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ABSTRACT

As technological improvements in hardware and software have grown in leaps
and bounds, the presence of IoT devices has been increasing at a fast rate. Pro-
filing and minimizing energy consumption on these devices remains to be an an
essential step towards employing them in various application domains. Due to the
large size and high cost of commercial energy measurement platforms, the research
community has proposed alternative solutions that aim to be simple, accurate, and
user friendly. However, these solutions are either costly, have a limited measure-
ment range, or low accuracy. In addition, minimizing energy consumption in IoT
devices is paramount to their wide deployment in various IoT scenarios. Energy
saving methods such as duty-cycling aim to address this constraint by limiting
the amount of time the device is powered on. This process needs to be optimized,
as devices are now able to perform complex, but energy intensive tasks due to
advancements in hardware.

The contributions of this paper are two-fold. First we develop an energy
measurement platform for IoT devices. This platform should be accurate, low-
cost, easy to build, and configurable in order to scale to the high volume and
varying requirements for IoT devices. The second contribution is improving the
energy consumption on a Linux-based IoT device in a duty-cycled scenario. It is
important to profile and optimize boot up time and shutdown time, and improve
the way user applications are executed.

EMPIOT is an accurate, low-cost, easy to build, and flexible power measure-
ment platform. We present the hardware and software components that comprise
EMPIOT and then study the effect of various design parameters on accuracy. In
particular, we analyze the effect of driver, bus speed, input voltage, and buffering
mechanisms on sampling rate, measurement accuracy, and processing demand. In
addition to this, we also propose a novel calibration technique and report the cal-
ibration parameters under different settings. In order to demonstrate EMPIOT’s
scalability, we evaluate its performance against a ground truth on five different
devices. Our results show that for very low-power devices that utilize 802.15.4
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wireless standard, measurement error is less than 4%. In addition, we obtain less
than 3% error for 802.11-based devices that generate short and high power spikes.

The second contribution is the optimization the energy consumption of IoT
devices in a duty cycled scenario by reducing boot up duration, shutdown duration,
and user application duration. To this end, we study and improve the amount of
time a Linux-based IoT device is powered on to accomplish its tasks. We analyze
the processes of system boot up and shutdown on two platforms, the Raspberry
Pi 3 and Raspberry Pi Zero Wireless, and enhance duty-cycling performance by
identifying and disabling time consuming or unnecessary units initialized in the
userspace. We also study whether SD card speed and SD card capacity utilization
affect boot up duration and energy consumption. In addition, we propose Pallex,
a novel parallel execution framework built on top of the systemd init system to
run a user application concurrently with userspace initialization. We validate the
performance impact of Pallex when applied to various IoT application scenarios:
(i) capturing an image, (ii) capturing and encrypting an image, (iii) capturing and
classifying an image using the the k-nearest neighbor algorithm, and (iv) capturing
images and sending them to a cloud server. Our results show that system lifetime
is increased by 18.3%, 16.8%, 13.9% and 30.2%, for these application scenarios,
respectively.
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Chapter 1

Introduction

The importance of low-cost and accurate energy measurement of Internet of Things

(IoT) devices can be justified on two fronts. First, the percentage of energy con-

sumed by connected devices is increasing due to the significant growth in the

number of IoT devices. Gartner predicts that by 2020, the number of IoT devices

will surpass 20 billion [1]. Most of these devices are being deployed in a variety of

application domains such as remote areas where there is no stable source of elec-

tricity. As a result, they usually rely on some sort of finite energy source such as

a battery or energy harvesting solution such as solar power. Therefore, extensive

measurement, profiling, analyzing, and improvement of energy consumption is re-

quired in order to satisfy QoS requirements. Although there are existing solutions

that are currently being used for energy measurement, they are not optimal for

the unique requirements necessary for IoT devices. For example, while analytic

and simulation based energy estimation tools are simple and easy to use, they

fail to take into consideration the complexities of hardware and newer wireless

technologies. Although commercial energy measurement platforms provide high

accuracy, they are costly, expensive, and bulky; characteristics that do not make

them suitable candidates for measuring hundreds of devices at a time.

In addition to energy measurement, the actual conservation of energy in IoT

devices remains relevant as ever. Technological advancements, such as increases

in processing power and memory capacity have also enabled the next generation
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IoT devices for new, process-intensive applications. Such applications benefit from

edge and fog computing to improve responsiveness and minimize the overhead of

data exchange with cloud platforms [2]. For example, image processing through

artificial intelligence on IoT devices presents several benefits including: faster

decision-making and lower reaction time to environmental changes, less wireless

interference with nearby devices, and improved security due to eliminating the

need to upload raw images to a cloud service [3]. According to ABI Research

[4], 90% of the data generated by edge devices is being processed locally. Local

storage and processing can be used to satisfy the stringent latency requirements of

mission-critical applications [5], reduces network utilization, reduces the processing

overhead of resource-constraint devices, enhances security, and enables the system

to continue its operation even in the presence of intermittent network connectivity

[6]. For IoT devices that are connected to a power grid, it is important to reduce

their energy footprint given the increasing cost of energy and the efforts towards

reducing carbon emissions [7, 8]. To this end, various solutions have been proposed,

such as energy-efficient hardware design [9, 10, 11], low-overhead operating systems

(OS) [12, 13, 14, 15], and low-power networking stacks [16, 5, 17, 18].

1.1 Low-cost and Accurate Energy Measurement

While there are many different solutions used to measure power consumption for

IoT devices they all have their own shortcomings. For example, analytic and

simulation-based energy estimation tools are simple and easy to measure power

consumption. This is the main reason why most research contributions on low

power wireless IoT systems utilize them. Most of these tools function by multi-

plying the time spent in each state, e.g. sleep, processing, and transmission by
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the power consumed in that state [19, 20, 21, 22, 23]. Unfortunately this approach

is inaccurate as it does not take into consideration the complexities involved in

identifying power consumption in each state. First, energy consumption of all

operational modes may not be available for a given system-on-chip (SoC). For

example, the datasheet of one of these devices may include only the average cur-

rent consumption for nominal transmission power values. Additionally, the energy

consumption of the processor depends on its utilization level, frequency scaling,

and I/O operations [24]. Secondly, IoT boards usually include a SoC and sev-

eral peripheral components which include but are not limited to analog digital

converters, sensors, and memory. Therefore, even if energy characteristics of each

individual component of the SoC are known, it is still challenging to estimate total

energy consumption. Finally, various aspects of software such as code structure,

algorithms, and data structures affect the energy consumption of the IoT system.

For example, when cache memory is present on a device, an array contiguously

allocated in memory has a positive impact on cache performance, which in turn

improves energy consumption. Finally, simulations make it difficult to simulate

and evaluate the properties of real-world environments, like interference, which

make it difficult to study their effects on energy consumption [25, 26, 27]. Despite

these shortcomings, most of the research contributions on low-powered wireless

IoT systems rely on simulation due to simplicity.

Another well known solution for power profiling is the use of commercial

energy measurement platforms. They provide a high degree of accuracy which

makes them a popular choice for serious power measurement. Unfortunately, these

platforms are either costly, bulky, or difficult to integrate with IoT devices. For

example, the Keysight 14465A [28] costs more than $1300 with 2MB storage and

a maximum sampling rate of 50Ksps. Similarly, the Keithly 7510 [29] costs more
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than $3500 with 2MB storage and sampling rate up to 1Msps. In addition to their

size and cost, these devices are not a viable solution towards monitoring energy

consumption of a large number of IoT devices in a testbed. Furthermore, their

programmability is limited and inflexible which makes it difficult to test certain

stages of an operation on a device. These shortcomings also apply to the Monsoon

power meter, an $800 platform widely used in academia. Due to these reasons,

using commercial energy measurement platforms are not ideal for the measurement

of power consumption in IoT devices.

In response to these shortcomings the research community has also proposed

a few cost-effective and accurate power measurement platforms. Based on their

main shortcoming, we categorize these platforms as the following: (i) complex

(ii) limited supported range (iii) low accuracy. Solutions with complex circuitry

make the device costly and difficult to build. Energy measurement platforms

with limited supported range are not ideal for measuring energy of IoT devices,

especially newer ones that use wireless technologies such as 802.11 which result in

current spikes as high as 700mA. Finally, if the accuracy of an energy measurement

platform is low, it cannot be used for effective study, development, and debugging

of IoT devices. In addition to these shortcomings, most of these platforms ignore

the effect of voltage variation on energy measurement [30, 31, 21, 22]. Furthermore,

in terms of accuracy analysis, evaluations are very limited and mostly include one

IoT device type [32, 33, 31, 21]. We further elaborate on each of these issues in

Section 2.1.

In Chapter 3 we propose EMPIOT (Energy Measurement Platform Internet

of Things), an accurate, low-cost, easy to build, and flexible power measurement

platform designed to solve the problems highlighted earlier. It has two major com-

ponents - a custom shield built with the INA219 [34] energy monitoring chip, and

4



a base board which mounts and communicates with it. The shield is responsible

for performing both current and voltage measurement and costs less than $5. De-

pending on the configuration used, INA219 can measure currents as high as 3.2A

and voltages up to 32V. EMPIOT’s software is a multithreaded C++ program

which reads data from the shield and saves it to file. In addition, it supports a

set of features that make it easy to control and integrate with existing testbeds.

While EMPIOT is simple in terms of hardware, we have extensively experimented

and analyzed various design parameters on performance. We profile and evaluate

two I2C drivers - the BCM2835 [35] and the Linux driver [36] and show that by

using the BCM driver we can attain higher speed lower energy consumption, and

predictable timing. In addition, we also evaluate the effect of input voltage on

sampling rate and measurement accuracy. Our results show that reducing the

shield’s operational voltage results in an increase in conversion time which leads

to a decrease in sampling rate. Through experimenting with a battery, external

power source, and a Raspberry Pi we confirm that EMPIOT can run on variable

power sources without affecting accuracy which always falls between 100µA and

4mV. We also compare sampling rate and energy efficiency of the base board using

two different data structures for data collection - a single circular buffer and two

linear buffers. We observe that using the circular buffer results in a faster sampling

rate while using two buffers results in lower energy consumption. Finally, we study

the effect of batched and continuous file writes on energy consumption of the base

board. We study the effect the driver had as well. By using the BCM driver and

batched write operations we are able to considerably reduce energy consumption.

In addition to high performing software for collecting samples, we also need

to calibrate the platform to improve accuracy. In order to calibrate the platform,

we designed a programmable calibration tool (PCT), which allows us to generate
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currents and voltages in a wide range and precisely control the duration of each

change. Using PCT, we calibrate EMPIOT for currents up to 800mA. We study

the accuracy of EMPIOT by using five different IoT devices, and four types of

loads. Our results confirm that measurement error is less than 4% for very low-

power devices that use the 802.15.4 wireless standard and generate peak currents

up to 30mA. In addition, the error is less than 3% for 802.11 devices whose current

consumption surpasses 10mA. We also show that neglecting voltage variations in

the energy measurement process may result in up to 0.5% increase in measurement

error, especially for battery-powered 802.11-based IoT devices.

While we never intended for EMPIOT to be a complex power measurement

tool, we study and assert that it or even the original INA219 breakout board

can be used for accurate power measurement of a wide range of IoT devices. In

addition, the total cost of one EMPIOT unit is $35 which makes it an economic

and scalable choice to measure power consumption for a wide range of IoT devices.

In addition to being accurate and low cost, EMPIOT offers a high degree

of flexibility, supporting a variety of features and integrating easily with different

testbeds and IoT devices. EMPIOT been also validated through its use by various

groups in the Santa Clara University Internet of Things Laboratory (SIOTLAB)

for various tasks including measuring energy consumption of packet transmission,

machine learning algorithms, and encryption algorithms.
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1.2 Profiling and Improving the Duty-Cycling

Performance of Linux-based IoT Devices

Among the most-popular operating systems (OS) for IoT edge devices is Linux.

According to the Eclipse IoT survey report [37], 71% of IoT developers rely on

this OS. Existing low-cost devices such as the Raspberry Pi 3 (RPi3), Raspberry

Pi Zero Wireless (RPiZW), Arduino Yun, and Beaglebone Black support this

OS. Despite low-level software and hardware improvements targeted at lowering

their energy consumption, widespread use of these devices in IoT contexts requires

employing user-level energy conservation techniques. Although there are valuable

studies on the power measurement and modeling of this device [38, 39, 40, 41],

unfortunately, less attention has been paid to improving energy efficiency.

One of the most effective approaches towards improving energy efficiency is

duty cycling. This approach has been widely employed by the wireless sensor

network community to achieve a long node lifetime, in some cases up to a few

years [5, 26, 17]. In a duty cycled application, a device powers on, performs its

intended task, and then powers off for a specified interval. Without relying on

duty cycling, the lifetime of a system using an RPi3 and a 2400mAh battery is

around 6 hours, assuming 400mA and 5V for current and voltage consumption.

The major burden of a duty-cycled Linux-based device is its boot up time.

Specifically, the system software and hardware must be loaded and initialized

before running user applications. Compared to real-time OSs such as FreeRTOS

[15] and ThreadX [14], the boot up time of Linux is several orders of magnitude

longer. To show this, we measured the boot up time of various hardware platforms

when using Linux, FreeRTOS and ThreadX. The results are presented in Figure

1.1. These results indicate that for Linux-based systems a significant amount of
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Figure 1.1: The (a) boot up time and (b) energy consumption of popular IoT
operating systems on different hardware platforms.

energy is consumed during the boot up process at the beginning of each duty cycle.

There are two types of energy optimization techniques commonly applied

to reduce the energy consumption of Linux: general optimization [42, 43, 44,

45, 46] and application-specific optimization [47, 48]. General optimization refers

to the improvement of OS code to run faster and consume less energy, agnostic

to the application type. Sample techniques belonging to this category include

improving the filesystem and compression methods of unpacking the kernel during

the bootloader phase [42], running boot up scripts in parallel and disabling kernel

print statements [43], and saving a copy of the boot image to a file for reuse on

subsequent boot ups [44]. Applying general optimization techniques, however,

requires a deep understanding of the boot up process and OS; a trait that most

developers may not posses. In addition, hardware initialization may pose some

challenges.

For example, assume that a system image is taken after the hardware devices

have been initialized. When this image is reloaded during the next duty cycle,
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some hardware devices might not be initialized, and therefore the user applica-

tion cannot function properly. Addressing this limitation requires deep system

knowledge and thorough testing to ensure system reliability. Additionally, ap-

plying security updates requires image regeneration. Even if the image can be

updated, reliability would be a major concern. If images are generated on-the-fly

after updates, the system might fail to boot up if the image is corrupted. Enabling

fallback images requires an overhead for image verification and uses at least twice

the storage space.

