No No No 271 21 7988 

Yes No No 246 19 7913 

Yes Yes  (80% PUT) No 245 55 7301 

No No Yes 240 18 7991 

Yes No Yes 241 18 7767 

Yes Yes  (80% PUT) Yes 241 42 8164 
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6.3 ReShape Floorplanning Algorithm for 

High-speed Networking Systems 

In general, automatic floorplanning is a well-known NP-complete problem, which is 

of course why tools such as Xilinx PlanAhead act primarily as assistants to human 

users who are determining the actual floorplan choices.  However, in order to 

achieve the ReShape goal of hiding floorplanning details, the automation of the 

floorplanning task is a key pre-requisite.  The solution adopted for the prototype was 

to adopt a domain-specific approach that takes into account the typical nature of 

Click descriptions targeted at FPGA implementations.  The future plan for ReShape 

is to allow different domain-specific floorplanners to be included as plug-ins to the 

overall framework.  This is in contrast to adopting a more general-purpose approach 

of seeking to devise heuristics that tackle the unconstrained floorplanning problem.  

 

Specifically, the ReShape prototype involves constraining the Click system 

description to be in a form called Linear Click.  In Linear Click, the structure of any 

directed sub-graph containing multiple dynamic elements must be a linear chain of 

elements.  The ReShape floorplanning algorithm was then based upon tackling the 

problem of floorplanning a linear chain of dynamic Click elements.  Linear Click 

proves to be general enough to represent a wide class of pipelined processing 

systems or subsystems.  Notably, in networking and telecommunications applications 

for FPGAs, there are two main data flow pipelines, for ingress from line side to 

system side, and for egress from system side to line side.  With ReShape, each of the 

pipelines within a system’s architecture can be made dynamically configurable, with 

other associated system infrastructure, such as memory controllers, being static.  The 

overall networking system, containing a small number (typically between six and 

eight) of top-level components, is given a crude overall floorplan by the designer in 

the normal manual way, and then the locations allocated for the individual Linear 

Click subsystems are input as bounding boxes to the ReShape floorplanner.   
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The context for the floorplanning algorithm is a model of the target physical FPGA 

architecture.  Detailed models of device architectures are used behind the scenes by 

the standard FPGA design tools.  Rather than seeking access to such internal models, 

a simplified device architecture model based on openly available Xilinx data was 

devised.  The basic model consisted of a two-dimensional array of Configurable 

Logic Blocks (CLBs), with specific embedded resource types, such as Block RAM, 

DSP blocks, and input/output blocks incorporated at their physical positions within 

the array.  Certain other features, such as the reconfiguration controller and PCI 

Express blocks, were incorporated as anonymous obstacles at their positions. 

 

The floorplanning thus takes into account the heterogeneous FPGA architecture.  

One subtlety – often overlooked – is that the Xilinx Virtex-6 architecture features 

two different types of logic slices within CLBs: the SLICEL and the SLICEM.  The 

former are logic-only, while the latter also have memory.  There are few SLICEMs 

in the center of the architecture, and so the treats this area as a further obstruction, so 

that a balanced density of SLICELs and SLICEMs can be assumed. 

 

 

 

 

Figure 6.5: Example horizontal zig-zag layout of ten-stage linear pipeline 
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The floorplanning algorithm places the linearly-connected modules as a set of 

rectangles on this two-dimensional device model.  As its output, it generates area 

constraints based on the coordinates of the rectangles, and these are then directly 

used by the standard partition-based partial reconfiguration flow.  Specifically, the 

algorithm places the modules as adjacent blocks within a rectangular area that fits 

within a specified rectangular region. To do this, the algorithm imposes a zig-zag 

layout, as illustrated in Figure 6.5.  The zig-zag approach first places stages in order 

along a row (alternatively: along a column, depending on an overall orientation 

choice).  When a module reaches the boundary of the region, there is a reversal of 

direction, and that stage begins a new row (alternatively: column), running in the 

opposite direction.  In cases where a module requires Block RAM or other specialist 

resources, or placement in a separate reconfigurable area, the algorithm places the 

module at the next available specialist region. An overall goal is to minimize 

external fragmentation in the rectangular pipeline layout, as shown in Figure 6.5.  

The unused area outside this rectangle is not wasted, being made available for other 

system uses. 

 

The overall floorplanning algorithm is best explained in two steps.  The inner step, 

PlacePipeline, takes a list of pipeline stages, with a rectangular bounding box given 

for each stage, and then applies the zig-zag placement algorithm.  The other inputs 

are an orientation – whether the layout is to be horizontal or vertical – and the initial 

pipeline direction along that orientation – right or left for horizontal, up or down for 

vertical.  The algorithm returns the list of pipeline stages, with the placed coordinates 

of the bounding box for each stage.  It also returns the percentage of fragmented area 

within the enclosing rectangle for the placed pipeline, as a measure of goodness of 

the layout.  Pseudo-code for this algorithm is given in Algorithm 6.1. 

 

One particular concern is the handling of obstacles.  Two approaches are used: either 

stretching one module over the obstacle to obtain sufficient resource density, or 

adding wiring between two modules to span the obstacle, the choice depending on 

the current pipeline layout status and the extent of the obstacle.  In the latter case, a 
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concern is that there may be routing difficulties when non-trivial inter-stage wiring is 

needed.  Given the nature of the FPGA architecture, this problem can be more acute 

for vertical pipelines because most obstacles are higher than they are wide. 

Algorithm 6.1 PlacePipeline 
 
Input: List of bounding boxes of pipeline stages, orientation, initial direction 
Outputs: List of coordinates of placed pipeline stages, fragmentation percentage of layout 
 
if empty list return SUCCESS; 
 
// Based on orientation and direction, determine proposed coordinates for first stage in list 
// If stage has specific resource requirements or configuration requirements, adjust coordinates 
// Check for overlap of draft coordinates with obstacles and skip over them if necessary 
if bounding box exceeds boundary of orientation in current direction 
     // This stage is too wide for a whole row (or too high for a whole column), so fail 
     if no stages yet placed in current row or column return FAILURE; 
     // Otherwise, reverse direction in zig-zag 
     PlacePipeline (list, orientation, reverse (initial direction)); 
else 
     // Save coordinates of this stage, and update overall bounding box for pipeline 
     // Place rest of pipeline recursively, continuing in same direction 
     PlacePipeline (tail (list), orientation, initial direction); 
 

 

 

Figure 6.6: Performance vs. vertical separation between stages 
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To assess this concern, an experiment was carried out to ascertain the performance 

impact of vertical separation to avoid obstacles.  For this experiment, a vertical 512-

bit wide data pipeline consisting of four stages, each with a square bounding box, 

was created.  Then the distance of separation between the bottom two abutting 

blocks and the upper two abutting blocks was varied, in order to investigate the 

impact on the overall performance.  The target FPGA was a Xilinx Virtex-6 HX380T 

device, which has 360 CLB rows in its architecture.  The results of the experiment 

are shown in Figure 6.6.  It can be seen that performance was unaffected up to 50 

rows of separation.  Thereafter, there was a steady decline in the overall 

performance.  To calibrate the significance of the number of rows, note that a clock 

region, and a minimum-height reconfigurable partition, is 40 rows high, and so 

within the unaffected range.  The highest obstruction on this FPGA is in fact a 

configuration memory center block that is 80 rows high. The results of this 

experiment assisted in implementing additional heuristics in the pipeline layout 

algorithm.  These concerned making a good compromise between skipping over 

obstacles without performance penalty and deciding that a particular obstacle 

rendered a particular layout unviable by forming too large an obstruction. 

 

The overall floorplanning algorithm involves calling Algorithm 6.1 repeatedly with 

different combinations of pipeline stage bounding boxes and different pipeline 

orientations.  The pseudo-code for this enclosing algorithm is given in Algorithm 

6.2. 

 

The goal of Algorithm 6.2 is to find a pipeline floorplan that involves the smallest 

percentage of area lost to external fragmentation within the rectangular bounding box 

for the floorplan (as illustrated in Figure 6.5).  Note that all of the candidate pipeline 

layouts have the same internal fragmentation within stages: a PUT of 80% was used 

for defining stage bounding boxes in line with the discussion in Section 6.2. 

