
Santa Clara University
Scholar Commons

Engineering Ph.D. Theses Student Scholarship

7-2018

Fuzzy-Model-Based (FMB) Control of a Spacecraft
with Fuel Sloshing Dynamics
Lilit Mazmanyan
Santa Clara University, lmazmanyan@scu.edu

Follow this and additional works at: https://scholarcommons.scu.edu/eng_phd_theses

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in
Engineering Ph.D. Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Mazmanyan, Lilit, "Fuzzy-Model-Based (FMB) Control of a Spacecraft with Fuel Sloshing Dynamics" (2018). Engineering Ph.D.
Theses. 17.
https://scholarcommons.scu.edu/eng_phd_theses/17

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_phd_theses/17?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu




Fuzzy-Model-Based (FMB) Control of a Spacecraft
with Fuel Sloshing Dynamics

By

Lilit Mazmanyan

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Mechanical Engineering
in the School of Engineering at
Santa Clara University, 2018

Santa Clara, California



To my husband, Michael Okuji and my parents

ii



Acknowledgments

I would like to express my gratitude to my advisor, Professor Mohammad Ayoubi, for his
guidance, encouragement, and supervision throughout the various stages of this dissertation.
Our stimulating discussions on research problems and his unwavering support during the
arduous hours of preparation made it possible for me to complete the work.

I wish to acknowledge the dissertation committee members, Dr. Mahantesh Hiremath, Dr.
Christopher Kitts, Dr. On Shun Pak and Dr. Aleksandar Zecevic, for their invaluable feedback
that improved my work. I wish to thank Dr. James Longuski and the many anonymous
reviewers for their comments which improved my work. A special thank you to my teachers,
particularly Dr. Nhan Nguyen and Dr. Arun Banerjee, who inspired me during my course of
study.

My thank you, as well, to Dr. Aaron Melman, Dr. Stephen Chiappari, and Heidi Williams,
for reviewing some of the published articles, and to department chair Dr. Drazen Fabris for
reviewing the thesis; their feedback was extremely valuable.

I am grateful for the opportunity and support provided by the Department of Mechanical
Engineering. A portion of my research was supported by the Faculty Summer Scholarship
Grant, Santa Clara University. The Packard Research Fellowship in the School of Engineering
supported most of my research that was conducted during the 2012-2016 academic years.
My heartfelt gratitude goes to the Packard Research Fellowship donors for their generosity
without which my work would not have been possible.

I must also acknowledge many friends, particularly Chokri Sendi, for their helpful conversa-
tions during the long days of study.

A special thank you goes to my family, particularly my husband, Michael Okuji, for their
unwavering support, patience and encouragement throughout my entire effort to write this
dissertation.

iii



Fuzzy-Model-Based (FMB) Control of a Spacecraft
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ABSTRACT

During the upper-stage separation and orbit injection, orbital control, and attitude maneuver,

propellant slosh in partially-filled fuel tanks can cause dynamical instability or pointing er-

rors. The spacecraft dynamics combined with propellant sloshing results in a highly nonlinear

and coupled dynamic system that requires a complicated control law. This problem has been

a long-standing concern for space missions. The purpose of this research is two fold. The

first part is to investigate and develop nonlinear Takagi-Sugeno (T-S) fuzzy model-based con-

trollers for a spacecraft with fuel sloshing considering the input constraints on the actuators.

It includes i) a fuzzy controller/observer with a minimum upper-bound control input based on

the parallel-distributed compensation (PDC) technique, ii) a fuzzy controller/observer based

on the linear quadratic regulator (LQR) that uses the premises of the T-S model, and iii) a

robust-optimal fuzzy-model-based controller/observer. The designed controllers are globally

asymptotically stable and have a satisfactory performance and robustness. The second part

of the research is to develop a mathematical model of a spinning spacecraft with fuel slosh-

ing during high-g maneuvers. The equations of motion of a spacecraft with partially-filled

multiple-tanks are derived using the Kane’s method. To do this, two spherical pendulums as

an equivalent mechanical model of the fuel sloshing are adopted. The effect of the slosh model

parameters on the spacecraft nutation angle is studied. The developed model is validated via

several numerical simulations.

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Spacecraft Anomalies and Failures . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Mission Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Research Objectives and Thesis Overview . . . . . . . . . . . . . . . . . . . 12

2 Dynamics of Spacecraft with Fuel Sloshing . . . . . . . . . . . . . . . . . . . . 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Review of Kane’s Method or Virtual Power . . . . . . . . . . . . . . . . . . 15

2.3 Slosh Modeling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Mathematical Model of Spacecraft with Fuel Sloshing . . . . . . . . . . . . 22

2.4.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 The Kinematic Equations . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Takagi-Sugeno Fuzzy Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 T-S Fuzzy Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



3.3 T-S Fuzzy Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 T-S Fuzzy Model with Uncertainty . . . . . . . . . . . . . . . . . . . . . . 31

3.5 T-S Fuzzy Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Fuzzy Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Fuzzy PDC Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Robust-Optimal Fuzzy Control . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Fuzzy LQR Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 PID Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6.1 A note on the Interior-Point Method . . . . . . . . . . . . . . . . . . 48

4.6.2 Closed-Loop Simulation . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6.3 Robustness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6.4 Robust-Optimal Simulation . . . . . . . . . . . . . . . . . . . . . . 53