Application-specific optimization, on the other hand, refers to either OS im-

provement or the removal of unnecessary components, depending on application

requirements. For example, by customizing the bootloader and thinning the ker-

nel of unnecessary modules, the authors of [47] decreased the boot up time on an

embedded Android device by 65%. In [48], the authors optimized a Linux-based

smart television and reduced its boot up time by five seconds. However, since

they defined boot up time as the interval between power on and the time instance

at which the user can interact with the device, they delayed the initialization of

certain components until after the home screen of the television was loaded. Unfor-

tunately, the existing application-specific optimization techniques do not provide

simple and universally applicable guidelines for IoT scenarios. When Linux-based

devices are used in IoT applications, it is desirable to tailor the system based on

application requirements. Even the Linux distributions released for IoT boards are

preloaded with unnecessary services and initialize hardware devices not required

by specific IoT application scenarios. For example, a device running an image

classification algorithm may not require sound utilities, remote login, service dis-

covery daemons, time synchronization, or any of the wireless technologies offered

by the device.
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In Chapter 4 we focus on the userspace level and application-specific opti-

mization to improve the performance of duty-cycled Linux systems. The goal of

this paper is to profile and improve the energy consumed by the boot up and

shutdown phases of the RPi3 (Raspberry Pi 3, based on the quad-core BCM2837

SoC) and the RPiZW (Raspberry Pi Zero w/ Wireless, based on a single-core

BCM2835 SoC) in such a way that minimal work is required to tailor a standard-

ized installation image to specific IoT applications. In particular, the contributions

of this paper are as follows: first, we overview the boot up process and present

the implementation of a testbed to measure the duration and energy consump-

tion of this process. In order to reveal the effect of loading services on system

performance, we profile the start and end of loading units that require more than

10ms to initialize. By categorizing system units into multiple classes, we show

that customizing the set of active units, which we refer to as unit configuration,

is a very effective approach towards improving duty-cycling performance. For ex-

ample, unit configuration reduces the energy consumption of the boot up process

using a RPi3 by 43.62% for an application that only requires communication with

the camera interface. In addition, through profiling the resource utilization of the

RPi3 and RPiZW in terms of processor, memory and I/O, we further analyze the

overhead of initializing units and show the possibility of running user application

processes while userspace initialization is still in progress. Second, in the context

of flash memory, even when up to 95% of its capacity is utilized, our results show

no effect on the boot up duration or energy consumption. However, using faster

flash memory always results in a slightly lower boot up duration (around 1.5%)

and energy consumption (around 2.5%). Third, we investigate two shutdown ap-

proaches, graceful and forced, and evaluate the impact of unit configuration on

their performance. Our results confirm that using unit configuration reduces the
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energy consumption of the graceful and forced shutdown by up to 43.87% and

57.42%, respectively. Additionally, the benefits and risks of both categories are

highlighted when used for duty-cycled systems. Fourth, we propose Pallex, a

parallel execution framework to execute a user application while userspace initial-

ization is still in progress. Using Pallex, a user application is split into several

stages that execute at different points of the userspace initialization phase. Our

evaluations considering different user application scenarios show that in terms of

lifetime, Pallex improves the duty-cycling performance of the RPi3 and RPiZW

by 30.2% and 9%, respectively. Our results also confirm that although the power

consumption of the RPi3 (quad-core) is higher than that of the RPiZW (single-

core), the RPi3 achieves a longer lifetime due to its significantly shorter processing

duration.

We have chosen to conduct our research using Raspbian Stretch Lite (RSL)

on both the RPi3 and RPiZW because around 43% of Linux-based IoT systems

rely on Raspbian [37]. RSL is a popular release packaged without a desktop

environment, is advertised as a minimalist distribution, has a long development

cycle, and is officially supported by the Raspberry Pi Foundation, thereby making

it an ideal candidate for deploying energy-efficient IoT applications. However,

it is worth noting that the results of this paper translate over to other Linux

distributions supporting systemd such as Debian, ArchLinux, and Kali.
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Chapter 2

Related Work

In this chapter we list and provide analysis on solutions that are either currently

used or proposed by the research community. In Section 2.1 we describe current

energy measurement solutions and explain their shortcomings. In Section 2.2 we

explore current solutions used to improve the boot process on Linux based IoT

devices.

2.1 Energy Measurement

In this section we provide an overview of existing and proposed solutions to mea-

sure energy on IoT devices. We categorize these based on their main shortcoming:

(i) costly and bulky, (ii) complex circuit, (iii) limited supported range,and (iv) low

accuracy.

2.1.1 Costly and Bulky

Most existing power measurement platforms are costly and bulky. For example, in

[49] an oscilloscope is used to analyze the energy consumption of 802.11 tranceivers.

A current probe is used in [50] for power monitoring. However since the probe

relies on the magnetic field generated by current draw, it cannot be used to detect

small currents or variations in the milliamp level. The authors in [19] added a
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shunt resistor to a USB cable and measured both current and bus voltage using

the USB1608-FSPlus [51], a 16-bit analo digital converter (ADC). The USB1608-

FSPlus is controlled by a PC and the sampling rate is 1Ksps. All these approaches

are expensive, moreover their size prevents them from integrating with an IoT

testbed.

2.1.2 Complex Circuit

Similar to integrated circuits (ICs) such as BQ2019 [52], the SPOT [32] platform

uses voltage to frequency conversion and relies on the resources of the device under

test to operate. In Cdition, the oscillator and converter introduce noise and error

which may interfere with the device under test. SPOT also is not plug-and-play.

While SPOT’s measurement error is less than 15% with 1µA resolution it also

assumes the typical operating range of the IoT device to be between 5µA and

50mA. LEAP2 [24] is a FPGA-based platform that enables individual monitoring

of various components such as processor and memory. iCount [33] relies on the

linear relationship between current and switching frequency of boost switching

regulators: counting the switching cycles reflects the current drawn during the

interval. However, the main shortcoming of iCount is that it uses the resources of

the device under test which introduces extra overhead that contributes to increased

energy consumption. Some complex circuit solutions may require extra hardware

such as boost converters which are not always available on IoT boards. Other

solutions such as CYW43907 [11] and CC2650 [53] use internal voltage regulators.

This significantly limits their range of support for various IoT devices.

Energy Bucket [31] counts the number of charges and discharges of a buffer

capacitor. One of its advantages is that it can measure currents in the range 1µA
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to 100mA. However, because of this approach Energy Bucket’s sampling rate is

fully dependent on the buffer capacitor value. In other words, a smaller current

draw will result in a longer inter-sampling interval. In addition, the platform

assumes the bus voltage is fixed and no accuracy analysis is provided.

µMonitor [54] is a platform which proposes a power monitoring platform

based on counting capacitor charge and discharge cycles. For loads within 1µW

and 10mW, the accuracy of µMonitor is almost within 10% of the results obtained

from a 16-bit ADC that digitizes the voltage value over a shunt resistor. Unfortu-

nately, the evaluations performed use static loads. Similar to Nemo [21], Potsch

et al [55, 56] propose the use of two shunt resistors (1Ω and 100Ω) for measuring

low and high currents up to 100mA. Shunt resistor voltages are amplified and then

sampled by a 16-bit ADC which is then collected by a 32-bit microcontroller. We

do not know the actual sampling rate and resolution as neither of those parameters

have been evaluated.

The complex circuitry of these platforms is another shortcoming of the pro-

posed platforms. Each of them include various complex components such as ADC,

op-amp, resistors, high precision capacitors, and extra processors. This complex

circuitry makes it more difficult, costly, and time consuming to build. On the

other hand, EMPIOT is very easy to build and the cost of a complete platform

including the base board is $35 when using a RPi3 or $15 for a Raspberry Pi Zero

with WiFi (RPiZW).

2.1.3 Limited Range

PowerBench [30] is capable of providing 5KHz sampling rate and 30µA resolution.

It assumes the maximum current consumption of the host device is 65mA. This
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platform samples the amplified voltage (51x) across a shunt resistor using a 12-bit

ADC. In [22], the authors assume energy profiling requires only current measure-

ment which limits functionality of the described platform. PowerBench’s error can

be lesser than 5%, but only as long as current is higher than 20µA. However, the

maximum supported current is 35mA. iWEEP HW [57] employs a multi-layer ar-

chitecture to measure the power consumption of processor, tranceiver, and sensors

using separate ADC channels. The platform uses a PIC18 processor and 10-bit

ADC which measures voltage across shunt resistors. iWEEP HW can measure

currents up to 40mA with a maximum sampling rate 150KHz. PotatoScope [58] is

a microcontroller-based oscilloscope that focuses on reliable energy measurement

in outdoor environments especially in those with significant temperature variation.

PotatoScope includes an ARM Cortex-M3 processor attached to a 12-bit ADC to

sample current and voltage. The voltage across a 0.47Ω shunt resistor is ampli-

fied by a factor of 200. Since the ADC’s reference voltage is 2.5V, the maximum

measurable current is 26.6mA. The main disadvantage of using these platforms is

their limited current measurement range which is less than 100mA. IoT devices

rely on high data rate technologies which increase power consumption as high as

700mA. Therefore none of these platforms can be used with IoT devices. On the

other hand, the performance evaluation results presented in Section 3.3 confirm

EMPIOT’s effectiveness for measuring energy in 802.11 devices.

2.1.4 Low Accuracy

Energino [20] is a platform which uses the 10-bit ADC of Arduino boards. The

ADC supports input voltage 0 to 5V, therefore the LSB is 4.88mV and the cur-

rent measurement resolution is 25mA. Energino uses a Hall-effect current sensor

with sensitivity 185mV/A to which attains a sampling rate of 1KHz while mea-
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suring currents up to 5A. NITOS [59] uses the ATmega2560 micro-controller with

a 10-bit ADC. Since the Arduino’s ADC cannot measure millivolt level variations

in voltage, it is required to use a voltage amplifier. In order to maximize sam-

pling rate, NITOS uses the ADC in free running mode which increases the ADC’s

prescalar clock from 125KHz to 1MHz, and uses interrupt service routine to get

ADC values. Although these enhancements result in up to a sampling rate of

63KHz, the accuracy of ADC is reduced by 11% due to the higher clock being

used. Furthermore, the current measurement of the platform is 25mA.

2.2 Optimizing Linux Boot Process

In this section, we compare existing solutions relevant to userspace initialization

optimization. For the sake of completeness, we also study several other techniques

for improving Linux boot up, namely, bootloader optimization, kernel space opti-

mization, and suspend optimization. Variants of these techniques can be utilized

in conjunction with our work to further enhance boot up time and energy con-

sumption.

2.2.1 Userspace Optimization

The authors in [45] identify several areas of improvement for boot up time on

Debian, a Linux operating system, which at the time used sysvinit. Although

Raspbian uses systemd instead of sysvinit, its backwards compatibility allows

for some of these optimizations to translate over to devices using systemd as their

init system. The first area of optimization involves substituting lighter default

applications. For example, boot up time was improved by two seconds by using
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dash instead of bash, the default shell for Debian. Rewriting slow shell scripts

to use internal functions instead of external functions has also been proven to

improve the performance of boot up time.

Boot scripts can also be executed in parallel. This is achieved through setting

the CONCURRENCY option in each boot script. Reordering boot scripts can also help

programs complete faster. In [48], the authors identified areas during the boot up

process of a smart TV when processor utilization is low. They used this informa-

tion to optimize boot script execution by interleaving I/O-intensive programs with

processor-intensive programs. While this can be an effective solution, maintaining

system stability can be troublesome, as sysvinit does not track dependencies.

Therefore, it is the user’s responsibility to ensure any changes do not compromise

system stability. Compounding the issue, dependencies between boot scripts are

often not well documented and require thorough research and an understanding

of both the Linux kernel and sysvinit before modification is possible. By com-

parison, systemd, a modern init system, tracks dependencies and automatically

generates a tree structure to determine which startup tasks can be executed in

parallel. Therefore, the feature set of systemd makes boot script reordering a

much simpler task.

In addition to improving boot up time, we studied several methods for short-

ening the duration until user interaction time: the time it takes until the user

is able to interact with the application. In [45] the authors are able to gain an

improvement of two seconds by performing certain tasks, such as setting up the

network and hardware clock, in the background. In [47, 48], the authors optimize

boot up time on Android smartphones and televisions by deferring long-running

services until after the log-in screen is displayed to the user. However, this ap-

proach is not directly applicable to the IoT devices employing duty cycling.
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Application XIP (Application Execute in Place) [46] is another technique for

improving application start up speed. Application XIP allows for user applica-

tions to be executed directly from the filesystem instead of first being loaded into

RAM. When a program is executed, the kernel program loader maps text seg-

ments for applications directly, resulting in a reduction in RAM footprint, faster

first invocation, and reduced power consumption of flash vs RAM. However, Ap-

plication XIP requires compiling the kernel with support for a filesystem (such as

CRAMFS [60]) that supports storing files in contiguous blocks of memory. Addi-

tionally, there are hardware requirements for XIP such as random access storage

that is directly accessible by the processor, which the RPi platform does not offer.

One major complexity of userspace initialization can be attributed to the evo-

lution of the init system’s responsibilities. Modern init systems often manage

process scheduling, I/O scheduling, and memory scheduling, among other respon-

sibilities. In [61], the authors addressed this issue by simplifying the existing init

scheme to improve an Android device’s boot up time. Their contribution involves

separating the init scheme into two booting modes: normal boot, which executes

all tasks during boot up time, and quick boot, which executes only mandatory

tasks before user interaction time. However, duty-cycled IoT systems do not typ-

ically require separate modes for mandatory services and extra services, as an

optimized system only runs the software required to complete its task. When

device features, such as applying system updates, are not utilized during every

duty-cycle, they are easily loaded after the boot up is completed. Furthermore,

modern Linux kernels support dynamic kernel module loading using the modprobe

utility.
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2.2.2 Suspend-related Improvements

Another approach to improve boot up time is the usage of a suspend or hibernation

mechanism. In [62], the standard hibernate-resume approach is used to optimize

the boot up time of a digital camera. During the system suspend phase, current

system information such as processor registers, I/O map information, and runtime

variables (both global and local), are stored in RAM before the device powers

off. When the system receives certain power events, the resume operation is

started. The previous state of the device is restored from RAM, resulting in a

faster initialization time than a regular boot up. It is important to note that the

RPi platform’s hardware does not support hibernation or suspension, as the SoCs

do not support modern power management features [63].

In [44] and [64], methods for snapshot boot techniques are discussed with

respect to boot up time improvement on a device running Linux. These methods

utilize a snapshot image created at boot up time and stored on a disk or in reserved

flash memory. For subsequent boot ups, the device loads the suspended image

instead of stepping through the standard kernel initialization process. As opposed

to a standard hibernate-resume operation, this snapshot image is generated only

once and then reused. A major disadvantage of snapshot images is the considerable

amount time required for image generation, verification, and storage. Also, storing

a full image in addition to the original system scripts and binaries necessary for

image generation requires a considerable amount of disk space, which may not be

available on many IoT platforms. If the image is corrupted (due to power loss, for

examples), the device may become unrecoverable if a fallback image is unavailable.
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2.2.3 Bootloader Optimization

The bootloader is responsible for initializing the hardware and loading the kernel.

In most cases, the kernel is compressed to save space and the bootloader must

decompress it before use. The authors in [42] analyzed the time required by the

bootloader and compared the performance of several root filesystems for fast boot

up time. Decompressing the kernel with gzip-cheksum on their system resulted in

a bootloader time of 16s. Conversely, using gzip-nochecksum required only 12s,

with a reduction of 3.8s. While the actual decompression of the image took 2.79s,

verifying the checksum required an extra second on their device. In addition, the

cost of calculating the checksum for the RAM disk was 2.78s. They found that

storing the image in a decompressed format can circumvent this process. These

results are noteworthy in the realm of embedded Linux, where processors may be

slower than the RPi’s processor and the onboard flash is more responsive than

the SDC used by the RPi. However, most general-purpose Linux systems can

decompress the kernel faster than the storage medium can read the uncompressed

alternative. Therefore, it is important to balance the speed of the processor and

the I/O read speed before seeking performance gains from an uncompressed kernel.

Similar to Application XIP, Kernel XIP (Kernel Execute-In-Place) [46] is

a popular technique used for optimizing bootloader initialization. In a typical

boot sequence, the kernel is decompressed either during or just after it is loaded

into memory. XIP enables direct execution of kernel instructions directly from

ROM or flash memory. However, this method requires the kernel be stored in an

uncompressed format, thereby requiring more storage space. The RPi platform

does not support Kernel XIP due to hardware constraints.
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2.2.4 Kernel Space Optimization

In [42], the authors show the effect of removing unnecessary kernel modules and

bundling multiple modules into a single module on decreasing kernel loading time.

In another work [46], the authors evaluate the effect of disabling kernel print

statements to prevent bottlenecks caused by streaming messages to the console.