 

The outer loop of Algorithm 6.2 tests both horizontal and vertical orientations for the 

pipeline.  The experiments of Section 6.2 had indicated that there was little total area 
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Algorithm 6.2 Overall floorplanning of Linear Click pipeline 

 
Input: Set of sizes (slices) of pipeline stages, and coordinates of bounding rectangle for layout 
Output: List of area constraints for placed pipeline stages, with minimally fragmented layout 
  
// Form histogram of sizes of the stages and sort into bins 
// Determine candidate set of aspect ratios for pipeline stages 
for each pipeline orientation: horizontal or vertical 
     for each combination of pipeline stage aspect ratios drawn from candidate set 
          // Place pipeline using zig-zag approach, by calling PlacePipeline (Algorithm 1) 
          PlacePipeline (list of stage bounding boxes, orientation, direction forward); 
          // If successful, insert results into list sorted by percentage of fragmented area 
 
// Select the result with minimum fragmented area (if none, then fail completely) 
// Generate area constraints based on selected pipeline placement 

 

 

and performance difference between different positions and orientations of pipeline 

floorplans in this domain, and so these candidate orientations provided 

differentiation based on their respective external fragmentation scores. The inner 

loop involves choosing different combinations of different layouts for the individual 

stages.   

 

Potentially, there are a huge number of possible candidates for the inner loop to 

explore, and so this search space was constrained in two ways.  First, a limited range 

of different bounding box aspect ratios was considered for each pipeline stage.  

Second, a limited number of combinations of stage layouts were considered for the 

overall pipeline.  The approach to choosing the range of aspect ratios and for 

bounding the number of combinations was based upon two experiments customized 

to the particular domain-specific setting of this pipeline floorplanning algorithm.  
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Figure 6.7: Performance vs. aspect ratio, stretching vertically and horizontally 

 

Figure 6.7 shows a summary of the results of this experiment.  The left-hand side 

shows the impact on performance of vertical stretching, where the aspect ratio has 

width less than or equal to the height.  At the extremities of this stretching, the data 

points marked by a diamond indicate that a purely horizontal layout resulted because 

of the large stage heights.  At the other points, the normal two-dimensional zig-zag 

layout could be used. The right-hand side shows the impact of horizontal stretching, 

where the aspect ratio has width greater than or equal to the height.  At the 

extremities of this stretching, the points marked by a triangle indicate that a purely 

vertical layout was necessary because of the large stage widths.  It can be seen that, 

stretching vertically, there was a significance performance decrease beginning after 

the 1:8 aspect ratio.  Stretching horizontally, there was a performance decrease at the 

6:1 aspect ratio.  The reason for the decrease in performance was further investigated 

in PlanAhead, and the CLB metrics showed that routing congestion significantly 

increased in each dimension as stretching increased along that dimension.  As an 

example, the highlighted regions in Figure 6.8 show the great difference in vertical 

routing congestion between 1:4 and 1:48 aspect ratios for vertical stretching.   

 

Since the experiments indicated that high performance was maintained for the mid 

range of aspect ratios, the following set of six aspect ratios was chosen as a 

configuration for the automatic floorplanning exploration: {0.125, 0.25, 0.5, 1, 2, 4}.   
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Figure 6.8: Vertical routing congestion: (a) ratio 1:4, (b) ratio 1:48 

 

It is not feasible to try all combinations of aspect ratios for each stage, because this 

approach does not scale well as the number of stages increases.  Specifically, the 

number of combinations is exponential given by rn, where r is the number of aspect 

ratios and n is the number of stages, i.e., 6n for the chosen set of six aspect ratios.  

Instead, Algorithm 6.2 groups the stages by similarity of size into a smaller number 

of size bins. The number of aspect ratio combinations is still exponential, but 

reduced to rb, where b is the number of size bins.  

 

In practice, pipelines have a relatively small number of stages and the sizes of the 

stages are relatively similar, so a small number of bins, for example b = 2 or 3, 

seemed reasonable.  However, to check for asymptotic trends under more extreme 

and synthetic conditions, the second experiment investigated the impact of the 

number of bins on four example 21-stage pipelines with randomly generated stage 

sizes between 1 and 500 slices.  This experiment was solely concerned with relative 

floorplan quality, not the routability of the resulting floorplan. Figure 6.9 shows how 

the amount of external fragmentation, as measured by the relative size of the 

fragmented area in the best floorplan generated by Algorithm 6.2, decreased as the 

number of size bins increases.  Based on this experiment, seven bins were used as a  
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Figure 6.9: Minimizing the area of pipeline designs by adding size bins 

 

 

more conservative choice for the automated floorplanning exploration, which meant 

that 67 = 279,936 combinations of aspect ratios are checked by Algorithm 6.2.  The 

run time for the algorithm with this setting was under one minute for a 21-stage 

pipeline. 

 

It is important to note that these two experiments were conducted in order to guide 

heuristic choices that bound the search space of Algorithm 6.2, and the first 

experiment in particular does not necessarily give guidance on desirable aspect ratios 

for blocks in general.  A less domain-specific study of the impact of aspect ratio was 

carried out by Kalte et al. [128], although this was confined to stretching in a single 

dimension.  In general, this indicated that, for smaller designs, extreme vertical 

stretching (in fact, extreme horizontal compression) had a negative impact on 

performance and power consumption, but had a negligible impact on larger designs.   
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Figure 6.10: Three example floorplanned designs targeting Virtex-6 

 

 

There are of course also other factors that could feed into floorplan exploration,  

further complicating the search space.  For example, Carver et al. [129] showed that 

the algorithmic placement of the bus macros used in the old Xilinx PR flow had 

significant impact on performance, whereas this work relied on the inbuilt quality of 

placement of the hidden partition pins in the new Xilinx PR flow.     
 

Figure 6.10 shows three examples of generated floorplans, targeting the Xilinx 

Virtex-6 380 HXT FPGA. The first two designs were 21-stage pipelines, and were 

given vertical and horizontal orientations respectively, each following a zig-zag 

pattern.  The third design is a 24-stage pipeline that required memory at every stage, 

and so it was given a vertical orientation and placed along a BRAM column.   

 

Figure 6.11 shows the floorplanning process in action for a five-stage 512-bit wide 

packet parsing pipeline example that will be introduced in detail in the case study of 

Chapter 7.  The pipeline has a horizontal zig-zag orientation, as follows: first stage at 

the bottom left, second stage at the bottom right, third stage at the middle right, 

fourth stage at the middle left, and fifth stage at the top left.  First, Figure 6.11(a) 

shows a visualization generated by the floorplanner after Algorithm 6.2 had been 

applied.  Notably, this shows a central obstruction, in black.  This region 

corresponded to a combination of a configuration block real obstruction and a sparse 
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SLICEM virtual obstruction (as discussed at the beginning of this section).  Because 

of this, the first and second stages, and the third and fourth stages, have 

interconnections that span this obstruction.  The floorplanner generates area 

constraints in a UCF file for PlanAhead, and Figure 6.11(b) shows the imported 

floorplan in a PlanAhead view.  Finally, Figure 6.11(c) shows the placed and routed 

pipeline in an FPGA Editor view.  The stages are shown in alternating shades for 

clarity, and have 80% slice utilization.  Note the inter-stage interconnection wiring, 

shown in the darkest shade.  The floorplanning algorithm positions the stages only, 

since they are dynamic regions for partial reconfiguration and so have to be within 

known bounding boxes.  The interconnection is part of the static region and does not 

have to be floorplanned explicitly, though of course its good placement and routing 

by the standard tools is important to the performance of the pipeline. 

