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 ABSTRACT 

 
 
 
 This thesis introduces a thermodynamic model of an external reforming SOFC 

coupled with a biomass-to-syngas reactor in order to calculate energy and power that can 

be extracted from the fuel. Some of this energy will be used for electrical work and some 

of this energy will be used to provide heat to the reactor to drive the endothermic 

reactions occurring throughout the process. We analyzed four different feedstocks for 

their fuel cell heat dissipation and fuel cell power characteristic: pure syngas, pure 

carbon-derived syngas, coal-derived syngas, and biomass-derived syngas. Pure syngas 

consists of only CO and �� while the other three cases of syngas consist of CO, ��, ���, 

C��, and C��. Pure syngas did not take the reactor into account. 

 

The results of the analysis had shown that the absolute value of the Gibbs free energy of 

the fuel cell for pure syngas increased as the hydrogen concentration increased for 

temperatures above 1100 K. Opposite behavior occured for temperatures below 1100 K 

due to entropy change being less significant at lower temperatures. The results had also 

shown pure carbon-derived syngas to have the highest hydrogen concentration coming 

out of the reactor, which led to a higher Gibbs free energy of the fuel cell. This 

consequently led to a much higher maximum power density for any given temperature, 

followed by coal-derived syngas and biomass-derived syngas. Pure carbon-derived 

syngas also allowed the fuel cell to dissipate more heat than coal-derived syngas and 

biomass-derived syngas. Pure carbon was oxygen-free before the reactor and hydrogen-

rich after the reactor, thus allowing for high overall performance. High oxygen content 

hindered the performance of biomass-derived syngas, thus requiring the incorporation of 

de-oxygenation in the reactor. Coal gives higher overall performance compared to 

biomass at the expense of excess burning of air in the reactor and excess ash emission. 
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1 INTRODUCTION 

 
 
 
 Sustainability is a path forward that allows humanity to meet current 

environmental and human health, economic, and societal needs without compromising 

the progress and success of future generations [1]. With the rising concern about 

greenhouse gas (GHG), many countries are pursuing efforts to develop more sustainable 

energy systems to replace conventional combustion heat engines. Solid oxide fuel cells 

(SOFC) are a great alternative to these combustion engines due to the simple fact that the 

fuel it uses is much cleaner than coal. These electrochemical devices are not limited to 

the Carnot efficiency, thus enabling efficiencies higher than traditional combustion-based 

thermal engines. Fuel-cell powered vehicles running on hydrogen have the potential of 

emitting zero emissions; this can ultimately significantly reduce the net emission of GHG 

if more people invest in this technology. Due to its high temperatures, an SOFC can also 

be thermally integrated with a bottoming cycle for power generation, as will be seen in 

sections to come.  

 

The hydrogen used to fuel these SOFCs must come from a reliable and clean source. 

Biomass, a renewable energy source, is gaining popularity due to its availability in nature 

[2]. Biomass is an attractive fuel source for SOFC application because of its feasibility to 

be converted into syngas — a gas mixture containing high amounts of hydrogen and 

carbon monoxide. This conversion is typically carried out through gasification, which 

introduces the biomass with steam and/or oxygen at a very high temperature in order to 

extract usable fuel in the form of syngas and rid the biomass of unusable material. One 

example of a gasifier that converts biomass into syngas is the reactor created by Alyaser 

et al. [3]. This reactor uses its product, or syngas, as startup fuel for combustion with air 
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in order to heat the steam at a specific temperature so as to achieve the optimal hydrogen 

content in the final product made by the mixing of biomass and steam. The combustion of 

syngas with air provides energy to the endothermic reactions that occur in the fuel cell. 

The SOFC uses this final product, or syngas, for its hydrogen content, as will be seen in 

Chapters 3 and 4. Thus, the reactor uses the syngas it creates to fuel itself and the fuel 

cell. 

 

A thermodynamic model of an SOFC coupled with a biomass-to-syngas reactor will be 

developed in order to calculate potential energy and power that can be extracted from the 

fuel cell. Some of this energy, which will be released in the form of heat, will also be 

calculated in order to examine the possibility of reducing the required combustions in the 

reactor. Through these combustion reductions, less startup fuel would have to be 

combusted with air in order to provide energy to the endothermic reactions in the reactor; 

the fuel cell will ideally provide heat for these reactions. Four different cases for this 

process will be carried out for this model: 

 

1)  The first and main case will deal primarily with syngas entering the fuel cell, 

or only carbon monoxide and hydrogen entering the anode. Since biomass is not 

completely carbon neutral, the other three cases will take a closer look at real values of 

reactor byproducts, which mainly consist of hydrogen, carbon monoxide, carbon dioxide, 

methane, and water. Thus, these elements will enter the anode side of the fuel cell. These 

other three cases will examine three different feedstocks for the reactor: pure carbon, 

biomass, and coal. 

2) Since the calculations that went into modeling the reactor [3] assume pure 

carbon as feedstock, this will be the second case to be examined. As opposed to real coal, 

pure carbon does not contain any volatile matter. Thus, it does not need to undergo 

devolatilization or partial combustion.  
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3) Biomass will be the third case to be examined in order to see how well this 

cleaner feedstock compares to coal 

4) Coal will be the fourth case to provide a baseline for other feedstock 

 

Before the scope of this thesis narrows into this area of SOFC coupled with a biomass-to-

syngas reactor, the broader impact of the SOFC and its fuel must first be understood in 

terms of its sustainable impact. 

 

1.1 Broader Impacts  

 
 
1.1.1 Energy Sustainability of Hydrogen 
 
 

The global demand for fuel increases as the global population increases day by 

day. Oil is a scarce commodity that cannot accommodate for this demand as it increases. 

Statistics show that growth in world population has resulted in an increase of 35% in 

world oil demand over the past 30 years. The conventional oil reserves may last only 25 

years; a renewable means of fuel must be found [4]. Hydrogen is currently perceived as 

an attractive alternative to carbon-based fuels. Unlike carbon-based fuels, hydrogen is a 

renewable source similar to solar energy and biomass. The amount of energy released 

from the combustion of hydrogen is higher than that released by coal due to its lower 

heating value being up to 4x higher than that of coal [5]. The main distinction between 

hydrogen and carbon based fuel is that hydrogen is not a primary energy source [6]. It is 

an energy carrier that must be produced by another means of energy.  

 

The current hydrogen economy encompasses three different areas: production, storage, 

and transportation. For this thesis, the hydrogen will be assumed to be directly fed into a 

solid oxide fuel cell. Since packaging and storage will not be an issue in this process, the 
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analysis of the hydrogen economy will be brief. As mentioned before, hydrogen is an 

energy carrier that must be generated from another source. There are many methods that 

are available on the market which are used to produce hydrogen. The most common and 

cheapest method is steam methane reformation. Although it is the cheapest method, 

significant amounts of carbon are still emitted into the atmosphere based on the fossil fuel 

being used. Storage is an area that needs much improvement. At STP, hydrogen gas is 

3000 times larger in volume than an equivalent amount of gasoline. It can be compressed 

and cryogenically liquefied to allow for more compact storage, but at a cost: roughly 60% 

loss in energy [6]. Transportation isn’t as big an issue as storage and production, 

especially if the hydrogen is liquefied. The main downside is that the cost of transporting 

hydrogen is about 15 times higher than an equivalent amount of liquid hydrocarbon fuel; 

this is due to hydrogen having a very high calorific value by mass but very low calorific 

value by volume [7].  

 

Thus, much of the environmental problems arise in the production process. The 

environmental impact of hydrogen derived from fossil fuels can be linked to the process 

that is used to carry out the conversion of biomass into syngas. The reduction targets in 

greenhouse gases set by the Kyoto Protocol has not only influenced government to make 

more investments in cleaner technology and resources, but it has also influenced 

corporations to take part in this global endeavor. For example, Shell and British 

Petroleum has invested several billion dollars in the R&D and commercialization of the 

hydrogen energy [8]. Several demonstration projects have been made in order to bridge 

the gap between R&D and the commercialization level.  

 
 
1.1.2 Biofuels and Sustainability 
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Biomass is a renewable energy source that harnesses the hydrogen and carbon 

from living or recently living things. An attractive feature of biomass is that it is very 

diverse in the sense that it can be found from many sources, including wood residue, 

organic waste, and animal waste. The current vision of the DOE’s Biomass Program is a 

sustainable renewable energy solution that displaces fossil fuel, enhances energy security, 

promotes environmental benefits, and creates economic opportunities across the nation 

[9]. Thus, the sustainability of biofuel production depends on a spectrum of variables. 

One of the variables has to do with environmental sustainability. Although there is a 

reduction in the emission of carbon dioxide in burning biomass-based fuel, there is still a 

significant amount that is still being released into the atmosphere. One of the key benefits 

of biomass is that as it grows, biomass absorbs this carbon dioxide back from the 

atmosphere, thus allowing it to be recycled. Studies have shown that, based on the type of 

biomass-based fuel being used, greenhouse gas emissions can be reduced by as much as 

86% [9]. This advantage, however, depends on the sustainability of both the agricultural 

and forestry sector of the biomass source. In order for there to be continuous utilization of 

a particular biomass source, the soil must be kept healthy. Sustainable soil health 

involves minimizing soil erosion, maintaining essential nutrients, and protecting the soil’s 

physical and biological attributes [9]. Water quantity and quality must be maintained as 

well. 

 

It should be noted that these biofuels are not completely carbon neutral. Many of the 

processes used in the production and maintenance of these biofuels results in the 

emission of other greenhouse gases. Carbon is ultimately released in machinery usage 

and the transport of the biofuel to its point of use. Another possible leakage of carbon 

dioxide can be attributed to the cutting down of a forest to grow biofuels. This huge 

initial release of carbon dioxide can take the biomass anywhere between 50-100 years to 

compensate. Nitrous oxide is also released through the use of fertilizer, thus adding to the 
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overall amount of greenhouse gases being released into the atmosphere. Thus, the actual 

carbon reduction of greenhouse gases depends on the way it is grown, where it is grown, 

and how it is converted from the feedstock into the biofuel [10]. Another drawback has to 

do with possible deforestation. As more and more rainforests are cut down, more carbon 

dioxide ultimately enters the atmosphere. For this reason, DOE has made larger 

investments in forest restoration and bio-refineries [9].  

 
Another environmental impact of biofuel has to do with food security. In poverty-stricken 

nations, sustainability of biomass reaches a conflict between the environment and the 

economy. The diversion of arable land for food grown crops to the production of crops 

which are then burned for fuel is not beneficial for poor people that struggle for food. The 

demand of these biofuels from the U.S. thus raises the price for agricultural commodities. 

What might be beneficial to the economy can consequently be detrimental to a starving 

nation if the farmers are receiving higher returns on biofuel over food crops [10].  

 
 
1.1.3 Economic viability  
 
 

Biomass crops are currently used as feedstock for the production of electric 

power, liquid fuels, and chemicals. The main reason as to why the DOE did not fully 

advocate the production of biomass is because it used to be a niche market where 

electricity was expensive and fuel was cheap or incurred a disposal cost [2]. In order for 

biomass production to become workable with DOE’s projected costs, there had to be:  1) 

an increase in fossil fuel prices, 2) rapid market development of biomass-based co-

products, 3) and more efficient gasification and turbine systems for power generation. 

The first and second criterions have already been fulfilled; this thesis will help advocate 

the third criterion. In response to the current predicament of our polluted atmosphere, 

many countries around the world have shifted focus to biofuel industries. The production 
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and demand of these industries are primarily shaped through government policy, in 

response to the DOE, in terms of finance and regulation [12]. Fuel tax exemptions are 

being allocated by the government to companies that choose to produce biofuels in hopes 

of a more sustainable future. As mentioned before, the biofuel comes from the biomass 

that is grown in crops by farmers around the world. The main dilemma comes into play 

when farmers would rather produce biomass crops over food crops in order to receive a 

higher rate of return on their investment. 

 
The chief economic setback of the biomass-based hydrogen economy is the production 

cost. This cost encompasses the capital equipment costs, feedstock cost, availability cost, 

transport cost, and operating costs. In order for there to be a better understanding of the 

production cost of biomass-based hydrogen, Table 1-1 has been compiled by Balat et al. 

[13] illustrating optimistic production costs of hydrogen from various sources: 

 
Table 1-1: Product cost of hydrogen from various sources [13] 

Method $/kg  
Steam methane reforming 0.78 

Coal gasification 1.41 

Hydrocarbon partial oxidation 0.99 

Biomass gasification 1.24 

Biomass pyrolysis 1.26 

Electrolysis 2.88 

Solar electrolysis 4.29 

Photobiological production 3.77 

 
 
As can be seen in Table 1-1, steam methane reformation is the cheapest method available 

on the market. However, as mentioned before, carbon emissions for this method are 

significantly high and often times require sequestration [14]. Hydrocarbon is the next best 

alternative in terms of price, yet there still remains the underlying carbon emission 

problem. Biomass gasification and pyrolysis are thus shown to be the most overall 
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economically favorable processes for renewable hydrogen production. Several studies 

have shown that this production cost is strongly dependent on the cost of feedstock, 

which is relatively inexpensive. 

 

1.2 Important Applications 

 

1.2.1 Energy Grid: Cogeneration 
 
 

Cogeneration, or combined heat and power (CHP), is a relatively clean and 

efficient approach to generating power and thermal energy from a single fuel source. The 

concurrent production of electrical and thermal energy has the potential to reduce primary 

energy consumption, greenhouse gas emissions, and air pollutants. Thermal energy is 

recovered from waste heat in order to provide water heating and space heating to any 

energy system, building, or facility. While the conventional method of producing usable 

heat and power separately has a typical combined efficiency of 45%, cogeneration 

systems can operate at levels as high as 90% [15]. These high efficiencies mainly stem 

from the utilization of the waste heat in order to reduce the energy loss that would 

otherwise ensue through the generation of power alone. It should be noted that the 

primary focus of this thesis is to utilize the SOFC not only for its electricity, but also for 

its waste heat in order to reduce thermal energy requirements of the biomass gasifier. 

Micro-combined heat and power systems integrated with PAFCs, or Phosphoric Acid 

Fuel Cells, comprise the largest market segment of existing CHP products worldwide, 

with SOFC still being in the prototype stage of development. The main competition of 

this combined technology is gas, oil, and electric furnaces. From a cost perspective, the 

capital cost of SOFCs does not make it a practical competitor. Studies have shown that if 

a small SOFC is run on constant power with an electric power output of 1-2 kW, then it is 

ultimately a competitor of electrical furnaces, but not by much. The high capital cost 
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along with high operational cost of SOFCs due to inflexibility to shutdowns and turn-offs 

does not make it a competitor to the gas heating system [16]. 

 
The main challenge with micro-cogeneration systems combined with SOFCs is that its 

theoretical electrical efficiency of 45% not only compares with its actual prototype  

electrical efficiency, but it does not come close to actual efficiencies up to 55% that can 

be attained by combined cycle central power plants [17]. Due to this, SOFCs have yet to 

transition from the prototype stage to commercialization. On the larger scale, however, it 

is anticipated that efficient natural gas fuel cell technology will offer an economically and 

environmentally attractive alternative to both combustion cogeneration plants and 

centralized power generation [18]. These economic incentives are essentially seen by the 

customer in the form of cost incentives and rebates through the renewable energy policies 

being established by government on both the state and federal level. Credit is also 

possible by selling excess energy back to a utility grid.  

 
 
1.2.2 Off-Grid  
 
 

Remote homes near rural industries are typically too far away from public 

utilities; they cannot rely on municipal water supply, natural gas, electrical power grid or 

similar utility services. The people who live in these homes typically generate their 

electricity through renewable means of energy, such as solar or wind. As long as there is 

an electrical generator and a fuel reserve other than diesel, the environmental impact of 

these homes are kept much lower than the homes that rely on the energy grid. Just like 

these independent homes, data centers also rely on independent power sources. This idea 

of reserved power has also been implemented into current data centers through the use of 

a UPS, or uninterruptible power source. Dips, single-phase disruptions, and outages are 

becoming a serious concern for the economic future of the country’s high tech industries 
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because a power outage could mean heavy losses in productivity or risks of damaging 

equipment. Thus, these UPSs provide backup power to a load when the input lines to the 

public utilities fail. SOFC-based UPS technologies are still in the development stage due 

to the reoccurring issue of storage of sufficient hydrogen gas to supply a high load at 65% 

conversion efficiency for at least 8 hours of service [19]. Thus, many developers have 

chosen to extract hydrogen from more viable sources of fuel, including methane.  