The quiet option in the kernel configuration changes the logging level of print

statements to 4, which suppresses the output of regular (non-emergency) messages.
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Chapter 3

An Energy Measurement
Platform for Internet of Things
Devices

In this chapter we present EMPIOT, a low-cost and effective energy measurment

platform for IoT devices. In Section 3.1 we describe EMPIOT’s hardware, soft-

ware, and features. In Section 3.2 we describe ProCal, the calibration tool used

to calibrate EMPIOT for individual devices. In Section 3.3 we present our find-

ings on EMPIOT’s performance on different IoT devices and discuss how various

settings and parameters impacted its performance.

3.1 Platform Design

In this section we explain the hardware and software that makes up EMPIOT.

We then mention key design parameters and study their effect on EMPIOT’s

performance. Finally we explain the motivation behind calibration for individual

IoT devices and explain the calibration tool used to achieve this.

3.1.1 Hardware

EMPIOT 3.1 consists of a shield that is mounted on top of the GPIO pins of a

base board. In our case it was mounted on a Raspberry Pi 3 (RPi). The main
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Figure 3.1: The EMPIOT shield mounted on a Raspberry Pi 3. GPIO pins are
connected to the board under test.

component powering the shield is the INA219 [34], an inexpensive ($2) analog

digital converter (ADC) which provides readings for current, voltage, and power.

The INA219 chip comes in two versions - INA219A and INA219B. We use INA219B

because it has lower (0.5%) variations versus temperature. The energy draw of

the chip is 1mA and it can operate using a 3.3 or 5V supply. INA219 measures

bus voltage directly and current is measured through digitizing the voltage across

a shunt resistor. The ADC’s basic resolution is 12 bits, and 1 LSB step size for

shunt voltage and bus voltage are 10µV and 4mV, respectively. The ADC is a

delta-sigma type and uses a frequency of 500KHz to collect analog samples. After

collecting samples, the delta-sigma ADC uses a low pass digital filter to reduce

noise and a decimator to average the analog samples. According to the INA219

datasheet, the duration of these operations are 532-586µ for 12 bit resolution and

84-93µ for 9 bit resolution. However, we will show in Section 3.3 that the actual

sample preparation is longer than these reported values. The full scale voltage

range supported across the shunt resistor is 40mV. For a 12 bit resolution, the
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shunt voltage is 40/(212 − 1) = 9.768µV. For resistance, we used a 0.1Ω shunt

resistor with 0.5% accuracy. Therefore, the current resolution for EMPIOT is

100µA for currents up to 400mA. Depending on the maximum possible current, the

power gain amplifier (PGA) can be configured to achieve full-scale range through

dividing shunt voltage by 2, 4, or 8. This means we can measure shunt voltage

in the following ranges: [0, 40]mV, [0, 80]mV, [0, 160]mV, [0,320]mV. Depending

on the applied configuration, the maximum supported bus voltage is either 16V

or 32V. When configured for 16V, the accuracy of bus voltage measurement is

16/(212 − 1) = 3.907mV . We assume current and voltage are less than 800mA

and 5.5V since that is the nominal operational range of IoT devices. INA219

uses the I2C bus to communicate to a master device. The I2C bus supports a

minimum speed of 0.1MHz and a maximum of 2.5MHZ. We decided to use an

RPi as the underlying platform to configure and collect results from the chip

because (i) it has a fast enough I2C rate to support INA219’s generation rate,

(ii) the memory card (and ability to expand storage) can be used for extended

duration of power sampling, (iii) it can be used to communicate and activated by

the attached IoT device through the GPIO pins or a socket, (iv) it comes with

multiple communications (Ethernet Wifi, Serial) which simplify testbed setup and

remote access.

3.1.2 Software

The EMPIOT shield relies on I2C communication to send data to the RPi. We

decided to use and study the differences between two libraries - the Linux I2C

library and the BCM2835 library. The BCM2835 library provides GPIO and other

IO functions on the Broadcom BCM2835 chip, as used by the RPi, allowing access

to the GPIO pins. In addition, it provides functions for reading digital inputs and
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setting digital outputs using SPI and I2C. The Linux dev library is another library

which is native to the Linux kernel. Similar to the BCM library, it provides a

library for I2C, SPI and other IO interfaces. We chose to use both of these libraries

because they were written in C (which integrated with our C++ program) and

because they were the two most popular, having support and documentation from

their respective communities.

Algorithm 46 shows the pseudo-code for the software the base board uses

for collecting and saving data. At a high level, the program consists of the main

function and two threads. The main function is responsible for initializing the

I2C driver, shield, and the two threads. It first writes to the INA configuration

registers to adjust gain and resolution. The gain determines the maximum mea-

surable current and the resolution refers to the number of bits per sample. It

then initializes the I2C driver and configures the bus speed which determines our

sampling rate. Finally, the main function creates the sampler_thread and the

file_writer thread.

The sampler thread is responsible for interfacing with the INA chip. It

polls the chip’s conversion ready bit and when set, reads the the bus and shunt

voltage values. To calculate current, we multiply the bus voltage by 10 which is

the resistance of the INA chip. While we could have read the current register on

the INA chip, we decided to instead move that calculation to the software since

reading from an extra register takes more time. If energy saving mode is enabled,

the sampler thread calls the compute_energy function which calculates energy

consumption via the Riemann integral approach. After collecting the data, the

sampler inserts the new entry to a buffer data structure which is responsible for

flushed to a text file. We implemented and experimented with two different data

structures for storing the data in memory, a two-buffered and a circular approach.
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The unique nature of both these data structures also enable us to experiment with

different methods of file writing. The two buffered algorithm uses two different

fixed-size arrays which are allocated with a set size when the program starts.

These arrays are declared as fixed size and only initialized once at the beginning

of the program using stack memory to optimize performance. When the buffer in

use reaches maximum capacity, we swap it with the unused buffer and save the

used buffer to file. The two buffer approach supports batch writes where entries

are saved every time a buffer gets swapped. We can configure the batch size by

changing the size of the buffers which in turn impacts both performance and energy

consumption. The circular buffered data structure only requires one contiguous

array. New entries are inserted to the beginning of the circular buffer and entries

at the end are save to file. Because one array is being accessed by both threads,

a mutex is used to dictate access. When the buffer reaches maximum capacity it

stops accepting new entries until space has been made available. Due to its nature,

the circular buffer supports continuous file writes.

The EMPIOT software supports both raw data collection and energy mea-

surement. Raw data collection will take readings of a timestamp, shunt voltage,

bus voltage, and shunt current. Energy will take readings of a start timestamp,

an end timestamp, and the energy consumed during that duration in joules and

nanojoules. The program can run in three different modes: (i) a given time du-

ration, (ii) a number of samples collected, and (iii) a trigger mode which allows

the system to be notified when to start and stop sampling. This trigger can be

activated either through the GPIO pins or by sending a packet through a socket

on port 5000. This feature allows the Pi to be controlled by the board under test,

remotely from another device, or even by another program running on the Pi. In

addition, EMPIOT supports both 9 and 12-bit resolution samples and 400 and
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Figure 3.2: Sampling rate for (a) 12-bit resolution and (b) 9-bit resolution. Error
bars show 95% confidence interval.

800mA calibration.

3.1.3 Design Parameters

In order to achieve maximum performance, we analyze the effect of various design

parameters such as sampling rate, sampling offset, accuracy, and energy consump-

tion of the base board.

Effect of the input voltage, driver, and bus speed on sampling rate

Figure 3.2 shows sampling rate with respect to bus speed, driver, and input voltage.

Input voltage refers to the power source of the INA219 on EMPIOT’s shield.

We observe the following: First the sampling rate is lower than the conversion

rate supported by the chip. For example, for 12-bit conversion, the sampling

rate is lower than the 1.8KHz ADC conversion rate as reported in the INA219

datasheet. A second observation is that a lower voltage does result in a lower

sampling rate. We also notice that reducing the bus speed to as low as 200KHz

results in a decrease in sampling rate. Finally we observe that the Linux driver

affects sampling rate for 9-bit resolution.
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In order to evaluate software overhead, we measured the time spent by the

sampler thread between collecting a sample and the next polling of conversion

ready bit. Using a high-speed logic analyzer, our results show that the processing

overhead of the sampler thread to be a negligible 0.46µs. In order to measure

I2C read delay, we created a program that continuously reads two bytes from the

EMPIOT’s shield board. After capturing I2C traffic by the analyzer we compute

the interval between sending I2C addresses. Figure 3.5 shows the results1 which

reveal the effect of bus speed and driver on read delay. In particular, the BCM

driver achieves a faster and more stable I2C performance compared the Linux

driver. More specifically, for any given baud rate Linux I2C read speed is at least

20µs slower than that of BCM. To more empirically justify the lower performance

of Linux driver with respect to BCM, we used the strace [65] program to log

system calls made by the software. Our experiments show that when using BCM,

the number of system calls is always fixed (exactly 181) and does not depend

on the sampling rate. We also observed that these system calls are only made

during initialization of the BCM driver as communication over I2C occurs directly

with the driver rather than going through the kernel. On the other hand, all I2C

communication requests using the Linux driver pass through the kernel; which

results in a linear increase between system calls and sampling rate. Figure 3.5 also

shows that the I2C delay of Linux driver has higher variations compared to BCM:

the average range of variations for Linux I2C read delay is 22µs, while the rate for

BCM drops to 4µs. These results indicate that the Linux driver does not achieve

a reliable rate communication with mission-critical and high rate sensors, such as

those used in medical and industrial applications. The effect is also obvious when

using 9-bit sampling (cf. Figure 3.2(b)). For example, when using a bus speed

1We did not report the results for bus speed 2500KHz and input voltage 3.3V because we
observed a very unreliable I2C communication in this condition. We believe that INA219 cannot
keep up with this high clock rate when the voltage is 3.3V
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Figure 3.3: In order to measure I2C read delay, the logic analyzer captures I2C
communications. To measure sampling delay offset, the logic analyzer captures
both the status of the ”Output Pin” and communication over I2C.

of 500KHz, using the Linux driver reduces sampling rate to 3360, compared to

the 4350 samples collected per second when the BCM driver is in use. From the

software point of view, the overhead of Linux driver affects the number of times

the conversion ready bit is polled per sample collection round. Table 3.1 reports

the results. Therefore we conclude that the Linux driver falls behind the sample

conversion rate when the sampling rate is high.

Next we analyzed the time interval between a change in input and reading

the corresponding value which we call the sampling offset. In order to identify

the causes of sampling offset, we used the experiment shown in Figure 3.3. To

introduce a quick and predictable change in power, we have used a pin toggle

using an ARM-Cortex R4 board (CWY943907 [11]) which sets a pin from high to

low (i.e., 3.3V to 0V) in 50ns. For this experiment, the ”Output Pin” in Figure

3.3 is initially high (3.3V). At particular intervals, the pin is set to low (0V) and

remains in this state for 2ms. We compute sampling delay offset through measuring

the interval between setting a pin to low and collecting the corresponding sample.

To this end, we use a logic analyzer to log the status of ”output pin” as well as

communications through I2C.

Figure 3.4 shows the measured values. Since I2C read delay is independent

of input voltage (as Figure 3.5 shows), the results of Figure 3.4 indicate longer

conversion time when using a lower voltage value, i.e., 3.3V. For example, increas-
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ing conversion time by 64µs decreases the number of samples collected per second

by 47. As the power measurement chip uses a delta-sigma ADC, we believe that

the lower voltage value slows down the operation of the decimator and averaging

circuitry.

Effect of Input Voltage on Measurement Accuracy

In this section we analyze the effect of input voltage variations on accuracy. We

tested EMPIOT’s shield board using the following voltage sources.
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– External (xVExt): A xV external DC power supply [28]

– 5V from RPi (5VRPi): The 5V pin of RPi GPIO pin.

– 5V from RPi with a load (5VRPi w/Load): The 5V pin of RPi GPIO pin.

To generate a load, we connect RPi’s USB port to a Cypress CYW943907

IoT device. The device’s idle energy consumption is about 100mA, but

periodically wakes up and sends ping packets that result in up to 400mA

current consumption.

– 3.3V from RPi (3.3VRPi): The 3.3V pin of RPi GPIO pin.

To determine our ground truth we decided to use an industrial-grade DMM

[29] in order to accurately measure variations of these power sources. The results

are as follows: 5VExt: 2mV, 5VRPi: 103mV, 5VRPi w/Load: 300mV, 3.3vRPi:

24mV. We observe that using RPi as a power source exhibits higher variations

compared to 5VExt which we attribute to background running processes from the

operating system. In spite of this, we still want to confirm if RPi can be used as

a source of power as being able to use it without any degradation in performance

can greatly simplify the platform’s design.

In order to measure accuracy across a wide range of variations, we used three

different fixed loads: 200µA, 5mA, and 100mA. These loads are generated by con-

necting the shield’s output to three different resistors. Figure 3.6 presents the

effect of voltage variation on the accuracy of bus voltage and current measure-

ment. These results show the variability of measurements caused by factors such

as electromagnetic interference and white noise. In spite of this we observe that

irrespective to the source of power and load values, the measurement error of EM-

PIOT is always less than 4mV and 0.1mA respectively for bus voltage and current.
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Figure 3.6: The measurement variations of voltage (sub-figure (a) through (d))
and current (sub-figure (e) through (h)) over time for three different loads and
various input sources. Sampling resolution is 12 bit. The y-axis is the 95% range
of variations.

The reported error ranges comply with the values we mentioned early for INA219

in (cf. Section 3.1.1).

Effect on buffering mechanism, driver, and sampling rate on energy

consumption

We investigate the energy consumption of the RPi running EMPIOT’s software.

In order to do this we used two EMPIOT boards where one measures the energy

consumption of the other. The board under test takes measurements of an IoT

board in idle mode. In addition to energy, we have logged the time we write each

sample to file by toggling a pin and logging pin activation times. By doing this we

are able to avoid introducing the extra software overhead necessary for logging file
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writes. To remove variations caused by Ethernet communication, we used UART

to communicate with the RPi board under test. When using UART instead of

Ethernet we notice the energy consumption of the RPi to be reduced by 30mA in

addition to reducing power variations.

Figure 3.7 shows the results of both approaches. The red trace displays the

energy consumption of the RPi that was measuring the IoT board. Blue bars

indicate the time the RPi wrote each sample to file. Using the circular buffer

results in continuously writing to the flash memory which in turn increases energy

consumption. The energy consumption stays in a relatively fixed range and we

observe very few prolonged spikes in power. For example, for 9-bit resolution

and BCM driver, the base power of the RPi is increased from 1.25W to 1.3W

when using the circular buffer mechanism (compare subfigure (a) and (c)). In this

case, the circular buffer increases the activity time of the sample_writer thread

and increases processor utilization by about 15%. Since the sample_writer’s

processor core utilization is around 98%, this increase requires the utilization of

another processor core, thereby preventing core sleep.

Figure 3.7 also reflects the higher energy consumption of the Linux I2C driver.

For example, when using 12-bit resolution, using the Linux driver increases the

base power to 1.38W, compared to 1.26W achieved with the BCM driver (compare

sub-figure(e) and (f)). As discussed earlier, I2C communication through the Linux

driver results in a significantly higher number of system calls, which increases

processing load.

Even though we use the RPi3 as EMPIOT’s base board due to the benefits

of having an Ethernet port and a multi-core CPU, these are not required and

EMPIOT can still perform well on cheaper more low powered and less expensive

boards. Our studies show that for a RPiZW with an active Wi-Fi connection,
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using the BCM driver and batched write operations results in 670mW power con-

sumption. On the other hand using the circular buffer and Linux driver increases

power consumption to 718mW and 685mW respectively.

Although we have used a small buffer size (20,000) for these experiments to

reveal the effect of batched write operations, a much larger buffer size results in

a higher energy saving. In our implementation, each sample entry is 16 bytes: 8

bytes to store in timespec, 4 bytes for bus voltage, and 4 bytes for current. Even

if only 30% of the 1 GB RAM of RPi3 or 25% of the 512MB of RPiZW is used,

then the number of entries kept in random access memory before each file write

will be 19,660,000 and 8,388,608, respectively. We conclude that batching file

writes through the two buffered approach can be easily used to minimize energy

consumption.