 

One final detail, reflected in this example, is that Xilinx partial reconfiguration is 

performed in units of ‘frames’ which are of 40x1 CLB size on the Virtex-6 FPGA, 

and that reconfigurable partitions must not share frames.  Therefore, Algorithm 6.2 

takes these frame boundaries into account as an additional factor.  This can be seen 

in Figure 6.11(b), where the bounding boxes for the stages are aligned with the 

horizontal lines that denote 40x1 CLB clock regions on the FPGA. 
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Figure 6.11: Five-stage pipeline layout: (a) Floorplanner, (b) PlanAhead, (c) FPGA Editor 
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6.4 ReShape design tools 

The original ShapeUp tools support a modular design time methodology based on 

high-level Click descriptions.  The central purpose of the ReShape extensions is to 

support the minimally intrusive updating of systems in operation.  Clearly, with only 

the ShapeUp tools described in Chapter 3, it is possible to update systems over time, 

by just creating a new implementation of the complete system and then loading it by 

completely reconfiguring an FPGA.  The contribution of ReShape is to enable 

selective change, through partial reconfiguration of the FPGA, reducing the time 

needed for updates and also allowing uninterrupted operation of the overall system 

during updating of particular components.  

 

 
Figure 6.12: Click element packaging 

 

 

Figure 6.12 and Figure 6.13 show the two parts of the ShapeUp design flow, 

described in Chapter 3, with specific additions for ReShape shown enclosed within 
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dotted boxes.  Figure 6.12 shows the process of transforming an RTL (e.g. Verilog or 

VHDL) description of a module into a Click element within the library used by the 

Click-based system implementation flow shown in Figure 6.13.  An element 

packager is used to associate metadata with the module.  In the original ShapeUp 

flow, this metadata is supplied by the user, and describes the characteristics of the 

module’s interfaces, as outlined in Section 3.3.  In the extended ReShape flow, 

additional metadata is included to describe the resource use (in slices) of the module.  

This information is obtained by synthesizing the module and then processing it with 

the Xilinx Map tool, for one or more target devices.  An estimate of slice use can be 

obtained with lighter weight tool use, either through PlanAhead resource estimation 

based on the RTL or through synthesis-only estimation of LUT/FF use, but Map 

gives a more accurate result. 

 

Figure 6.13 shows the ShapeUp design methodology, including tools for entering, 

checking, and validating Click system descriptions, and the stitching tool for 

generating RTL descriptions of the wiring for connecting elements together.  The 

new feature for ReShape is a domain-specific floorplanner, incorporating the 

floorplanning algorithm discussed in Section 6.3.  This inclusion of a floorplanning 

step for partial reconfiguration is similar to that seen in the ReCoBus design flow 

[125] for example.  The floorplanner reads in a Click description and element 

metadata, and it outputs a set of physical placement constraints for the modules, e.g. 

in UCF format.   

 

The other new feature is the retention of system information for later use when 

updating the system over time.  There are two types of new metadata: 

• Results from the PlanAhead/ISE tool flow: information about partitions and 

their implementation. 

• Results from the floorplanner: locations and size of bounding boxes for each 

module. 
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Figure 6.13: Full system implementation flow 

 

Note that there are in fact some potential benefits of introducing floorplanning for 

the ShapeUp methodology alone, through introducing predictability into the 

implementation.  These include the ability to provide system performance guarantees 

directly derived from the performance of individual elements, and also to allow 

higher-level debugging in terms of individual elements.   

 

One important question concerned whether extensions to the Click syntax or 

semantics would be necessary in order to support the desired ReShape methodology.  

Here, there was no inspiration from the traditional software version of Click, which 
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does not have the notion of dynamic updating of only selected parts of the system.  

Dynamic changes to Click descriptions are realized by hot swapping the entire 

system.  This includes preserving state, by moving any in-transit packets from the 

old version of the system to the new version.  In short, the slower-speed and less 

time-critical Click systems implemented in software had not provided motivation for 

considering partial updating of systems in operation. 

 

In fact, no extensions to Click are strictly necessary in order to enable the basic 

ReShape methodology.  The use model is that there are successive versions of a 

Click description as a system evolves over time.  The ReShape tools can analyze the 

differences between two versions in order to ascertain whether partial updating is 

feasible, or whether complete system reimplementation and full reconfiguration is 

required.  The details can be entirely hidden from the user, except as reflected by 

differences in the observed implementation and configuration time.  In the ReShape 

prototype, there are two requirements for partial updating to be feasible: 

• The structure of the Click graph – elements and connections – is unchanged; 

• Any substitute elements are both interface and floorplan compatible with 

their predecessor elements. 

 

Slackening of the first requirement is a topic of future research, and centers around 

supporting dynamic system structures: adding or removing elements, and adding or 

removing connections.  One approach could be to harness past research on task-

based reconfiguration, treating elements as a collection of resident tasks.  This must 

ensure that the direct connections of Click system architectures are efficiently 

mapped to any generic inter-task communication harness.  Policing, and then acting 

upon, the second requirement has been the main focus of the initial ReShape tool 

effort. 

 

To support arbitrary substitution of Click elements, each element must be mapped to 

a floorplanned module.  For cases where it is known that complete flexibility is not 
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required, ReShape allows the user to add information to the Click description in two 

different ways, to reflect two varieties of less dynamic systems: 

• Specific element substitution.  Here, the default is reversed: elements are not 

dynamic, and the user indicates explicitly which elements are.  This can be 

done without any change to the Click syntax.  Any element declaration can 

include a configuration string that specifies parameters for that particular 

element instance.  The semantic addition is to support the interpretation of an 

extra keyword DYNAMIC in configuration strings of dynamic elements, for 

example: 

ccm_reader :: FrameReader(TYPE VHDL, DYNAMIC); 

 

• Static element selection.  Here, a fixed selection of choices can be specified 

for a particular element at design time.  This is a common approach taken for 

partially reconfigurable systems with a static collection of module choices.  A 

syntax extension to Click was the cleaner way to express this case, 

generalizing an element declaration to list the multiple element types 

allowed, for example:   

proc :: Proc1 | Proc2 | Proc3 ;   

 

The practical benefit of these schemes is to facilitate a more optimized 

implementation, with the non-dynamic parts of the system being considered as a 

single unchanging static region with a flattened implementation.  

 

Figure 6.13 shows the ReShape implementation flow for updates to the ‘system for 

life’.  The main notable features are three tests to ascertain whether an update to the 

Click system description is amenable to partial reconfiguration, or whether full 

system re-implementation and reconfiguration is required.  The first test checks 

whether the input Click system graph is isomorphic to the previous version of the 

graph that is retained as saved system metadata.  If the elements or the connections 

between elements (including the types of the connections), has changed, then the full 

re-implementation flow is triggered.  In ShapeUp, the type checker was concerned 
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just with checking that two interfaces are compatible, so that a connection can be 

made between them.  For ReShape, this function is extended to provide a check that 

two elements are compatible, that is, one element can replace another.  To do this, it 

is necessary to check that both elements have completely compatible sets of 

interfaces, which can be done using the original per-interface type checker.   

 

The second test checks whether substitute elements fit into the existing floorplan of 

the system.  The first test has already covered interface compatibility, so this test just 

compares the slice count of the substitute element(s) with the slice counts of the 

existing element(s).  The resource use of the substitute element(s) is given by the 

metadata attached to these elements in the library, and the resource use of the 

existing element(s) is held as saved system metadata.  If the first two tests are passed, 

the PlanAhead-based PR flow is used to update the reconfigurable partitions for the 

element(s) being replaced.   

 

After this, the third test checks that the resulting system still meets the performance 

of the existing system.  This performance information is held as saved system 

metadata.  All of the floorplanning metadata, and the ShapeUp module interface 

metadata, are retained throughout a system’s lifetime to allow for updates. 

 

No major changes were made to the existing validator and visualizer.  When there is 

a system update, the validator operates with the distinct versions of the system 

separately.  At present, the prototype does not include any validation of system 

behavior during reconfiguration, although it is hoped that a later version can benefit 

from recent research into this topic, for example [130].  A visualizer extension is to 

indicate whether or not the system under construction is compatible with a previous 

version of the system, in other words, whether the update will be simple (with partial 

reconfiguration) or complex (with full implementation). 