 
As mentioned before, fuel reserves are required for autonomous homes to remain 

independent of the grid. Many remote areas currently employ photovoltaic with battery 

storage for backup [20]. The problem with this cycle is that the batteries can only store 

energy for a relatively short amount of time and requires replacement after a few years. 

Hydrogen storage, on the other hand, can provide low loss backup for longer periods and 

never has to be replaced. One study [20] in particular had shown that the replacement of 

the battery with a PEM fuel cell, PEM electrolyser, and hydrogen storage had provided 

not only a volumetric advantage, but also a reduction in the overall carbon footprint. An 

electrolyser is a device that uses electrolysis in order to convert water into hydrogen.  The 

photovoltaic provides direct energy to the home during the day. Excess energy would be 

fed to the electrolyser to be converted into hydrogen and stored for evening use by the 

fuel cell when power load is much less. Since hydrogen storage is very inefficient in 

today’s economy due to hydrogen gas being 3000 times larger in volume than an 

equivalent amount of gasoline, many developers are trying to reduce the requirement of 

hydrogen fuel reserves by combining the fuel cell with other renewable sources of 

energy.  

 

1.3 Alternative Technologies 
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The hydrogen economy is not currently the dominant source of fuel; coal is. Due to 

this, coal-derived syngas along with coal itself and the technologies that use this coal will 

be discussed in this section. The fuel cell will first be compared and contrasted to the 

internal combustion engine and power plants. We will then go one step further and 

discuss alternative means of deriving syngas through coal gasification. 

 
1.3.1 Electricity Generation from Fuels 

 
 

1.3.1.1 Internal Combustion Engine  

 

This thesis mainly concerns fuel cells in stationary applications. However, the 

fuel cell has many more applications, including moving applications. The fuel cell is 

ultimately a means of using the fuel it is given in order to provide electrical power to an 

external source. Given that fuel cells are targeting the transportation market, the power 

capabilities of a fuel cell will be compared to the internal combustion engine to give the 

reader a more clear understanding of the technological advances in the fuel cell market.  

 
If the hydrogen economy replaces the current fossil fuel economy, our means of 

transportation will change as well. The power supply of boats, cars, and airplanes 

currently comes from the use of the internal combustion engines, or ICEs. The only 

similarity between a fuel cell and an ICE is that they generate power from a fuel, and the 

main difference between these two entities is the way the fuel is used. Advantages of the 

fuel cell over the ICE are that it can achieve efficiencies up to 2-3 more than an ICE and 

it is quieter due the simple fact that there are no moving parts in a fuel cell [21]. This high 

efficiency can be attributed to the fuel cell being able to extract more power out of the 

same quantity of fuel when compared to traditional combustion power of gasoline. ICE’s 
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operate at high temperatures of about 2300° C, while SOFCs usually operate at a range 

between 800° C to 1000° C [22]. Apart from the obvious advantages between these two 

power generators, there are also inherent disadvantages. The cost of an ICE is $50/kW of 

capacity while the cost of a hydrogen fuel cell is about $1500-3000/kW [22]. Until this 

cost barrier is reduced, there is no cost incentive for a potential customer to purchase a 

fuel cell operated vehicle. The main purpose of this section is to relate a fuel cell with an 

ICE. Thus, it will be left to the reader to research the functionality and other related areas 

of the ICE. 

 
In order for the reader to fully realize the environmental impact of both a fuel cell vehicle 

and an ICE, a life cycle assessment must be carried out. The life cycle of a vehicle 

consists of the total emissions related to the production, assembly, distribution, 

maintenance, and disposal of the vehicle. In order to get an idea of this life cycle 

comparison between a fuel cell and an ICE, we summarized the work of Zamel et al [23]. 

Results had shown that the material production had contributed the most carbon 

emissions related to thermal energy and electricity generation when compared to the 

other steps in the vehicle life cycle. This material production stage was strongly 

dependent on the weight of the material being used. The fuel cell vehicle was shown to 

use 2x the amount of copper and 1.5x the amount of other materials than an ICE. The 

total result of the energy consumption of the future life cycle of an ICE had shown that it 

was about 4 GJ less than that of a fuel cell vehicle, or FCV. This study did not take into 

account the actual operational use of both vehicles. This extra factor would have shown 

that carbon emissions from an ICE would have greatly outweighed carbon emissions 

from the material production step in the FCV life cycle.   

 
1.3.1.2 Power Plant  
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Power plants have been around for a long time due to advances in the technology 

it currently uses. For example, larger and more efficient steam turbines and electric 

generators have made large power plants more convenient for power generation. Another 

favorable characteristic about them is that the fuel it uses is currently abundant in nature. 

In a typical coal combustion-based power plant, heat from coal being burned in the boiler 

furnace is used to boil water in the boiler, making steam that drives a steam turbine-

generator. In the burning of coal in the furnace, carbon dioxide is also emitted into the 

atmosphere. These power plants are currently the largest producers of carbon dioxide 

[24]. In some coal combustion-based power plants, only a third of the energy value of 

coal is actually converted into electricity. Thus, pollution outweighs the amount of energy 

being extracted from these fossil fuels. Many methods exist that improve on the 

efficiency of these fossil fuel power plants, one of them being coal gasification, as will be 

explained in Section 1.3.2. Another method would be to co-fire the fossil fuel with a 

carbon neutral fuel, like biomass, to mitigate the global warming problem.  

 

One of the direct benefits of co-firing is that existing plants can use other fuels that might 

be cheaper and/or environmentally friendly. The technological feasibility and future 

commercial prospect of biomass co-firing with coal is a feasible and effective technology 

for reducing greenhouse gas emissions, particularly sulfur and mercury, using existing 

coal-fired plants [25]. Tests and demonstrations have shown that co-firing coal with low 

percentages of biomass can raise the electrical efficiency up to 37% from 15% [26] and 

keep the system stable. As will be seen in Chapter 2, the main barrier preventing the use 

of biomass is the cost related to fuel supply. Factors that affect fuel supply include 

climate, closeness to population centers, and dependable supply. Another issue that must 

be addressed has to do with co-firing coal with high percentages of biomass, which leads 

to instability of the system. This instability can be attributed to the biomass ash 

containing reactive salt compounds that have the potential to create slagging or fouling in 
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the combustor [27]. These percentages can be controlled if the fuel-handling and feed 

equipment of the current coal power plant are retrofitted to meet the needs of biomass. 

Thus, this is one of the many options available that requires the least amount of change 

while still significantly reducing the carbon footprint of current coal fired power plants. 

 
1.3.2 Syngas Generation: Coal Gasification 
 
 
1.3.2.1 Integrated Gasification Combined Cycle 

 
 

Coal gasification is a much cleaner way of converting coal into a product of 

energy. Instead of burning coal directly, gasification breaks down coal into its chemical 

constituents. The environmental benefits of gasification stem from the capability to 

achieve extremely low levels of ��� and ��� and particulate emissions from burning 

coal-derived gases, thus furthering national goals to protect the environment. This is done 

by introducing coal to superheated steam and controlled amounts of air under high 

temperature and pressure. Chemical reactions ensue and eventually produce a mixture of 

CO, ��, and other gaseous chemical substances. IGCC, or integrated gasification 

combined cycle, is a technology that uses coal gasification through the utilization of two 

turbines. The coal gases mentioned earlier are fired in a gas turbine to generate one 

source of electricity while the exhaust gases from this gas turbine and the gasification 

process itself are used to generate steam for use in a steam turbine-generator. This dual 

source of electricity can potentially boost fuel efficiency up to 50% or more [28], thus 

making it an attractive source of electricity without having to change the feedstock. The 

flexibility of an IGCC allows it to also convert any carbon based feedstock, including 

waste and biomass, into any type of product, including fuels such as hydrogen. In terms 

of versatility, this feedstock and product flexibility gives IGCC dominance over other 

gasifiers that are confined to a single feedstock and product. This flexibility, along with 
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the fact that coproduction of hydrogen has an incremental cost less than 10% of the initial 

IGCC plant cost, gives the IGCC the potential to be the backbone of the hydrogen 

economy in the future. 

 
The main setback of an IGCC plant, as with many other clean technologies, is cost. The 

capital cost for a natural-gas combined cycle is currently about one-half the cost of a coal 

IGCC plant [29]. In order for power plants to integrate with the IGCC, there has to be a 

matching economy to scale as well as fuel cost advantages. Nevertheless, the DOE 

believes that by 2015, efficiency of an IGCC will be above 60% and capital cost will be 

about 58% lower than its present capital cost [29]. The DOE is currently investing into 

R&D programs to expand its scope of demonstration projects to incorporate fuel cells as 

well, as will be seen in the next section.  

 
 

1.3.2.2 IGFC  

 

The main purpose of this report is to examine SOFC power characteristics and 

heat output based on syngas input. In an integrated gasification fuel cell, or IGFC, coal is 

the typical fuel used in the production of syngas. IGFC combines coal gasification 

technology with an SOFC in hopes of achieving DOE’s goal of 60% electrical efficiency 

while separating 90% of the evolved CO2 amenable to sequestration [30]. Methods used 

to help IGFC achieve these goals include using efficient catalytic hydro-gasifiers and 

direct internal reformation of methane. The main barrier preventing coal gasification 

coupled with an SOFC from achieving high efficiency numbers similar to that of biomass 

gasification coupled with SOFC has to do with carbon dioxide sequestration. Thus, 

electrical efficiency of the IGFC is strongly dependent on the gasifier being used. Higher 

electrical efficiencies would be achieved if there was not a need to remove the carbon 

from the atmosphere.  



16 

 

 
In addition to higher efficiencies and more efficient carbon sequestration, IGFC’s have 

other advantages compared to a conventional IGCC. The raw water usage of an IGFC 

plant is about half that of an IGCC when wet cooling towers are employed for plant heat 

rejection. Since no high temperature combustion of fuel with air takes place, there are 

virtually no nitrogen oxide emissions produced by an IGFC [30]. It should be noted, 

however, that these aforementioned disadvantages might be alleviated through the 

coupling of an IGCC with a fuel cell, which is still being researched by DOE. These 

cleaner technologies have yet to be adopted due to the repeated cost barrier that 

continually arises.  

   
 

2 BACKGROUND 

 
 

We will now shift focus towards the properties, functionality, and basic 

procedure of three different entities directly relating to this thesis: the biomass feedstock, 

the biomass-to-syngas reactor, and the solid oxide fuel cell.  

 

2.1 Biomass and Bio-oil  

 
 
 Before the methodology behind the primary objective is introduced, it is best for 

the reader to understand the overall process. A diagram for the analysis of this thesis can 

be seen in Figure 2-1: , with biomass being the starting point of the procedure:  

 



17 

 

 
Figure 2-1: Conversion of biomass to electricity. Pyrolysis is executed in order to rid the biomass 

of volatile matter and charcoal. This volatile matter, or bio-oil, is fed into the reactor, which further 

rids the volatile matter of char. The combination of combustion and gasification in the reactor 

converts this carbonaceous feedstock into syngas. This syngas, which is high in hydrogen and 

carbon content, is fed into the SOFC to produce electricity with carbon dioxide and water as 

byproducts. 

 

Biomass is often times used to create bio-oil and syngas through pyrolysis. Syngas is a 

non-condensable gas consisting collectively of hydrogen, carbon dioxide, carbon 

monoxide, and light molecular weight hydrocarbon gases [31]. Bio-oil comprises of 

condensable vapors that normally contains very high levels of oxygen. Pyrolysis, which 

is an endothermic process, has mainly to do with the process before combustion. 

Pyrolysis is the initial process that takes place when organic matter is first heated in the 

absence of oxygen to produce combustible gases. Pyrolysis at high temperatures 

decomposes biomass into charcoal and other volatile matter. This volatile matter takes 

the form of bio-oil at room temperature and syngas at much higher temperatures. In order 

for more syngas to be produced, the pyrolysis process must not only be a precursor to 

combustion, but also gasification at high temperatures. Biomass gasification is the 

conversion of a carbonaceous feedstock by partial oxidation into a syngas consisting 

primarily of hydrogen and carbon monoxide. The biomass-to-syngas reactor analyzed in 

this thesis does not incorporate partial oxidation like other gasifiers do; steam reformation 

is executed through the combustion of syngas with air. This steam reformation is 

employed to the bio-oil in order to maximize hydrogen and carbon monoxide 

concentration and reduce hydrocarbon aromatics and carbon deposits. This syngas then 
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travels to the SOFC, where electricity is produced along with carbon dioxide and water as 

byproducts.  

 
 
2.1.1 Thermochemical and Physical Properties  
 
 

Bio-oil has an elemental composition similar to that of its parent, biomass. Unlike 

coal, the elemental composition of biomass has a low content of carbon and ash. Like 

coal, however, this renewable fuel has inherent disadvantages as well.  A disadvantage of 

bio-oil is that it has a lower heating value of about 26 
	


��
 when compared to that of fossil 

fuel, which has about 42-44 
	


��
  [31]. This lower heating value thus prevents it from 

releasing more heat during combustion. Another disadvantage is that it is highly acidic, 

thus making it very difficult to transport and store. This is the main reason as to why bio-

oil is often encased in stainless steel containers. However, it does have the added 

advantage of emitting less nitrogen emissions, thus lowering a small portion of 

greenhouse gases. The specific gravity of bio-oil is typically larger than water and the 

original biomass, thus making it heavier after the pyrolysis process. Typical bio-oil 

contains 55%-64% C, 5%-8% ��,  27%-40% ��, 0.05%-1.0% ��, and 0.03%-0.30% Ash 

[31]. Thus, it isn’t uncommon for most biomass feedstocks to have significant amounts of 

nitrogen and ash that can potentially pose a threat to the machinery being used to process 

it. Based on the aforementioned elemental composition and assuming a 60% yield of 

water-free bio-oil from biomass, 12–13 kg of hydrogen can potentially be produced from 

100 kg of biomass [31]. This low yield of about 8% is mainly dependent on the specific 

feedstock being used, as will be seen in the next section. 

 
 
2.1.2 Feed-stocks Comparison – Pros and Cons 
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The most common types of biomass, which will be examined in this section, are 

wood, straw, and bagasse. About 21 million metric tons of bagasse, which is fibrous 

matter that remains after sugarcane stalks are crushed, is produced as by-product per 

year. Heat produced by combusting the bagasse is typically used for steam generation and 

energy use in other sugar industry sectors [32]. Due to their high moisture content, there 

are typically dried prior to the pyrolysis process to reduce moisture content of bio-oil. 

Straw, on the other hand, is an agricultural byproduct of wheat. Without straw, most 

people today would not have cereal to eat for breakfast. Wood comes directly from 

plants. They are typically used for applications other than fuel, such as construction and 

furniture. As mentioned before, the environmental impact of using wood is dependent on 

the method used to attain it. For example, the chopping of an entire tree can result in 

massive amounts of carbon dioxide being released into the atmosphere all at once. Table 

2-1 will be the foundation for what is to be discussed in this section: 

 
Table 2-1: Analyses of selected biomass material [32] 

 C H N S O Cl Ash Volatile 
matter 

Fixed 
carbon 

Bagass
e 

44.8 5.4 0.4 0.01 39.6 - 3 69 29 

Wood 50 6 0.3 - 42.4 - 0.5 80.2 19 

Straw 41.8 5.5 0.7 - 35.5 1.5 13.7 66.3 21.4 
 
 

As can be seen in Table 2-1, bagasse has the highest carbon content with respect to the 

other biomass materials. Much of this fixed carbon, which converts to char, is often 

difficult to vaporize, even at temperatures as high as 1000° C [32]. Nonetheless, when it 

does vaporize, the carbon based non-condensable gases are typically CO, CO�, 

CH�,C�H�, and propane [32]. The straw has a high content of chlorine, an element which 

is very undesirable in power plant fuels. The amount shown in the table exceeds the 
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chlorine content of various coals, which can result in corrosion in the machinery being 

used to process the biomass. Straw also has the highest content of ash, which is directly 

related to ignition and combustion problems [33]. Based on Table 2-1, wood has the 

most volatile matter content out of the three, thus allowing for a higher bio-oil yield. 

Although it has less ash and virtually no chlorine, it still has the highest amount of 

carbon. Thus, higher contents of CO and CO�are more likely to develop after 

gasification. Nonetheless, it is common to see power plants using wood, the oldest type 

of fuel known to man, over other types of biomass to be co-fired with coal.  