4.6.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Design Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Modeling and Analysis of Spacecraft with Fuel Sloshing in High-G Maneuvers 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Modeling of Spacecraft with Fuel Sloshing . . . . . . . . . . . . . . . . . . 64

5.2.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



5.2.2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.3 The Kinematic Equations . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Analysis of Spacecraft with Fuel Sloshing in High-G Maneuvers . . . . . . . 76

5.3.1 Nutation Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . 86

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1 The Elements of Matrix M and Vectors E and F in case of one tank with one

pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2 The Elements of Matrix M and Vectors C and F in case of one tank with two

pendulums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vii



List of Figures

1.1 Delta launch vehicle [11], Courtesy: NASA/JPL-Caltech. . . . . . . . . . . . 4

1.2 Launch boost phase [11], Courtesy: NASA/JPL-Caltech. . . . . . . . . . . . 5

1.3 Launch injection phase [11], Courtesy: NASA/JPL-Caltech. . . . . . . . . . 6

2.1 A spacecraft model with spherical pendulum. . . . . . . . . . . . . . . . . . 22

3.1 Fuzzy membership functions and universe of discourse for the premise vari-

ables: a) µij[zj(ω)] (i = 1, ..., 128; j = 1, 2, 3) and b) µij[zj(q)] (i = 1, ..., 128; j =

4, 5, 6, 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Time response of the selected states for the open-loop validation. . . . . . . . 34

4.1 Schematic diagram of the fuzzy PDC observer-based feedback control. . . . . 40

4.2 Schematic diagram of the robust-optimal T-S fuzzy observer-based feedback

control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Schematic diagram of the fuzzy LQR observer-based feedback control. . . . . 46

4.4 Time responses of the spacecraft angular velocities using fuzzy PDC and

fuzzy LQR controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Time responses of the quaternions using fuzzy PDC and fuzzy LQR controllers. 50

4.6 Actual and estimated responses of the pendulum angles. . . . . . . . . . . . . 50

4.7 Time responses of the control inputs using fuzzy PDC and fuzzy LQR con-

trollers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



4.8 The effect of uncertainty in the mass-moment-of-inertia on the time responses

of quaternions using Fuzzy PDC controller. . . . . . . . . . . . . . . . . . . 52

4.9 The effect of uncertainty in the mass-moment-of-inertia on the time responses

of quaternions using Fuzzy LQR controller. . . . . . . . . . . . . . . . . . . 53

4.10 Time response of the spacecraft angular velocity components. . . . . . . . . 55

4.11 Time response of the quaternions. . . . . . . . . . . . . . . . . . . . . . . . 55

4.12 Actual and estimated response of the pendulum angles. . . . . . . . . . . . . 56

4.13 Control inputs, |ui(t)| ≤ 79 N.m, (i = 1, 2, 3). . . . . . . . . . . . . . . . . 56

4.14 Time responses of the spacecraft angular velocities using fuzzy PDC, robust-

optimal fuzzy PDC and PID controllers. . . . . . . . . . . . . . . . . . . . . 57

4.15 Time responses of the quaternions using fuzzy PDC, robust-optimal fuzzy

PDC and PID controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.16 Time responses of the control inputs using fuzzy PDC, robust-optimal fuzzy

PDC and PID controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.17 Design on the responses of quaternions: Nominal, Case 1–max(β2), Case

2–min(α2), Case 3–max(d). . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.18 Design on the responses of input control: Nominal, Case 1–max(β2), Case

2–min(α2), Case 3–max(d). . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 A gyrostat model with multiple, partially-filled, spherical tanks. . . . . . . . 65

5.2 Equivalent model of fuel sloshing in spherical tank j for high-g environment. 66

5.3 Angles αij and βij represent the relative orientation of the spherical pen-

dulum with respect to the G-frame. . . . . . . . . . . . . . . . . . . . . . . . 67

ix



5.4 The time history of spacecraft angular velocity components with spherical-

spherical pendulum model (Case 1). . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Nutation angle for spherical-spherical pendulum model (Case 1). . . . . . . . 79

5.6 The time history of spacecraft angular velocity components with spherical-

spherical pendulum model (Case 2). . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Nutation angle for spherical-spherical pendulum model (Case 2). . . . . . . . 80

5.8 Case 2-The time history of spacecraft angular velocity components with an

empty tank and without nutation damper. . . . . . . . . . . . . . . . . . . . . 81

5.9 Case 2-The time history of spacecraft angular velocity components with an

empty tank and with nutation damper. . . . . . . . . . . . . . . . . . . . . . 81

5.10 Case 2-The effect of nutation damper on spacecraft nutation angle with empty

tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.11 Case 2-The time history of spacecraft angular velocity components with partially-

filled tank and without nutation damper. . . . . . . . . . . . . . . . . . . . . 82

5.12 Case 2-The time history of spacecraft angular velocity components with partially-

filled tank and with nutation damper. . . . . . . . . . . . . . . . . . . . . . . 83

5.13 Case 2-The effect of nutation damper on spacecraft nutation angle with partially-

filled tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.14 Case 1-The effect of pendulum mass-ratio on the spacecraft nutation angle. . 84

x



List of Tables

3.1 Fuzzy Rule Table (Negative = N,Positive = P ) . . . . . . . . . . . . . . 29

3.2 The spherical pendulum and spring-damper parameters . . . . . . . . . . . . 34

3.3 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Observer Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 RMSE for states and control inputs using Fuzzy PDC and Fuzzy LQR . . . . 53

4.3 PID gains using closed-loop Ziegler-Nichols method . . . . . . . . . . . . . 57

4.4 RMSE for states and control inputs . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 The spherical pendulum and nutation damper parameters . . . . . . . . . . . 77

5.2 Initial Conditions for spherical-spherical pendulum case . . . . . . . . . . . 78

xi



CHAPTER 1

Introduction

1.1 Motivation

During the upper-stage separation and orbit injection, orbital control, and attitude maneuver,

propellant slosh in partially filled fuel tanks can cause dynamical instability or pointing errors.