 



 

   

 

149 

 
Figure 6.14: ReShape system update implementation flow 

 

The final piece of the ReShape methodology is a tool to perform the partial 

reconfiguration of the system during operation.  This uses the standard Xilinx PR 

mechanism, rather than a custom runtime system, e.g. [64].  
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6.5 Summary 

Chapter 6 introduced the adaptive systems part of this work, extending the ShapeUp 

framework to support dynamic modules in an extended methodology called 

ReShape.  This model allows: (a) modules to be substituted dynamically when the 

system is in operation, (b) brings benefits of abstraction and modularity to dynamic 

reconfiguration based on the latest partial reconfiguration (PR) tools, and (c) extends 

the ShapeUp framework from purely design-time use to lifetime use.  A key topic in 

this work was floorplanning, which physically constrains design placement. This 

chapter investigated the automatic floorplanning of modules and described 

experiments measuring the performance of partition-based design flows.  This 

chapter also proposed an algorithm to constrain the placement of modules 

communicating in a linear pipeline.  
 

The main contributions of this chapter are: 

• Section 6.1 presented a concise summary of the new Xilinx partial 

reconfiguration design flow, which is based on using partitions. 

• Section 6.2 presented experiments on internal fragmentation and the 

floorplanned PR methodology, which guided tactics for the new floorplanner. 

• Section 6.3 presented the ReShape floorplanning algorithm for networking 

designs described in Linear Click, using a zig-zag layout.  Experiments on 

varying the aspect ratio and floorplanning examples provided heuristics for 

the new floorplanner. 

• Section 6.4 presented the design flow for ReShape that supports dynamic 

changes to the design.  This illustrated how the new floorplanner is integrated 

into the ShapeUp design flow.  Additional metadata is stored about the 

resource use of the modules.  Notably, the type checking process is extended 

to check whether two elements are compatible, and whether a new element 

can replace the existing one.   
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The next chapter describes the validation of the ReShape through use in a real-life 

industrial-strength case study of network processing acceleration.   
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Chapter 7  
Case Study 2: An Adaptive High 

Performance Network System 

 

The original ShapeUp methodology and now the extended ReShape methodology 

have been evaluated on a number of real-life, industrial-strength case studies.  These 

have been drawn from the networking and telecommunications area, the application 

domain within which FPGAs find the greatest application.  The aim was to 

demonstrate that the user productivity gains seen using a higher-level system design 

approach did not introduce unacceptable losses in quality of results.  In particular, 

the implemented systems had to meet the performance targets for networking 

functions at data rates ranging between 1 and 200 Gb/sec. 

 

A main case study for the full ReShape methodology involved a programmable 

packet parsing (PPP) system, required to operate at a data rate of up to 150 Gb/sec on 

a Xilinx Virtex-6 FPGA.  The full specification of the PPP system, and the detailed 

discussion of a prototype version that did not involve the use of ShapeUp or 

ReShape, have appeared in an earlier publication by Attig and Brebner [131].  In 

fact, the results demonstrated a data rate of up to 400 Gb/sec on the most recent PPP 

version that was targeted at a Xilinx Virtex-7 FPGA.  This case study was based on 

an earlier version, although it is anticipated that it can scale up to the faster version 

without issues. 

 

Section 7.1 presents the background on the programmable packet parser that was 

used for this case study.  This background section is adapted from [131], with the 

permission of the authors.  Section 7.2 presents ReShape Linear Click examples 
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describing the PPP.  Section 7.3 presents the results of this case study.  Section 7.4 

summarizes the contributions of this chapter. 

 

7.1 High-speed Programmable Packet Parser 

As the Internet evolves, there is a growing need for non-trivial packet parsing at all 

points in the networking infrastructure, including the core carrier networks.  Parsing 

is central to packet classification in order to identify flows and implement quality of 

service goals.  Increasingly, it is also important to guide deeper packet inspection in 

order to implement security policies.  Of course, packet parsing also continues to 

have a central role in the implementation of end-to-end communication protocols.  

With core networks increasing towards 400 Gb/sec rates, packet parsing at line rate 

poses a major problem.  A further complication is that parsing requirements can 

change frequently as network traffic patterns evolve and protocols are introduced, 

modified or replaced.  This demands dynamic flexibility within networking 

equipment. 

 

A packet in transit consists of a stack of headers, a data payload, and – optionally – a 

stack of trailers.  At an end system, a packet might begin with a stack of Ethernet, IP 

and TCP headers, for example.  In a core network, a packet might begin with a stack 

of various Carrier Ethernet or MPLS headers, reflecting en-route encapsulation, for 

example.  The basic parsing problem can be formulated as traversing a stack of 

headers in order to: 

• Extract a key from the stack (e.g., a 16-bit packet type field or a TCP/IP five-

tuple); and/or 

• Ascertain the position of the data payload (e.g. to enable deeper packet 

inspection). 

 

The traversal is guided by a parsing algorithm consisting of rules for interpreting 

different types of header format.  Note that, without loss of generality, this approach 
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can be extended to the parsing of packet trailers, if required.  The parsing process 

must also smoothly handle failures of parsing, indicating unsupported packet forms.  

The results of parsing feed into other network processing components. These can 

include key lookup engines for packet classification, and regular expression 

matching engines for deep packet inspection. 

 

Traditional approaches to providing the required flexibility in packet parsing involve 

using general purpose servers as a basis for network nodes.  However, these may not 

be capable of providing the required performance.  To address this, the combination 

of general purpose processors and specialized high-performance network processors 

is possible.  However, the increasing specialization of network processors can thwart 

goals of flexibility and scalability.  The Field Programmable Gate Array (FPGA) is 

an alternative technology that can fulfill the necessary requirements for high-speed 

concurrent packet processing, and which can be harnessed in tandem with 

complementary general-purpose processors. 

 

The main goal of the FPGA-based Programmable Packet Parser (PPP) was to 

achieve packet throughput in the 100s of Gb/sec range, employing a scalable 

approach that would not require substantial re-engineering with each new step in 

required throughput.  The physical constraints were the amount of programmable 

logic available on target FPGA devices, and the achievable clock rates for such logic.   

 

The setting involves the streaming of packet data through the PPP system, using a 

very wide data path, for example, 512 bits wide to achieve a 150 Gb/sec data rate.  In 

some cases, this packet data might just consist of the relevant header part, following 

payload offload to temporary memory; in other cases, notably initial packet 

classification, this data is the entire packet.  The packet parsing is performed on the 

fly as the packets stream through.  In other words, the module has cut-through 

operation, rather than store and forward, which would introduce higher packet 

processing latency. In order to achieve clock frequencies in the desired range, 

pipelining is deployed extensively. 
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Figure 7.1: Packet parsing pipeline architecture 

 

Figure 7.1 shows the top-level pipelined architecture.  There is a natural mapping 

between the parsing algorithm and the pipeline: one pipeline stage for each level in a 

packet header stack.  As a packet advances through the pipeline, one header is parsed 

at each stage.  In steady state operation, multiple packets are being parsed 

simultaneously in the pipeline.  Each stage has a fixed internal microarchitecture, 

which has microcoding to provide a degree of programmability when the system is in 

operation. 

 

When a packet starts to arrive at the input of a header parsing stage, it comes in 

tandem with the header type identifier, the offset in the data stream, and a key being 

constructed.  The stage microarchitecture has five components.  A header type 

lookup component uses the input header type identifier to fetch customized 

microcode that programs the remaining components in the stage to be able to handle 

the particular header type.  Meanwhile, the input header offset within the packet 

stream is forwarded to a locate component that finds the header within the input 

packet stream.  The locate component works in tandem with an extract component 

that contains customized shifting and masking logic to isolate header fields for use in 

parsing computations, and key building.  A compute component contains 

customized, heavily pipelined, logic to perform operations associated with the 

parsing algorithm, including computing the next header and the header size.  Results 

of the compute component can also be forwarded to an optional key builder 

component that constructs a revised parsing key. 
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Microcode instructions are used to control the behavior of the five components 

within each parsing pipeline stage.  This allows the same set of resources to be 

shared for each of the different header types being processed by a stage.  The exact 

microcode format is specific to the set of components contained in a particular stage.  