 

2.2 Pyrolysis Processing of Biomass 

 
 
 As mentioned before, pyrolysis is a form of incineration that chemically 

decomposes organic materials by heat in the absence of oxygen. These organic materials 

are transformed into gases, small quantities of liquid, and solid residues containing 

carbon and ash. As mentioned before, some biomass materials are volatile. This results in 

the act of thermal desorption, which is the removal of an absorbed or adsorbed substance 

[34]. The products of biomass pyrolysis include biochar, bio-oil, syngas, carbon dioxide, 

and methane. The content of gaseous and solid material depends on the final temperature 

and thermal environment. Steam reformation is used in the gasifier in order to achieve the 

desired hydrogen and carbon content of the final syngas byproduct.  As mentioned 

before, this is an endothermic process; heat transfer is a critical area in pyrolysis. 

Pyrolysis is dependent on both the particle size and moisture content of the feedstock 

[35]. Small moisture content can result in formation of only dust while large particle sizes 

will not allow rapid heat transfer through the particle. There are currently two types of 

pyrolysis: fast pyrolysis and slow pyrolysis. Slow pyrolysis takes several hours to 

complete with biochar as the main product while fast pyrolysis takes seconds to complete 

with higher yields of bio-oil and syngas. For this analysis, it will be assumed that fast 
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pyrolysis is being executed to produce more viable feedstock for the biomass-to-syngas 

reactor.  For fast pyrolysis, a rapid rate of cooling and heating are required to minimize 

the potential for secondary reactions. These secondary reactions often result in reduction 

of quality and liquid yield [36]. 

 

2.3 Gasification Process  

 
 

Pyrolysis is the precursor to combustion, which is subsequently the precursor to 

gasification. Gasification is the conversion of a carbonaceous feedstock to syngas at high 

temperature through the reaction of the raw material with oxygen and/or steam. The 

production on syngas occurs through the partial combustion of solid fuel, in this case 

biomass, at temperatures as high as 1000° C. As mentioned before, the biomass-to-syngas 

reactor analyzed in this thesis does not incorporate partial combustion; startup fuel or 

syngas is combusted with air to provide heat for gasification. The composition of the 

product gas depends mainly on the fuel, gasifier type, and gasification agent. For this 

thesis, the fuel will be varied between coal, biomass, and pure carbon. Complete 

combustion generally contains nitrogen, water vapor, carbon dioxide, and oxygen [37]. 

Incomplete combustion, which occurs when there is a surplus of solid fuel, generally 

contains combustible gases like hydrogen and carbon monoxide.  

 
There are four distinct process involved in most gasifier designs: drying of the fuel, 

pyrolysis, combustion, and gasification. Higher than usual levels of moisture in the 

feedstock raises the energy requirement for evaporation in the gasifiers. These high 

moisture levels causes the reaction temperature to decrease, which results in poorer 

product gas with higher levels of tar [38]. Due to this fact, forced drying of the biomass 

becomes necessary in such systems. In these driers, the medium needed to dry the solid 

may be selected as pure vapor or a mixture of vapor and non-condensable gas or 
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combustion products [39]. In the case of SOFC, hot exit gas streams of the fuel cell may 

be circulated to the drier to reduce the moisture of the biomass.  

 
Once the bio-char and volatile products are extracted from biomass through pyrolysis, 

combustion becomes the next step in gasification. In partial combustion, carbon dioxide 

is obtained from carbon in the volatile products and bio-char from pyrolysis and water is 

obtained from hydrogen. The combustion reaction is overall exothermic, as can be seen 

in Equations 1 and 2:  

 

C + O� = CO� (+ 393 MJ/kg mole)    Equation 1 

2H� + O� = 2H�O (- 242 MJ/kg mole)   Equation 2 

 

Thus, this reaction of carbon with oxygen assists in the endothermic reactions that take 

place in other reactions in the gasifier. The products of partial combustion, as can be seen 

above, eventually pass through a hot charcoal bed where the following reactions [37] take 

place.  

 

C + CO� = 2CO (- 164.9 MJ/kg mole)                     Equation 3 

C + H�O = CO + H� (- 122.6 MJ/kg mole)    Equation 4 

CO + H�O = CO� + H� (+ 42 MJ/kg mole)    Equation 5 

 

Equation 3 is known as the Boudouard reaction. Its primary outcome rids the gasifier of 

excess carbon dioxide by combining it with the leftovers of the pyrolysis products in 

order to form carbon monoxide. Equation 4 is known as Steam-Carbon reaction, which 

is carried out to increase the hydrogen and carbon monoxide in syngas while 

simultaneously reducing the carbon content. The water gas shift reaction is shown in 
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Equation 5, which is favored due to the fact that it is not only exothermic, but it also 

increases the hydrogen content of the syngas. It should be noted that this reaction is 

sensitive to temperature; the reaction shifts towards the reactants at higher temperatures. 

It is also not uncommon for there to be significant amounts of methane in syngas at lower 

temperatures. In cases like this, steam methane reformation is typically carried out by 

combining methane with steam to produce carbon monoxide and hydrogen. The only 

downside to this reformation is that the reaction itself is strongly endothermic. Thus, 

gasifiers are typically kept at temperatures that make methane content insignificant. 

Nevertheless, the final ideal product of the gasifier is a hydrogen rich syngas with low 

amounts of carbon monoxide.  

 
 

2.4 Biomass-to-Syngas Reactor:  

 
 

 The reactor [3] that is to be analyzed for this thesis was created by Alyaser et al. It 

effectively executes the use of steam gasification of carbonaceous feedstock by indirectly 

heating the reacting flow through high temperature heat exchangers. The function of 

these heat exchangers is to heat up incoming water through the combustion of fuel and 

air. The main difference between this gasifier and other gasifers on the market is that 

there is virtually zero combustion with oxygen, thus preventing the production of poor 

quality products. Air separation is not required due to its decoupling of the heat source 

from the gas synthesis reaction. This means that heat produced at some parts of the 

reactor are used to drive the endothermic reactions at other parts of the reactor, thus 

lowering energy losses that are normally seen in other gasifiers that require partial 

combustion with oxygen. The main goal of this reactor is to reduce emissions and 

increase efficiency by incorporating combustion of startup fuel, or syngas, with air as 
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opposed to relying on partial combustion. Figure 2-2 shows a detailed schematic created 

by Alyaser et al [3]. 

 

 
 

Figure 2-2: Schematic Diagram of biomass-to-syngas reactor [3]. Feedstock is fed into the 

reactor and continually mixed with steam at different temperature levels in order achieve 

desired syngas composition. There are 4 parts to the reactor: the pre-heating zone, the primary 
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reactor, the secondary reactor, and the secondary heating zone. The combustion of fuel with air 

provides heat for the endothermic reactions taking place in the gasifier. 

 

 
2.4.1 Reactor Functionality 
 
 
2.4.1.1 Pre-heating Zone  

 
 

In order for the feedstock to convert into syngas, it must be continually mixed 

with high temperature steam until the desired concentration levels are reached. There are 

4 parts to the reactor: the pre-heating zone, the primary reactor, the secondary reactor, 

and the secondary heating zone. As can be seen in Figure 2-2, the shaded grey area is 

separated into 4 pathways. Each pathway represents the aforementioned 4 parts of the 

reactor in numerical order. In the first pre-heating stage, water is fed into a gas-to-liquid 

heat exchanger that is heated up to steam through the combustion of fuel with air. 

Temperatures up to 1800°C are reached in this zone. This combustion of fuel with air 

thus drives the endothermic chemical reaction in the reactor core, where the superheated 

steam mixes with the feedstock that is fed into the primary reactor at a different location. 

The pre-heating zone has a high surface area to volume ratio to effectively transfer heat 

to the primary reactor and secondary heating zone to ultimately accelerate gasification. 

 
 
2.4.1.2 Primary Reactor 

 
 

Since devolatilization of feedstock begins to occur in a temperature range of 350-

800°C, the primary reactor is maintained at a temperature below 1000°C. The purpose of 

the primary reactor is to separate and remove the inorganic solids from the gaseous 

mixture in the form of ash or slag before it enters the secondary reactor, as can be seen in 
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Figure 2-2. Once the mixture has reached the secondary reactor, which is kept at a 

temperature above 1260°C, the syngas is driven further to completion through the 

removal of methane, water, and carbon dioxide. Thus, the concentrations of hydrogen and 

carbon monoxide are increased to provide higher quality syngas to the fuel cell. Since the 

secondary reactor has a high surface area to volume ratio, it is able to efficiently receive a 

higher amount of heat from both the primary reactor and secondary heating zone. 

 
 
2.4.1.3 Secondary Reactor/Secondary Heating Zone 

 
 

In the secondary heating zone, air is again combusted with fuel to produce heat 

for the primary and secondary reactors. Additional superheated steam is generated by the 

secondary heat exchanger to ultimately mix with the gaseous mixture to achieve the 

desired concentration levels. Like the primary and secondary reactors, this zone also has 

a higher surface area to volume ratio to facilitate more efficient heat transfer to the 

reaction zones. Steam and exhaust gases are released into the atmosphere.  

 
The main variables for this reactor are feed rate, water flow rate, and fuel flow rate. Each 

of these variables are adjusted through the use of sensors and computer-controlled 

instruments until the desired concentration levels are achieved. The endothermic 

reactions that are required in the reactor will be alleviated through the heat that is 

released by the fuel cell, thus reducing the amount of fuel needed to combust with air in 

order to heat the water into steam. Thus, the heat from the fuel cell will ultimately reduce 

the required amount of heat needed for the conversion of biomass into syngas. 

 
 
2.4.1.4 Heat Assistance from SOFC   
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As mentioned before, biomass with high moisture can result in low efficiency. 

Thus, hot exit gas streams of the fuel cell may be circulated to the drier to reduce the 

moisture of the biomass. The overall electrochemical reaction for the fuel cell is 

exothermic. However, the endothermic reactions occurring in the reactor require energy 

in order to reduce the amount of fuel needed to combust with air. Thus, the goal of this 

system is to not only theoretically calculate the amount of electrical work being generated 

by the SOFC, but to also calculate how much heat can be sent over to the reactor from the 

fuel cell. Once all of the voltage losses are accounted for, the total voltage can be 

calculated. Since the total energy output takes the form of either electrical work or heat, 

one can simply subtract the electrical work from the energy input to get the heat 

dissipated for the SOFC. Any amount of fuel that is saved from combustion can 

ultimately reduce the GHG emissions from the exhaust pipes of this reactor. Another 

advantage is that the syngas that would normally be circulated for combustion would be 

transferred to the fuel cell instead, thus increasing the amount of syngas entering the 

SOFC. 

  
 
2.4.2 Typical Applications  
 
 

Typical application of any biomass gasifier includes the generation of power, fuel 

for transportation, and chemical synthesis. The derivation of syngas varies from gasifier 

to gasifer, mainly depending on reactor type, feedstock, and processing conditions. The 

main application of the product gas from the gasifier for this thesis is to generate heat and 

power. Apart from fuel cell application, these product gases can be injected into the 

combustion zone of the coal boiler of a co-firing plant. Percentages up to 10% are 

feasible without the need for substantial modifications to the coal boiler [40]. Product 

gases can also be fired in the gas engines of a CHP plant, resulting in 
�

�
 electricity and 

�

�
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heat. The technical challenge of this integration is the removal of tar, which can be 

detrimental to the entire process.  

 
The product gases can also be used in the transportation sector of our economy through 

the formation of synthetic fuels and methanol. Synthetic fuels such as gasoline and diesel 

can be produced from synthesis gas via the Fischer-Tropsch (FT) process. The FT 

synthesis involves the catalytic reaction of H2 and CO to form hydrocarbon chains of 

various lengths [41]. The FT process can be used to produce either a light synthetic crude 

oil and light olefins or heavy waxy hydrocarbons [40]. The synthetic crude oil can be 

hydrocracked to produce diesel fuel, lube oils, and naphtha, which is an ideal feedstock 

for cracking of olefins. Methanol, on the other hand, is currently produced on an 

industrial scale exclusively through the catalytic reaction of carbon monoxide and some 

carbon dioxide with hydrogen [40]. Both reactions are exothermic, thus allowing the 

excess heat to be used in another application.  

 
Chemical synthesis has a wide variety of applications, including the production of 

ammonia and hydroformylation of olefins. A major share of the ammonia that is made is 

used for fertilizer. The ammonia synthesis is a catalytic reaction between nitrogen and 

hydrogen. Two significant characteristics about syngas-based ammonia are that high 

concentrations of nitrogen are acceptable and the sum of the concentrations of carbon 

dioxide and carbon monoxide should be kept low [40]. Aldehydes and alcohols are 

produced through the hydroformylation of olefins on both an industrial and commercial 

scale. Hydroformylation is generally an exothermic, homogeneously catalyzed liquid-

phase reaction of the olefin with hydrogen and carbon monoxide [40].  Thus, biomass 

gasifiers can be used in a wide range of applications other than power generation.  

 
 
2.4.3 Alternative Biomass Gasifier Designs 
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There are many other types of biomass gasification technologies for hydrogen 

production that have been documented. Many of these gasification reactors extend 

beyond the scope of this thesis, which is why focus will be placed on reactors that most 

closely resemble the characteristics of the reactor used for this thesis. They can be 

classified into four major groups: fixed-bed updraft, fixed-bed downdraft, bubbling 

fluidized-bed and circulating fluidized bed. Since the fuel flows down in the reactor, only 

two of the gasifiers will be analyzed: the updraft gasifier and the downdraft gasifier. The 

main difference between the reactor and the two gasifiers mentioned above is that oxidant 

is not introduced to the feedstock in any part of the reactor used for this thesis. The role 

of oxidant is to combust with fuel in order to convert water into steam.  

 
 

2.4.3.1 Updraft Gasifier  

 
 

Just like the reactor, the biomass or bio-fuel is introduced at the top of the updraft 

gasifier. In the updraft gasifier, however, air and steam are introduced below the grate, 

which is below the gasifier, and moves up through the bed of biomass and char. 

Complete combustion of the char takes place at the bottom of the reacting bed; C�� and 

��� are liberated at this point. These hot gases (~1000° C) are passed through the bed 

above and are reduced to CO and �� while rapidly being brought to a lower temperature 

(~500° C) [42]. The main advantage of this gasifier is that it is able to handle biomass 

with high moisture content. As mentioned before, the most common types of biomass 

tend to have high moisture content. Since some gasifiers, like the downdraft gasifier, 

cannot handle this amount of moisture, they are often dried during the pretreatment stage. 

The main disadvantage of this gasifier is that it has a high sensitivity to tar, which can 

result in damaging of processing equipment [43]. The downdraft gasifer, on the other 

hand, has a low sensitivity to tar. 
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2.4.3.2 Downdraft Gasifier  

 
 

The downdraft gasifier has the same configuration as the updraft gasifier. The 

main difference is that oxidant and product gases flow down the reactor in the same 

direction as the feedstock. Another difference is that that the syngas leaves at a higher 

temperature than the updraft gasifier. Finally, there is virtually less than 1% tar in the 

syngas output compared to the syngas carrying 10-20% tar by weight in the updraft 

gasifier. The main disadvantage of this gasifier is that it is not feasible for small particle 

sizes [43]. As mentioned before, heat transfer is much more rapid when the particle size 

is made as small as possible. Thus, in this gasifier, the process of converting biomass into 

syngas takes much longer. 

 

 

2.4.4 Chemical Equilibrium Composition 
 

As mentioned before, four different feedstocks will be examined for this thesis. 