The spacecraft dynamics combined with propellant sloshing results in a highly nonlinear and

coupled dynamic system that requires complicated control law. This problem has been a

long-standing concern for space missions. The aim of this research is to model and propose

a robust, optimal fuzzy-model-based (FMB) controller for attitude stabilization of a rigid

spacecraft with fuel sloshing. The motivation for this research arose from induced attitude

anomalous motions caused by the effects of propellant slosh on spacecraft dynamics that

resulted in delays or failures of space missions.

1.2 Spacecraft Anomalies and Failures

Numerous spacecraft, presented below, experienced anomalous motions which resulted in

mission delay or even catastrophic failure of the mission with one possible cause being fuel

sloshing in spacecraft. Here are some examples in a chronological order:

1. Apollo 11 Lunar Module, during the last seconds of the first lunar landing in 1969, had a

problem with control of the landing maneuver because of sloshing of the remaining propel-

lant [1].
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2. Even small amounts of liquid can cause a mission failure. In 1969, ATS-V spacecraft of

452 kg carrying only 1.2 kg liquid, experienced an uncontrollable 11-second divergent nuta-

tion time constant after upper stage burnout. The mission was lost after the spacecraft entered

flat spin [2].

3. Some attitude nutation instability effects were determined from an extensive series of in-

orbit tests in INTELSAT IV series spacecraft in 1974 which carried liquid hydrazine in four

conispheric propellant tanks mounted on the spinning rotor section [3].

4. During transfer orbit operations of the first LEASAT mission in 1984, control system in-

stability developed during the preapogee injection phase that immediately followed activation

of the despin control system [4]. Similar instability was observed again during transfer orbit

operations of the second LEASAT launched two months later. The investigations pointed to

propellant oscillations as the most probable cause of the instability. Propellant dynamics had

not been originally considered in the design.

5. During the NEAR (Near Earth Asteroid Rendezvous) mission to the asteroid Eros in 1998,

the spacecraft’s reorientation maneuver experienced anomalous series of attitude motions and

went into safety mode that lead to a 13-month delay of mission [5]. Fuel slosh was identified

as the probable cause.

6. DemoSat failed to reach targeted orbit due to fuel sloshing in 2007 [6]. After second stage

ignition, a circular coning oscillation began that increased in amplitude.

7. Solar Dynamics Observatory, which is a three-axis controlled, single-fault tolerant space-

craft, was successfully launched and deployed from its Atlas V launch vehicle in 2010 [7]. It

had two large tanks with propellant which comprised almost half of its launch mass. During

the second apogee motor firing the anomalous attitude motion was discovered and the cause

for the anomaly was determined to be the fuel slosh.

8. Chang’e 3 lunar probe, launched in 2013, was designed to achieve soft-landing and roving

exploration on the lunar surface. During soft landing to avoid an obstacle, the Chang’e 3

2



experienced motion instability because of fuel sloshing in the liquid propellant. The lander

kept vertical attitude and moved back and forth horizontally while approaching the moon [8].

1.3 Mission Phases

Most missions have a few common distinct phases: 1) launch into geosynchronous transfer

orbit (GTO) with perigee (low altitude of 200 km) and apogee (high altitude of 35,786 km);

2) transfer from GTO to geostationary orbit (GEO) with both perigee and apogee at 35,786

km, and the orbit inclination and eccentricity close to null; 3) preparation and calibration of

the attitude and orbit control system (AOCS) before the start of the GEO mission; and 4)

GEO mission operations [9]. Many missions consist of some phases in which space craft

is spin-stabilized and some phases in which it is three-axis stabilized [10]. During the spin

stabilization the angular momentum of the spacecraft remains approximately fixed in inertial

space for extended periods. For spin-stabilized spacecraft the rotational orientation of the

spacecraft about the spin axis is not controlled. For three-axis stabilized spacecraft the three

mutually perpendicular axes are controlled to achieve the required orientation and pointing

accuracy during on-orbit operation.

Numerous spacecraft, flown on launch vehicles such as Delta and Atlas Centaur, feature spin

stabilized upper stage injection using apogee kick motors (AKM) following de-spin to an

on-orbit three-axis stabilized operation [11–13]. Fig. 1.1 presents a typical Delta launch vehi-

cle [11] carrying a Deep Space 1 spacecraft. This typical Delta launch vehicle employs three

stages and Figures 1.2 and 1.3 demonstrate the launch boost and injection phases [11].
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Fig. 1.1: Delta launch vehicle [11], Courtesy: NASA/JPL-Caltech.
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The first stage of the launch vehicle lifts the spacecraft and launch vehicle off the ground to

sky. The second stage sends the spacecraft into the space. Each stage has its own fuel source.