The size of the stored microcode depends on the complexity of the components. 

 

 
Figure 7.2: Pipeline stage microcode organization 

 

The general format of the microcode is shown in Figure 7.2.  It consists of four 

sections.  The first section consists of zero or more extract size-offset pairs.  These 

correspond to different fields that may be extracted from the packet in order to parse 

a header.  The size indicates the bit width of the field, and the offset indicates its bit 

position from the start of the header segment.  The second section consists of 

compute operations and input selectors.  One compute operation entry exists for each 

stage in a compute unit pipeline.  The supported operations are encoded as unique 

integer identifiers.  The compute input selectors program a multiplexer to enable the 

appropriate inputs to reach a compute unit.  Multiplexer inputs could be the different 

extracted fields or constants from the microcode.  The third section consists of zero 

or more sources for data to be appended to the packet's context key.  The final 
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section consists of constants, occurring in the header object description and then used 

directly in computations.  Constants can be of variable size. 

 

The microcoded PPP system was evaluated using a benchmark suite drawn from 

examples required in practical networking situations.  These fell into two broad 

categories: carrier (wide area and metro area networks), and end system (access and 

enterprise settings).  In turn, these categories correspond to layer-two and below, and 

layer-three and above, protocol settings respectively.  Experimental results for the 

FPGA implementation confirmed that packets could be parsed at very high line rates, 

of 100 Gb/s and higher.   

 

7.2 ReShape Linear Click Descriptions 

A key feature of the PPP is that its parsing algorithms must be modifiable at run 

time, in other words the header parsing stages must be programmable.  This is so that 

a network administrator can make changes to support different types of network 

traffic as requirements evolve.  The existing version of the PPP accommodated this 

need by including specialized microcoding within the parsing stages, and an 

interface to update the control stores containing the microcode. 

 

The PPP thus offered a valuable case study for the ReShape methodology.  The 

architecture was well suited for the Linear Click setting, being representative of the 

packet processing pipeline with wide data path style that is very common in high 

speed networking implementations on FPGAs.  Moreover, it had an essential 

requirement for modifying the system at run time, and presented the opportunity to 

compare an approach based on partial reconfiguration with the existing approach 

based on microcoding. 

 

In ReShape terms, the case study involved the most general use case for dynamic 

elements.  There was no fixed set of pre-defined Click elements because new 
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elements needed to be created and then incorporated in order to satisfy evolving 

requirements in the field.  So the PPP presented a genuine ‘system for life’ use case. 

Three versions of the PPP were used in experiments, to assess not just the benefits of 

ReShape, but also the advantages or disadvantages of using partial reconfiguration.   

 

The three versions had different degrees of programmability.  The first was a 

hardcoded reference version that did not allow reprogramming after FPGA 

implementation.  The second was the standard microcoded version, which allowed 

reprogramming within the constraints of the microcode and the internal architecture 

driven by the microcode.  The third was the ReShape version, which allowed the 

most general reprogramming through the complete change of the parsing stage logic. 

 

The first two versions were modeled with the static ShapeUp methodology.  An 

example Click description of a three-stage instance of the hardcoded version is: 

 

FromDevice(MAC) -> 

stage0 :: ParseEthernet -> 

stage1 :: ParseIPv4orIPv6 -> 

stage2 :: ParseTCPorUDP-> 

ToDevice(MAC); 

 

Here the three fixed elements are for parsing an Ethernet header, either an IP version 

4 or IP version 6 header, and either a TCP or UDP header, respectively. 

 

An example Click description of a three-stage instance of the microcoded version is: 

 
FromDevice(MAC) -> 

[S_in] stage0 :: MicrocodedStageSize1 [S_out] -> 

[S_in] stage1 :: MicrocodedStageSize2 [S_out] -> 

[S_in] stage2 :: MicrocodedStageSize2 [S_out] -> 

ToDevice(MAC); 
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Controller [A_update0] -> [A_control_store] stage0; 

Controller [A_update1] -> [A_control_store] stage1;  

Controller [A_update2] -> [A_control_store] stage2;   

 

Here, there are two different microcoded elements in the main pipeline, one used at 

the first stage, the other used at the second and third stages.  These reflect different 

provisioning in terms of the complexity of functions carried out, and the 

corresponding microcode.  The final three connections represent the interfaces used 

for updating the microcode in the stages, by a controller that writes to the internal 

control stores in the elements.  As in earlier examples, Hungarian notation is used to 

denote the type of the element ports: “S” for stream and “A” for access. 

 

An example Click description of a three-stage instance of the ReShape version 

would be exactly the same as that shown for the hardcoded version.  This could 

represent an initial instance.  Then, an updated version might be presented to 

ReShape: 

 
FromDevice(MAC) -> 

stage0 :: ParseEthernet -> 

stage1 :: ParseVLANorIPv4orIPv6 -> 

stage2 :: ParseIPv4orIPv6orNull -> 

ToDevice(MAC); 

 

Here, the parser is being changed to handle an optional Ethernet VLAN header, and 

to discontinue TCP/UDP header handling.  The first stage is unchanged, and the 

second and third stages can be reconfigured (assuming that they fit of course). 

 

7.3 Experiments and Results 

Experiments were carried out using four PPP instances.  Designs 1 and 2 contained a 

three-stage pipeline, and Designs 3 and 4 contained a five-stage pipeline.  These 

instances handled parsing of different combinations of Ethernet, VLAN, IP, and TCP 
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protocols, exact details of these not being relevant here.  The hardcoded versions had 

separate implementations for the four designs.  The microcoded and ReShape 

versions both had one (three-stage) implementation for Designs 1 and 2 and another 

(five-stage) implementation for Designs 3 and 4.  The implementations were created 

using the Xilinx ISE tools version 13.2, and targeted a XilinxVirtex-6 HX380T 

FPGA. 

 

Table 7.1 shows the implementation results from these experiments.  The first row 

for each design shows the overall system resource use and the performance.  In the 

hardcoded versions, the system implementations were flattened, that is, no logical 

structure was preserved in the physical layout. This allowed global optimization over 

the whole pipeline, in the traditional manner of placement and routing tools.  These 

results form a baseline in terms of the best possible results for each design.  Note 

however that these hardcoded versions fail the requirement for run-time 

programmability – unless of course one allows complete re-implementation as a 

form of programmability, which was not the case in the driving application.  All of 

the hardcoded designs achieved clock rates in excess of 400 MHz, which was 

considerably in excess of the actual requirement of 300 MHz to satisfy a 150 Gb/sec 

data rate.  It can be seen that the resource use, in terms of both lookup tables (LUTs) 

and flip-flops (FFs), was directly proportional to the pipeline length. 

 

The overall system implementation results for the microcoded and ReShape versions 

of the four designs indicate the cost of adding programmability, in terms of resources 

and performance.  The resource use for the ReShape versions takes into account the 

entire bounding box for the reconfigurable partition for each stage, not just the actual 

resources used within it.  The total bounding box resources are then added to the 

resources used for the static region to give the numbers in the table. 

 

It can be seen that both versions of each design met the required performance target 

of 300 MHz.  As might be expected, the ReShape versions, with the highest degree 

of programmability, had the lowest clock rates.  The microcoded versions, with a 
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lesser degree of programmability, were intermediate in clock rate between the 

ReShape versions and the hardcoded versions.  A similar continuum can be seen 

when considering the use of LUTs, showing the logic price paid for 

programmability.  When considering the use of FFs, the ReShape version is 

penalized because of flip-flops ‘trapped’ within bounding boxes, as opposed to being 

used actively in the implementation.  In general the three versions use fairly similar 

numbers of FFs. 

 

 

Table 7.1: PPP instances: hardcoded (HC), microcoded (uC), and ReShape (RS) versions 

Module 

  

HC 

LUTs 

HC 

FFs 

HC 

Freq. 

uC  

LUTs 

uC 

FFs 

uC 

Freq.  

RS  

LUTs 

RS 

FFs 

RS 

Freq.  