For the case of pure syngas, however, the reactor byproduct will consist of only �� and 

CO. The byproduct of the reactor for biomass, coal, and pure carbon will consist of ��, 

���, CO, C��, and C��.  As mentioned before, the composition of the syngas leaving 

the reactor is dependent on temperature, pressure, and composition of the feedstock. In 

order to calculate the equilibrium composition, the equilibrium constant must be 

calculated. The overall chemical equation must first be balanced in order to find the 

amount of moles, ��, of the product in terms of the given amount of moles of the 

reactants. This can be seen in Equation 6: 
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n�A + n�B ↔ n�C + n�D     Equation 6 

 
where A and B are the reactants and C and D are the products. If the amount of moles of 

the reactants is known, then the amount of moles, ��  and ��, of the products must be 

found in terms of �� and ��. The total number of moles, n, of the mixture is equivalent to 

the summation of ��, �� , �� , ���	��.  The molar fraction of each species is thus given as 

y! = 
"#

"
. The stoichiometric coefficients, $�, are related to the changes in the amounts of 

the individual species, as can be seen in Equation 7. This consequently allows us to 

calculate the equilibrium constant K with pressure in terms of atm, as can be seen in 

Equation 8. 
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 )    Equation 8a 

 
 
where P is the pressure, ∆: is the change in the Gibbs function for the reaction given by 

Equation 6, R is the universal gas constant, and T is the temperature. The Gibbs free 

energy will be explained in detail in section 2.5.2.1. Thus, in order to calculate the 

chemical equilibrium composition, the total Gibbs energy given by Equation 8a must be 

minimized subject to atomic balancing of Equation 6. For example, if the unknown 

products ��  and �� are found in terms of the known reactants �� and ��, then the 

products can be introduced into the minimization of Equation 8a using Lagrange 

multipliers: ;� and ;�. The extended form of Equation 8a can be seen in Equation 8b. 
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	)	 = ln(K) + ∑ λCnC

�
CD�      Equation 8b 
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where p is the species pertaining only to the products of the reaction. The condition for 

the minima of the function above at any given point is that the partial derivative of the 

function with respect to ��and	;Gvanish at this point. An equation solver known as 

Cantera was used in conjunction with Matlab in order to solve this complex system of 

equations. Cantera is a software package which performs chemical and thermodynamic 

equilibrium calculations. It is able to retrieve thermodynamic properties in order to 

compute equilibrium compositions for mixtures of ideal gases. Thus, this thesis will 

assume that all gases are considered to be ideal. 

 
 

2.5 Solid Oxide Fuel Cell  

 
 

2.5.1 Fuel Cell Operation 
 
 

The purpose of the fuel cell [44] is to harness the energy from the syngas produced by 

the reactor and use it to generate electricity. The amount of electricity produced depends 

on the efficiency of the fuel cell and the composition of the syngas. Many fuel cell related 

factors play into the efficiency of the SOFC. One of the factors has to do with reactant 

transport. If fuel and oxidant are not continually fed to the fuel cell, then the device will 

ultimately starve. Another factor that directly affects current generated is the speed at 

which the electrochemical reactions proceed. This is the reason as to why catalysts are 

often introduced in order to speed up the process. Since ion transport is much more 

difficult than electron transport, the thinness of the electrolyte also plays a major role in 

the efficiency of the fuel cell. For this thesis, many of the aforementioned variables will 

be implemented into the theoretical calculations made in the report by referencing values 

that have been used in other experiments. 
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The carbon monoxide and hydrogen from the syngas is fed directly into the anode of the 

fuel cell to produce the following hydrogen oxidation reaction: 

 

CO + H� + 2O�% ↔ H�O + CO� + 2e%   Equation 9 

 

Thus, as opposed to a PEMFC, water is produced at the anode rather than the cathode. As 

can be seen in Equation 9, two electrons are transferred though the circuit for every mole 

of hydrogen. For every mole of oxygen, 4 electrons would be transferred. Since carbon 

monoxide is also introduced into the anode, carbon dioxide is also produced with the 

water. The half-cell reactions occurring at the cathode and anode are mediated by the 

motion of the oxygen ions shown above. Thus, the oxygen reduction reaction occurring at 

the cathode is illustrated in Equation 10: 

 

�� + 2I% ↔ 2��%       Equation 10 

 
Thus, one side of the fuel cell is provisioned with fuel from the reactor while the other 

side is provisioned with oxidant, in this case air. The amount of CO and �� will be the 

determining factor of how much current is produced. To depict this concept, the overall 

electrochemical equation is shown in Equation 11: 

 

(1-x)CO + xH� + ½O� ↔ (1-x) CO� + xH�O x = 
"JK

"L#M
 Equation 11 

 
where x is the molar fraction of the amount of hydrogen with respect to the mixture. 

Figure 2-3 depicts the process and operation of this SOFC:  
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Figure 2-3: Overall Diagram of SOFC using Syngas. The carbon monoxide and hydrogen from 

the syngas of the reactor enter the anode side of the fuel cell to produce a hydrogen oxidation 

reaction. Two electrons are transferred through the circuit for every mole of hydrogen. Air is 

provided at the cathode side of the fuel cell in order to ultimately produce water and carbon 

dioxide with the assistance of ions traveling through the electrolyte membrane. 

 
In order to fully understand the improvements that can be made to fuel cell performance, 

one must understand that there are irreversible losses that increase with increasing 

current. In order to calculate the theoretical voltage output, V, of a fuel cell, several inputs 

must be accounted for, as can be seen in Equation 12: 

 
 

V = EOPQR<S - ηUVO - ηSP<!V- ηVS"V    Equation 12 

 
 

where WXYZ[\] is the thermodynamically predicted reversible fuel cell voltage, ^_`X is the 

activation loss due to reaction kinetics, ^]Y\�` is the ohmic loss due to ionic and 

electronic conduction, and ^`]a`	is the concentration loss due to mass transport. For this 

study, the concentration loss will be assumed to be insignificant when compared to the 
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other losses in the SOFC. This thesis intends on building a simple theoretical 

thermodynamic model of the SOFC based on values taken from other published papers. 

Since concentration loss requires too many parameters recorded during actual 

experimentation, this loss will not be accounted for. At this point, it would be relevant to 

introduce the role of thermodynamics in this fuel cell process. 

 
 
2.5.2 Thermodynamics  

 
 

2.5.2.1 Gibbs  

 
  

The fuel cell should be thought of as an open system. Assuming steady state 

operation, a control volume analysis would show that the fuel cell is allowed to exchange 

heat with the environment and work would exit as electrical work through the wire 

connected to the fuel cell. Thus, according to the first law of thermodynamics, heat minus 

this electrical work is equivalent to the internal energy of the system. The maximum heat 

energy that is made available by a fuel cell is given as the enthalpy of reaction while the 

maximum work energy that can be extracted by a fuel cell is given by the Gibbs free 

energy. Gibbs free energy is the energy needed to create a system and make room for it 

minus the energy that one can get from the environment due to heat transfer, as shown by 

the second law of thermodynamics in a reversible process. For the purpose of this thesis, 

the fuel cell will be assumed to be in an isothermal and isobaric process. This allows for 

the electrical work to be equal to the negative of the Gibbs free energy difference 

between the products and the reactants. Since the concentrations of the different species 

will vary according to the output of the syngas, the Gibbs free energy will be calculated 

by accounting for the chemical potential, b, of the system for the different species, i, 

through Equations 13 and 14:  
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μ!= μ!
S + RTlna!    Equation 6 

dG = ∑ μ!! dn!    Equation 7 

 
where R is the universal gas constant, T is the temperature, and a is the activity. Since we 

are assuming an ideal gas and units of atm for pressure, the activity becomes equivalent 

to the pressure of the system multiplied by the respective number of moles of a particular 

species i, or a! = (n!)(P). Thus, the Gibbs free energy becomes a function of temperature, 

pressure, and number of moles of a species i.  The Gibbs free energy for the overall 

reaction can be calculated through Equation 15: 

 

∆g = ∑ vQΔg°Q n - ∑ v!Δg°! 8  + RTln
∏ U>pqrstu,v

w,v
v

∏ U
pvxtuxyu,#
w,#

#

  Equation 8 

 
where ∆g° is the reference Gibss free energy, R is the universal gas constant, T is the 

temperature, v represents the number of moles of either an inlet species i or an outlet 

species e. The reference Gibbs free energy can be calculated through Equation 16: 

 

∆g° = ∆h – T∆s    Equation 16 

 

where h is the enthalpy and s is the entropy. As mentioned before, the internal energy of 

the system is equivalent to the heat minus the work. Assuming negligible kinetic and 

potential energy, the internal energy becomes equivalent to the change in enthalpy of the 

system. The second law of thermodynamic simplifies the first law of thermodynamics by 

making the heat transferred equivalent to the temperature of the system multiplied by the 

change in entropy of the system. 
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2.5.2.2 Reaction Enthalpy 

 
 

As mentioned before, the maximum heat that is made available by the fuel cell is 

given by the enthalpy of reaction of the system.. This is how the fuel cell is able to 

transfer heat to the reactor. This available energy, or enthalpy of reaction, is the energy 

needed to create a system plus the work needed to make room for it. The energy needed 

to create the system, or internal energy, is largely due to the reconfiguration of chemical 

bonds. For example, the burning of hydrogen bonds releases heat due to molecular bond 

reconfiguration. As mentioned before, the fuel cell will be assumed to be in an isothermal 

and isobaric process. In order to calculate the enthalpy of reaction, the formation 

enthalpies for compounds must first be found. The formation enthalpy is the energy that 

is released or absorbed when the compound is formed from its stable elements. The 

formation enthalpies for water, carbon dioxide, and water are all exothermic, thus 

requiring no heat transfer. The equation used to calculate the reaction enthalpy can be 

seen in Equation 17: 

 
∆h = ∑ [x!(h} 	+ 	h9 	− 	h9	D	�~�	�)CRS&�VO� ] - ∑ [x!(h} 	+ 	h9 	−	h9	D	�~�	�)RQUVOU"O� ] 

Equation 17 

 
where x is the number of moles of species i, ℎ� is the formation enthalpy, ℎ�  is the 

enthalpy at a given temperature, and ℎ�	D	�~�	� is the enthalpy at T = 298 K.  

  
  

2.5.3 Reaction Kinetics  
 
 

The activation loss is associated with the kinetics of the electrochemical reaction 

occurring within the fuel cell. The rate of the electrochemical reaction directly affects the 

current generated by the fuel cell. Fuel cell performance is thus enhanced by increasing 
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the rate of electrochemical reaction. When evaluating the overall rate of reaction, one 

must consider rates for both the forward and reverse directions of the reaction. The net 

rate, or the difference between these two directions, along with the exchange current 

density, �], allows one to calculate the activation loss, as will be discussed later in this 

thesis. Normally, the exchange current density is described by Equation 18: 

 

jS = nFc8
∗ f�e%∆7/(89)     Equation 18 

 
where n is the number of electrons transferred, F is Faradays constant, ��

∗  is the reactant 

concentration, �� is the decay rate, and ∆: is the activation barrier. In order to calculate 

^_`X, many values had to be taken from literature, as will be explained. The main 

equation used to calculate the activation loss is the Butler-Volmer equation, as can be 

seen in Equations 19 and 20: 

 
j = i/A      Equation 19 

 

j = jS(e(�"��xtu)/89 - e((�%�)"��xtu)/89)   Equation 20 

 
where � is the transfer coefficient, j is the current density, and �] is the exchange current 

density. Both the transfer coefficient and exchange current density have been taken from 

literature due to the fact that they are typically found through experimentation. When 

implemented into MATLAB, we used the fzero function in order to ensure that only 

positive values of activation loss with respect to current density were being calculated. 

These equations, along with assumptions, can be seen in Appendix E.  

 
 

2.5.4 Charge Transport 
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The ohmic loss can be attributed to the difficulty associated with ion charge 

transport across the electrolyte and the electron transport across the electrodes. According 

to Ohm’s law, there is a linear relationship between voltage drop and current density. In 

SOFCs, ionic transport is much more difficult and dominant than electronic charge 

transport. This is why manufacturers strive to make electrolytes as thin as possible in 

order to reduce the distance that the ion must travel to get from one electrode to the other. 

Charge transport has three major driving forces: electrical forces due to electrical 

potential gradient and conductivity, chemical forces due to chemical potential gradient 

and diffusivity, and mechanical forces due to pressure gradient and viscosity. Due to the 

accumulation/depletion of electrons at the two electrodes, a voltage and concentration 

gradient develops in the electrolyte while only a voltage gradient develops in the 

electrode. Ohmic loss can be attributed to the fact that fuel cell conductors have 

resistance, �]Y\�`, to charge flow, thus requiring voltage to provide that extra driving 

force. This concept can be formulated into Equation 21: 

 
ηSP<!V = iRSP<!V = i(RQ�QVORS" + R!S") = V    Equation 21 

 
where i is current. As mentioned before, ��]a >> �Z�Z`X[]a. This is due to defects such as 

vacancies in the crystalline lattice of a typical ionic conductor. Since this thesis focuses 

more on simple thermodynamic modeling and not material specific properties, we will 

assume that the voltage gradient is far more dominant than the concentration gradient in 

the electrolyte. Relevant values will be taken from literature, as can be seen in Appendix 

F. In order to calculate	^]Y\�`, the ionic conductivity, σ, had to be calculated for both the 

electrode and electrolyte. Equations 22, 23, and 24 explain how the ohmic loss is 

calculated:  
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ηSP<!V = j( 
�v�vtupqrv

�v�vtupqrv
 + 

�v�vtupq��uv

�v�vtupq��uv
	)    Equation 9 

σQ�QVORS&Q = 
|�Q|�Vv��

<
       Equation 10 

σQ�QVORS� OQ = 
V(�#�)

K�

89
      Equation 11 

 
where L is thickness of the membrane, z is amount of charge carried by charged species 

across the membrane, � is the molar concentration of  the charge species, q is electron 

charge, ¡ is the mean free time between scattering events, m is the mass of an electron, 

and D is the diffusivity of the electrolyte. As mentioned before, the concentration loss 

requires too many parameters recorded during actual experimentation. Also, this paper is 

mainly focused on the maximum power that can be extracted and the maximum heat that 

can be made available by the fuel cell. The point on the polarization curve at which these 

maximums are located occur before the concentration loss region. Thus, this loss will not 

be accounted for. 

 
 
2.5.5 Literature Review: Internal Reforming SOFC using Syngas  
 
 

After researching several engineering databases, many papers had been found that 

did complex research into the area of solid oxide fuel cell using syngas. Many of those 

papers far exceeded the scope of this thesis, which has more to do with thermodynamic 

modeling. Thus, we found a paper [45] that consisted mainly of thermodynamic modeling 

of a solid oxide fuel cell using syngas. The only difference is that the SOFC examined in 

that paper is directly internal reforming (DIR-SOFC), while the reactor’s system 

examined in this thesis only involves indirect reformation.  The assumptions that are 

made for this analysis can be seen in the paper itself; this section will serve more as a 
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summary of operations and results than anything else. The diagram depicting this system 

can be seen Figure 2-4: 

 

 
Figure 2-4: Overall diagram of DIR-SOFC [45]. Gas mixture with high water content is re-

circulated and mixed with syngas before entering the fuel channel. 

 
As can be seen in Figure 2-4, several things are happening at the fuel channel. Gas 

mixture, which has high water content, is re-circulated and mixed with syngas before it 

enters the fuel channel. In order to get the desired equilibrium molar gas concentrations 

of  �� and CO, three different reactions occur at the anode: steam reformation of 

methane, water gas shift reaction, and electrochemical reaction. Since the molar flow 

rates is known at the inlets shown above, they were able to formulate the equilibrium 

molar gas concentrations in terms of molar flow rate and the extent of each species in the 

three electrochemical reactions mentioned above. This thesis also utilizes these variables 

along with air utilization ratio in order to find the voltage, voltage losses, and efficiency 

of the model. After modeling their results, it is found that there is a tradeoff between high 

and low air utilization ratio. A lower air utilization ratio means high mass flow rate of air 

and lower mass flow rate of fuel, thus increasing the cost of the system and lowering the 

operating cost of the system. A higher air utilization ratio results in reduction of capital 

and operating costs of the system, but the system’s complexity further increases as 

opposed to the simplicity of using a lower air utilization ratio. Another observation that is 
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made is that increasing the fuel utilization ratio increased electrical efficiency but 

decreased power, voltage, air utilization ratio and mass flow rate of fuel. It is thus found 

that increasing this ratio makes the system thermodynamically stable and economically 

viable.  

 
 
 

3 METHODOLOGY 

 
 

3.1 Relevant Thermodynamic Equations 

 
 
 Modeling is performed with the help of MATLAB combined with the Cantera 

interface in order to allow for ease of computing. Cantera is a suite of software tools for 

thermodynamic reacting flow problems. In order to calculate WXYZ[\], an equation had to 

be made which effectively calculates the Gibbs free energy, ∆g, with varied temperature 

T, pressure P, and molar fraction x of hydrogen entering the anode side of the fuel cell. 