3.2 Calibration

Various factors such as the resistance of the shunt resistor path, inaccuracy of

shunt resistor, and ADC non-linearity are responsible for differences in EMPIOT’s

measurements and a ground truth. For these reasons calibration is important for

EMPIOT’s design as a well-calibrated system make up for these discrepancies.

In order to perform current calibration, we need a load that can generate

currents within the supported measurement range of EMPIOT. Although current

variations can be generated through an IoT device, this method does not result

in an accurate calibration for the following reasons [19, 20, 21, 22, 23]. First, the

duration of a change in current draw may not be long enough to match the sam-

ples collected. Due to fast variations of current and difference in sampling offset

of the DMM and EMPIOT, correlating the samples collected by both devices is a
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Figure 3.7: The effect of sampling resolution, driver, and buffering mechanisms,
on the energy consumption of the RPi running EMPIOT software.

challenging process. For example, when the current draw changes suddenly, some

values may not be captured by EMPIOT due to its lower sampling rate compared

to that of a DMM. Furthermore, DMM and EMPIOT might report the variations
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with different time offsets which means that subtracting the pairwise values does

not reflect a realistic measurement error. If the error of EMPIOT versus DMM is

in fact a linear function, then these calibration errors previously mentioned may

prevent us from finding and at best, cause a linear function with a slope which

deviates from the real value. In addition to this, the IoT board may not cover the

supported current range of EMPIOT which results in calibration gaps. In fact,

turning on each component on the board results in a jump in energy consumption

and is almost impossible to generate a linear increase. Another solution would be

to use a potentiometer as the load. However, the drawbacks are similar to using

an IoT device as we cannot predict the transition and duration of drawing a par-

ticular current value which results in the measurement offsets affecting calibration

error. Furthermore, potentiometers usually support low current values and while

calibration for currents higher than 100mA is possible, it requires an expensive po-

tentiometer. Due to these limitations, the existing solutions perform calibration

either (i) manually by using fixed resistor values [30, 33, 22] or (ii) using expensive

equipment [66, 55, 54].

In order to create a scalable platform infrastructure for ADC calibration, we

have designed a low-cost, accurate, and programmable calibration tool, named PCT

which provides dynamic voltage and current ranges. With PCT, users can program

a load and control its resistance and timing characteristics. A Python program

running on a RPi is responsible for configuring PCT. This software controls re-

configuration frequency and records output settle times between two conservative

configurations. More specifically, if reconfiguration frequency is t, the PFT soft-

ware records the output settle times at n∗ t+ t/2, where n = 0, 1, 2, .... Recording

output instances enables us to correlate the measurement values of DMM and

EMPIOT when the load is stable. Furthermore, this feature prevents the need for
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accurate time synchronization of DMM and EMPIOT.

One of the key advantages of PCT is its large dynamic output range for both

current and voltage. By using a high-accuracy digital potentiometer and well-

calculated resistor combinations, the output range of PCT spans between 0.5mA

to 1A for current and 0.06mV to 5.5V for voltage. We use 256-position 10k digital

potentiometer ADS5200 [67] as the base block, and connect it in parallel with

multiple resistor paths. Specifically, a new resistor path is enabled whenever a

20mA or a 100mA increase in current is required, and the digital potentiometer is

used to fine-tune current in range 0-20mA. By programming the resistance value,

PCT can generate various current and voltage values. The PCT software programs

AD5200 and ADG1612 through SPI interface and GPIOs. Like EMPIOT, PCT

is relatively inespensive as the total cost is about $100, including manufacturing

costs which is less than 1% of the cost compared to current commercial solutions.

PCT generates line interrupts to trigger the start and stop measurements

by EMPIOT and DMM. As mentioned earlier, EMPIOT supports measurement

start and stop through line interrupts. To trigger the DMM we have used a high-

accuracy and programmable device [29] that exposes several programmable GPIO

pins. We have developed a Python script using SCPI (Standard Commands for

Programmable Instruments) to configure the sampling rate and enable the DMM

to start and stop sampling based on the line interrupts received. This script

communicates with the DMM through a TCP/IP connection and samples the

sampled data from the DMM buffer to a PC when a measurement completes.

EMPIOT’s shield includes a jumper to enable current flow from input to

output (cf. Figure 3.1). For calibration purposes we have removed this jumper and

connected the pins to a DMM which allows both EMPIOT and DMM to measure

current simultaneously. Instead of pairwise comparison of the traces collected by
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EMPIOT and DMM, we use the timing data logged by the programmable load.

As the timing data reflects load stability instances, we can safely compare the two

closest entries of the traces collected by DMM and EMPIOT.

One of the goals of this paper is to show if an off-the-shelf INA219 breakout

board can be used instead of EMPIOT’s shield with the software and configuration

parameters proposed in this work to achieve a high level of accuracy. In addition

to reporting calibration data for EMPIOT’s shield, we have also used a stock

INA219 breakout board [68] to study the effect of hardware design on calibration.

This breakout board has been installed on a bread board and communicates with

a RPi running EMPIOT’s software. Figure 3.8 shows the measurement errors of

three EMPIOT boards and three breakout boards conducted in a normal indoor

temperature 25°C. Please note that the left value above each figure refers to the

maximum supported current configured through the programmable gain amplifier

(PGA). As it can be observed, EMPIOT’s shield presents lower error compared to

the breakout boards. Since INA219 measures current through a shunt resistor, the

distance and impedance of a circuit path between the resistor and chip highly affect

measurement accuracy. In addition, Figure 3.8 shows that the error of EMPIOT’s

shield increases linearly versus current. However, the breakout boards’ error show

a quadratic behavior for currents beyond 300mA. For both these cases, instead of

using a calibration table, we simply find the best fitted curves. Table 3.2 reports

the calibration values for these boards.

In addition to current, the voltage measured may not reflect the actual bus

voltage. We used PCT to generate a variable voltage in the range 2V to 5.5V.

Our results show that the error of voltage measurement is a fixed offset. In fact,

EMPIOT’s voltage measurements versus DMM results in linear function VE =

VDMM − 0.027. For the breakout board the calibration function is VE = VDMM −

38



Figure 3.8: Current measurement error (ir − ie) versus ground truth. The value
above each figure shows the maximum supported current (left side) and input
voltage (right side).

0.097.

3.3 Performance Evaluation

In this section, we study the effectiveness of design parameters and calibration

on accuracy and energy efficiency when EMPIOT’s shield and breakout board

are used. The following settings are used: BCM driver is used, bus speed is

2500KHz, INA219’s voltage is 5V, file writes are batched. Our ground truth is

the energy measured by two high accuracy DMMs that record current and voltage

with 500Ksps sampling rate and 18-bit resolution. A Python script is used to

trigger the DMM in a similar way EMPIOT is triggered for its trigger mode.

This means that for our experiments, EMPIOT and the two DMMs start and end

energy measurement at the same time.
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3.3.1 Workloads

We tested this on devices which perform three main operations (i) sleep, (ii) soft-

ware encryption, and (iii) packet transmission (listening and sending). With these

different operations, we introduce three types of loads.

– Workload 1: All 3 operations,

– Workload 2: Send and sleep operations,

– Workload 3: Encryption and sleep operations,

– Workload 4: Encryption and send operations.

3.3.2 IoT Devices

We use five different IoT boards each with different energy characteristics. We

used the TI SensorTag CC2650 which includes an ARM Cortex-M3 processor and

supports the IEEE 802.15.4 standard. The TI Sensortag comes with TI-RTOS

which we used for application development. The energy consumption of the board

in sleep mode is very low powered (10µA) so we used it as a benchmark for

profiling the energy of very low-power devices. To generate fast and temporal

variations in power we used four 802.11 based IoT devices. These were the Avnet

BCM4343W, Cypress CYW43907, RPiZW, and RPi3. The Avnet board includes

an ARM Cortex-M4 processor and supports 802.11a/g/n. In power save mode,

the minimum energy consumption of the Avnet board is around 10mA, processing

consumes about 40mA, and packet transmission results spike up to 350mA. The

Cypress board includes an AM Cortex R4 pocessor and supports 802.11a/g/n.

Since the board also includes other components like an Ethernet chip, its sleep
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power is about 96mA. The processing power is about 140mA, and packet trans-

missions increase power consumption up to 400mA. On the Avnet and Cypress

devices we used Free-RTOS and Wiced Studio for software development. Finally,

to generate higher variations in power, the developed software enables power save

mode (PS-Poll) mechanism so that the radio transitions into sleep mode while it

is not transmitting. At certain intervals the radio wakes up and ping packets are

transmitted as fast as possible. The packets’ small size results in short and fast

spikes in power consumption during transmission.

For RPiZW, the base and processing power are about 130mA and 180mA,

respectively, and 802.11 transmissions result in spikes as high as 300mA. For the

RPi3, the sleep and processing currents are about 280mA and 330mA, respectively,

and 802.11 transmissions increase current consumption up to 500mA. A C program

controls the transition between the three provided operations.

3.3.3 Results

Figure 3.10 shows the energy consumption of CC2650 and BCM4343W. CC2650

shows a clear transition between the three states while BCM4343W presents spikes

across the trace. We can explain this observation as 802.11 communication requires

communication with an access point. During power save mode in 802.11, the device

wakes up every 100ms to receive the beacon packets generated by the access point.

Figure 3.9 presents power measurement error, computed as [E−E1]/E ∗ 100

(for E = energy) when using the EMPIOT shield and the breakout board. Each

marker is the median of 10 experiments where an experiment is 30 seconds long.

The results we achieved indicate that EMPIOT is an accurate power measurement

platform. Comparing subfigures (a) through (e), shoes that energy measurement
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error is higher when measuring very small currents. While the measurement error

for 802.11-based boards is less than 2.5%, the error is less than 3.5% for the Sen-

sorTag. Considering Workload 1 on SensorTag, we observed that more than 40%

of variations in current are less than 1mA. However, since the current resolution

of INA219 is 100uA, these variations are not captured with a very fine granu-

larity. For example, EMPIOT cannot detect current variations between 3.25mA

and 3.27mA because these variations are less than 100uA. Therefore, as the power

consumption of the SensorTag is significantly lower than that of other boards,

small errors in current measurement result in a more considerable effect on total

measurement error.

Figure 3.2 also shows the effect of calibration on accuracy. More specifi-

cally, since the measurement error of the breakout board is higher than that of

EMPIOT’s shield, calibrating the platform has shown to improve accuracy.

Figure 3.9 also shows that the measurement error of 9-bit resolution is slightly

higher than that of 12-bit resolution. This is also particularly obvious for the

SensorTag measurements. Compared with the 802.11 devices, SensorTag generates

smaller variations in power which means that a higher resolution is required to

capture the changes. Compared with 12-bit, using 9-bit resolution enhances the

sampling rate.

3.3.4 Importance of Voltage Measurement

Most existing energy measurement platforms ignore the effect of voltage variations

on energy measurement and instead use a fixed voltage instead to calculate energy.

For this reason one of the aspects we wanted to test was whether voltage measure-

ment had a significant effect on accuracy. This is also important because reading
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Figure 3.9: The energy measurement error of EMPIOT. Error bars show median,
lower quartile and higher quartile. Each marker is the median of ten experiments
where each is 30 seconds long.

from the voltage register takes extra time. If we can attain more accurate mea-

surements with a fixed voltage, we can increase sampling rate. To verify this, we

used Workload 1 to compute energy for two cases - (i) the average value of voltage

measurements is used, (ii) the voltage samples are used. Error is computed as the

difference between these cases and Figure 3.11 shows the results when we use a
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Figure 3.10: The energy trace of SensorTag CC2650 and Avnet BCM4343W when
transitioning between sleep, encryption and transmission.

power supply and a battery for the devices we tested. These results indicate that

neglecting voltage results in up to 0.45% increase in energy measurement error.

The impact of voltage on energy measurement also depends on various factors in-

cluding the stability of power source, the number and intensity of sudden increases

in current draw, and the electronic characteristics of the device such as voltage

stabilization. For example, when a battery is used, sudden variations of current

result in higher measurement error when voltage is ignored. These results also

show that both Cypress and Avnet devices cause significant variations in input

voltage, compared with RPi3 and RPiZW. Our studies show that these variations

are caused by the operations of 802.11 RF transceiver, thereby highlighting the

importance of including voltage for 802.11-based IoT devices. On the other hand,

the energy consumption of SensorTag and its 802.15.4 radio does not cause any

significant variation in voltage.

3.3.5 Limitations

There are some limitations with the EMPIOT platform. One limitation is that

its current measurement resolution is 100µA. This is especially problematic when

measuring the SensorTag’s energy consumption as its sleep current is 10uA. As a

result, in order to improve the accuracy of energy measurement, we simply record
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Figure 3.11: The errors resulting from ignoring voltage in calculating the energy
measurement. Error bars show mean, upper quartile, and lower quartile.

10µA whenever the reported current value is around 100µA. However, this mech-

anism does not work for IoT devices that support multiple low-power modes. For

example, EMPIOT is unable to capture transitions between 1µA, 10µ, and 100µA

low-power states. Since the number of low-power states are usually limited, we can

overcome this issue by explicitly informing EMPIOT about the transition through

different low-overhead mechanisms such as pin toggling or serial communication.

Doing this results in accounting for these missed transitions which can potentially

increase accuracy.

Another limitation of EMPIOT is its warm-up time. Out studies show that

the first 3 to 5 samples collected after initialization are not reliable. This means

that we cannot measure for the first 5ms of an operation. However, we can address

this issue in the software by ignoring the first few samples collected when energy

measurement is inactive instead of turning on the shield board per measurement.
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Algorithm 1: EMPIOT’s software which is responsible for communicating
with the shield, aggregating values, and storing them to file.

1 function main()

2 setup the I2C driver (BCM/Linux) and bus speed;
3 configure the INA219 gain and resolution;
4 create thread sampler;
5 create thread sample_writer;
6 return;

7 thread sampler()

8 while sampling is enabled do
9 while conversion ready == 0 do

10 check the bit;

11 read bus voltage and shunt voltage values;
12 compute_energy(prev_smp, new_smp);
13 if use two buffers then
14 if use_buffer1 == true then
15 add entry to buffer1;
16 if buffer1 is full then
17 signal the sample_writer thread;
18 use_buffer1 == false;

19 else
20 add entry to the buffer2;
21 if buffer2 is full then
22 signal the sample_writer thread;
23 use_buffer1 == true;

24 else if use a circular buffer then
25 lock the buffer;
26 add entry to the buffer;
27 unlock the buffer;
28 signal the sample_writer thread;

29 thread sample_writer()

30 if use two buffers then
31 if use_buffer1 == true then
32 flush buffer1 to the file;
33 else
34 flush buffer2 to the file;

35 else if use a circular buffer then
36 lock the buffer;
37 write entry to the file;
38 unlock the buffer;

39 function compute_energy(prev_smp, new_smp )
40 prv_power = (prv_smp.voltage) × (prv_smp.current);
41 new_power = (new_smp.voltage) × (new_smp.current);
42 time_diff = (new_smp.time) × (prv_smp.time);
43 new_energy = new_power × time_diff ;
44 tri = (new_power − prv_power) × time_diff / 2 ;
45 new_energy -= tri;
46 energy += new_energy;
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Table 3.1: Conversion ready bit polling rate using BCM and Linux drivers for 12
and 9-bit resolution.