Design1 11,832 14,000 404 14,304 16,101 364 26,165 36,496 354 

Stage0 3,833 3,253  4,665 4,281   6,080 12,160  

Stage1 3,167 3,697  6,267 6,740   5,928 11,856  

Stage2 3,810 3,304  4,701 4,387   6,240 12,480  

Design2 11,921 14,023 435 14,304 16,101 364 26,165 36,496 333 

Stage0 3,833 3,253  4,665 4,281   6,080 12,160   

Stage1 4,280 3,652  6,267 6,740   5,928 11,856   

Stage2 3,810 3,304  4,701 4,387   6,240 12,480   

Design3 19,166 23,172 411 25,530 28,158 361 38,645 66,531 336 

Stage0 3,833 3,253  4,665 4,281   6,080 12,160   

Stage1 4,246 3,718  6,292 6,837   5,928 11,856   

Stage2 4,256 3,725  7,004 7,748   6,240 12,480   

Stage3 4,243 3,707  6,435 7,066   6,552 13,104   

Stage4 3,810 3,304  4,701 4,387   5,928 11,856   

Design4 19,185 23,269 422 25,530 28,158 361 38,645 66,531 329 

Stage0 3,833 3,253  4,665 4,281   6,080 12,160   

Stage1 4,261 3,735  6,292 6,837   5,928 11,856   

Stage2 4,272 3,741  7,004 7,748   6,240 12,480   

Stage3 4,257 3,725  6,435 7,066   6,552 13,104   

Stage4 3,810 3,304  4,701 4,387   5,928 11,856   
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Table 7.1 also shows the resources used for the individual stages.  The stages do not 

have independent existences in the hardcoded and microcoded versions, but the data 

allows comparison with the stages in the ReShape versions, which are the 

independent modules used for reconfiguration.  It is interesting to note that the 

microcoded versions show wide variability between stages compared to the other 

two versions.  This is because each stage was provisioned for a different worst-case 

programming possibility.  In particular, some stages required more resource in the 

microcoded version than in the ReShape version.  The ReShape resource use was 

compared with the hardcoded resource use in more detail.  While there was a large 

headline increase in LUTs and FFs due to the bounding box effect, the actual 

increase in utilized resource was ~25% in LUTs and zero in FFs.  The LUT increase 

was because each partition pin is implemented by a LUT1 and there were ~1100 nets 

crossing in or out of each reconfigurable partition.  

 

The reprogramming times of the microcoded and ReShape approaches were 

compared for a five-stage PPP instance, and are shown in Table 7.2.  In the 

microcoded version, an update can be done by writing 64-bit words into the control 

store for a stage.  For the ReShape version, the number of reconfiguration frames for 

each stage was computed, and hence the size of the partial bitstream needed for the 

update.  The ICAP and SelectMAP interfaces for partial reconfiguration are 32-bit 

and have a maximum frequency of 100 MHz for the Xilinx Virtex-6 architecture, 

which severely limits the speed of reconfiguration [30].  Note that researchers have 

successfully run these interfaces at higher rates (for example [132]), but a 

conservative quantification is used here. 

 

As can be seen from Table 7.2, there is a significant difference between the two 

approaches in terms of reprogramming time: nanosecond time versus millisecond 

time.  However, this reflects the wide difference in programmability, between the 

modest tweaks possible with microprogramming and the complete architecture 

change possible with ReShape.  In fact, given that parser updates are likely to be 

very infrequent, it is not unacceptable that a reconfiguration takes around 1 ms. 
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Table 7.2: Reprogramming time for microcode and ReShape approaches 

Stage Microcode 

update 

data (bits) 

Microcode 

update 

time (ns) 

No. 

config 

frames 

Partial 

bitstream 

size (bytes) 

ReShape 

update 

time (us) 

0 39 3 26 355,104 888 

1 57 3 27 366,768 917 

2 84 6 29 417,312 1,043 

3 82 6 28 378,432 946 

4 62 3 26 413,424 1,034 

 

 

Module RTL source files and metadata were generated using a high-level language 

compiler for the PP language, described in [131].  Additional metadata, including 

the area estimates for the FPGA, was determined by running synthesis (XST) and 

resource mapping (MAP).  This metadata was also packaged with the element RTL 

source, as illustrated in Figure 6.12. 

 

The ReShape design tools were used to create the case study FPGA implementation, 

as shown in Figure 6.13.  The floorplanning tool was used to apply the floorplanning 

algorithm, described in Section 6.3, to both the three-stage Design 1 and five-stage 

Design 3 example pipelines.  The floorplanner processed the initial Click description 

and determined the physical placement constraints for each of the modules.  The 

linker was used to create the top-level structural description of the system.  The 

structural description and the placement constraints were loaded into PlanAhead to 

create a PR implementation of the design.  The ISE tools were used to create the full, 

static bitstream, for configuring the FPGA.  The validator was used to simulate the 

behavior. 

 

The modified Click descriptions for Design 2 and Design 4 were used to perform 

system updates, as shown in Figure 6.14.  The updated Click was processed by the 

floorplanner, and the Click graph remained unchanged between versions, and the 
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substitute elements were checked to confirm that they fit.  The PlanAhead PR flow 

was used along with ISE to produce a partial bitstream. (As an alternative example, 

updating from Design 1 to Design 3 would have had a different number of elements 

in the Click graph, which would have required using the full system flow.)  

PlanAhead used the partition-based design flow to implement only the updated 

partitions in the design, which meant that the previous implementation results for 

stage 0 and stage 4 were imported.     

 

The ReShape design tools raised the level of abstraction, so that the implementation 

of the examples did not require the tedious and error prone task of manual 

floorplanning. 

 

7.4 Summary 

Overall, the case study demonstrated the benefits of the ReShape approach, in terms 

of supporting the ‘system for life’ model and hiding the low-level details of partial 

reconfiguration from the user.  It was possible to work from a single high-level Click 

description, using the various tools in the ReShape suite.  The implementation results 

showed that the target performance for a 150 Gb/sec data rate could be achieved 

using a 512-bit data path at over 300 MHz, how the resource use compared with a 

non-floorplanned and flattened implementation, and how the reprogramming time 

compared with a microcoded implementation. 

 

The main contributions of the case study described in this chapter are the following: 

• A high-speed real-life system is described in Linear Click.  An example of 

the Programmable Packet Parser supporting dynamic behavior is described in 

Section 7.2. 

• Experiments using four configurations of the Programmable Packet Parser 

were conducted, comparing the hard-coded, microcoded, and ReShape 

approaches.  A comparison of the results is presented in Section 7.3. 
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• The case study demonstrated the benefits of the ReShape approach, in terms 

of supporting the ‘system for life’ model and hiding the low-level details of 

partial reconfiguration from the user.  This is discussed in Section 7.3.
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Chapter 8  
Conclusions 
 

The ShapeUp methodology is a significant contribution to encouraging a high-level 

modular approach to designing FPGA-based systems.  This is very necessary, given 

the increasing complexity of such systems.  The ShapeUp methodology is founded 

upon a small set of abstractions of module interface behavior, chosen to be 

comprehensive yet compact, and principled yet pragmatic.  To make these 

abstractions practical, a metadata format was developed to describe instances of the 

interface data schemas.  This is aligned with the emergent IP-XACT standard.  The 

metadata is then used by a variety of tools, which contribute to a high-level modular 

design flow.  The Click language, with a fundamental generalization of the semantics 

of connections, is employed for system description. The new configurable timing 

modules represent one of a core set of generic module libraries that contribute to the 

overall ShapeUp methodology.  Although motivated by the needs of networking, the 

new configurable timing modules have potential applications in many types of real 

time embedded systems where there are events and activities that are influenced by 

the passage of time.  

 

The ReShape methodology extends the modular approach to apply throughout the 

lifetime of a system.  It provides a consistent high-level view that hides the 

intricacies of using dynamic partial reconfiguration of FPGAs to perform system 

updates.  This is underpinned by automated floorplanning to act as the bridge 

between the logical system description and the physical FPGA implementation.  This 

automation has been prototyped for Linear Click, a variant that is well suited to the 

broad domain of networking applications.  The ReShape framework is designed to 

allow other domain-specific floorplanners to be incorporated in the future.  The 
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overall methodology has been successfully applied to a number of real-life case 

studies involving networking at very high data rates.  This confirms that ReShape is 

not a ‘toy’ approach, but gives a practical way of hiding low-level detail while not 

compromising the quality of results unduly.  This helps to reinforce the notion of the 

FPGA as a mainstream programmable technology. 