Based on Equation 9, hydrogen and carbon dioxide are the products of the fuel cell 

operation while oxygen, hydrogen, and carbon monoxide are the reactants. Balancing the 

overall electrochemical equation, as seen in Equation 11, allows us to combine 

Equations 11 and 15 in order to calculate the Gibbs free energy of the SOFC. Equations 

25 and 26 explain how reversible fuel cell voltage is calculated: 

 

∆g = [x(h-(Ts))¢K£ + (1-x)(h-Ts)�£K
]9,n – [(1-x)(h-(Ts)�£ + ½(h-Ts)£K

 + x(h-

(Ts))¢K
]9,n + RTln

�
.K¦§#

§q

  x = 
"JK

"L#M
    Equation 25 
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EOPQR<S= - 
¨©

"�
      Equation 26 

 
where h is enthalpy, s is entropy, R is the universal gas constant, 2� is the partial pressure, 

and 2] is the standard state pressure, n is the number of electrons transferred, and F is 

Faraday’s constant. Assuming an ideal gas and that all units of pressure are kept in atm, 

then 2] takes the value of 1 atm. Combing Equation 17 with Equation 11, we were also 

able to calculate the enthalpy of reaction, as can be seen in Equation 27: 

 

∆h = [x(h} + h9 - h9	D	�~�	�)¢K£ + (1-x)(h} + h9 - h9	D	�~�	�)�£K
] – [(1-x)(h}	+ h9 - 

h9	D	�~�	�)�£ - ½(0 + h9 - h9	D	�~�	�)£K
 - x(0 + h9 - h9	D	�~�	�)¢K

] x = 
"JK

"L#M

 Equation 27 

 
where ℎ� is the formation enthalpy for unstable elements, ℎ�  is the enthalpy at a given 

temperature, and ℎ�	D	�~�	� is the enthalpy at T = 298 K. These equations have been 

implemented into MATLAB, as can be seen in Appendices A and C. 

 

3.2 Voltage Losses 

 

As mentioned before, many values for both ohmic and activation loss had to be 

taken from literature. Since temperature was held constant in the documented papers that 

were found, the given exchange current density was thus given in terms of that single 

temperature. Since temperature and current are the only variables for the activation loss 

of this thesis, all variables that are functions of temperature had to consequently be 

calculated as a function of temperature. Thus, an expression had to be created in order to 

calculate the exchange current density with temperature as the only variable. Based on 

Equation 18, the only way to make �] a function of only T would be to convert every 



44 

 

other variable into a single constant, as can be seen in Equation 28a. Consequently, the 

exchange current density and its respective temperature had to be taken from two 

different experiments in order to determine an expression based on the aforementioned 

constants found through mathematical manipulation. This process can be seen in 

Equation 28: 

jS = Ae
ª)

«          Equation 28a 

jS = (8.66*10®)e
ªKK¯°K

«        Equation 28a 

 

where A and B are the constants found through mathematical manipulation [44 and 45]. 

Similar to activation loss, ohmic loss is also only a function of temperature and current 

for this thesis. Since the diffusivity, D, of the electrolyte is a function of temperature, 

Equation 24 must account for this change. The diffusivity is given by Equation 29, 

which consequently allows us to calculate the conductivity of the electrolyte through 

Equation 30: 

D = DSe
ª∆²

³«          Equation 29 

σQ�QVORS� OQ = 
�qV(�#�)KQ

ª∆²
³«

89
       Equation 30 

where ´] is the constant reflecting the frequency of the hoping process and ∆: is the 

activation barrier. Equation 30 is often simplified into an empirical expression by 

lumping the varies pre-exponential variables into a single factor, or µ¶·¸� . This value, 

along with ∆:, were taken from literature [44] in order to create an expression defining 

σQ�QVORS� OQ as a function of only temperature. This expression can be seen in Equation 

31: 
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σQ�QVORS� OQ = 
�¹º»*Q

ª¼¯,¯¯¯
³«

9
      Equation 31 

 
 

3.3 Power Density and Heat 

 
 

The major inputs to calculate the voltage are temperature, pressure, molar fraction 

of hydrogen in syngas, and current. Each function was thus called upon from a separate 

code, which calculated voltage based on these 4 major inputs. The code to calculate 

voltage can be seen in Appendix G. Once the voltage is found, the power density, 2½, can 

be readily evaluated through Equation 32: 

 
P&	= V*j     Equation 32 

 
where ¿ is the voltage and j is the current density. The code used to calculate power 

density can be seen in Appendix H. Once the power density is calculated for each 

temperature, the maximum power density, or peak power, can readily be found through 

polynomial fitting in Matlab. Since a fuel cell converts chemical energy into electrical 

energy, one can calculate the heat dissipated from the fuel cell if the output electrical 

power and energy input are known. Thus, the heat dissipated from the fuel cell, or 

ÀÁÂ�ÃZ�	`Z��, will be subtracted by the heat required by the reactor, or the enthalpy of 

reaction (ÁℎRQUVOSR). This quantity will then be divided by the Gibbs of the fuel cell, or 

Á:�ÃZ�	`Z��, in order to calculate how much energy must be taken away from work and 

rerouted to heat. This final quantity, or �′, can ultimately be seen in Equation 33. 

 

H′ = 
¨Ppvxtuqp%	9¨�Åsv�	tv��	

¨7Åsv�	tv��
    Equation 33 
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4 RESULTS/DISCUSSION  

 
 
 

4.1 Equilibrium Composition using Cantera 

 
 

 The composition of the syngas entering the fuel cell depends on the operational 

settings of the reactor, particularly the temperature. For simplicity of calculations, the 

reactor paper [3] stated as an assumption that pure carbon, or 100% C, is fed into the 

reactor instead of actual biomass or coal. Thus, these three cases will be analyzed for 

their potential energy deliverance from the fuel cell. The typical composition of bio-oil, 

which is created through the pyrolysis process, and coal can be seen in Table 4-1: 

 
Table 4-1: Composition of Coal and Biomass 

 C (%) O2 
(%) 

H2 
(%) 

N2 
(%) 

S (%) Ash 
(%) 

Bio-oil 55-64 27-40 5.1-8 0.05-
1.0 

0 0.03-6 

Coal 65-88 7.1-17 5.1-6 0.9-1.2 0.5-5.0 9.1-20 

 
 
As can be seen in Table 4-1, the hydrogen contents are about the same. However, the 

carbon content of coal exceeds that of biomass. For this reason, carbon monoxide or 

carbon dioxide are expected to play a much larger role for coal in the byproduct of the 

reactor. Coal has a much higher content of ash, which as mentioned before has the 

potential to create slagging or fouling in the combustor. The biomass has virtually no 

sulfur, which is a significant contributor to greenhouse gases. A major downside of 

biomass can be attributed to its relatively higher than normal oxygen content. This 
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ultimately poses a threat to the desirable increase in hydrogen content due to the fact that 

this hydrogen will potentially bond with the excess oxygen and form much more water 

than desired. As mentioned before, we used a thermodynamic equilibrium solver called 

Cantera in order to calculate the theoretical chemical equilibrium composition values of 

, CO, C ,      C , and O for pure carbon, coal, and biomass. Cantera uses the 

element potential method, which is a nonstoichiometric method which involves solving a 

set of M nonlinear algebraic equations, where M is the number of elements. Cantera finds 

the composition that minimizes the total Gibbs free energy of the mixture. We held both 

the temperature and pressure constant for this calculation. We kept the pressure constant 

at 2 atm. According to the reactor [3], superheated steam is injected with feedstock at 1.5 

times the stoichiometric rate of carbon. Thus, the following equations describe the 

chemical composition of pure carbon (1), biomass (2), and coal (3) going into the reactor:  

 
0.4C + 0.6H�O → reactor     (1) 

0.32C + 0.035H� + 0.17O� + 0.005N� + 0.47H�O → reactor  (2) 

0.34C + 0.028H� + 0.058O� + 0.006S +0.006N� +0.054Ash + 0.51H�O → reactor  (3) 

 

Thus, the significant products of these three different feed-stocks include hydrogen, 

water, carbon dioxide, carbon monoxide, and methane. These equations were entered into 

the thermodynamic equilibrium solver in Matlab for different temperatures and 

implemented into the following graphs, as can be seen in Figure 4-1, Figure 4-2, and 

Figure 4-3. 
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Figure 4-1: Equilibrium composition of pure carbon as a function of temperature. The molar 

fraction of the mixture going into the reactor is 0.4C + 0.6H�O. Steam-Carbon reaction (Eq. 4) 

dominates from 400-1000K at a large extent, resulting in increased hydrogen and carbon 

monoxide content and decreased water and carbon dioxide content. After 1000K, the water gas 

shift reaction (Eq. 5) shifts toward the reactants to a small extent. These endothermic reactions 

work against the high hydrogen content, which proves to be unfavorable to the reactor because 

more air must be used for combustion. 
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Figure 4-2: Equilibrium composition of biomass as a function of temperature.  The molar 

fraction of the mixture going into the reactor is 0.32C + 0.035H� + 0.17O� + 0.005N� + 

0.47H�O. From 400-1000K, the Boudouard reaction dominates (Eq. 3). After 1000K, the water 

gas shift reaction (Eq. 5) shifts toward the reactants as an endothermic reaction. The low 

hydrogen content is unfavorable for the fuel cell and the endothermic reactions taking place 

prove to be unfavorable to the reactor because more air must be used for combustion. 
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Figure 4-3: Equilibrium composition of Coal as a function of Temperature. The molar fraction 

of the mixture going into the reactor is 0.34C + 0.028H� + 0.058O� + 0.006S +0.006N� 

+0.054Ash + 0.51H�. At temperatures below 1000K, the Boudouard (Eq. 3) and steam carbon 

reaction (Eq. 4) take place as a combined endothermic reaction. Above 1000K, the water gas 

shift reaction (Eq. 5) shifts towards the reactants, thus being endothermic as well. The high 

hydrogen content combined with the overall endothermic reaction proves to be favorable for the 

fuel cell and unfavorable for the reactor. 

 
The optimal concentration of syngas entering the fuel cell would have a higher 

concentration of hydrogen than anything else in order to ensure that water and carbon 

dioxide are the only products. The highest concentration that hydrogen is able to achieve 

for pure carbon is a little under 0.5, as can be seen in Figure 4-1. Hydrogen and carbon 

monoxide increase while water, methane, and carbon dioxide decrease. Since Gibbs free 

energy is directly related to hydrogen content, an increase in hydrogen content would 

ultimately result in an increase in the Gibbs free energy. The same trend is seen in Figure 

4-1 for coal. The main difference between the two is that after a temperature of 1000 K, 

the water is shown to increase at a faster rate for coal over pure carbon, thus causing the 

hydrogen to decrease at a faster rate as well. It can thus be said that the Boudouard (Eq. 
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3) and steam carbon reactions (Eq. 4) are causing the carbon dioxide and water levels to 

decrease while the hydrogen and carbon monoxide increase from temperatures of 400-

1000 K. For both coal and pure carbon, the water and carbon monoxide levels are shown 

to increase after a temperature range of 1000-1200 K while the hydrogen and carbon 

dioxide decrease. The reason for this is due to the water gas shift reaction (Eq. 5) shifting 

towards the reactants, as will be explained in Section 4.1.1.  

 

4.1.1 Water Gas Shift Reaction 
 

 
As can be seen in the figures of the previous section, hydrogen gradually 

increases up until about 1100 K. At temperatures exceeding 1100 K, hydrogen 

composition monotonically decreases while water increases. This phenomenon can be 

attributed to the water shift reaction occurring in reverse; hydrogen and carbon dioxide 

are the reactants to products consisting of carbon monoxide and water. The water gas 

shift reaction is exothermic in the forward reaction (Eq. 5). If the sign of the Gibbs free 

energy were to transition from positive to negative, the water shift reaction would occur 

in reverse, making it endothermic. The Gibbs free energy of the water gas shift reaction 

can be seen in Figure 4-4.  
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Figure 4-4: Gibbs free energy as a function of temperature for the water gas shift reaction. The 

forward reaction of reactants to products for this reaction is CO + H�O → CO� + H�. At 

temperatures exceeding about 1100K, the reaction occurs in reverse due to the sign change in 

the Gibbs free energy. 

 
As can be seen in Figure 4-4., the water gas shift reaction is thermodynamically 

unfavorable at higher temperatures. This is illustrated by the continuous decline and 

eventual sign change in the Gibbs free energy as a function of temperature at around 

1100 K. It should be noted that this analysis has been conducted under a modified case in 

which only CO, ���, and C�� are present. The hydrogen performance of biomass is not 

as favorable as the case for coal, as can be seen in Figure 4-2. At temperatures exceeding 

1100 K, the water gas shift reaction shifts to the reactants. The compositions for biomass 

thus shift with increasing temperature less rapidly than pure carbon and coal. The water 

level is shown to exceed the hydrogen level by as much as 0.2 moles. Although the 

carbon content and hydrogen content is much less favorable in coal over biomass, as can 

be seen in Table 4-1, the results shown above reflect opposite expected behavior. As will 

be discussed in section 4.6, fuel oxygen content is a key parameter which impacts the 

resulting composition and Gibbs free energy. Biomass has much higher oxygen content 
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than coal, thus increasing the water content at equilibrium. Nonetheless, the composition 

of coal is shown to have much higher ash content than biomass, thus making it a less 

clean feedstock option. 

 

4.2 Gibbs Free Energy 

 

4.2.1 Pure Syngas 
 

 Ideally, the only outputs of the reactor would be hydrogen and carbon monoxide, 

or pure syngas [3]. However, other byproducts, such as water and carbon dioxide, play 

much larger roles depending on the feedstock being used. This will consequently be 

analyzed in section 4.2.2. Since the Gibbs free energy of pure syngas is dependent on 

both composition and temperature, optimal pressure had to be found before coupling the 

SOFC with the reactor. With pressure constant at 1 atm, we set the temperature to 15 

iterations starting at 400 K and ending at 1800 K. We also incremented the hydrogen 

molar fraction from 0.1 to 0.5 in steps of 0.1. This value of 0.5 can be seen in the 

equilibrium composition graph as being the highest attainable value of hydrogen content 

for pure carbon. Figure 4-5 illustrates a plot showing the Gibbs free energy per mole of 

the entire mixture as a function of temperature for each molar fraction:  
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Figure 4-5: Gibbs free energy as a function of temperature for each iteration of molar fraction 

of hydrogen.  The electrochemical equation describing the above plot is (1-x)CO + x�� + ½�� 

↔ (1-x) C�� + x���, x being the ratio of hydrogen concentration to the entire mixture. For 

temperatures above 1100 K, the Gibbs free energy is shown to increase as the hydrogen 

composition increases. For temperatures below 1100 K, the Gibbs free energy is shown to 

decrease as the hydrogen composition increases. Nonetheless, the Gibbs free energy is much 

higher at lower temperatures and lower compositions.  

 

As can be seen in Figure 4-5, lower temperatures and lower composition levels allowed 

for a higher Gibbs free energy. However, most SOFCs typically operate at temperatures 

above 800 K. Thus, the Gibbs free energy is shown to be higher at lower compositions 

and lower temperatures. This is due to the chemical system having much lower entropy 

change at lower temperatures than at higher temperatures, thus playing a much larger role 

in the calculation of free energy of the system. Another noticeable characteristic of 

Figure 4-5 is that Gibbs free energy does not increase as the temperature and 

composition increases until a temperature of 1100 K is reached, which falls in the typical 

SOFC temperature range. 
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4.2.2 Syngas and Other Reactor Outputs 
 

 As can be seen in the composition graphs shown in Figure 4-1, Figure 4-2, and 

Figure 4-3, pure carbon exhibited the highest hydrogen content while biomass exhibited 

the lowest hydrogen content of the three cases. The exact opposite can be said about the 

water content for both cases; biomass exhibited the highest water content. The Gibbs free 

energy of the reactor was calculated on a per mole oxygen basis for all three cases, as can 

see seen in Figure 4-6a.  

 

 

Figure 4-6a: Gibbs free energy of the reactor for coal, biomass, and pure carbon. Before 615 K, the Gibbs 

free energy of the reactant state is shown to be negative; this is shown by the sudden drop in Gibbs free 

energy for all three cases. Biomass is shown to have a higher value of Gibbs energy, especially after 915 K. 
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This is due to the product state of the Gibbs free energy for biomass being much higher than the other two 

cases; the high water content of the biomass-derived syngas is able to compensate for the high water 

content of biomass going into the reactor. This is not the case for pure carbon and coal. Throughout the 

prescribed temperature range shown above, the product and reactant state of the Gibbs free energy of coal-

derived syngas was shown to have higher values than pure carbon-derived syngas. After 915 K, the reactant 

state of the Gibbs free energy was shown to be higher for pure carbon over coal. This ultimately gave coal a 

higher magnitude in Gibbs free energy over pure carbon.   