Polling Rate Conversion
2500KHz 800KHz 500KHz 200KHz Time

12-bit
BCM 45 15 9 3

1019\15
Linux 23 9 6 2

9-bit
BCM 9 2 1 1

245\9
Linux 4 1 1 1

Table 3.2: Calibration Values

E
M

P
IO

T

400mA/3.3V ie = f−1A (ia) = 0.9957 ia

400mA/5V ie = f−1A (ia) = 0.9963 ia

800mA/3.3V ie = f−1A (ia) = 0.9949 ia

800mA/5V ie = f−1A (ia) = 0.9956 ia

B
re

ak
ou

t
B

oa
rd

400mA/3.3V ie = f−1A (ia) = 0.9853 ia

400mA/5V ie = f−1A (ia) = 0.9869 ia

800mA/3.3V ie = f−1A (ia) = 0.0079 i2a + 0.9816ia

800mA/5V ie = f−1A (ia) = 0.0074 i2a + 0.982ia
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Chapter 4

Optimizing Boot Time in Linux
Based IoT Devices

In this chapter we analyze the Linux boot up and shutdown process on an RPi

and propose a novel framework towards improving it for duty cycled applications.

In Section 4.1 we provide an in-depth description of the Linux boot up process.

We present the components of our testbed and experimentation methodology in

Section 4.2. In Section 4.3 we profile the Linux boot up process and measure

the effect of unit configuration and flash memory on the duration and energy

consumption of boot up. The Linux shutdown phase is studied in Section 4.4.

The operation and performance evaluation of Pallex is presented Section 4.5.

4.1 Boot Up Process

As demonstrated in Figure 4.1, the Linux boot up process consists of three main

phases: (i) the bootloader phase (Pbtl), (ii) the kernel phase (Pknl), and (iii) the

userspace initialization phase (Pusi). Each of these phases present unique oppor-

tunities to optimize boot time. In this paper we focus on Pusi because it enables

the user to simply and effectively implement duty cycling to conserve energy.

48



Hardware, RAM, and Firmware
Initialization

Kernel
Initialization

ui ujsystemd
Initialization uk

Bootloader Phase Kernel Phase Userspace Initialization Phase

…
ul

PusiPbtl

Tusi, EusiTknl, EknlTbtl, Ebtl
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Figure 4.1: The sequence of operations during the boot up process. ui, uj, uk and
ul refer to userspace units.

4.1.1 Bootloader Phase

In the Pi’s boot up process, a two-stage bootloader1 prepares the hardware to

load the kernel. First, while the ARM processor is off, the GPU is powered up

and initializes itself by executing a first stage bootloader that is burned into the

SoC’s ROM [69]. This stage instructs the GPU to power on the Secure Digital Card

(SDC) and read a file called bootcode.bin from the first partition of the SDC. The

execution of bootcode.bin enables the on-board SDRAM and loads start.elf,

which contains firmware for the GPU. After reading in system configuration pa-

rameters from config.txt, the GPU loads the kernel image (kernel.img) along

with kernel parameters (cmdline.txt) into the shared RAM allocated to the ARM

processor. Lastly, the second stage powers on the ARM processor by triggering

the reset signal [63]. Now the system is running the Linux kernel. In this paper

we refer to the duration and energy consumption of this phase as Tbtl and Ebtl,

respectively. Also, we refer to the ARM processor as ”processor”.

4.1.2 Kernel Phase

The Linux kernel handles all OS-related processes such as memory management,

process scheduling, driver initialization, and overall system control. The kernel

1Until October 2012, the RPi platform used a three stage bootloader, with an additional file,
loader.bin, executed by the GPU between the bootcode.bin and start.elf stages.
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is initialized in two steps: The first step occurs when the kernel is loaded into

memory and decompressed. Basic memory management is enabled during this

stage as well. The next major step the kernel takes is launching an init process

to run and transition to Pusi. In this paper we refer to the duration and energy

consumption of the kernel phase as Tknl and Eknl, respectively.

4.1.3 Userspace Initialization Phase

The final phase of the boot up process is userspace initialization. In this paper

we refer to the duration and energy consumption of this phase as Tusi and Eusi,

respectively. During this phase, the units that are activated (a.k.a., initialized)

in the userspace as well as the daemons that run in the background during ac-

tive mode are activated by an init process. Most modern Linux distributions

(including RSL) use systemd [70, 71, 72] as their initialization system. The prede-

cessor to systemd was System V init (sysvinit), which traces its origins back

to the original commercial Unix system. Compared to sysvinit, systemd offers

advantages such as calendar-based job timers, a more unified API, and backward

compatibility with sysvinit.

systemd is the first daemon to start during boot up and the last to exit dur-

ing shutdown. In addition to operating processes and services, systemd is capable

of triggering filesystem mounts, monitoring network sockets and running timers.

Each of these capabilities is described by a set of configurations files, termed unit

files. Unit types include: service units, which manage background services; mount

units, to mount filesystems; and target units: to group and control other units.

There are other unit types as well, but the details of their implementation reside

outside the scope of this paper. In order to manage the dependencies and ordering
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of unit activation, unit files employ the syntax provided by systemd. When sys-

temd is initialized, it first loads the unit configurations and determines the boot

up goal. Based on the specified hierarchy of dependencies, systemd activates the

units in order to reach the target goal. On RSL, the rc.local file is loaded and

executed by systemd after all the services have been initialized. Therefore, the

Raspberry Pi Foundation recommends general consumers launch user processes

through this file to ensure all necessary hardware and software components are

initialized. However, performance improvements are easily achieved through man-

ually resolving dependencies and writing custom unit files, as we will demonstrate

in Section 4.3.

One important feature systemd provides is the ability to activate units in

parallel. This feature can save time compared to initializing units sequentially,

even on a single-core or single-threaded board, as some units require time for

hardware initialization [73]. Finally, systemd enables developers to customize

rules for automatically starting, reloading, and killing services.

4.2 Testbed Overview

Figure 4.2 shows the architecture of the testbed developed to conduct experiments.

It consists primarily of two hardware components: a master and a minion. The

master is composed of a RPi3 and uses a shield board [74] for energy measurement.

The minion refers to the device under test. We used two different minion boards

in this paper, a RPi3 and a RPiZW, where both run the March 2018 release of

RSL.

The master runs two programs: (i) an energy measurement program, and (ii)

a control program that is responsible for enabling and disabling input power to
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Figure 4.2: The schematic of the testbed used for measuring the duration and
energy consumption of the boot up phases.

the minion. Algorithm 2 shows the pseudo-code of the control program running

on the master device. This program is used to control power supply to the minion

and measure the duration and energy consumption of the boot up process. First,

the BCM [75] and WiringPi [76] libraries are initialized. Then, the energy mea-

surement program is initialized to listen on a socket and receive commands from

the control software. At the beginning of each experiment, the control program

communicates with the energy measurement program through the socket to start

power measurement. At the same time, the control program communicates with

the digital switch through a GPIO pin controlled by the BCM library to turn on

the minion. After the start of the boot up process, the control program uses the

WiringPi library to detect and decode a message received from the minion when

it finishes its operation. The end of the operation depends on the experimenta-

tion scenario and refers to cases such as the end of Pusi or the completion of a

user application. The control program logs the duration and energy consumption

of this operation for each experiment. Figure 4.3 shows the states of the minion

during one single experiment from the instance the minion is powered on until
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the instance the minion sends the signal to the master after it has finished its

operation.

It should be noted that the minion cannot use Ethernet, WiFi, or Bluetooth to

inform the master about the end of its operation because their relevant units might

not be active in some scenarios, as we will see later in this paper. Furthermore, it is

not possible to use any of these mechanisms when the performance of Pbtl and Pknl

is being measured. To address this challenge, we send a message over a GPIO pin

from the minion to the master. When the minion completes its operation, it runs

a program that generates a simple bit pattern to notify the master. The minion

generates a bit pattern, instead of a simple rising or falling edge signal, because of

the GPIO voltage variations during the boot up process. Therefore, the generated

bit pattern avoids the master from reporting false positives. This approach enables

us to measure the performance of Pbtl and Pknl because systemd is initialized

immediately after the kernel phase, and GPIOs can be used as soon as systemd is

initialized. The pattern generation program, named SendBitStream, is a unit that

is activated by systemd once the targeted state (based on the experiment type) has

been reached. Specifically, to measure Tbtl+Tknl (and Ebtl+Eknl), this unit is called

immediately after systemd initialization. This is achieved by creating a new unit

without enforcing any dependencies. Similarly, to measure Tbtl + Tknl + Tusi, this

unit is called when all the required units have been activated. In order to measure

boot up duration and energy until a particular unit has been activated, this unit is

activated when its dependencies have been resolved. We used systemd-analyze to

extract Tknl. By using this value, we can compute Tbtl as well. A similar approach

is used to measure the energy consumption of these phases.

For measuring energy consumption, we used EMPIOT, which measures volt-

age variations in the range of 0 to 5V and measures current variations up to 1A.
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Algorithm 2: Master’s control program

1 function startExperiments()

2 /*to control power switch through a GPIO pin and receive bit pattern

from the minion on another GPIO pin */

3 setup the BCM and WiringPi GPIO libraries;

4 /*setup energy measurement program and make it ready to measure

power */

5 initialize the energy measurement program;

6 for i = 0; i < 50; i++ do
7 cut power to the minion;
8 apply power to the minion and start time/energy measurement;
9 wait for minion to transmit bit pattern;

10 record duration and energy consumption;

Off

Wait for 
Master

Bootloader Kernel

Userspace 
Initialization

Shutdown
command 
received

Power on

Inform master
by sending

the bit stream

Figure 4.3: The state machine of the minion device during an experiment. Please
note that during the wait state the system might be activating more units depend-
ing on the activation time of SendBitStream.

EMPIOT is capable of supersampling approximately 500,000 readings per sec-

ond to data points streamed at 1KHz. The current and voltage resolution of

this platform are 100µA and 4mV, respectively, when the 12-bit resolution mode

is configured. The flexibility of this platform allows us to integrate it with our

testbed.

Figure 4.4 shows the actual testbed used. In addition to the master node

and the two minion boards, this testbed includes a gateway. Since for most of the

scenarios, both wired and wireless communication interfaces are disabled, we need

to use the serial port to communicate with the minions and configure the tests.
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Figure 4.4: The hardware components of the testbed.

To this end, the gateway, which is always connected to our wired network, enables

us to use UART and communicate with the minions. For the rest of this paper we

refer to a minion board simply as ”board”, which is the device under test. Please

note that in all the figures, each marker represents the mean and each error bar

represents 95% confidence interval.

4.3 Profiling and Enhancement of the Linux Boot

Up Process

In this section we first study the activation time of units during Pusi. We then

profile system resource utilization in terms of processing, memory and I/O. In

addition, we evaluate the effect of SDC speed and capacity usage on the duration
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and energy consumption of the three phases of the boot up process. Finally,

we show how customizing userspace units can be employed to improve boot up

duration and energy consumption.

4.3.1 A Deeper Look into the Userspace Initialization Phase

The userspace initialization phase activates a variety of units supporting different

functionalities of the system. A summary of units is available in Appendix A.1. In

the beginning of this phase, systemd is initialized and it loads unit configuration

files to determine which units must be activated. It then creates a dependency tree

to determine the ordering of unit dependency resolution. Units can be initialized

in parallel, with respect to their dependency relationships, in order to improve

efficiency.

Figure 4.5(a) and (b) show the activation duration of units during Pusi for

the RPi3 and RPiZW, respectively. We have used the systemd-analyze blame

utility to extract these data. Although all of the units are enabled for these

experiments, we disabled WiFi and Ethernet connectivity in order to extract the

activation duration of units without them being affected by external factors such

as communicating with a WiFi access point. In addition, to focus on units that

significantly contribute to Tusi, these figures do not display units that require less

than 10ms to complete activation. Please note that the x-axis of both Figure

4.5(a) and (b) start at t = 6s because Tbtl = 3.65s and Tknl = 2.85s for both

boards.

For the RPi3, our results show that the system units requiring the highest

overhead are dev-mmcblk0p2.device, networking.service, hciuart.service,

and systemd-resolved.service. Except the first unit, which is responsible for
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after the completion of bluetooth.service.

On the RPiZW, we observe that Tusi is about 17s, which is 10s longer than

that of the RPi3. The same units mentioned for the RPi3 consume most of the

userspace initialization time on the RPiZW as well. Since the RPiZW’s processor

only has one core, compared to the RPi3’s quad-core processor, the difference in

duration is expected. A multi-core processor can parallelize unit activations across

multiple cores, while a single-core processor must context-switch more frequently

between tasks. This also explains why different sets of units are presented in Fig-

ure 4.5(a) and (b). Furthermore, other units including systemd-login.service,

console-setup.service, alsa-restore.service, and systemd-user-sessions.service

reportedly require a longer activation duration (at least 1s) on the RPiZW.

Our analysis of unit activation duration revealed one significant shortcom-

ing about systemd-analyze blame. The initialization duration calculated by this

utility is not completely accurate if the dependency tree is not precisely config-

ured. For example, if systemd attempts to activate a fast unit that depends on

a longer unit which has not been activated yet, the faster unit cannot complete

its activation until the dependency has been resolved. More specifically, if the

activation duration of longer and shorter units are 800ms and 10ms, respectively,

then systemd-analyze blame reports 810ms as the initialization duration of the

faster unit. For example, for sudo.service, systemd-analyze blame falsely re-

ports a long initialization duration because systemd attempts to activate it before

the filesystem the service depends on is mounted. Therefore, the values generated

by this utility may be longer than the actual activation duration of each unit, but

these values are not shorter. To cover all the units that contribute significantly

to the boot up process, we have included only those units that require more than

10ms according to systemd-analyze blame. In Figure 4.5, we include Type I er-
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rors to avoid excluding any units that require more than 10ms. Later, to eliminate

Type I errors, we identify and study the impact of units that significantly affect

the boot up process.

4.3.2 Customizing Userspace Initialization

In this section, we analyze the effect of disabling optional units on the performance

of the userspace initialization phase. This is referred to as unit configuration in

this paper. The systemctl [77] utility is used to implement unit configuration.

Among the units activated during Pusi, some of them are essential to maintain

stable system operation. For example, units that are responsible for mounting the

file systems and loading kernel modules cannot be safely disabled. Another exam-

ple, nearly all user applications will work even if systemd-random-seed.service

is disabled. However, disabling this service is a security risk, because it is critical

for maintaining higher entropy for the secure generation of random numbers used

in encryption algorithms. A complete list of these units, which are referred to

as Essential Units (EU) in this paper, can be found in Appendix A.1. The next

category includes a significant number of services and is referred to as Networking-

Related Services (NRS) in this paper. Appendix A.1 overviews these services.

These services are by far the most variable in terms of activation duration because

they often rely on external dependencies (e.g., association with an access point,

communicating with a DHCP server, etc.) and/or initializing physical hardware

such as the WiFi and Bluetooth transceivers. Due to the significant effect of NRS

on boot up performance, we study the effect of following unit configurations on

Pusi:

– EU. Refers to the case where only the essential units (cf. Appendix A.1.1) are
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enabled. For EU configuration, we detect the end of userspace initialization

when rc.local runs because it is the last unit file that is executed.

– MMS. Refers to dphys-swapfile.service. For configuration EU w/ MMS,

we detect the end of userspace initialization when rc.local runs because it

is the last unit file that is executed.

– NET1. Refers to networking.service. For configuration EU w/ NET1, we

detect the end of userspace initialization when rc.local runs because it is

the last unit file that is executed.

– NET2. Refers to networking.service and sshd.service. For configu-

ration EU w/ NET2, we detect the end of userspace initialization when

rc.local runs because it is the last unit file that is executed.

– NET3. Refers to bluetoothd.service and hciuart.service. For con-

figuration EU w/ NET3, since bluetooth.service is the last service that

is executed, we detect the end of userspace initialization when this service

completes its initialization.

– ALLU. Refers to the case where all units are enabled. For this configuration,

since bluetooth.service is the last service that is executed, we detect the

end of userspace initialization when this service is activated. For configura-

tion ALLU w/o NET3, we detect the end of userspace initialization when

rc.local runs because it is the last unit file that is executed.