 

8.1 Main Contributions and Impact 

The main contributions of this dissertation are: 

• Synthesis of background research results from four different areas: FPGAs, 

system-level design, dynamic reconfiguration, and networking 

 

• ShapeUp research: 

o Contributions: 

 Analysis of inter-module communication, and abstraction of 

interface behaviors;  

 Definition of data-driven approach using metadata and meta-

metadata;  

 Creation of innovative interface type checking algorithm; 

 Building of methodology and tool flow for module-based 

system design 

o Impacts:  

 New Xilinx product under development for high-level 

modular design, featuring “plug-n-play” interfaces 

 Two patents:  

• Interface type checking for integrated circuit design 

• Novel graphical interface for the Pop design 

environment  
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 Conference paper at 18th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2010)  

[133] 

 

• Timing research: 

o Contributions: 

 Analysis of time-related functions in computer and networking 

systems, with particular focus on communication protocols, 

and abstraction of timing behaviors; 

 Definition of a small set of standard timing modules;  

 Incorporation of modules into ShapeUp methodology;  

 Demonstration on high-speed telecommunications examples 

o Impacts:  

 Customer reference designs for Ethernet OAM, resulting in 

design wins for Xilinx 

 Conference paper at 20th International Conference on Field 

Programmable Logic and Applications (FPL 2010) [134] 

 

• ReShape research: 

o Contributions: 

 Analysis of behavior of existing partial reconfiguration 

techniques, and halving of expected internal fragmentation;  

 Creation of innovative floorplanning algorithm tuned for high-

speed networking;  

 Building of methodology and tool flow for high-level adaptive 

system design;  

 Demonstration on high-speed telecommunication examples 

o Impacts:  

 Xilinx customer engagements 

 Patent pending 
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 Journal paper accepted for the ACM Transactions on 

Reconfigurable Technology and Systems (TRETS), pending 

publication 

 Floorplanning extension to the IP-XACT standard 

 

In summary, this dissertation has presented several important contributions that 

encourage a modular, high-level approach to designing FPGA-based 

networking/streaming systems that also simplifies reconfiguration in order to 

facilitate adaptive behavior.   

 

8.2 Future work 

There are three main directions suggested for future work, which are expanded upon 

in the discussion following: 

1. Incorporating ShapeUp interface abstractions and timing abstractions into 

tools for module creation from high-level descriptions. 

2. Supporting adaptive systems beyond pipelines, and dynamic graph structures. 

3. Generalization of mappings between Click elements/connections and 

modules interconnect. 

 

One step in further raising the level of abstraction is building upon the experimental 

work of (a) incorporating ShapeUp interface type abstractions into the G language 

and (b) coupling ShapeUp timing modules with G modules, in order to build the 

ShapeUp system view into languages for describing system modules, and their 

compilers.  This will lessen the system integration challenges posed to tools like the 

linker and validator, by providing harmonious modules that are ShapeUp ready. 

 

Another step is generalizing the prototype ReShape capabilities.  One aspect is 

providing alternative plug-in floorplanners that are specialized for important 

domains.  The other aspect is extending the tools to deal with dynamic Click graphs: 



 

   

 

171 

where vertices and edges can be added or deleted.  This would allow for more radical 

Click description changes to be handled using partial reconfiguration.  

 

A third step would be to loosen up the strict one-one mapping of system modules and 

connections to hardware blocks and wiring, which is the setting that this dissertation 

has focused on.  In general, more complex mappings are possible.  Individual 

modules may be mapped to multiple implementation entities, maybe hardware or 

software, or several modules might be mapped to the same entity.  Here, much of 

prior research has been done, in the general area of hardware-software partitioning.  

Also, connections might be mapped to more complex underlying entities, for 

example, networks-on-chip [135].  Here, one can learn much from conventional 

networking, where the norm is to implement point-to-point connections using 

complex underlying networking like the Internet. 
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Appendix A 

Ethernet OAM Element Library 
 

This appendix consists of concise descriptions for each of the G library elements 

contained in the case study design in Chapter 5. 

 

For reference, only partial CCM frames are stored in this implementation, which 

helps compress CCM data to fit within the available on-chip memory (BRAM).  This 

is important because by using on-chip memory, the OAM designs are able to 

consume less power than they would by using off-chip memory. 

 

-  VlanClassifier.g -   

VlanClassifier is an element for classifying incoming frames as either OAM frames 

or data frames, based on their frame type and whether the frame is determined to be 

in-profile.  The downstream OAM handler requires this classification. 

  

The OAM handling supports the existence of zero or more VLAN tags. The VLAN 

tag presence is ascertained by inspecting the TPID. The classifiers support two 

configurable TPID values for VLAN tag identification. The OAM block uses the 

type/length fields to identify the existence of an OAM frame. It supports two 

configurable values to identify OAM frames. 

  

The OAM handler maintains contexts for different VLANs.  The VLAN ID, 

contained in the VLAN header is used to lookup the assigned context ID for input 

frames. For each context, there is a set of values that specify how to perform the in-

profile determination step.  In-profile determination is used in separating OAM 

frames and data frames. 
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The in-profile determination is made based on either the discard eligible (DE) bit or 

the priority code point (PCP) bits. The selection between DE and PCP bits is 

configurable on a per MEG basis. The PCP option supports the four standard profiles 

as defined by Provider Bridging (PB). The profile selection is configurable on a per-

MEG basis. 

 

The context information is added to the beginning of the output frame as a  

Context_t header shim, described in “MyContextFormats.g”. 

 

-  Oam_y1731_in.g -  

 OAM_Y1731_IN is an element for manipulating OAM frames, with Context_t 

header shims, from the line-side interface to the system-side interface, for the 

following performance monitoring functions: CCM, LMM, LMR, 1DM, DMM, 

DMR. 

 

The output CCM frame is manipulated (to make results available for later software 

handling) by: 

• The far-end frame loss result is inserted in the RxFCb field 

• The near-end frame loss result is inserted in the TxFCf field 

  

The output LMM frame is manipulated by inserting the following values: 

• RxFCf 

• The near-end frame loss result is inserted in the TxFCb field 

  

The output LMR frame is manipulated by inserting the following values: 

• The near-end frame loss result is inserted in the TxFCb field 

• The far-end frame loss result is inserted in the RxFCf field 

  

The output 1DM frame is manipulated by inserting the following value: 

• RxTimeStampf 
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The output DMM frame is manipulated by inserting the following value: 

• RxTimeStampf 

  

The output DMR frame is manipulated by inserting the following value: 

• RxTimeStampb 

  

 All other OAM frames are transparently passed through the service level OAM 

manipulation components. 

  

 -  Oam_y1731_out.g -   

OAM_Y1731_OUT is an element for manipulating OAM frames, with Context_t 

header shims, from the system-side interface to the line-side interface, for the 

following performance monitoring functions: CCM, LMM, LMR, 1DM, DMM, 

DMR. 

  

The output CCM frame is manipulated by inserting the following values in their 

appropriate fields: 

• TxFCf 

• RxFCb 

• TxFCb 

  

The output LMM frame is manipulated by inserting the following value: 

• TxFCf 

  

The output LMR frame is manipulated by inserting the following values: 

• TxFCb 

 The output 1DM frame is manipulated by inserting the following value: 

• TxTimeStampf 

  

The output DMM frame is manipulated by inserting the following value: 
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• TxTimeStampf 

  

The output DMR frame is manipulated by inserting the following value: 

• TxTimeStampb 

  

All other OAM frames are transparently passed through the service level OAM 

manipulation components. 