 

As can be seen in Figure 4-6a, biomass-derived syngas is shown to exhibit the highest 

Gibbs free energy while pure carbon exhibits the lowest Gibbs free energy. In order to 

attain more work from a fuel cell, the Gibbs free energy of the product state of the 

reaction must be increased or the Gibbs free energy of the reactant state must be 

decreased in order to achieve a high magnitude. Based on Figure 4-6a, the Gibbs free 

energy of the product of the fuel cell must compensate for the high energy given off from 

biomass-derived syngas. As mentioned before, the fuel cell must also compensate for the 

heat required for reaction in the reactor, or the change in enthalpy. The enthalpy of 

reaction of the reactor was calculated on a per mole oxygen basis for all three cases, as 

can see seen in Figure 4-6b.  
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Figure 4-6b: Enthalpy of reaction of the reactor for coal, biomass, and pure carbon. Before 610 K, the 

enthalpy of the reactant state is shown to be negative; this is shown by the sudden drop in Gibbs free 

energy for all three cases. Biomass is shown to have a higher value of enthalpy change, especially after 915 

K. This is due to the enthalpy of the product state for biomass being much higher than the other two cases. 

Thus, more heat is required for the biomass-based reaction over the other two cases. Throughout the 

prescribed temperature range shown above, the change in enthalpy of coal-derived syngas was shown to 

have higher values than pure carbon-derived syngas. After 915 K, the enthalpy of the reactant state was 

shown to be higher for pure carbon over coal. This ultimately gave coal a higher magnitude in change in 

enthalpy over pure carbon.    

 

As can be seen in Figure 4-6b, biomass-derived syngas is shown to exhibit the highest 

change in enthalpy while pure carbon exhibits the lowest change in enthalpy. In order for 

the reaction in the reactor to require less heat, the enthalpy of the product state of the 

reaction must be decreased or the enthalpy of the reactant state must be increased in order 
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to achieve a lower change in enthalpy. Based on Figure 4-6b, the fuel cell will have to 

release more heat to compensate for the high change in enthalpy of the biomass-derived 

syngas. 

 

In order to clearly see how the results of Figure 4-6a affected the fuel cell, we calculated 

the Gibbs free energy for each case. We calculated the Gibbs free energy for the fuel cell 

by extracting the molar fractions, Ê�, for each temperature for all three cases and 

implementing them into Equation 34: 

 

ÊË�	�2 + Ê�·Í�	+ ÊË�·	�2�	 + 	Ê�·�	Í�2 + Ê�Ë�	Í�4 + Ê·�	�2		→ 	Ê2�·�	Í�2 + 

Ê2Ë�·	�2�  Equation 34 

 

Thus, we assumed that the only products of the overall electrochemical reaction in the 

fuel cell would be carbon dioxide and water in order to calculate the stoichiometric 

amount of oxygen. We applied stoichiometry in order to balance the above equation and 

consequently find the molar fraction of the unknowns:	Ê·�	, Ê�·�, and ÊË�·. Equations 

35, 36, and 37 describe how the unknown molar fractions are functions of the known 

molar fractions: 

 

Ê2�·� = Ê�·+	Ê�·� + Ê�Ë�    Equation 35 

 

Ê2Ë�· = 
?�∗�ÐK3	5?�∗�ÐKÑ	3		5?�∗�-ÐÒ3

�
    Equation 36 

 

Ê·�	 = 
?�∗��-ÑK3	5	��ÐKÑ%	�-Ñ%�ÐKÑ	%?�∗�-ÑK3		

�
   Equation 37 
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Once we solved for the unknowns, we then proceeded to calculate the Gibbs free energy 

in terms of the oxygen used at the cathode side of the fuel cell. This consequently 

allowed us to see the effect of the stoichiometric amount of oxygen on the Gibbs free 

energy of the fuel cell with water and carbon dioxide as the only outputs. In order to 

confirm that water and carbon dioxide were the only significant products of the fuel cell 

in terms of amount, we inputted all the molar fractions of the reactants, including the 

stoichiometric amount of oxygen, into the thermodynamic equilibrium solver in Matlab. 

Like before in section 2.5.2.1, we varied the Gibbs free energy, ∆g, with respect to 

temperature (T) and molar fractions of hydrogen, water, carbon dioxide, carbon 

monoxide, and methane entering the anode side of the fuel cell. Like before, we kept the 

pressure atmospheric. Equation 38, with the assistance of Equation 15, explains how we 

calculated the Gibbs free energy of the fuel cell: 

 

∆g = ∑ $ZΔg°Z 	Ó - ∑ $�Δg°�	�  + RTln
∏ U>pqrstu,v

w,v
v

∏ U
pvxtuxyu,#
w,#

#

     

 

∑ $ZΔg°Z 	Ó = [Ê2Ë�·(h-Ts3ËK· + Ê2�·�(h-Ts3�·� ]�,Ó   Equation 38a 

 

∑ $�Δg°�	�  = [Ê�·�?h − Ts3�·� + Ê�Ë�?h − Ts3�Ë� + ÊË�·	?h − Ts3ËK· + 	Ê�·(h-Ts3�· 

+ Ê·�	(h-Ts3·K + ÊË�(h-Ts3ËK]�,Ó               Equation 

38b 

 
 
Due to the increase in reactants and products, the activities play a larger role than they 

did for the case of pure syngas in Equation 25, as can be seen in Appendix B. The Gibbs 

free energy in terms of moles of oxygen can be seen Figure 4-6c. 
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Figure 4-6c: Gibbs free energy per mole oxygen as a function of temperature of the fuel cell 

for biomass, coal, and pure carbon. We assumed carbon dioxide and water to be the only 

outputs with carbon dioxide, water, carbon monoxide, methane, and hydrogen as the only 

inputs. We found the Gibbs free energy after calculating the stoichiometric amount of oxygen 

needed to balance the chemical equation with the aforementioned inputs and outputs. Biomass 

had the lowest performance while pure carbon exhibited the highest performance. High oxygen 

content in the biomass resulted in more water and less hydrogen in the reactor output. This high 

oxygen content hindered the performance of the biomass because it results in a lower heating 

value for the syngas, this directly affecting the performance of the Gibbs curve. Pure carbon 

had the highest performance because it was oxygen-free before the reactor and hydrogen-rich 

after the reactor, as can be seen in Figure 4-1. 

  
As can be seen in Figure 4-6c, all of the profiles assume similar behavior; Gibbs free 

energy decreases as temperature increases. Based on the composition graphs in the 

previous section, we observed that the final product of the reactor based on biomass 

feedstock had lower hydrogen content than pure carbon and coal. This is consequently 

reflected in Figure 4-6c. However, low hydrogen content was not the only variable that 
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hindered the performance of biomass feedstock. Biomass had the largest content of 

oxygen compared to the other two feedstocks. For this reason, carbon monoxide and 

water content exceeded hydrogen content as we increased the temperature in the reactor. 

This high oxygen content in biomass often results in a low heating value for the product 

syngas, thus minimizing the potential for a higher Gibbs free energy. This high oxygen 

content also leads to production of volatile matter and high moisture content, which can 

be detrimental to the combustion process in the gasifier. Thus, it is not uncommon for 

gasifiers to incorporate deoxygenation into their design in order to lower the oxygen 

content of the fuel. The most common deoxygenation technologies are 

hydrodeoxygenation and hydrocracking [47], which uses 66 kg of hydrogen per metric 

ton of biomass. Thus, as more hydrogen is used to deoxygenize the biomass, the long 

term sustainability of the fuel becomes less promising. Many different mechanisms 

involving catalysts for deoxygenation have been researched and documented; very few 

have actually been prototyped. The effect of oxygen on fuel cell performance is further 

explained in 4.6. 

 

4.3 Combined Polarization Curves 

 

 Once the voltage losses for the fuel cell had been found, we proceeded to 

calculate the real output voltage. In order to get a better understanding of how this 

voltage would change as a function of temperature, we plotted 4 distinct polarization 

curves in Matlab for temperatures ranging from 1000-1400 K. We assumed the  molar 

fraction of hydrogen to be 0.5, which is the highest attainable value found in Section 4.1. 

We also assumed the pressure to be atmospheric. The polarization curves for pure syngas, 

biomass, coal, and pure carbon can be seen in Figure 4-7, Figure 4-7, Figure 4-7, and Figure 

4-7, respectively. 
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Figure 4-7: Polarization curves for pure syngas for temperatures exceeding 1000K. The 

reversible cell voltage decreases from .99 V at 1000 K to .83 V at 1400 K. As temperature 

increases, activation loss and ohmic loss decrease, thus making the curve less steep. 
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Figure 4-8: Polarization curves for biomass-derived syngas for temperatures exceeding 1000K. 

The reversible cell voltage decreases from .90 V at 1000 K to .71 V at 1400 K. As temperature 

increases, activation loss and ohmic loss decrease, thus making the curve less steep.  
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Figure 4-9: Polarization curves for coal-derived syngas for temperatures exceeding 1000K. The 

reversible cell voltage decreases from .94 V at 1000 K to .77 V at 1400 K. As temperature 

increases, activation loss and ohmic loss decrease, thus making the curve less steep. 
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Figure 4-10: Polarization curves for pure carbon-derived syngas for temperatures exceeding 

1000K. The reversible cell voltage decreases from .95 V at 1000 K to .80 V at 1400 K. As 

temperature increases, activation loss and ohmic loss decrease, thus making the curve less 

steep. 

 
As can be seen in Figure 4-7, Figure 4-7, Figure 4-7, and Figure 4-7, pure syngas has the 

highest voltage, followed by pure carbon, coal, and finally biomass. The reversible cell 

voltage gradually decreases as the temperature increases. The trend can be seen in the 

figures above. For example, in Figure 4-7, the reversible cell voltage is about 0.99 V for T 

= 1000 K, yet its value drops down to 0.83 V for T = 1400 K. Further observation had 

shown that the range for optimal current density for maximum power had also increased 

as temperature increased. In Figure 4-7, for example, the current density range increases 

from 2.54 
�

V<K
	 at 1000 K to 2.87 

�

V<K
	 at 1200 K, which is not shown in the figure. The 

current density then steadily decreases to 2.3 
�

V<K
	  at 1400 K. This inherently affects the 
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behavior of the curve for each temperature; as the temperature increases, the curve 

becomes less steep. This is due to the ohmic and activation losses decreasing as 

temperature increases. The ohmic loss dominates the activation loss, which is very 

minimal at this point. Nonetheless, as the temperature increases, both the ohmic and 

activation losses as a function of current density become linear. This linear behavior 

consequently affects the polarization curve, as can be seen in the figures above.   

 

4.4 Maximum Power Density 

 

4.4.1 Pure Syngas 
 

 In order to find the maximum power point, or MPP, for a specified setting of the 

fuel cell, a polynomial curve fit had to be applied to each power density curve. After we 

fitted the curve, we calculated the derivative of that polynomial in order to find the 

maxima of the original power density curve. Figure 4-11 illustrates the MPP as a 

function of temperature. We kept the composition and pressure constant at x = 0.5 and P 

= 1 atm.   
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Figure 4-11: Maximum power density as a function of temperature of pure syngas. We 

calculated the power densities for each temperature by multiplying the voltage for a given 

temperature shown in Figure 4-7 by its respective current density. We then applied a 

polynomial curve fit to the power density curve for each temperature. The roots of these 

polynomials gave us the maximum power density for each temperature. The MPP gradually 

increases from 600-1400 K. The current density at which these maximum power densities occur 

increases as the temperature increases. 

 
As can be seen in Figure 4-11, the power density gradually increases from 600-1400 K. 

The maximum power density is shown to be about 4.4 
Õ

V<K
 at 1400 K. Between 600 and 

800 K, the MPP is nearly zero. Thus, it can be said the MPP increases as the temperature 

increases. This is due to the insignificant ohmic and activation losses at higher 

temperatures. However, the MPP at higher temperature requires a much wider range of 

current density. For example, the MPP occurs at a current of .5644 
�

V<K
 at 1000 K and at a 
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current of 10.4334 
�

V<K
 at 1400 K. Thus, higher MPP can be achieved at higher 

temperatures at the expense of using more current density. However, SOFCs do not 

typically operate at temperatures as high as 1400 K. As mentioned before, SOFCs 

generally operate at temperatures between 775 – 1275 K. Nonetheless, if the SOFC is 

operated at very high temperatures, then the high current density shown from the results 

above indicates that the concentration loss must be accounted for in order to properly 

calculate the maximum power of the fuel cell. 

 

4.4.2 Syngas and Other Reactor Outputs 
 

The main goal of this project is to observe how well realistic values match up 

with the ideal case of syngas consisting of only hydrogen and carbon monoxide. 

Realistically, the output product of the reactor would consist of hydrogen, carbon 

monoxide, carbon dioxide, methane, and water. Thus, through implementation of the 

Gibbs free energy data shown in the previous section into a pre-written voltage code, we 

were able to calculate the maximum power point as a function of temperature. The results 

can be seen in Figure 4-12.  
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Figure 4-12: Maximum power density as a function of temperature or biomass, coal, and pure 

carbon. We calculated the power densities for each temperature by multiplying the voltage for a 

given temperature by its respective current density. We then applied a polynomial fit to the 

power density curve for each temperature. The roots of these polynomials gave us the maximum 

power density for each temperature. The MPP gradually increases from 600-1400 K, finally 

reaching a value of about 4.188 
Õ

V<K
	  for pure carbon, 3.937 

Õ

V<K
	  for coal, and 3.346 

Õ

V<K
	 for 

biomass at 1400 K. The current density at which these maximum power densities occur 

increases as the temperature increases. 

 
Figure 4-12 closely exhibits similar asymptotic behavior as Figure 4-11. The MPP 

gradually increases as temperature increases. The MPP is shown to be about 4.188 
Õ

V<K
 

for pure carbon, 3.937 
Õ

V<K
 for coal, and 3.346 

Õ

V<K
for biomass at 1400 K. Just like in 

Figure 4-11, the current density at which these MPP’s occur increases as the temperature 

increases as well. According to Figure 4-12, pure carbon exhibits the highest MPP for 
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any given temperature, following by coal and biomass. However, what is not shown on 

the figure above is that the current density for pure carbon at any given temperature is 

larger than that of coal and biomass. For example, at 1400 K, the MPP occurs at 10.53 

�

V<K
, 10.21 

�

V<K
, and 9.41 

�

V<K
 for pure carbon, coal, and biomass, respectively. Thus, just 

as in Figure 4-11, higher MPP can be achieved at higher temperatures at the expense of 

using more current density. At these higher and impractical temperatures, however, 

concentration loss would have to be accounted for. As mentioned before, the 

thermodynamic model shown in this thesis does not account for concentration loss.  

 

4.5 Heat Dissipation 

 

 In order to calculate the amount of heat being dissipated from the fuel cell, we 

inputted the reactants and products for biomass, coal, and pure carbon into Equation 16 

for a temperature range of 400-1600 K in order to solve for the entropy; by subtracting 

the enthalpy of reaction from the Gibbs free energy of the fuel cell, the heat released, 

À∆Â�ÃZ�	`Z��, was thereby calculated. We then calculated the enthalpy of reaction for the 

reactor, ∆�[�a,[Z_`X][, (Eq. 17) through the thermodynamic solver in Matlab’s Cantera. 

The code used to calculate this value can be seen in Appendix D. After we found the 

enthalpy of reaction for the reactor, we then implemented Equation 33 into Matlab in 

order to observe how temperature effected the heat dissipation. This equation is reiterated 

for clarification:   

 

H’ = 
∆ËÖ×Ø,ÖÙÚÛÜÝÖ%�∆ÞßàÙá	ÛÙáá

∆âßàÙá	ÛÙáá
     Equation 33 

 

If H’ is closer to 1, then insufficient heat is being supplied to the reactor and energy must 

be taken away from the work the fuel cell performs, or Gibbs free energy, in order to 
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provide heat to the reactor. If H’ << 1, then the fuel cell is releasing sufficient heat; less 

oxygen has to be combusted in order to heat the steam which drives the endothermic 

reactions in the reactor. Since pure carbon’s elemental composition does not contain 

oxygen, H’ was calculated on a per mol ��� basis for all three cases The results of this 

analysis can be seen in Figure 4-13 in terms of mole oxygen produced at the cathode 

side of the fuel cell.  