The third stage, an upper stage connected to the spacecraft covered by the fairing, transfers

the spacecraft out of the Earth’s atmosphere where separation of the spacecraft from the upper

stage follows and the spacecraft is sent to the desirable orbit to complete its mission. The third

stage is spin stabilized, a spin table supporting small rockets which are used to spin up the

third stage itself and the attached spacecraft. To spin the third stage is to keep it in the proper

orientation before being released from the second stage. Further, spinning third stage needs

to be de-spun before the spacecraft separates and acquires its proper cruise orientation. The

attitude control problem of spacecraft in the presence of propellant sloshing is important in

different phases of mission.

1.4 Literature Review

The problem of propellant slosh in partially filled fuel tanks of spacecraft has been studied

since the early 1960s. A substantial mass of fuel is necessary to transfer the spacecraft from

the geosynchronous transfer orbit (GTO) to geostationary orbit (GEO). Uncontrollable move-

ment of partially filled fuel in tanks can cause attitude instability. This attracted the attention

of many engineers and scientists who were motivated to design control system for various

aerospace vehicles with the dynamic interaction of propellant sloshing [9,14,15]. In the past,

a considerable amount of analytical and experimental work was done to study the nutation

stability of spinning solid propellant rockets [16] and spacecraft [17–19] taking into account

the effect of propellant slosh, see Refs. [20–23, 25–27]. The development of multi-body dy-

namics led to the successful prediction of attitude motions of space vehicles [28–30]. Because

the exact formulation and solution for propellant sloshing in various tanks is complex, the dy-

namically equivalent mechanical models were adopted to model the fuel motion. In order to
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approximate the sloshing liquid behavior, equivalent mechanical models were proposed and

implemented by various investigators. Abramson and Dodge et al. [14,31–33] studied the dy-

namic behavior of liquids in moving containers with applications to space vehicles. Roberts

et al. described different equivalent mechanical models in their slosh design handbook [34].

Hill and Baumgarten [20] investigated dynamics of spin stabilized satellites carrying slosh-

ing liquid stores. To study interaction of fluid motion and spinning body, the test rig was

designed, built and instrumented. Kana [35] proposed a compound pendulum model, which

included both spherical and planar pendulums, to model the liquid slosh motion in a rotary

tank. Cochran and Kang discussed attitude motion of a spinning asymmetric rigid body with

a spherical pendulum included in their article [22]. Enright, Wong, and Breckenridge [36,37]

studied propellant slosh models for the Cassini spacecraft. They proposed two spherical pen-

dulums model for "high-g" maneuver. The spacecraft is said to be in a "high-g" environment

when it is under high acceleration provided by the main engine and the surface tension forces

of liquid in tanks do not significantly affect the propellant motion during main engine burns.

Supported by extensive literature review, Ibrahim [15] presented liquid sloshing dynamics

from the basic theory through advanced analytical and experimental results. In 2008, Kang

and Lee [26] investigated the attitude motion of a rigid spacecraft with a momentum wheel

along the spin axis and a spherical pendulum. Mason and Starin studied the effects of propel-

lant slosh dynamics on the Solar Dynamics Observatory [7], which is a three axis controlled,

single fault tolerant spacecraft. Anomaly caused by the slosh during the first apogee motor

firing which caused the spacecraft to transition into Sun Acquisition mode was determined.

Agrawal [4] discussed attitude control motion instabilities caused by liquid slosh in fuel tanks.

Recently, a composite equivalent mechanical model was considered to predict the slosh forces

and moments exerted on a spherical propellant tank in a spacecraft by Nan et al. [38]. Navabi

et al. [39] presented a three-dimensional model for maneuvering of a spacecraft with unactu-

ated fuel slosh dynamics using Lagrange method. They adopted a multi-pendulum model to
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characterize the fuel slosh.

The spacecraft combined with propellant slosh in partially filled fuel tanks results a highly

nonlinear and coupled dynamic system that requires complicated control law. The compli-

cated control system analysis has been a long-standing concern for space missions. Baum-

garten et al. [21] developed a control law using an equivalent mechanical model of the liquid

slosh—a two-degree of freedom pendulum—which resulted in stability of the system dy-

namics. Hill and Baumgarten [40] designed a time varying linear feedback control law for

a spin-stabilized spacecraft with sloshing fluid stores. Wong et al. [37] proposed an attitude

controller for the Cassini spacecraft using thrust vector for precision pointing and stabiliza-

tion for science missions. Cho et al. [41] studied feedback control of a space vehicle with

unactuated fuel slosh dynamics. Shageer and Tao [42] conducted a study of adaptive control

of spacecraft with fuel slosh. They linearized dynamical equations of motion of spacecraft

combined with a pendulum and then developed an adaptive control law for stability and track-

ing objectives. Reyhanoglu and Hervas [43] presented a multi-pendulum model and control

of a spacecraft with fuel sloshing which is an extended work of their previous model where

only the lowest frequency slosh mode was included [44]. Ayoubi et al. [27] developed equa-

tions of motion of a spinning spacecraft with fuel sloshing, three momentum wheels, and a

nutation damper. Hervas and Reyhanoglu [45] designed a Lyapunov-based nonlinear feed-

back controller for a spacecraft with fuel slosh to control the translational velocity and the

attitude of the spacecraft. They considered a multi-mass-spring model to represent the fuel

slosh in the tank. In their paper [45], the observer-based control of space vehicles with fuel

slosh dynamics in a zero gravity environment was studied. Zhang and Wang [46] proposed a

controller to stabilize the attitude of the spacecraft with liquid sloshing in the presence of low

frequency periodic disturbance. The controller is composed of active disturbance rejection

control, positive position feedback, extended state observer and singular spectrum analysis.
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Recently, studies started to combine spacecraft as a rigid body with flexible appendage and

fuel slosh. For example, Deng and Yue [47] presented nonlinear modeling and attitude dy-

namics of spacecraft coupled with liquid sloshing dynamics and flexible appendage vibration.