In addition to the classifications detailed above, since the actual association

of an RPi with an access point introduces more variations due to the control

messages exchanged between the two parties, we report the results separately for

the cases where a WiFi connection is established. Figure 4.6(a) and (b) show the
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Figure 4.6: The duration and energy consumption of booting up the (a) RPi3
and (b) RPiZW for different unit configurations. The lower and upper axes show
Tbtl + Tknl + Tusi and Ebtl + Eknl + Eusi, respectively.

impact of unit configuration on both the RPi3 and RPiZW, respectively, in terms

of Tusi and Eusi.

These figures clearly show the benefits of unit configuration to enhance the

performance of boot up phase. For example, applying unit configuration EU re-

duces the energy consumption by 43.62% compared to ALLU, for the RPi3 board.

These results also reveal that WiFi significantly affects Tusi and Eusi. Specifically,

for configuration ES w/NET1, enabling WiFi increases Tusi by around 5s and 13s,

for the RPi3 and RPiZW, respectively. It must be noted that the exact increase

depends on factors such as interference, channel congestion, and the load of the

access point during the association process. For example, the duration of WPA

authentication and IP allocation increases as the current load of the access point

is intensified. Since these external dependencies are outside the scope of the RPi

performance, unnecessary services must be disabled or careful attention must be

paid to link quality and access point load to achieve a desirable performance.

These results also reveal the higher effect of hciuart.service and blue-

tooth.service on the RPi3. Since activating these services do not significantly
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utilize the processing resources of the RPi3 (as we will show in Section 4.3.3), the

waste of processing resources, and hence energy consumption, is higher that than

of RPiZW. Therefore, EU w/ NET3 compared to EU results in a 54.8% energy in-

crease on RPi3, compared to the 26.92% increase on RPiZW. In addition, because

of this, we can observe that on RPi3, which can initialize WiFi and NET3 services

concurrently, the duration of ”ALLU” and ”ALLU w/ WiFi” configurations are

almost equal. In contrast, for the RPiZW, the duration of ”ALLU w/ WiFi” is

longer than ”ALLU” because the single-core processor needs to interleave the tasks

of initializing WiFi and NET3 services. We will further study this behaviour in

the next section.

It must be noted that disabling units does not necessarily prevent their ac-

tivation by systemd. More specifically, units might be activated when: (i) other

units relying on them are activated, or (ii) in the case of external event hooks

such as attaching a device. For example, alsa-restore.service is automatically

activated even if it has been disabled. However, as its main function is to initialize

the onboard sound card, it is not required by most IoT applications. Therefore, it

is worth masking this service using systemctl. This is performed by pointing the

unit file to the special device /dev/null so that the dependency tree can mark it

as resolved for dependants without actually running it.

4.3.3 Resource Utilization During Userspace Initialization

To justify running a user application in parallel during Pusi, we study resource uti-

lization during this phase. To this end, we measured processor utilization, memory

utilization, and SDC I/O speed on the RPi3 and RPiZW. Resource monitoring is

performed by a shell program that starts as soon as systemd is initialized. For
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Figure 4.7: The resource utilization of the RPi3 during userspace initialization for
three different experiments. Sub-figures (a)-(d) represent unit configuration EU,
and sub-figures (e)-(h) represent unit configuration ALLU. Dashed lines indicate
the start of Pusi, dotted lines indicate the instance rc.local is activated, and
solid lines indicate the end of Pusi.

this reason we noticed that resource monitoring is not available for 0.75s and 1.2s

after the completion of Pknl on the RPi3 and RPiZW, respectively. To record

processor utilization, we wrote a gawk [78] script to read values from /proc/stat

and calculate the current percentage of processor utilization across all cores with

high granularity and low overhead. We read directly from /proc/meminfo to de-

termine memory utilization, and used the iostat [79] utility for collecting SDC

I/O utilization. Figures 4.7 and 4.8 show the results for three trials.

Comparing the two figures indicates the significantly higher processor utiliza-

tion of the RPiZW compared to the RPi3. For the RPi3, we notice that processor

utilization drops to less than 5% as soon as rc.local is invoked, regardless of

the unit configuration applied (compare Figure 4.7(a) and (e)). For the RPiZW,

however, when unit configuration ALLU is applied, processor utilization drops

to around 5% after the end of userspace initialization, which is the completion

of NET3 services (compare Figure 4.8(a) and (e)). We justify this behavior by
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Figure 4.8: The resource utilization of the RPiZW during userspace initialization
for 3 different experiments. Sub-figures (a)-(d) represent unit configuration EU,
and sub-figures (e)-(h) represent unit configuration ALLU. Dashed lines indicate
the start of Pusi, dotted lines indicate the instance rc.local is activated, and
solid lines indicate the end of Pusi.

referring back to Figure 4.5. While the RPi3 is almost finished with userspace ini-

tialization (except the NET3 services) at the time rc.local is activated, RPiZW

needs to complete the activation of multiple units. Specifically, as Figure 4.5

shows, a considerable number of units with loading time longer than 10ms are

being activated around t = 20.

For RPi3, enabling all services increases memory utilization from around 7%

to 10%. For RPiZW, the increase is from around 16% to 21%. These results in-

dicate that, even for the unit configuration ALLU, more than 900MB and 400MB

of RAM is available on the RPi3 and RPiZW, respectively. In terms of I/O, since

the RPi3 initializes more units in parallel, its I/O speed is almost double that

of the RPiZW. Although the processor utilization of the RPiZW is around 100%

throughout Pusi, we can still benefit from concurrent execution of user applica-

tions within this phase if they mostly rely on peripheral initialization and I/O

operations. A sample IoT application that satisfies this requirement is capturing
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a photo using a camera. For example, the RPi camera module [80] connects over

a Camera Serial Interface (CSI) to the GPU on the RPi. While a picture is being

captured and processed, the processor can switch to other tasks, as there are sev-

eral steps performed by the camera that are independent of the RPi’s processor.

In particular, the camera has the physical requirement of exposure time. Next,

the camera needs to process the image. According to the manufacturer of the

camera module’s image sensor (IMX219PQ [81]), the camera has Lens Shading

Correction (LSC) functionality, which means the image undergoes some process-

ing on the camera module before it is sent over CSI. After this step, the image

must be sent over the CSI interface as a series of Bayer frames to the RPi’s GPU.

Next, the GPU’s VideoCore firmware assembles the image. Finally, the processor

can receive the assembled image from the GPU. In Section 4.5 we will show the

performance improvement of this application running during Pusi.

4.3.4 Profiling the Time and Energy Consumption of Boot-

loader and Kernel Phases

In this section we study the duration and energy consumption of bootloader, ker-

nel, and userspace initialization phases versus the properties of the SDC used.

In order to measure the effect of SDC speed on performance, we used two 32GB

Sandisk SDCs: (i) a UHS (Ultra High Speed) class 1, and (ii) a UHS class 3. Note

that UHS 1 and UHS 3 refer to minimum write speed 10 MB/sec and 30 MB/sec,

respectively. In addition to SDC speed, we are interested in measuring the effect of

SDC capacity utilization on boot up performance. Modern SDCs are implemented

with NAND technology. Compared to NOR technology, NAND offers lower power

consumption, lower cost per bit, higher density and faster write speed. However,
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as the disk fills up, write performance starts to degrade. In order to measure the

effect of SDC utilization on boot up performance, we fill 5%, 50%, and 95% of the

SDC capacity. To fill the SDC with data, we used the dd [82] utility which allows

us to write blocks of memory to the SDC.

Tables II and III demonstrate the results averaged over 50 trials for each

configuration. The following unit configurations are used for these measurements:

(i) EU, and (ii) ALLU w/o NET3 w/o WiFi). We excluded NET3 due to the high

variations caused by these services. In terms of SDC capacity usage, these results

show no effect on boot up performance. However, the use of faster SDC results in

a slight reduction in energy consumption. For example, for the ALLU w/o NET3

configuration on the RPi3, on average the faster SDC reduces energy by 2.5%,

compared to the slow SDC.

According to these results, regardless of the SDC type and capacity usage,

Tbtl and Tknl are similar for the two boards. However, the energy consumption of

these phases is higher on the RPi3 than on the RPiZW. Compared to Pusi, which

is process-intensive, Pbtl and Pknl do not benefit from the higher processing power

of RPi3’s SoC because their main operation is to load the kernel and initialize

hardware components, tasks that are mostly synchronous and not easily threaded

across cores. Therefore, since the RPi3 has a more complex and powerful SoC,

more resources are wasted on this board during the first two phases. In contrast,

Eusi of the RPi3 is actually lower than that of the RPiZW. During Pusi, the RPi3

runs a larger number of processes in parallel, and therefore requires less energy to

reach the boot up target by reducing the total amount of time spent in this phase.
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Table 4.1: The duration and energy consumption of the bootloader phase (Tbtl +
Tknl, Ebtl+Eknl), kernel phase (Tusi, Eusi), and userspace initialization phase (Tusi,
Eusi) for RPi3. The left and right values in each cell show duration (second) and
energy consumption (joule).

EU ALLU w/o NET3 w/o WiFi
Bootloader+Kernel Userspace Total Bootloader+Kernel Userspace Total

Slow
SDC

5% 6.5, 4.51 2.94, 5.77 9.44, 10.28 6.5, 4.51 4.04, 7.72 10.54, 12.23
50% 6.5, 4.51 3.23, 5.95 9.73, 10.46 6.5, 4.51 3.72, 7.32 10.22, 11.74
95% 6.5, 4.51 3.23, 5.89 9.73, 10.4 6.5, 4.51 3.72, 7.28 10.22, 11.79
AVG 6.5, 4.51 3.13, 5.87 9.63, 10.38 6.5, 4.51 3.83, 8.91 10.33, 11.92

Fast
SDC

5% 6.5, 4.51 2.94, 5.6 9.44, 10.11 6.5, 4.51 3.74, 7.13 10.24, 11.64
50% 6.5, 4.51 2.97, 5.68 9.46, 10.19 6.5, 4.51 3.66, 7.07 10.16, 11.58
95% 6.5, 4.51 2.96, 5.67 9.46, 10.18 6.5, 4.51 3.71, 7.2 10.21, 11.71
AVG 6.5, 4.51 2.95, 5.65 9.45, 10.16 6.5, 4.51 3.7, 7.133 10.2, 11.64

Table 4.2: The duration and energy consumption of the bootloader phase (Tbtl +
Tknl, Ebtl+Eknl), kernel phase (Tusi, Eusi), and userspace initialization phase (Tusi,
Eusi) for RPiZW. The left and right values in each cell show duration (second)
and energy consumption (joule).

EU ALLU w/o NET3 w/o WiFi
Bootloader+Kernel Userspace Total Bootloader+Kernel Userspace Total

Slow
SDC

5% 6.5, 3.26 9.73, 7.02 16.23, 10.28 6.5, 3.26 15.48, 10.91 21.88, 14.17
50% 6.5, 3.26 9.43, 6.34 15.93, 9.6 6.5, 3.26 15.4, 10.97 21.9, 14.23
95% 6.5, 3.26 9.8, 6.57 16.3, 9.83 6.5, 3.26 15.47, 10.94 21.97, 14.2
AVG 6.5, 3.26 9.65, 6.64 16.15, 9.9 6.5, 3.26 15.45, 10.94 21.92, 14.2

Fast
SDC

5% 6.5, 3.26 9.47, 6.56 15.97, 9.82 6.5, 3.26 15.3, 10.86 21.8, 14.12
50% 6.5, 3.26 9.41, 6.31 15.91, 9.57 6.5, 3.26 15.39, 10.92 21.89, 14.18
95% 6.5, 3.26 9.47, 6.35 15.97, 9.61 6.5, 3.26 15.34, 10.92 21.84, 14.18
AVG 6.5, 3.26 9.45, 6.41 15.95, 9.67 6.5, 3.26 15.34, 10.9 21.84, 14.16
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4.4 Profiling and Enhancement of the Linux Shut-

down Phase

Throughout the scope of this paper, special attention is paid to system boot up

phases rather than the shutdown phase. This is because the time and energy re-

quired for boot up is higher than that required for shutdown, and the gains are

therefore more significant. However, there are several ways through which shut-

down time and energy consumption can be reduced as well. The naive approach is

to cut the power to the RPi as soon as the user application is completed. Unfor-

tunately, cutting the power improperly might result in corrupting data blocks on

SDC. If these blocks also happen to coincide with the sectors necessary for boot up

or important files in the rootfs, the device could be rendered unrecoverable. In

order to address this problem, all of the SDC’s partitions can be mounted as read-

only to guarantee there would be no file operations when a power loss event occurs.

However, a read-only solution is complicated and not feasible when the user appli-

cation needs to store or analyze large quantities of dynamic data such as running

a machine learning algorithm. Furthermore, since the filesystems are by default

read-only, updating the device becomes a difficult and lengthy process, requiring

virtual root filesystems mounted to RAM disks and multiple remount operations

on the SDC. In this case, if large amounts of data must be stored for processing

or before transmission, external storage is required. This solution, however, in-

troduces extra power consumption and might cancel out any gains achieved by a

faster shutdown. Additionally, if no external device is used, workarounds must be

implemented for system logging and other system functionalities, which rely on a

writeable filesystem. This analysis is outside the scope of this paper.

The next approach is to make only the boot partition write-protected. How-

68



ever, this solution does not necessarily prevent data corruption, because flash

partitions are not truly separated as they would be on a traditional hard drive.

SDCs use a Flash Transition Layer (FTL) to map virtual file blocks to their ac-

tual location in the storage [83]. Many SDCs are preloaded with a wear-leveling

firmware which uses the FTL to re-arrange data blocks, often mixing across parti-

tion lines (transparently to the RPi) in order to enhance block device lifetime. In

this case, data corruption can occur if the power is cut while read-only data is be-

ing migrated during the wear-leveling operation. Therefore, mixing read-only and

writeable partitions does not guarantee protection against improper shutdowns.

The only way to guarantee it is safe to cut the device power is to guarantee that

no operations are being performed on the SDC.

In the rest of this section, we present and evaluate two suitable approaches,

graceful shutdown and forced shutdown, to power off a duty-cycled IoT system.

Furthermore, we assess the tradeoffs between system reliability and energy con-

sumption. Please note that Tsdn and Esdn refer to the duration and energy con-

sumption of the shutdown phase.

4.4.1 Graceful Shutdown

During a graceful shutdown, systemd sends a shutdown signal to all of the running

processes. After these processes exit and the network interfaces are brought down,

the filesystems are unmounted and power to the device is safely cut. The amount

of time required to unmount the filesystems is almost fixed and beyond the control

of the user. However, the lower the number of running processes which must return

an exit code before shutdown.target is reached, the faster systemd can finalize

the shutdown; therefore, removing extraneous units expedites the shutdown phase.
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Figure 4.9: The duration and energy consumption of graceful shutdown for the
(a) RPi3 and (b) RPiZW when various unit configurations are applied. The lower
and upper axes show Tsdn and Esdn, respectively.

This behavior is best exemplified in Figure 4.9. These figures represent the time

and energy consumption of the RPi3 and RPiZW for various unit configurations.

When WiFi is disconnected, using unit configuration EU reduces energy con-

sumption by 43.9% and 57.4%, on the RPi3 and RPiZW, respectively, compared

to unit configuration ALLU. When WiFi is connected, using unit configuration

EU reduces energy consumption by 37.3% and 48.85% for the RPi3 and RPiZW,

respectively, compared to ALLU. These results also show the significant effect of

WiFi communication on Esdn. During the shutdown phase, the system invokes

ifdown to ensure all connected networks are brought down properly and then

powered off. This process takes around 0.8s when avahi-daemon.service is dis-

abled. When this service is enabled, the duration varies depending on the network

speed and configuration. In our testbed, we noticed a delay of up to 12s. For

example, unit configuration EU w/ NET1 w/ WiFi increases energy consumption

by 96.4% and 60%, for the RPi3 and RPiZW, respectively, compared to EU w/

NET1.
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4.4.2 Forced Shutdown

Not all IoT applications require a clean shutdown to remain functional. There

are two alternative commands, systemctl halt -force (equivalent to the tradi-

tional halt command) and systemctl halt -force -force (equivalent to the

traditional halt -f command), which result in shorter shutdown phases. In this

paper we refer to these approaches as forced shutdown and forced-forced shutdown.