 
 

 
Figure 4-13: Ratio of heat dissipated from fuel cell subtracted from enthalpy of reaction of 

reactor to Gibbs free energy of fuel cell as a function of temperature for Biomass, Coal, and 

Pure carbon. This ratio, or H’, is shown to be higher for Pure Carbon over Coal and Biomass. 

H’ steadily becomes more negative as temperature increases; this ultimately means that the 

enthalpy of reaction of the reactor is decreasing while the heat released from the fuel cell is 

increasing as a function of temperature. Pure carbon has the lowest magnitude of ∆�[�a,[Z_`X][  

and the highest magnitude of À∆Â�ÃZ�	`Z��  at each temperature, making it the best option for heat 

dissipation. 
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As can be seen in Figure 4-13, the H’ value for biomass and coal are lower than pure 

carbon, with biomass having the lowest H’ value for the prescribed temperature range. 

The key outcome of the figure above is that for all three cases, heat transferred to the 

environment by the fuel cell exceeds that required for the endothermic reaction in the 

reactor. The magnitude of ∆�[�a,[Z_`X][ steadily decreases as temperature increases for 

all three cases, with pure carbon having the lowest ∆�[�a,[Z_`X][ value and biomass 

having the highest ∆�[�a,[Z_`X][ value at each temperature. The magnitude of À∆Â�ÃZ�	`Z�� 

increases as temperature increases for all three cases, with biomass having the lowest 

À∆Â�ÃZ�	`Z�� value and pure carbon having the highest À∆Â�ÃZ�	`Z�� value at each 

temperature. Thus, this shows that pure carbon is the overall best option out of the three 

cases: it produces more power and more heat than biomass and coal. The case for coal 

exhibited a higher H’ value than that of biomass. This is possibly due to the biomass 

producing more water at the cathode side of the fuel cell than coal. As seen in Figure 

4-2, the composition of biomass-derived syngas attained higher values in water content 

than coal and pure carbon. The use of coal would give overall better performance at the 

cost of more ash and more burning of oxygen. The use of biomass would require less 

burning of oxygen and release less ash at the cost of lower work performance and lower 

heat deliverance.  

 

 

4.6 Biomass Deoxygenation 

 

 As mentioned before, biomass has the lowest performance compared to pure 

carbon and coal due its higher oxygen content. To illustrate this idea more clearly, the 

Gibbs free energy was calculated for two different molecular amounts of oxygen content 

in biomass. We then compared this curve to the original molecular amount of oxygen 

content in biomass shown in section 4.1. The composition of biomass before and after the 
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injection of steam in the reactor for each case, including the case used in prior analysis, 

can be seen in Table 4-2. 

 

Table 4-2: Variation of oxygen content in Biomass 

Biomass w/ .15 

äå 

 C H2 O2 N2 Ash H2O 

 Before Steam 

Injection 

0.6 0.07 0.15 0.01 0.01 - 

 After Steam 

Injection 

0.34 0.04 0.09 0.006 0.006 0.52 

Biomass w/ .32 

äå 

       

 Before Steam 

Injection 

0.6 0.7 0.32 0.01 0.01 - 

 After Steam 

Injection 

0.32 0.036 0.17 0.005 0.005 0.47 

Biomass w/ .45 

äå 

       

 Before Steam 

Injection 

0.6 0.7 0.45 0.01 0.01 - 

 After Steam 

Injection 

0.3 0.034 0.22 0.005 0.005 0.44 

 

 

The biomass configuration used in Section 4.1 is shown in Table 4-2 as “Biomass w/ .32 

��”. We then proceeded to calculate the Gibbs free energy for each of these cases. The 

results of this analysis can be seen in Figure 4-14. 
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Figure 4-14: Gibbs free energy per mole oxygen as a function of temperature for the following 

molecular amounts of oxygen: 0.15 ��, 0.32 ��, and 0.45 �� in the original biomass 

composition. As the amount of oxygen in the biomass increases, the Gibbs free energy 

decreases.  

 

As can be seen in Figure 4-14, the fuel’s oxygen content proves to be detrimental to fuel 

cell performance. Gibbs free energy is shown to decrease as the oxygen content in the 

biomass increases. Studies have shown that bio-oil typically contains an oxygen to 

carbon ration of 0.5, while gasoline and diesel have a zero value for this ratio [48]. 

According to Figure 4-14, if biomass with significantly high oxygen content is used as 

feedstock going into the reactor, then deoxygenation must take place in some part of the 

gasifier in order to achieve optimal output. As mentioned before, however, 

deoxygenation is not always favored due to the fact that it often results in consummation 

of the initial reserve of carbon and hydrogen.  
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The reactor favors fast pyrolysis in order to prevent biochar from being produced over 

bio-oil and syngas; this proves to be detrimental to the byproduct due the fact that most of 

the biomass’s internal oxygen is being transformed into water in the form of liquid [49]. 

Byproducts of slow pyrolysis have been shown to have less oxygen content due to 

secondary reactions of dehydration, decarbonization, and condensation. It is thus a 

compromise between fast pyrolysis and slow pyrolysis. Fast pyrolysis will yield less 

biochar and more syngas with higher oxygen content while sow pyrolysis will yield more 

biochar with smaller amounts of syngas with low oxygen content.  

 

As mentioned before, hydrodeoxygenation is a common technology used to remove 

oxygen from biomass at the expense of lowering hydrogen content. However, the oxygen 

content can only be decreased to as low as 2-5 wt.% [48]. Thus, these processes are only 

used when the proper catalyst can be introduced in order to remove oxygen without 

causing any significant change to the original composition. Introducing catalysts, such as 

CoMoP, to hydrotreated biomass can yield 90% reduction in oxygen content without 

having to sacrifice hydrogen content. This catalyst has consequently been shown to 

double the heating value of the hydrotreated biomass [48]. Although the introduction of 

these catalysts is very complex, they nonetheless show promise for future implementation 

of deoxygenation into the gasification process. Biomass is already two steps ahead of 

coal in the sense that it is renewable and requires less combustion in the gasifier due to its 

higher oxygen content. With the assistance of deoxygenation, biomass can gain that extra 

step towards higher overall performance over coal. 

 
 

4.7 Temperature Difference between Reactor and Fuel Cell 
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Thus far, all of the data computed in previous sections had assumed that the reactor 

and fuel cell are kept at the same temperature. Realistically, however, the temperature of 

the reactor will be kept at a temperature below the fuel cell. Based on the composition 

graphs shown in section 4.1, hydrogen content is shown at peak at about 1000 K for all 

three cases. The goal is to achieve optimal hydrogen concentration of the syngas leaving 

the reactor and entering the fuel cell. By keeping the temperature of that reactor constant 

at 1000 K and varying the temperature difference between the reactor and fuel cell, we 

were able to calculate the max power density, or MPD, of the fuel cell. The MPD is 

plotted as a function of the SOFC temperature, as can be seen in Figure 4-13: 

 

 
Figure 4-13: Max power density as a function of SOFC temperature for pure carbon, coal, and 

biomass. The temperature of the reactor is fixed at 1000 K and the temperature difference 

between the reactor and SOFC is carried out in increments of 50 K. Max Power density 
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increases as the temperature difference increases. The SOFC should be kept at a temperature 

well above the reactor temperature. Pure carbon has the highest MPD while biomass has the 

lowest MPD for any given SOFC temperature.  

 

As can be seen in Figure 4-13, the temperature difference, or ∆T, is carried out in 

increments of 50 K. The code used to create this figure can be seen in Appendix I. The 

MPP increases as ∆T increases. Thus, the temperature of the SOFC should be kept at a 

temperature well above the temperature of the reactor to increase power performance. 

Pure carbon-derived syngas still attains the highest MPP for any given temperature, while 

biomass-derived syngas once again has the lowest performance. Similar to Figure 4-12, 

the current density increases as the MPP increases. Thus, higher MPP can be achieved at 

higher temperatures at the expense of using more current density. The key difference 

between Figure 4-15 and Figure 4-12 is the maximum power point at 1400 K. For pure 

carbon-derived syngas, for example, the power peaks at 2.8 
Õ

V<K
 when the SOFC 

temperature is at 1400 K and the reactor is fixed at 1000 K. When the reactor is kept at 

the same temperature as the SOFC, however, the power peaks at 4.2 
Õ

V<K
 at a temperature 

of 1400 K. It can thus be said that the energy required to heat the fuel cell inlet gases 

from the reactor temperature to the SOFC temperature outweighs the benefit of having 

syngas with optimal hydrogen concentration entering the fuel cell.  

 

 

CONCLUSIONS 

 

 SOFCs are considered as promising energy conversion devices for converting a 

fuel, such as syngas, to heat and electricity due to its advantages such as its ability to 
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integrate with external gasifiers, high power performance, syngas composition flexibility, 

and low greenhouse gas emissions. In this thesis, we modeled the thermodynamic energy 

for an external reforming SOFC coupled with a biomass-to-syngas reactor. We based the  

composition of the syngas output from the reactor on temperature and feedstock being 

used. We analyzed four different feedstocks for their fuel cell heat dissipation and fuel 

cell power characteristics: pure syngas, pure carbon-derived syngas, coal-derived syngas, 

and biomass-derived syngas. Pure syngas was the only case that did not take the reactor 

into account; the syngas output was assumed to consist of only hydrogen and carbon 

monoxide. The syngas output for pure carbon, coal, and biomass was assumed to consist 

of hydrogen, carbon monoxide, carbon dioxide, methane, and water. Specific values vary 

based on the specific fuel cell being used during actual experimentation. For this reason, 

we placed greater emphasis on trends rather than specific values. After analyzing the 

results section of this thesis, we found there to be five major outcomes that can further 

the research of a biomass-to-syngas reactor coupled with an SOFC.  

 

1) In order to calculate the maximum power density and heat dissipation of the 

SOFC, we had to initially analyze the Gibbs free energy and voltage in order to 

further understand the thermodynamics of the fuel cell process. Since pure syngas 

did not take the reactor into account, a separate Gibbs free energy analysis was 

conducted for this feedstock. The results had shown the Gibbs free energy of the 

fuel cell for pure syngas to increase as the hydrogen concentration increased for 

temperatures above 1100 K. For temperatures below 1100 K, Gibbs free energy 

increased as the hydrogen concentration decreased due to the chemical system 

having much lower entropy change at lower temperatures than at higher 

temperatures. A separate analysis, which took into account the reactor, involved 

the other three feedstocks. The results of the energy analysis of the reactor had 

shown the biomass to have the highest change in Gibbs free energy, followed by 



79 

 

coal and pure carbon. This consequently caused the change in the Gibbs free 

energy of the fuel cell for biomass to be very small. The results of the energy 

analysis of the fuel cell had shown pure carbon to have the highest change in 

Gibbs free energy. Polarization curves for all four cases had shown that ohmic 

and activation losses became less significant as the temperature increased.  

 

2) The characteristics seen in the polarization curves inherently affected the power 

performance for all four cases; a higher maximum power point (MPP) was 

achieved at higher temperatures due to the voltage losses becoming less and less 

significant. Results from the maximum power density section had shown pure 

syngas to have the highest MPP for any given temperature, followed by pure 

carbon, coal, and biomass. The only downside to operating at higher temperatures 

is that the MPP can only be achieved via high current density. Thus, concentration 

losses would have to be accounted for at these higher temperatures. Since these 

higher temperatures are impractical, the thermodynamic model used in this thesis 

did not account for mass transport.  

 

3) The second outcome assumed the reactor and fuel cell are kept at the same 

temperature; this third outcome assumes the fuel cell and reactor to be at different 

temperatures. Optimal concentration of syngas entering the fuel cell would have a 

higher concentration of hydrogen above anything else in order to ensure that 

water and carbon dioxide are the only products of the fuel cell. The results of the 

equilibrium composition analysis had shown pure carbon to achieve the highest 

amount of hydrogen at any given reactor temperature, followed by coal and 

biomass. Nonetheless, the composition graphs had shown hydrogen concentration 

to be at its highest for all three cases at a reactor temperature of about 1000 K. A 

separate study had shown that if the reactor temperature is kept constant at 1000 
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K while the SOFC temperature is kept at a higher temperature, the MPP at any 

given temperature would not be as high as the case in which the reactor is kept at 

the same temperature as the SOFC. The energy required to heat the fuel cell inlet 

gases from the reactor temperature to the SOFC temperature outweighs the 

benefit of delivering optimal hydrogen concentrated syngas to the SOFC. 

 

4) Heat dissipation of the fuel cell was also calculated in addition to power 

performance for the case of pure carbon, coal, and biomass. As temperature 

increased, the enthalpy of reaction for the reactor steadily decreased and the heat 

released from the fuel cell increased. No energy in the form of work had to be 

redirected to generating heat from the fuel cell; heat transferred to the 

environment due to reaction in the fuel cell exceeded that required for the 

endothermic reactions in the reactor. Thus, the results section of this thesis 

ultimately displayed pure carbon to dissipate the most heat and generate the most 

electrical work, followed by coal and biomass. Pure carbon was oxygen-free 

before the reactor and hydrogen-rich after the reactor, thus allowing for much 

higher overall performance.  

 

5) A separate study had shown that high oxygen content hindered the performance of 

biomass, thus requiring the incorporation of de-oxygenation in the reactor. 

Without de-oxygenation, the use of coal would give overall better performance 

over biomass at the cost of more ash and more burning of air. The use of biomass 

would require less burning of air and release less ash at the cost of lower work 

performance and lower heat deliverance. By using the proper technique of de-

oxygenation in a gasifier, biomass has the potential to achieve higher overall 

performance over coal. 
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APPENDIX A: PURE SYNGAS REVERSIBLE CELL VOLTAGE  

 

function [Eo] = revcellvoltage(T1,P1,x) 

  

  
gas1 = GRI30; %%% Water 
set(gas1,'T',T1,'P',P1,'X','H2O:1'); 
hmole1 = enthalpy_mole(gas1); 
smole1 = entropy_mole(gas1); 
hmass1 = entropy_mass(gas1); 
gibb1 = x*(hmole1-(T1*smole1)); 

  
gas2 = GRI30; %%%% Carbon Dioxide 
set(gas2,'T',T1,'P',P1,'X','CO2:1'); 
hmole2 = enthalpy_mole(gas2); 
smole2 = entropy_mole(gas2); 
gibb2 = (1-x)*(hmole2-(T1*smole2)); 

  
gas3 = GRI30; %%% Carbon Monoxide 
set(gas3,'T',T1,'P',P1,'X','CO:1'); 
hmole3 = enthalpy_mole(gas3); 
smole3 = entropy_mole(gas3); 
gibb3 = (1-x)*(hmole3-(T1*smole3)); 

  
gas4 = GRI30; %%% Air 
set(gas4,'T',T1,'P',P1,'X','O2:.21,N2:.79'); 
hmole4 = enthalpy_mole(gas4); 
smole4 = entropy_mole(gas4); 
gibb4 = 0.5*(hmole4-(T1*smole4)); 

  
gas5 = Hydrogen;  
set(gas5,'T',T1,'P',P1); 
hmole5 = enthalpy_mole(gas5); 
smole5 = entropy_mole(gas5); 
gibb5 = x*(hmole5-(T1*smole5)); 

  
gibb6 = 8314*T1*log(1/(((.21*P1)/101325)^.5)); 

  
totalgibb = ((gibb1+gibb2)-(gibb3+gibb4+gibb5)+gibb6)/1000; %% J/mol 

  
F = 96400; %%% Faraday Constant (C/mol) 
n = 2;      

  
Eo = totalgibb/(-n*F); 
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APPENDIX B: COAL, BIOMASS, AND PURE CARBON  REVERSIBLE CELL 

VOLTAGE  

 

function [totalgibb] = realrevcellvoltage(T1,P1,h,co,w,co2,ch4) 

  
x = (co+co2+ch4); % water produced 
y = ((2*h)+(2*w)+(4*ch4))/2; %carbon dioxide produced 
z = ((2*x)+y-co-w-(2*co2))/2; %oxygen required for stoichiometric 
display(z) 

  
%%Reactants 
gas1 = Hydrogen; 
gas2 = GRI30; %%% Carbon Monoxide 
gas3 = GRI30; %%% Water 
gas4 = GRI30; %%%% Carbon Dioxide 
gas5 = Methane; 
gas6 = Oxygen; 
%%Products 
gas7 = GRI30; %%% Carbon Dioxide 
gas8 = GRI30; %%% Water 