In their previous work [48], the authors studied dynamics and control of spacecraft with mul-

tiple liquid propellant tanks. In both studies, improved moving pulsating ball model was

adopted to characterize the slosh. Attitude reorientation of the spacecraft is implemented by

a feedback control strategy based on Lyapunov theory.

In the last three decades, intelligent control systems such as fuzzy logic and neuro-fuzzy sys-

tems have been used to control aerospace vehicles including spacecraft attitude stabilization.

Most work has been done for rigid spacecraft. Recent research has been conducted on fuzzy-

model-based control systems that guarantee both stability and performance of a closed-loop

system. Takagi and Sugeno introduced the T-S fuzzy-model fuzzy system in 1985 [49]. The

T-S fuzzy-model-based system is based on a set of fuzzy rules to describe a global nonlinear

system in terms of a set of local linear models that are smoothly connected by fuzzy mem-

bership functions. Using the Lyapunov approach, the stability conditions can be formed in

terms of linear matrix inequalities (LMIs) that can be solved numerically and efficiently using

convex programming techniques. LMIs based approach has received significant attention in

design control [52–54]. Wang et al. presented the Parallel Distributed Compensation (PDC)

nonlinear control technique [55]. The basic idea behind PDC is to design a feedback con-

troller for each local model and then to construct a globally asymptotic stable controller from

the local controllers. Li et al. [56] presented a framework for designing a dynamic feedback

controller for nonlinear systems described by T-S models. A nonlinear dynamic feedback

controller in the form of dynamic parallel distributed compensation (DPDC) was used, the

parameters of which are obtained from a set of linear matrix inequality problems. Feng [57]

presented a comprehensive survey on state of the art of analysis and design of fuzzy-model-
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based control systems that focused on the Takagi-Sugeno (T-S) fuzzy model. Song et al.

studied the quaternion based, fuzzy attitude regulation of a rigid spacecraft in the presence of

external disturbances [58]. Recently, Ayoubi and Sendi [59] presented a T-S fuzzy model with

full-state feedback, control input constraint, and disturbance rejection objective to stabilize a

rigid spacecraft with flexible antenna. Further, they [60] presented T-S fuzzy-model-based

control of spacecraft with flexible appendage and studied the robust-optimal fuzzy controller

for position and attitude stabilization and vibration suppression of a flexible spacecraft during

antenna retargeting maneuvers [61]. Recently, Baculi and Ayoubi [62] designed a Takagi-

Sugeno type fuzzy attitude controller for solar sail spacecraft with reaction wheels and trans-

lating masses. In our previous paper [63], we presented the T-S fuzzy model for a spacecraft

with fuel sloshing and we designed a full-state feedback fuzzy PDC with control input con-

straint to stabilize the attitude motion of a non-spinning spacecraft.

Some research was conducted to integrate the fuzzy controller with a linear quadratic regula-

tor (LQR). The standard LQR was proposed on linearized models for attitude control of rigid

spacecraft and spacecraft with fuel sloshing [40,64]. To apply the LQR to nonlinear systems,

Driankov et al. [65] proposed a fuzzy gain scheduler based on LQR and applied it to the prob-

lem of tracking a reference trajectory of a nonlinear autonomous system. Li et al. introduced

an attitude controller for Reusable Launch Vehicle (RLV) within a large operating envelope,

combining LQR with fuzzy gain scheduling based on the Takagi-Sugeno fuzzy model [67].

The T-S fuzzy model with LQR keeps the asymptotic stability performance provided by the

optimal feedback gain approach.

The control performance robustness and optimality in the control system design has been

continuously studied. Chen et al. introduced fuzzy linear control of the robustness design

of nonlinear dynamic systems [69]. Tanaka et al. [70] presented a mixed control design via
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linear matrix inequalities that combined robust fuzzy and optimal fuzzy controllers. The

optimal fuzzy control is based on quadratic performance functions. Later, Park et al. [71] pro-

posed a new design methodology for the optimal stabilization of a T-S fuzzy system. Their

proposed model was validated via application to the rigid spacecraft attitude control. Ousa-

loo [72] proposed an attitude controller using fuzzy logic for a small satellite with model

uncertainty. He claimed that the presented controller increased robustness for automatic con-

trol reconfiguration and model uncertainty, and reduces development and production cost for

flight control systems and autonomous on-board control features. Zhang et al. proposed a

multi-objective control based on the T-S fuzzy model and PDC scheme for a rigid spacecraft

maneuver [73]. Sendi and Ayoubi [61] introduced robust-optimal fuzzy-model-based control

of flexible spacecraft with actuator constraints.