Both of these approaches skip the steps performed by shutdown to notify run-

ning processes of the impending shutdown and wait for them to gracefully exit.

Therefore, steps such as recording the shutdown event and any STDOUT or STDERR

output that would normally be printed to a log file during the shutdown phase are

skipped by these commands. In the case of systemctl halt -force, this may

be acceptable, as the logging of system shutdown events is not often critical to

IoT applications, and any necessary shutdown logs may be generated manually

by the user application. systemctl halt -force also properly disconnects from

networking interfaces by calling ifdown on all connected interfaces.

Figure 4.10 shows the impact of using forced shutdown on both time and

energy consumption. Comparing this figure against Figure 4.9 demonstrates the

performance benefits of killing processes rather than gracefully terminating them.

Although this mechanism results in lower energy consumption for both platforms,

the effects are more apparent on the RPiZW. When gracefully shutting down, the

RPi3 provides system processes with more resources to finalize their operations

and terminate properly, resulting in a shorter shutdown phase. On the other hand,

when forced shutdown is used, running processes are simply killed, which does not

require significant system resources. However, the OS still waits for the networking

interfaces to be brought down before continuing the shutdown phase. As a result,

the extra power provided by the RPi3’s processor is wasted, making the RPiZW
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Figure 4.10: The duration and energy consumption of forced shutdown for the (a)
RPi3 and (b) RPiZW when various unit configurations are applied. The lower and
upper axes show Tsdn and Esdn, respectively.

more energy efficient during the shutdown phase.

The second approach, systemctl halt -force -force, is faster than call-

ing systemctl halt -force because the processes are not killed. Instead, the

processes are simply abandoned as the processor cores are stopped. This command

physically halts the processor and cuts power almost immediately without bring-

ing down network interfaces or unmounting filesystems. Eliminating these steps

reduces the shutdown duration of the RPi3 and RPiZW to less than 200ms and

400ms, respectively, and the energy consumption to less than 700mJ and 350mJ,

respectively, as Figure 4.11 shows. Unfortunately, according to the documentation

[77], using this command may cause data corruption. However, some approaches

exist to minimize the risk. For example, all processes required or started by the

user application can be killed manually first, and the sync command must be

run to commit unsaved buffers to the SDC. For preventing issues related to wear-

leveling, increasing the percentage of unused storage on SDC reduces the frequency
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Figure 4.11: The duration and energy consumption of forced-forced shutdown for
the (a) RPi3 and (b) RPiZW when various unit configurations are applied. The
lower and upper axes show Tsdn and Esdn, respectively.

of moving critical data blocks by the wear-leveling algorithm. However, since the

chance of data corruption is not fully eliminated, it is up to the user to calculate

the risk involved in shutting down the system using this mechanism repeatedly (or

across many devices). These calculations are outside the scope of this paper. Ad-

ditionally, for both forced-shutdown approaches, the user must consider running

some processes (such as fake-hwclock save and systemd-random-seed save)

manually to ensure system integrity and security.

It is worth mentioning that the halt system call for the ARM architecture

automatically calls machine_power_off() to power off the board rather than en-

tering the traditional halted state where the board stays powered on after the

processor is powered off. Other architectures may require additional flags or even

different commands in order to achieve a similar result.
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4.5 Parallelizing Application Processes with Userspace

Initialization

As we showed in the previous sections, the userspace initialization phase does not

fully utilize the system resources. In this section, we propose Pallex, a parallel

execution framework to run user applications during the userspace initialization

phase. After presenting the implementation of Pallex and providing guidelines for

applying this framework to various types of applications, we evaluate its perfor-

mance considering various IoT application scenarios.

4.5.1 Pallex

The basic idea of Pallex is to divide a user application into stages and run each

stage based on the set of available units and the completion of prerequisite stages.

For a given user application, we break the code into a stage set S = {si, sj, ...}.

Each stage si has two types of dependencies:

D(si) = {sj, sk, ...} (4.1)

and

D′(si) = {uj, uk, ...} (4.2)

where D′(si) is called the stage dependency set and refers to the set of user appli-

cation stages that must be completed before starting stage si, and D(si) is called

unit dependency set and refers to the set of units on which stage si depends on.

Each stage is a process invoked by systemd when the dependency sets specified in

the stage’s unit file are resolved. Therefore, for systemd to build the dependency
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tree and run the stages in an orderly manner, each stage’s dependency sets must

be specified in its corresponding unit file’s Requires section.

Since the stages of execution are independent processes, they do not share

the same address space. Therefore, a mechanism is required to share data across

processes. To this end, Pallex utilizes the mechanism offered by Unix Domain

Socket (UDS) [84]. UDS is a data communication endpoint for exchanging data

between processes executing on the same host OS, and provides a standard method

for implementing Inter-Process Communication (IPC) on a Unix-based system.

Since UDS handles communication within the Linux kernel, it is initialized in the

kernel space as well. This indicates that we can use them as reliable means of

communication during Pusi. When a stage si completes its execution and needs

to transfer data to another stage sj, the kernel blocks si until sj is ready [85] .

During this time, processor resources are used for the activation of units that are

required by stage sj. When the dependencies of sj are resolved and it requests the

shared data, si completes the data transfer and then exits.

There are at least three other methods of IPCs we could have used, including

TCP/UDP sockets, POSIX message queues, and writing to a file. The reasons that

we did not use these methods are as follows. First, using a TCP/UDP connection

over localhost requires waiting for the network services to load, which defeats the

purpose of Pallex. Specifically, one of the largest delays in the userspace initializa-

tion is caused by the initialization of networking.service, as shown in Section

4.3. Second, writing to a file results in I/O overhead and affects the boot up time

and message sharing delay because of the SDC activity during the userspace ini-

tialization phase. Lastly, we did not use POSIX message queues because they are

too low-level and require careful configuration. Although both UDS and POSIX

message queues are available almost concurrently, for the latter it is necessary to
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Figure 4.12: An example of Pallex. The stage set of user application includes
six stages, S = {si, sj, sk, sl, sm, sn}. A new stage is started as soon as its stage
dependency set and unit dependency set are satisfied. Stages share their messages
using the mechanism offered by Unix Domain Socket (UDS).

configure the size and number of messages and their accepted/waiting status to

make sure that enough buffer is available. Although message queues offer various

features, UDS is standard, easy to use, and fast. UDS allow us to send data to the

socket before the receiving program is even started with little to no configuration.

Therefore, the sending program can be completely divorced from the receiver in

terms of dependencies. In addition, UDS is agnostic towards payload size and can

pause the sending program until the FIFO queue of data has begun to move and

there is memory available to continue sending.

We further clarify the operation of Pallex through the scenario presented in

Figure 4.12. In this example, it is assumed that the user application is composed

of two processes (or threads), and the first process depends on the data generated

by the second process to complete its task. Also, each process can be broken into

a set of sequentially running stages. For the stages we assume that,

D(si) = ∅, D(sj) = {si}, D(sk) = {si, sj},

D(sm) = ∅, D(sn) = {sm}, D(sl) = {si, sj, sk, sm, sn}
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Each stage also depends on a set of units. Figure 4.12 shows the instances where

the stage dependency set and unit dependency set of each stage are resolved. Since

D(si) = {} and D(sm) = {}, both stages can start at time t1 at which point their

unit dependency sets are resolved. Therefore, these two stages run in parallel while

the userspace units are being activated. At time t2, stage si completes. However,

sj cannot be started because its unit dependency set is resolved at t3. Therefore,

si is blocked and waits until stage sj is started and is ready to receive the data

generated by si. Sharing the messages generated by a stage si with the next stages

is denoted as Msi . This figure also shows that, since D(sl) = {si, sj, sk, sm, sn},

stage sl cannot be started before the completion of sn. Once started, stage sl

reads Msn and Msk , the messages shared by two stages sn and sk. At time t9,

both the unit and stage dependency sets of sl are resolved and this stage has all

the resources necessary to complete its operation. The user application finishes at

time t10. At this point the system enters the shutdown phase.

The performance improvements achieved by Pallex depend on the decompo-

sition of user application into stages. In order to minimize the waiting time of

each stage, it is important to break a user application into stages with smallest

unit dependency sets. However, given the large number of units activated during

Pusi, finding the right decomposition might not be a straightforward task. In ad-

dition, little to no improvement is observed by minimizing the waiting time of user

application stages on units where their execution time is only a few milliseconds.

Due to the sampling-processing-sending nature of IoT applications, we can narrow

down the list of important units to simplify the task of decomposition, as follows.

– GPIO. These interfaces are initialized by the GPU. Therefore, as soon as

systemd finishes its initialization (0.75s for the RPi3 and 1.2s for the RPiZW),

user applications can use the GPIO pins. In addition to enabling the exe-
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cution of user applications at the beginning of Pusi, using GPIOs provides a

faster communication interface without the high overhead of a full network-

ing stack, especially when a small amount of data must be communicated

between nearby devices.

– I2C, SPI, CSI. The drivers for I2C (Inter-Integrated Circuit), SPI (Serial

Peripheral Interface) and CSI (Camera Serial Interface) are loaded as kernel

modules during Pknl. Therefore, the unit dependency of user applications

relying on these components is resolved at the beginning of Pusi.

– Bluetooth. Bluetooth depends on both hciuart.service and bluetooth.service.

As Section 4.3 showed, the activation of these services finishes after rc.local.

Therefore, user application stages that rely on Bluetooth must be started by

creating a systemd service that starts after bluetooth.service instead of

rc.local. If an application includes tasks that do not depend on these

services, then running those tasks as stages that start before the comple-

tion of these services can result in a considerable performance improvement,

especially due to their long activation duration.

– Ethernet. Similar to WiFi, the status of the Ethernet interface can be de-

rived from network.target. A difference between the WiFi and Ethernet

interfaces is that the speed of initializing Ethernet is faster because it does

not perform the authentication and association process that is required for

WiFi. Therefore, using Ethernet results in a shorter duty cycle. However,

since most IoT applications rely on wireless communications, we mainly fo-

cus on WiFi in this paper.

– WiFi. Stages that rely on WiFi must be initialized after the activation

of network.target. Another option is to start the stage after network-
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online.target, which is invoked once the network is connected as opposed

to available.

In Appendix A.1 we present an overview of units to provide the users with

guidelines regarding the impact of each unit on each application scenario.

4.5.2 User Application Scenarios for Evaluating Pallex

In this section, we evaluate the performance of Pallex when applied to various

types of user applications implemented on the RPi3 and RPiZW. Since using the

RPi3 or RPiZW is justified when the application at hand cannot be accomplished

using resource-constrained devices (such as those employing ARM Cortex-M or R

processor), our user application scenarios include heavy operations such as image

capture, encryption and classification. However, it should be noted that we omit

image classification using RPiZW due to the high overhead caused by running the

machine learning algorithm on this platform. We explain these scenarios in the

following subsections.

Scenario 1: Image Capture (IC)

For this scenario we used a camera module [80] to capture an image. The ap-

plication stage set includes only one stage, P = {scap}, where D(scap) = ∅ and

D′(scap) = ∅. Therefore, we use unit configuration EU for this scenario. The cam-

era module is able to capture one picture per second (each around 2.5MB) and

uses CSI to communicate with the RPi. After capturing the image, the image is

saved as a JPEG file by the user application.
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Scenario 2: Image Capture+Encryption (IC&E)

We extend ”Scenario 1” by encrypting the captured image using the AES-256

encryption algorithm. The application stage set includes one stage, P = {scap+enc},

where D(scap+enc) = ∅ and D′(scap+enc) = ∅. Please note that since encryption

depends on capture, we do not decompose the application into two stages. Unit

configuration EU is used for this scenario.

Scenario 3: Image Capture+Classification (IC&C)

In this scenario, we capture an image and classify it using a pre-trained K-Nearest

Neighbors (KNN) algorithm [86]. Since image capture and loading the model are

independent, we decompose the application into three stages: image capture (scap),

loading the KNN model (sload), and performing classification (sclas). Therefore,

P = {scap, sload, sclas}, where D(scap) = ∅, D′(scap) = ∅, D(sload) = ∅, D′(sload) = ∅,

D(sclas) = {scap, sload} and D′(scap) = ∅. Please note that scap and sload are two

concurrently running processes. Consequently, although the two heavy stages are

image capture and loading the model, both stages start and run concurrently.

sclas depends on the completion of scap and sload to perform its operation. Unit

configuration EU is used for this scenario.

Scenario 4: Image Capture+Upload (IC&U)

In this scenario, we capture an image and transmit it to a cloud server through

WiFi communication with an access point. The application stage set includes

two stages, P = {scap, supl}, where D(scap) = ∅, D′(scap) = ∅, D(supl) = {scap}

and D′(supl) = {unet}, where unet refers to the network-online.target unit.

Please note that the service configuration we used for this scenario is EU w/NET1.
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Figure 4.13: The four scenarios used to measure the effect of Pallex on duration
and energy consumption. We have used three variations of Scenario 4 to evaluate
Pallex when using WiFi for uploading data.

Because networking services require a relatively long duration to initialize, we are

interested in evaluating Pallex in scenarios where Tusi is long. For the RPi3 and

RPiZW, we vary the number of images that are captured and uploaded from 1

to 3. For the RPi3, activating networking.service is approximately 3.5s, which

means that we can capture a maximum of 3 images in parallel with this service

activation without negatively impacting the duration of userspace initialization.

Although activating networking.service on the RPiZW is longer than 7.4s, we

cap the maximum number of images at 3 to present a fair comparison across the

two boards. These sub-scenarios are referred to as IC&Ux, where x refers to the

number of images captured and uploaded.

Figure 4.13 shows a summary of the operations of these applications versus

time.

4.5.3 Results

Considering the user application scenarios given in Section 4.5.2, in this section

we present the performance measurement results of Pallex. It must be noted that
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Pallex is compared against baseline scenarios which employ unit configuration to

prevent the activation of unnecessary units. In the baseline scenarios, referred to

as ”normal” in the figures, the user application is started when rc.local is loaded.

Therefore, if unit configuration was not applied to the baselines, their duration

and energy consumption would be higher.

In terms of duration and energy measurement, we consider the interval be-

tween the instance the RPi is powered on until the completion of the user appli-

cation. Please note that energy measurement is particularly important because

the OS dynamically adjusts the operating frequency of the processor cores based

on load [87] (a.k.a., dynamic frequency scaling). Hence, it is important to verify

that the additional system load during Pusi does not eliminate the energy saving

achieved by reducing the duration.

Figure 4.14 and 4.15 show the performance improvements achieved using

Pallex for RPi3 and RPiZW during the boot up process, respectively. In these

figures, the black and gray bars represent Pbtl and Pknl, respectively. It must be

noted that, since Pallex affects system performance after Pknl, both Ebtl and Eknl

are fixed irrespective to the RPi board used. From the userspace processing point

of view, for the IC scenario, energy consumption is reduced by 24.7% and 10.77%

for the RPi3 and RPiZW, respectively. For the IC&E scenario, we observe 27.22%

and 5.98% improvement in terms of duration and 21.54% and 4.89% in terms of

energy for the RPi3 and RPiZW, respectively. Both of these scenarios include

a single stage that is executed as soon as systemd is ready. It must be noted

that the user application is not the only process running after the completion of

systemd initialization. As explained in Section 4.3.2, the units that are essential for

maintaining system integrity and stability are being activated during this duration

as well.
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Figure 4.14: The duration and energy consumption of Pallex versus normal launch-
ing of user applications. The device used is a RPi3. Black, grey, and white bars
show the bootloader phase, kernel phase, and the completion of user application.
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Figure 4.15: The duration and energy consumption of Pallex versus normal launch-
ing of user applications. The device used is a RPiZW. Black, grey, and white bars
show the bootloader phase, kernel phase, and the completion of user application.
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Each IC&C scenario is composed of three stages, where two stages run in

parallel and during Pusi. For this scenario we observe a 22.68% improvement in

terms of duration and 16.29% in terms of energy for the RPi3.