  

  
set(gas1,'T',T1,'P',P1); 
hmole1 = enthalpy_mole(gas1); 
smole1 = entropy_mole(gas1); 
gibb1 = h*(hmole1-(T1*smole1)); 

  
set(gas2,'T',T1,'P',P1,'X','CO:1'); 
hmole2 = enthalpy_mole(gas2); 
smole2 = entropy_mole(gas2); 
gibb2 = co*(hmole2-(T1*smole2)); 

  
set(gas3,'T',T1,'P',P1,'X','H2O:1'); 
hmole3 = enthalpy_mole(gas3); 
smole3 = entropy_mole(gas3); 
gibb3 = w*(hmole3-(T1*smole3)); 

  
set(gas4,'T',T1,'P',P1,'X','CO2:1'); 
hmole4 = enthalpy_mole(gas4); 
smole4 = entropy_mole(gas4); 
gibb4 = co2*(hmole4-(T1*smole4)); 

  
set(gas5,'T',T1,'P',P1); 
hmole5 = enthalpy_mole(gas5); 
smole5 = entropy_mole(gas5); 
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gibb5 = ch4*(hmole5-(T1*smole5)); 

  
set(gas6,'T',T1,'P',P1); 
hmole6 = enthalpy_mole(gas6); 
smole6 = entropy_mole(gas6); 
gibb6 = z*(hmole6-(T1*smole6)); 

  
set(gas7,'T',T1,'P',P1,'X','CO2:1'); 
hmole7 = enthalpy_mole(gas7); 
smole7 = entropy_mole(gas7); 
gibb7 = x*(hmole7-(T1*smole7)); 

  
set(gas8,'T',T1,'P',P1,'X','H2O:1'); 
hmole8 = enthalpy_mole(gas8); 
smole8 = entropy_mole(gas8); 
gibb8 = y*(hmole8-(T1*smole8)); 

  
logg = 

(((y*(P1/101325))^y)*((x*(P1/101325))^x))/(((ch4*(P1/101325))^ch4)*((h*

(P1/101325))^h)*((co*(P1/101325))^co)*((w*(P1/101325))^w)*((co2*(P1/101

325))^co2)*((z*(P1/101325))^z)); 

  
gibb9 = 8314*T1*log(logg); 

  
totalgibb = ((((gibb7+gibb8)-

(gibb1+gibb2+gibb3+gibb4+gibb5+gibb6)+gibb9)/1000))/z; %% J/(mol O2) 
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APPENDIX C: PURE SYNAS ENTHALPY OF REACTION 

 
function [deltah] = enthalpy(T1,P1,x) 

  

  
gas1 = GRI30; %%% Water 
set(gas1,'T',T1,'P',P1,'X','H2O:1'); 
hmole1 = enthalpy_mole(gas1); 
smole1 = entropy_mole(gas1); 

  
gas2 = GRI30; %%%% Carbon Dioxide 
set(gas2,'T',T1,'P',P1,'X','CO2:1'); 
hmole2 = enthalpy_mole(gas2); 
smole2 = entropy_mole(gas2); 

  
gas3 = GRI30; %%% Carbon Monoxide 
set(gas3,'T',T1,'P',P1,'X','CO:1'); 
hmole3 = enthalpy_mole(gas3); 
smole3 = entropy_mole(gas3); 

  
gas4 = GRI30; %%% Air 
set(gas4,'T',T1,'P',P1,'X','O2:.21,N2:.79'); 
hmole4 = enthalpy_mole(gas4); 
smole4 = entropy_mole(gas4); 
gibb4 = 0.5*(hmole4-(T1*smole4)); 

  
gas5 = Hydrogen;  
set(gas5,'T',T1,'P',P1); 
hmole5 = enthalpy_mole(gas5); 
smole5 = entropy_mole(gas5); 

  
%%% deltah = x*(h,f + h@T1 - h@298K)H2O + (1-x)*(h,f + h@T1 - 

h@298K)CO2 - 
%%% (1-x)*(h,f + h@T1 - h@298K)CO - .5*(0 + h@T1 - h@298K)O2 - x*(0 + 
%%% h@T1 - h@298K)H2 

 
deltah = ((x*(-241820000+(hmole1+2.4183e+008)))+((1-x)*(-

393520000+(hmole2+3.9351e+008)))-((1-x)*(-

110530000+(hmole3+1.1053e+008)))-(.5*(hmole4+12092))-

(x*(hmole5+3505)))/1000; %% J/mol 
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APPENDIX D: COAL, BIOMASS, AND PURE CARBON ENTHALPY OF 

REACTION 

 

function [deltah] = realenthalpy(T1,P1,h,co,w,co2,ch4) 

  
x = (co+co2+ch4); % water produced 
y = ((2*h)+(2*w)+(4*ch4))/2; %carbon dioxide produced 
z = ((2*x)+y-co-w-(2*co2))/2; %oxygen required for stoichiometric 
display(z) 

  
%%Reactants 
gas1 = Hydrogen; 
gas2 = GRI30; %%% Carbon Monoxide 
gas3 = GRI30; %%% Water 
gas4 = GRI30; %%%% Carbon Dioxide 
gas5 = Methane; 
gas6 = Oxygen; 
%%Products 
gas7 = GRI30; %%% Carbon Dioxide 
gas8 = GRI30; %%% Water 

  

  
set(gas1,'T',T1,'P',P1); 
hmole1 = enthalpy_mole(gas1); 

  
set(gas2,'T',T1,'P',P1,'X','CO:1'); 
hmole2 = enthalpy_mole(gas2); 

  
set(gas3,'T',T1,'P',P1,'X','H2O:1'); 
hmole3 = enthalpy_mole(gas3); 

  
set(gas4,'T',T1,'P',P1,'X','CO2:1'); 
hmole4 = enthalpy_mole(gas4); 

  
set(gas5,'T',T1,'P',P1); 
hmole5 = enthalpy_mole(gas5); 

  
set(gas6,'T',T1,'P',P1); 
hmole6 = enthalpy_mole(gas6); 

  
set(gas7,'T',T1,'P',P1,'X','CO2:1'); 
hmole7 = enthalpy_mole(gas7); 

  
set(gas8,'T',T1,'P',P1,'X','H2O:1'); 
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hmole8 = enthalpy_mole(gas8); 

  
%%% deltah = x*(h,f + h@T1 - h@298K)H2O + (1-x)*(h,f + h@T1 - 

h@298K)CO2 - 
%%% (1-x)*(h,f + h@T1 - h@298K)CO - .5*(0 + h@T1 - h@298K)O2 - x*(0 + 
%%% h@T1 - h@298K)H2 
deltah = (((y*(-241820000+(hmole8+2.4183e+008)))+((x)*(-

393520000+(hmole7+3.9351e+008)))-((co)*(-

110530000+(hmole2+1.1053e+008)))-(z*(hmole6+12092))-(h*(hmole1+3505))-

(w*(-241820000+(hmole3+2.4183e+008)))-((co2)*(-

393520000+(hmole4+3.9351e+008)))-(ch4*hmole5))/1000)/z; %% J/(mol O2) 
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APPENDIX E: ACTIVATION LOSS 

 
function [activation_overvoltage] = actover(T1,c) 

 
F = 96400;                     %%% Faraday Constant (C/mol) 
n = 2;                         %%% number of electrons tranferred 
R = 8.314;                     %%% universal gas constant (J/mol*K) 
jo = .001;     %%% universal gas constant (J/mol*K) 

  
alpha = .5;                    %%% transport coefficient 
j(c) = c/100;                  %%% current density (A/cm^2)                                                 

                               %%% area of fuel cell assumed to be 100 

cm^2 

  
j_bv = @(activation_overvoltage)    

(jo*(exp(((alpha*n*F*activation_overvoltage)/(R*T1))) - exp((((alpha-

1)*n*F*activation_overvoltage)/(R*T1))))); 

  
activation_overvoltage(c) = fzero(@(x) j_bv(x) - j(c),1); 
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APPENDIX F: OHMIC LOSS 

 
function [ohmic_overvoltage] = ohmover(T1,c) 
 

L1 = .005;          %%% thickness of electrode membrane (cm) 
L2 = .001;          %%% thickness of electrolyte membrane (cm) 
A = 100;            %%% electrolyte constant (K/m*sigma) 
j = (.01*c)-0.01;   %%% current density (A/cm^2) assuming Area of fuel 

cell = 100 cm^2 
%j=c/A; 
F = 96400;          %%% Faraday Constant (C/mol) 
z1 = 1;             %%% amount of charge carried by charged species 

across electrode 
z2 = 2;             %%% amount of charge carried by charged species 

across electrolyte 
q = 1.602*10^-19;   %%% electron charge (C) 
m = 9.11*10^-31;    %%% mass of electron (kg) 
c1 = 1;             %%% molar concentration of charge carries in 

electrode (mol/cm^3) 
c2 = .1;            %%% molar concentration of charge carriers in 

electrolyte (mol/cm^3) 
tao = 10^-13;       %%% mean free time between scattering (s) 
R = 8.314;          %%% universal gas constant (J/mol*K) 
D = 10^-8;          %%% Diffusivity of polymer electrolyte (m^2/s) 
G = 90000;          %%% electrolyte activation energy (J/mol) 

  

  
conductivity_electrode = (z1*F*c1*q*tao)/(m); 

  
conductivity_electrolyte = 900*((A*exp(-G/(R*T1)))/T1); 

  

  

  
ohmic_overvoltage = j*((L1/conductivity_electrode) 

+(L2/conductivity_electrolyte)); 
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APPENDIX G: VOLTAGE 

 
function Vfc = voltage(T1,P1,x,c) 

 
f2 = actover(T1,c); 
f1 = revcellvoltage(T1,P1,.4); 
f3 = ohmover(T1,c); 

  
jx=.01.*c; 
Vfc = f1-activation_overvoltage-f3;  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



96 

 

APPENDIX H: PEAK POWER 

 

Tarray = linspace(600,1400,41); 

  
for T = 1:41 
    T_j = Tarray(T) 

     
    for c = 1:1:1200 

         

         
        F = 96400; 
        n = 2; 
        R = 8.314; 
        jo = (8.66*10^7)*exp(-22082/T_j); 
        alpha = .5; 
        j(c) = (.01*c)-0.01; 

         
        j_bv = @(activation_overvoltage) 

(jo*(exp(((alpha*n*F*activation_overvoltage)/(R*T_j))) - exp((((alpha-

1)*n*F*activation_overvoltage)/(R*T_j))))); 

         
        activation_overvoltage(c) = fzero(@(x) j_bv(x) - j(c),1); 

         
    end 
        c = 1:1:1200; 
        f3 = ohmover(T_j,c); 
        f1 = revcellvoltage(T_j,oneatm,.5); 

         

  

  
        jx=(.01*c)-.01; 
        Vfc = f1-activation_overvoltage-f3;  
        Pd=Vfc.*jx; 
        b = polyfit(jx,Pd,10); 
        bp = polyder(b);  
        maxjx = roots(bp) 
        maxjx(maxjx<0)=[] 
        maxjx(maxjx>13)=[] 
        g = maxjx(imag(maxjx)==0) 
        maxpd(T) = polyval(b,g) 
        maxpd(maxpd<0)=[] 

         

            
end 
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APPENDIX I: PEAK POWER FOR FIXED REACTOR TEMPERATURE 

 

 
%% q1, q2, and q3 = energy required to heat fuel cell inlet gases from 

reactor temperature to SOFC temperature.  
Q = mcp/\T. Since m = 1 mol and /\h(T) = cp/\T for ideal gases, Q = /\h  

  
Tarray = linspace(50,400,8); 

  
for T = 1:8 
    T_j = Tarray(T) 
    Td = T_j+1000; 

     
    for c = 1:1:1200 

         

         
        F = 96400; 
        n = 4; 
        R = 8.314; 
        jo = (8.66*10^7)*exp(-22082/Td); 
        alpha = .5; 
        j(c) = (.01*c)-0.01; 

         

         

         
        j_bv = @(activation_overvoltage) 

(jo*(exp(((alpha*n*F*activation_overvoltage)/(R*Td))) - exp((((alpha-

1)*n*F*activation_overvoltage)/(R*Td))))); 

         
        activation_overvoltage(c) = fzero(@(x) j_bv(x) - j(c),1); 

         
    end 
        c = 1:1:1200; 
        jx=(.01*c)-.01; 

         
        f3 = ohmover(Td,c); 

         

         
        %%% Coal 
        g1 = GRI30; 
        x1 = 

set(g1,'T',1000,'P',2*oneatm,'X','C:.34,H2:.026,O2:.058,N2:.006,H2O:.51

'); 
        x2 = equilibrate(g1,'TP'); 
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        h2 = moleFraction(x2, 'H2'); 
        h2o = moleFraction(x2, 'H2O'); 
        co2 = moleFraction(x2, 'CO2'); 
        co = moleFraction(x2, 'CO'); 
        ch4 = moleFraction(x2, 'CH4'); 
        f1 = realrevcellvoltage(Td,oneatm,h2,co,h2o,co2,ch4); 
        q1 = realenthalpy(Td,oneatm,h2,co,h2o,co2,ch4);  
        Vfc = f1-activation_overvoltage-f3-q1;  
        Pd=Vfc.*jx; 
        b = polyfit(jx,Pd,10); 
        bp = polyder(b);  
        maxjx = roots(bp); 
        maxjx(maxjx<0)=[]; 
        maxjx(maxjx>16)=[]; 
        g = maxjx(imag(maxjx)==0) 
        maxpd(T) = polyval(b,g); 
        maxpd(maxpd<0)=[]; 

         
        %%% Biomass 
        g2 = GRI30; 
        x2a = 

set(g2,'T',1000,'P',2*oneatm,'X','C:.32,H2:.035,O2:.17,N2:.005,H2O:.47'

); 
        x2b = equilibrate(g2,'TP'); 
        h2b = moleFraction(x2b, 'H2'); 
        h2ob = moleFraction(x2b, 'H2O'); 
        co2b = moleFraction(x2b, 'CO2'); 
        cob = moleFraction(x2b, 'CO'); 
        ch4b = moleFraction(x2b, 'CH4'); 
        f1b = realrevcellvoltage(Td,oneatm,h2b,cob,h2ob,co2b,ch4b); 
        q2 = realenthalpy(Td,oneatm,h2b,cob,h2ob,co2b,ch4b); 
        Vfcb = f1b-activation_overvoltage-f3-q2;  
        Pdb=Vfcb.*jx; 
        bb = polyfit(jx,Pdb,10); 
        bpb = polyder(bb);  
        maxjxb = roots(bpb); 
        maxjxb(maxjxb<0)=[]; 
        maxjxb(maxjxb>16)=[]; 
        gb = maxjxb(imag(maxjxb)==0) 
        maxpdb(T) = polyval(bb,gb); 
        maxpdb(maxpdb<0)=[]; 

         
        %%% Pure Carbon 
        g3 = GRI30; 
        x3a = set(g3,'T',1000,'P',2*oneatm,'X','C:.4,H2O:.6'); 
        x2c = equilibrate(g3,'TP'); 
        h2c = moleFraction(x2c, 'H2'); 
        h2oc = moleFraction(x2c, 'H2O'); 
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        co2c = moleFraction(x2c, 'CO2'); 
        coc = moleFraction(x2c, 'CO'); 
        ch4c = moleFraction(x2c, 'CH4'); 
        f1c = realrevcellvoltage(Td,oneatm,h2c,coc,h2oc,co2c,ch4c); 
        q3 = realenthalpy(Td,oneatm,h2c,coc,h2oc,co2c,ch4c); 
        Vfcc = f1c-activation_overvoltage-f3-q3;  
        Pdc=Vfcc.*jx; 
        bc = polyfit(jx,Pdc,10); 
        bpc = polyder(bc);  
        maxjxc = roots(bpc); 
        maxjxc(maxjxc<0)=[]; 
        maxjxc(maxjxc>17)=[]; 
        gc = maxjxc(imag(maxjxc)==0) 
        maxpdc(T) = polyval(bc,gc); 
        maxpdc(maxpdc<0)=[]; 

         

            
end 

  
k = 1:8; 
plot(k,maxpd,k,maxpdb,k,maxpdc) 
xlabel('Temperature (K)') 
ylabel('Max Power Density (W/cm^2)') 
legend('Coal','Biomass','Pure Carbon') 
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