1.5 Research Objectives and Thesis Overview

The aim of this research is modeling and fuzzy control of spacecraft with fuel sloshing. For

the first part of the research (Chapters 2,3,&4), equations of motions are derived for the space-

craft with fuel sloshing in one spherical tank. Further, fuzzy controllers are designed which

stabilize the attitude motion of a spacecraft with fuel sloshing considering the input con-

straints on the actuators. The designs are for three-axis stabilization. An observer is intro-

duced to estimate the unmeasurable states. We designed a Fuzzy controller/observer based on

the parallel-distributed compensation (PDC) technique and a fuzzy controller/observer based

on the linear quadratic regulator (LQR). Both controllers/observer designs are built from the

Takagi-Sugeno (T-S) model of the spacecraft. Using the Lyapunov stability theorem, the fuzzy

PDC controller design problem was cast as a minimization problem for the upper bound of

control input in the form of linear matrix inequalities. The efficacy and robustness of each

controller are compared via numerical simulations. The design is extended to robust and
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optimal fuzzy-model-based attitude controller. The advantages of the proposed fuzzy con-

trollers are: i) globally asymptotically stable; ii) robust to model uncertainties; iii) satisfies

the actuator amplitude constraint; iv) simple structure and therefore easy to implement; and

v) the design procedure is formulated in terms of linear matrix inequalities (LMIs), which

can address stability, performance, and robustness of the closed loop system at the same time.

Designing an active attitude control system for a spacecraft with partially filled tank is a chal-

lenging task because of the highly nonlinear and coupled dynamics of the system. To the best

of our knowledge, this is the first attempt to apply fuzzy PDC and fuzzy LQR controllers to

this problem.

For the second part of the research (Chapter 5), a mathematical model of a thrusting, spinning

spacecraft with partially filled multiple-tanks, a nutation damper, and momentum wheels in

the high-g environment is developed. Equations of motion of spacecraft are derived using the

Kane’s method with two spherical pendulums to represent fuel sloshing in spinning space-

craft. Torsional viscous dashpots are added to the pendulum hinges to simulate the damping

effect. Three momentum wheels included in the model are used as attitude control actua-

tors. The numerical simulation for the model, including pre and post Payload Assist Module

(PAM) motor burnout phases, is conducted and the dynamical behavior of the spacecraft with

fuel sloshing is investigated. The effect of the slosh model parameters on the spacecraft nuta-

tion angle is studied.

Thesis is presented in the following order: In Chapter 2, Kane’s method for the derivation

of a system’s equations of motion and slosh modeling techniques is reviewed and applied

to derive the nonlinear equations of motion for spacecraft with fuel sloshing. In Chapter 3,

T-S fuzzy model with uncertainty, fuzzy observer, and T-S model validation are presented.

In Chapter 4, the fuzzy controller design procedure including fuzzy PDC, fuzzy LQR and
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robust-optimal fuzzy controllers and LMI based formulation of the problem is presented. It

includes the stability, performance, and robustness of the proposed controllers with some

design case studies. In Chapter 5, modeling and analysis of spacecraft with fuel sloshing in

high-g maneuvers are discussed. In Chapter 6, conclusions and future work recommendations

are presented. Appendix A lists some parameters of the mathematical model.
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CHAPTER 2

Dynamics of Spacecraft with Fuel
Sloshing

2.1 Introduction

In this chapter, Kane’s method is first reviewed to derive dynamic equations for a multi-body

system, then, slosh modeling techniques are studied. The equations of motion of spacecraft

with a partially filled fuel tank are derived, where fuel sloshing is modeled by the means of a

spherical pendulum with spring-torsional damper at hinge point.

2.2 Review of Kane’s Method or Virtual Power

In this section, we briefly review the Kane’s method [28, 29] to formulate the dynamic equa-

tions of the motion of a system. In 1961, Thomas Kane of Stanford University formu-

lated a variation of the virtual power principle explicitly for rigid body systems [74]. This

method originated from the Jourdain’s Principle [75]. The Kane’s method has advantages over

Newton- Euler, Lagrange, D’Alembert’s principle, Hamiltone, Boltzmann-Hamel, and Gibbs-

Appell methods and provides an easy and systematic way to formulate equations of motions

for complex, multi-body systems. Kane’s method, using generalized forces, eliminates the

noncontributing forces and torques between bodies from the equations of motion unlike in

the Newton-Euler method. Kane’s method does not employ energy functions and, therefore,

overpasses the differentiations of energy functions unlike in the Lagrange and Gibbs-Appell
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methods. Kane’s method is applicable to both the holonomic and nonholonomic systems.

Kane’s equations may be interpreted as follows: if the partial velocity vectors define the

directions of motion of a mechanical system, then Kane’s equations represent a projection

of the applied and inertia forces along those directions. Detail comparison and advantages

and disadvantages of Kane’s method to other mentioned methods can be found in numerous

works [30, 76–78].

We note that the Kane’s method is based on developed new kinematic quantities as partial

angular velocities and partial velocities, first discovered in Kane’s work, in 1960 [79]. It

allows, with a minimum amount of labor, derivation of equations of motion formulating

expressions for generalized forces using generalized speeds, partial angular velocities, and

partial velocities. Generalized speeds are generalization of the generalized velocities. For a

mechanical system S having n degrees of freedom, represented by generalized coordinates,

qr (r = 1, ..., n), the generalized speeds, ur (r = 1, ..., n), for S in a reference frame N are

defined as linear combinations of the generalized velocities, q̇r (r = 1, ..., n) as [28, 29]

ur =
n∑
s=1

Yrsq̇s + Zr, (r = 1, ..., n), (2.1)

where Yrs and Zr are functions of qr (r = 1, ..., n), and t, and Yrs (r, s = 1, ..., n) must be

chosen such that Eq. (2.1) can be solved uniquely for q̇r (r = 1, ..., n). Thereafter, the angular

velocity, ω, of a rigid bodyB inN , and the velocity, V , of a particle P inN , can be expressed

uniquely as

ω =
n∑
r=1

ωrur + ωt, (2.2)

V =
n∑
r=1

Vrur + Vt, (2.3)

where ωr, Vr (r = 1, ..., n), ωt, and Vt are functions of qr (r = 1, ..., n) and t. The vectors ωr

and Vr are called partial angular velocities of ω and partial velocities of V , respectively.
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Having partial angular velocities and partial velocities, we can formulate the generalized

forces.