The IC&U scenario is composed of two stages, where the first stage runs

during Pusi. As we showed in the previous sections, activating the network-

ing.service is a lengthy process due to the initialization of hardware and net-

working utilities as well as association with the access point. Therefore, this sce-

nario can significantly benefit from capturing images while activating networking

services is in progress. In addition, more improvement is observed as the num-

ber of captured images increases: When one image is captured, we observe 27.57%

and 7.3% improvement in terms of userspace processing duration for the RPi3 and

RPiZW, respectively. These improvements are increased to 39.36% and 11.89%

for these two boards when three images are captured. In terms of energy improve-

ment, we observe 31.35% and 10.45% improvement for the RPi3 and RPiZW,

respectively, when three images are captured.

Comparing the two hardware platforms, we can observe that when Pallex

is applied, the RPi3 shows a higher performance improvement compared to the

RPiZW. These results are consistent with our observations in Section 4.3.2, indi-

cating that the RPi3 platform consumes less energy than the RPiZW in a duty-

cycling capacity despite drawing more current. The RPi3 parallelizes userspace

initialization processes across multiple cores, resulting in a shorter duty-cycle dura-

tion. The impact of shortening the processing duration is greater than the impact

of the difference in current consumption across platforms.

In order to measure the impact of Pallex on the lifetime of duty-cycled sys-
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Figure 4.16: Lifetime of the RPi3 for different user application scenarios. Sub-
figure (a) shows networking-independent scenarios, and sub-figure (b) shows
networking-dependent scenarios.

tems, we compute system lifetime as follows:

lifetime =
Ebat

(Ebtl + Eknl + Eusr + Esdn)×N

=
3600× 2400× 10−3 × 5

(Ebtl + Eknl + Euser + Esdn)×N

(4.3)

where Ebtl, Eknl, Euser, and Esdn are the energy consumption of the bootloader

phase, kernel phase, user application, and shutdown phase. Ebat is the available

energy of the battery, and N is the number of cycles per hour. For the shutdown

phase, we used the forced shutdown mechanism detailed in Section 4.4, as it is

faster than the shutdown command without sacrificing reliability. We also assume

the capacity of the battery is 2400mAh and its voltage is 5V. Figures 4.16 and

4.17 show system lifetime versus the number of cycles per hour for the RPi3 and

RPiZW, respectively.
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Figure 4.17: Lifetime of the RPiZW for different user application scenarios.
Sub-figure (a) shows networking-independent scenarios, and sub-figure (b) shows
networking-dependent scenarios.

The maximum improvement in lifetime for the RPi3 is 30.16% for scenario

IC&U3, and the minimum is 13.89% for scenario IC&C. Similarly, for the RPiZW,

the maximum improvement is 9.01% for scenario IC&U3, and the minimum is

3.74% for scenario IC&C. For the networking-dependent scenarios, we notice that

lifetime improvement increases with respect to the number of images captured and

transmitted. Specifically, for the RPi3, we notice an improvement of 18.06% for

IC&U1, 25.74% for IC&U2, and 30.16% for IC&U3. For the RPiZW, we notice

an improvement of 5.67% for IC&U1, 6.7% for IC&U2, and 9.01% for IC&U3.

For the networking-independent scenarios, IC%C achieves the highest increase in

lifetime (18.33%) on the RPi3. This is attributed to the higher processing demand

and concurrent execution of scap and sload stages.

The improvements in lifetime, in particular, reduce the cost of energy har-

vesting systems as well as system maintenance. For example, when the amount of
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energy consumed per hour is reduced, a lower-cost energy harvesting system (e.g.,

smaller solar panels, smaller batteries) can be used as it is provided with more

time to harvest and store energy. For fully battery powered systems, increasing

lifetime reduces the frequency of system maintenance to replace or recharge the

batteries.
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Chapter 5

Conclusion

In this thesis we tackled two main challenges related to the energy efficiency of

IoT systems. First, we designed and developed an energy measurement platform

designed to address the scalability and accuracy issues of measuring IoT devices.

Second, we studied and improved energy consumption in Linux based IoT devices

through optimizing boot time, shutdown time, and user application time.

To solve the various challenges relating to energy measurement, we developed

EMPIOT, a low-cost, programmable, and accurate energy measurement solution

that can operate effectively on a wide range of IoT devices. By analyzing the

performance of different drivers, we have determined the BCM driver results in

higher sampling rate and lower energy consumption. In addition we were able to

conclude that lowering the shield’s operational voltage slightly reduces sampling

rate by experimenting with the voltage modes. By experimenting with different

data structures and algorithms for data aggregation, we conclude that using two

buffers and batching file writes results in lower energy consumption. To prove its

versatility we evaluated EMPIOT’s performance using five different IoT devices

and four types of workloads. Our results confirm an energy measurement error less

than 3% which proves that our platform can work for different kinds of IoT devices.

In addition to setting our goals for building the energy measurement platform, we

also provide valuable insights into designing Linux-based IoT systems which use

the I2C bus. We provide this through our study of the I2C performance and
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the drivers that interface with it. Finally, we believe have developed a platform

which satisfies the demanding requirements for power profiling on IoT devices. By

achieving accuracy with five different IoT devices with different settings we have

developed a platform which will generalize well with multiple kinds of devices.

By experimenting with data structures, I2C drivers, and calibration we improved

performance. Finally through a rich feature set which utilizes various peripherals

on the base board, we are able to make EMPIOT easy to integrate with existing

devices and testbeds.

The increasing number of Linux-based IoT devices used for edge and fog

computing necessitates the adoption of duty-cycling mechanisms to reduce the

energy consumption of these devices. To this end, profiling and improving the

operation of userspace initialization offers techniques that can be easily adopted

by users. In this work, we presented a thorough study of the Linux boot up process,

in particular the effects of unit activation on the duration and energy consumption

of the boot up and shutdown phases. We showed that although some units cannot

be disabled without compromising system stability, duty-cycling performance is

significantly enhanced by application-specific unit configuration. Our studies also

showed that there is no effect on boot up performance when up to 95% of the

SDC capacity is utilized. However, using a faster SDC results in a slightly shorter,

more energy efficient duty-cycle. After analyzing the resource utilization of the

RPi3 and RPiZW during the boot up process, we showed that user applications

can be executed in parallel with the userspace initialization phase to reduce the

energy consumption of each duty-cycle. We did so by proposing Pallex, a parallel

execution framework which relies on systemd and Unix Domain Sockets to break

and execute a user application into multiple phases. Our evaluations show up to

a 31% reduction in energy consumption and up to a 30% enhancement in lifetime
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when Pallex is applied to various IoT application scenarios. Our studies also reveal

the trade-off between processing power and current consumption. Although the

current draw of the RPiZW is lower than that of the RPi3, this paper confirms

the RPi3 platform is more suitable for duty-cycled applications. This is because

the RPi3 parallelizes userspace initialization and user application processes across

multiple cores, resulting in lower energy consumption by shortening processing

duration.

Although we were able to achieve our goals with EMPIOT, there is still

more that can be done to study and improve the platform. Some of the future

work avenues are as follows: Although the energy consumption of simple wireless

technologies such as 802.15.4 and LoRa have been thoroughly studied and modeled,

in addition to 802.11b/n standards, newer technologies, such as 802.11ac, NB-

IoT, and eMTC, are being used for IoT applications. The EMPIOT platform

provides a low-cost and scalable solution to deploy testbeds and profile the energy

consumption of these complex wireless technologies. Another area of future work

is to port EMPIOT to non-Linux-based systems and measure its sampling rate

and overhead when the operating system of the base board is a RTOS. Finally we

determined that the measurement range of EMPIOT makes it a suitable energy

measurement platform for other applications, such as measuring and evaluating

the effect of energy efficiency techniques proposed for cloud computing platforms

[88, 89, 90].

We also noticed that there are certain areas where we can improve boot up

time and shutdown time on Linux-based devices. Some potential areas of future

work are as follows: Although the studies of this paper revealed the significant

effects of quad-core and single-core SoCs on duty-cycling performance, extend-

ing these observations and profiling the performance of other COTS Linux-based
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boards is of interest. From the shutdown point of view, developing a model to pre-

dict the probability of SDC corruption based on factors such as capacity, I/O rate,

and duty-cycling frequency enables users to choose the best shutdown mechanism

available without compromising system reliability. Regarding Pallex, although

we have provided guidelines to simplify its applicability to other IoT scenarios,

it would be helpful to develop a program to analyze user application code and

break it into stages based on the tasks it performs and the dependencies of those

tasks. Finally, unit configuration and Pallex can be integrated with bootloader

and kernel-level optimization mechanisms to further enhance performance.
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Appendix A

Appendix

A.1 List of Units in Raspbian Stretch Lite (RSL)

In this section, we present an overview of the units available in RSL. All units

except those in the EU category can be disabled if they are not necessary for the

application scenario being considered.

A.1.1 Essential Units (EU)

– boot.mount: This unit helps systemd resolve dependency trees for units

that depend on mounting /boot before activation.

– dev-mmcblk0p2.device: This unit brings the root partition on the SDC into

the scope of systemd so that units that require the root partition’s mount

to finish before activation can resolve their dependencies properly.

– dev-mqueue.mount: This unit informs systemd when the POSIX message

queues for internal system messages is ready.

– kmod.service: This service contains modprobe, which is used for loading

and unloading kernel modules.

– kmod-static-nodes.service: This service creates a list of required static

modules for the loaded kernel.
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– run-rpc_pipefs.mount: This unit directs systemd on how to mount the

RAM-based pipefs, which is used every time a process is forked or a pipe

(“|”) is used.

– sys-kernel-debug.mount: Similar to dev-mmcblk0p2.device, this unit

helps systemd resolve dependencies correctly. The actual mounting of de-

bugfs occurs within udev, which is the daemon that detects hardware changes.

– sys-kernel-config.mount: This unit prevents the system from reaching

sysinit.target until the kernel configuration parameters are fully loaded

into the kernel from the Configuration File System (configfs).

– systemd-fsck.service and systemd-fsck-root.service: These services

run fsck on each partition to ensure file system consistency. This is an im-

portant step, and does not run every time unless there are problems detected

on the SDC.

– systemd-journald.service: Many programs rely on journald for logging

output, including the kernel (through kmsg). Therefore, it should not be

disabled. However, in order to speed up its initialization, it may be useful

to lower the size limit of the journal logs since a dependency, systemd-

journal-flush.service, must rotate this log file on initialization.

– systemd-modules-load.service: This service starts early in the userspace

initialization phase to load static kernel modules.

– systemd-remount-fs.service: In the beginning of the userspace initializa-

tion phase, this service mounts the necessary API filesystems for the kernel

(such as /proc, /sys, or /dev) to a RAM disk.
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– systemd-random-seed.service: This service loads the random seed and

saves it at shutdown to enable the device to generate a new value when the

system restarts.

– systemd-sysctl.service: By loading kernel configurations, this service

enables systemctl to perform as expected.

– systemd-udevd.service: This service initializes udev, a daemon that lis-

tens to kernel uevents and matches them against specified rules, to run

scripts. For example, it can load drivers when a new device is attached, or

mount a USB drive when it is plugged in.

– systemd-udev-trigger.service: Devices plugged in before the system is

powered on might not generate the kernel messages necessary for udev to

discover them. This service probes and detects devices that udev would not

normally discover.

– sudo.service: This service clears cached sudo privilege escalations to en-

force user re-authentication after every reboot.

– systemd-tmpfiles-setup.service and systemd-tmpfiles-setup-dev.service:

Mount /tmp and delete the old files. These services also create any files that

are specified by user-provided configuration.

– systemd-rfkill.service: This service restores the rfkill state at the

beginning of userspace initialization to ensure it matches the status saved

before shutdown. Therefore, if the wireless peripherals (typically WiFi or

Bluetooth) had rfkill preventing their use before shutdown, they will re-

main disabled on reboot.
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– systemd-update-utmp.service and systemd-update-utmp-runlevel.service:

Record and manage the system uptime, the logged-in users, and users’ log-in

method (such as ssh, tty, and serial port).

– systemd-user-sessions.service: This service enables user log-in and de-

nies log-in attempts after the shutdown signal has been sent. If a device in

the field does not require log-in capabilities, this service does not need to be

started automatically. For example, it can be started by a helper program

when a GPIO pin is pulled high.

– systemd-logind.service: This service is responsible for tasks such as user

session management, processor usage quotas, and device access management.

A.1.2 Networking-related Services (NRS)

– avahi-daemon.service: This service enables programs to discover and pub-

lish services and hosts running on a local network. Note that this service

can significantly slow the speed of the ifdown command and therefore the

shutdown process if not completely uninstalled. Unless necessary for the

user application, avahi-daemon should be uninstalled.

– bluetoothd.service: Daemon for controlling the Bluetooth interface. Bluez,

bluetoothctl, and many other Bluetooth-related utilities communicate through

this daemon.

– dhcpcd.service: The daemon responsible for managing the DHCP protocol

on all targeted network interfaces. This service can be disabled if the device

does not require a network connection or is guaranteed a static IP address.
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The duration of IP allocation depends on external factors including link

quality and the load of access point.

– hciuart.service: This is responsible for initializing the HCI bluetooth

interface. HCI stands for ”Host-to-Controller-Interface” and it is controlled

over a serial UART interface.

– networking.service: Completes the configuration of WiFi and Ethernet

interfaces based on the settings available in the /etc/network/interfaces

configuration file.

– nfs-config.service: This service, along with nfs-common.service, loads

configuration details applicable to Network File Systems (NFS).

– rsyncd.service: Daemon that listens on port 873 for incoming rsync file

transfer requests. rsync is used for efficiently transferring and synchronizing

files across computer systems.

– rpcbind.service: This service accepts requests for Remote Procedure Calls

(RPC) and binds them to TCP ports for access and control.

– sshd.service: This service belongs to the OpenSSH package. It runs in

the background to listen for and accept or deny incoming ssh connections

according to a user-defined configuration file.

– systemd-hostnamed.service: This service can be used to control the host-

name and related metadata by user programs.

– systemd-networkd.service: Brings up the system’s network manager and

provides it with discovered networks, both physical and virtual.
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– systemd-resolved.service: Provides local DNS resolution for namespaces

such as localhost or those added by the user to overlay DNS provided by

an external source.

– systemd-timesyncd.service: Used for time synchronization across the net-

work.

A.1.3 Memory Management Services

– dphys-swapfile.service: This service initializes, mounts, unmounts, and

deletes swap files on the SDC. If the available RAM is enough for the user

application, then disabling this service results in a performance enhancement

in terms of faster boot up time and prolonged SDC lifetime. This service

is usually required when the user application involves loading large machine

learning models and data sets.

A.1.4 I/O-related Services

– alsa-utils.service: Represents the tools relating to the Advanced Linux

Sound Architecture (ALSA).

– alsa-restore.service: Initializes and restores the last state of the RPi’s

onboard soundcard.

A.1.5 Miscellaneous Units

– fake-hwclock.service: This service saves the current time to a file at

shutdown and loads it at boot up time. Without this service, the RPi is

unaware of the current epoch time until it establishes a network connection.
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An incorrect epoch value may cause some files to appear as if they are edited

in the future.

– plymouth.service: Provides a flicker-free graphical boot up process. Other

related services include plymouth-quit.service, plymouth-quit-wait.service,

plymouth-start. service, and plymouth-read-write.service.

– raspi-config.service: This service loads configuration changes made by

the user such as processor governance, display overscan, and filesystem par-

tition expansions, and applies them on reboot.

– rsyslog.service: Tools for log processing and conversion.

– console-setup.service: Configures the fonts, screen resolution, keyboard

layout, etc., for virtual tty terminals.
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