 

-  GenerateCcm.g - 

 GenerateCCM is an element for completing CCM frames, after they are read from 

memory. The partial CCM frame data stored in memory has certain zero-valued 

fields omitted in order to compress the frames to fit within available BRAM.  The 

incoming frames to this module are partial CCM frames.  This element inserts the 

missing fields and sets the CCM period to be 3.3 ms. The output frames are entire 

CCM frames.   

  

-  CheckCcm.g - 

CheckCCM is an element for checking incoming CCM frames for several defect 

conditions, wherein a defective frame is forwarded to the control processor for 

further inspection.  The potential defect conditions are: 

 - A. Loss of Continuity  

 - B. Unexpected MEG level 

 - C. Unexpected MEG ID 

 - D. Mismerge (inconsistent MEG ID and MEP ID) 

 - E. Unexpected Period 

  

A. Loss of continuity is detected and signaled separately by the Finish module  

B. If the incoming MEG level is lower than the configured MEG level, then it  

is marked with "Unexpected MEG Level defect" tag in the defect field of the  

context shim. 

C. Similarly to B, if the MEG ID is different from the stored MEG ID, then the  
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frame is marked with a "Mismerge defect". 

D. Similarly to B, if the MEP ID is different from the stored MEP ID, then the  

frame is marked with an "Unexpected MEP defect" tag. 

E.  Similarly to B, if the CCM Period is different from the stored Period, then  

the frame is marked with an "Unexpected Period defect" tag. 

 

Each of the defect conditions are described in more detail in the Y.1731 

specification. 

  

The incoming CCM frames contain a Context_t header shim, added by the local 

classifier element.  The Context_t header shim provides the context ID for the 

incoming CCM.  This element should connect to a reference memory with a table of 

expected CCM values.  Certain fields in the incoming CCM are checked against the 

expected values, when checking for defects.  

  

The output frames contain an updated Context_t header shim, wherein a CCM 

containing a defect is marked to indicate the defect type in the updated Context_t 

header shim. 

  

The defect checking functions described here are implemented in hardware, in order 

to support a large number of contexts at the 3.3 ms service interval. 

 

-  RemoveShim.g - 

 RemoveShim is an element for removing the Context_t header shim, inserted by the 

classifier element.  The input frame is an OAM or data frame prepended with the 

Context_t header shim, containing local control information.  The Context_t header 

shim is removed, and the output frames return to their original length. 
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-  CalcAddress.g -  

CalcAddress is an element for calculating the address necessary for reading partial 

CCM frames from memory.  The input is a 'notify' frame from the Start element.  

This contains the activityID (in this design the activityID = contextID).  The partial 

CCM frames for this  

version are packed in chunks of 18, 32-bit words.   

  

The outgoing frame is formatted for the downstream FrameReader.  The first word 

of the output frame contains: (a) the address value for the start of the frame and (b) 

the length of the partial CCM frame to be read.   

  



 

   

 

179 

 

 

Appendix B 

Example G element description  
 

-  CheckCcm.g -  
 
/*===========================================*/ 
/* Ethernet OAM Functions - OAM CFM (CCM.Rx) */ 
/* cneely                                    */ 
/*-------------------------------------------*/ 
 
element CheckCcm { 
 
  /* ShapeUp interface types */ 
  input  framein       : stream; 
  output frameout      : stream; 
  output request        : access; 
  output ccmRefs        : access; 
 
#define DEF_UNEXPECTED_MEG_LEV 1 
#define DEF_MISMERGE 2 
#define DEF_UNEXPECTED_MEP 3 
#define DEF_UNEXPECTED_PERIOD 4 
 
  format ContextShim_t =( 
    contextValid : bool, 
    contextID    : 9, 
    isOAMframe   : bool,     
    isDefective  : bool, 
    defectType   : 3,  
    inProfile    : bool 
  ); // totals 2-octets 
 
  format EthernetHeader = (  
    destAddr : 48, 
    srcAddr  : 48, 
    tpid     : 16); 
 
  format VlanHeader =( 
    userPriority : 3, 
    cfi          : 1, 
    vlanID       : 12); 
 
  format CcmFlags_t =( 
    rdi       : 1,  
    reserved  : 4, 
    period    : 3); 
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  format OamHeader =( 
    megLevel  : 3,  
    version   : 5, 
    opcode    : 8, 
    flags     : CcmFlags_t,  
    tlvOffset : 8); 
     
   format CcmPdu=( 
    seqNum  : nat, 
    mepID   : 16, 
    megID   : 384, 
    TxFCf   : nat, 
    RxFCb   : nat, 
    TxFCb   : nat, 
    Reserved : nat, 
    endTlv  : 8); 
 
  format NotifyFrame =( 
    activityID : 16, 
    timestamp  : 16, 
    event_type : 16, 
    reserved   : 16); 
 
  format FinishReq = ( 
    active         : bool, 
    relativeFinish : bool, 
    activityID     : 12, 
    finishTime     : 16); 
 
  format CcmFrame =( 
    shim    : ContextShim_t, 
    ethHdr  : EthernetHeader, 
    vlanHdr : VlanHeader,  
    etype   : bit[16], 
    oamHdr  : OamHeader, 
    ccm     : CcmPdu); 
 
  format CcmReference =( 
    megLevel : 3, 
    megID    : 384, 
    mepID    : 16, 
    period   : 3); 
 
 
  handle CcmFrame on framein { 
     
    /* general vars */ 
     var myFinish : FinishReq; 
     var ref : CcmReference; 
 
    /* Check for the following defect conditions (from ITU-T Y.1731): */ 
         /*  - If no CCM frames from a peer MEP are received within  
          *  the interval equal to 3.5 times the receiving MEP's 
          *  CCM transmission period, "loss of continuity" with peer  
          *  MEP is detected. 
          */ 
 
            /* Handle this using timers for every MEG level context.   



 

   

 

181 

             * The defect message (on timeout) is sent directly  
             * to the Control processor, bypassing this module. 
             */  
 
            /* Our action: on receiving a CCM frame, reset the timer  
             * for this context */ 
              set myFinish.active = true; 
              set myFinish.relativeFinish = true; 
              set myFinish.activityID = shim.contextID; 
              set myFinish.finishTime = 0x70; // 3.5 * CCM period from now 
              write myFinish to request; 
 
         set shim.isDefective = false; 
         read ref from ccmRefs[shim.contextID]; 
         /*  - If a CCM frame with a MEG Level lower than the receiving  
          *  MEP's MEG Level is received, "Unexpected MEG Level"  
          *  is detected. 
          */ 
 
          [oamHdr.megLevel < ref.megLevel] { 
            set shim.isDefective = true; 
            set shim.defectType = DEF_UNEXPECTED_MEG_LEV; 
          }  
 
          | [oamHdr.megLevel == ref.megLevel] { 
 
 
             /*  - If a CCM frame with same MEG Level but with a  
              *  MEG ID different than the receiving MEP's own MEG ID  
              *  is received, "Mismerge" is detected. 
              */ 
              [ccm.megID != ref.megID] { 
                set shim.isDefective = true; 
                set shim.defectType = DEF_MISMERGE; 
               
              } | { 
                 /*  - If a CCM frame with the same MEG Level and a correct  
                  *  MEG ID but with an incorrect MEP ID, including 
                  *  receiving MEP's own MEP ID, is received,  
                  *  "Unexpected MEP" is detected. 
                  */ 
                 [ccm.mepID != ref.mepID] { 
                   set shim.isDefective = true; 
                   set shim.defectType = DEF_UNEXPECTED_MEP; 
                 } 
              } 
           } 
           /*  - If a CCM frame is received with a correct MEG Level,  
            * a correct MEG ID, a correct MEP ID, but with a period field  
            * value different than the receiving MEP's own CCM transmission  
            * period, "Unexpected Period" is detected. 
            */ 
 
          [oamHdr.flags.period != ref.period] { 
                   set shim.isDefective = true; 
                   set shim.defectType = DEF_UNEXPECTED_PERIOD; 
          } 
     /* A receiving MEP must notify the equipment fault management process  
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      * when it detects the above defect conditions. 
      */ 
     
    [shim.isDefective] forward on frameout; 
  } 
} 
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