The generalized active and inertia forces for a system S in N consisting of particles Pi (i =

1, ..., nP ) are defined, respectively, as

(Fr)P =

nP∑
i=1

NV Pi
r ·Ri, (r = 1, ..., nP ), (2.4)

(F ∗r )P =

nP∑
i=1

NV Pi
r ·R∗i , (r = 1, ..., nP ), (2.5)

where NV Pi
r is the rth partial velocity of Pi inN , andRi is the resultant of all external (contact

and body) forces acting on particle Pi. R∗i is the inertia force for Pi in N defined as

R∗i = −miai, (r = 1, ..., n), (2.6)

where mi is the mass of particle Pi, and ai is its acceleration in N .

The generalized active and inertia forces for a rigid body B in N are defined, respectively, as

(Fr)B =N ωBr · T +N V Q
r ·R, (r = 1, ..., n), (2.7)

(F ∗r )B =N ωBr · T ∗ +N V B∗

r ·R∗, (r = 1, ..., n), (2.8)

where NωBr and NV Q
r are the rth partial angular velocity ofB inN and the rth partial velocity

of Q in N , respectively. Q is a point in B. NV B∗
r is the rth partial velocity of the mass center

B∗ of B in N . R is the resultant of all external forces acting on B, and T is the resultant

external torque acting on B. R∗ and T ∗ are the inertia force and inertia torque, respectively,
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acting on B in N defined as

R∗i = −MNaB
∗
, (r = 1, ..., n), (2.9)

T ∗i = −NαB · I − NωB × I ·N ωB, (r = 1, ..., n), (2.10)

where M is the mass of B, and aB∗ is the acceleration of the mass center B∗ of B in N . NαB

and NωB are the angular acceleration and angular velocity of B in N , respectively. I is the

central inertia dyadic of B in N .

For a mechanical system S having n degrees of freedom, represented by generalized coordi-

nates, qr (r = 1, ..., n), Kane’s equations simply state that the sum of the generalized inertia

and active forces is zero for each generalized coordinate:

Fr + F ∗r = 0, (r = 1, ..., n), (2.11)

where Fr and F ∗r are the generalized active and inertia forces, respectively.

2.3 Slosh Modeling Techniques

Sloshing is defined as any motion of the free liquid surface inside a partially filled container

due to any disturbance [15]. There are different types of motion that free liquid surface can

experience such as simple planar, nonplanar, rotational, irregular beating, symmetric, asym-

metric, quasi-periodic and chaotic. In general, the motion of sloshing systems can be in-

fluenced by capillary forces (surface forces), gravitational (body) forces, inertia forces, and

viscous forces. Often, some forces are much smaller compared to other forces and, therefore,
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they can be ignored resulting in simplified analysis of liquid sloshing. Dimensionless num-

bers such as the Bond number, Weber number, and Froude number characterize the relative

importance of different forces. These dimensionless numbers separate the hydrodynamic be-

havior into gravity, inertia and capillary dominated regimes [14].

Gravity dominated regime: The gravitational forces are larger compared to capillary forces

and, therefore, capillary forces can be disregarded. In this regime, the Bond number defined

as the ratio of gravitational to surface tension forces is Bo = ρgL2/σ >> 1. For rotational

sloshing, the centrifugal Bond number defined as the ratio of centrifugal and surface tension

forces is Bo = ρRL2Ω2/σ >> 1.

Inertia dominated regime: The inertia forces are larger compared to capillary forces and,

therefore, capillary forces can be disregarded. In this regime, the Weber number defined as

the ratio of inertia to surface tension forces is We = ρV 2L/σ >> 1, and the Froude number

defined as the ratio of inertia to gravitational forces is Fr = We/Bo = V 2/gL >> 1; inertia

forces dominate the behavior.

Capillary dominated regime: The gravitational and inertia forces are small compared to cap-

illary forces and, therefore, they can be disregarded.

The Reynolds number defined as the ratio of inertia to viscous forces is Re = LV/ν charac-

terizes the importance of viscous effects. It must be determined separately for each regime.

Above mentioned, ρ is the density of the fluid, g is the gravitational acceleration, L is the

characteristic dimension of the tank such as diameter, σ is the surface tension, Ω is the spin

rate, R is the radius, where equivalent gravity is calculated, V is the characteristic velocity,

and ν is the kinematic viscosity.

Based on the hydrodynamic regimes, the slosh models are defined as low-g and high-g [14,

36]:

Low-g: Surface tension forces are critical to the determination of the behavior of the propel-

lant. Generally, the low-g slosh frequency is smaller than it is in normal gravity. The Bond
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number is much less than 1, Bo << 1.

High-g: The spacecraft acceleration that is provided by the main engine is large enough so

that surface tension forces do not significantly affect the propellant motion during main en-

gine burn. The Bond number is much higher than 1, Bo >> 1.

These dimensionless numbers can be determined experimentally with air bearing tests, spin

drop tests, or energy dissipation tests [24], which are not conducted in this research.

To mimic the behavior of liquid sloshing, fluid dynamics modeling and equivalent mechan-

ical modeling can be utilized. Fluid dynamics modeling uses partial differential equations

to describe the fluid behavior in a given environment and an exact solution for sloshing dy-

namics in a moving container is extremely difficult to derive [7]. Instead, they are solved

numerically using computational fluid dynamics (CFD) techniques. However, for complex

dynamical systems, CFD takes computationally longer time to solve and instead, especially

for incorporating the dynamic effects of sloshing in the spacecraft control and stability anal-

ysis, equivalent mechanical models were employed.

Various types of equivalent mechanical models such as planar and spherical pendulum, spring

mass models are discussed and derived in Abramson’s work "The Dynamic Behavior of Liq-

uids in Moving Containers with Applications to Space Vehicle Technology" [32]. We note

that if there is no free surface, which means the tank is fully filled, the liquid can be replaced

by an equivalent rigid body [80]. Some masses of liquid with free surface, which are free

to oscillate, are replaced by equivalent mechanical models, and the rest is replaced by rigid

body [81]. The mechanical models should duplicate the static and dynamic properties of liq-

uid, which are presented below [14]

Static properties. To preserve the static properties of the liquid, the sum of all the masses

must be the same as the liquid mass mliq, and the center of mass of the model must be at the
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same elevation as the liquid. These constraints are expressed analytically by:

m0 +
∞∑
n=1

mn = mliq, (2.12)

m0h0 +
∞∑
n=1

mnhn = 0, (2.13)

where m0 is the rigidly-attached mass, h0 is the location of m0 referenced to the center of

mass, the other parameters are for moving masses of the model.

Dynamic properties. Equations Eq. (2.12) and Eq. (2.13) are not sufficient to fix the values of

the model parameters. To do that, the model must also duplicate the sloshing forces, torques,

and natural frequencies.

The equivalent model parameters depend on the fuel tank shape such as rectangular, cylindri-

cal, spherical et al. and the liquid properties. They can be calculated from the sloshing force

and moment analysis or from the experimental analysis. Spherical tanks are the most often

used in the aerospace industry because of their high volume to weight ratio. The liquid mo-

tions in a spherical tank are inherently more nonlinear than in other tanks, and, therefore, the

slosh characteristics are obtained numerically using SLOSH code [14]. The predicted natural

frequency for the first two anti-symmetric modes and the pendulum model parameters of the

first mode for a spherical tank in the result of SLOSH code can found in the work of Dodge et

al [14]. The use of scale model tanks or modern free surface CFD codes generally determines

slosh damping experimentally. The damping in mechanical models can be included via linear

viscous dashpots.
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2.4 Mathematical Model of Spacecraft with Fuel Sloshing

2.4.1 Equations of Motion

Consider a rigid spacecraft with one spherical pendulum shown in Fig. 2.1. We define inertial

and body (spacecraft) fixed-frames as the reference frames by N and S, respectively. The

inertial frame N corresponds to the Sun center. S∗ is the center-of-mass, and IS∗ ∈ R3×3 is

the central principal moment-of-inertia of the spacecraft. We model fuel sloshing by means

n1

n2

n3
N

s1

s 2

S
*

s 3

N
*

mPlP

m
0

O P

ψ 1
ψ 2

S

D
ψ 2

D
ψ 1

Sun-centered 

inertial frame

Orbit

Fig. 2.1: A spacecraft model with spherical pendulum.

of a spherical pendulum of mass mP with torsional spring damper at the hinge point. The

rest of the fuel that is not participating in sloshing is assigned as a static body with mass m0.

The presented model preserves the static and dynamic properties of the liquid [32]. In other
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words, the total fuel mass in the tank must be equal to the sum of all masses in the pendulum

model, Eq. (2.12), and the center of mass of the model must be at the same elevation as the

liquid, sEq. (2.13).

We choose the generalized speeds, gk, as follows:

gk = ωk, (k = 1, 2, 3), (2.14)

g3+k = ψ̇k, (k = 1, 2), (2.15)

where ω1, ω2, and ω3 are the components of the angular velocity of the spacecraft with respect

to the N frame (NωS). The angles ψk (k = 1, 2) represent the relative orientation of the

massless rod of the spherical pendulum in the tank, and ψ̇k (k = 1, 2) are the corresponding

generalized speeds.

The equations of motion of the spacecraft with spherical pendulum model can be written

as [82]:

Fl + F ∗l = 0, (l = 1, ..., 5), (2.16)

where Fl and F ∗l are the generalized inertia and active forces, respectively.

The generalized inertia force is determined by

F ∗l = −T ∗TS NωSl − F ∗Tm0

NV m0
l − F ∗TmP

NV mP
l , (l = 1, ..., 5), (2.17)

where

F ∗m0
= m0

Nam0 , (2.18)

F ∗mP
= mP

NamP , (2.19)
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T ∗S∗ = IS
∗ NαS + N ω̃S IS

∗ NωS. (2.20)

The skew-symmetric matrix N ω̃S is defined as:

N ω̃S =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (2.21)

and the detailed calculations of the partial velocities and partial angular velocities can be

found in Ref. [82].

The generalized active force is of the form

Fl = −T TfmP

NωSl + T TfmP

NωPl + T S
∗NωSl , (l = 1, ..., 5), (2.22)

where T S∗ ∈ R1×3 is the thrust torque on the spacecraft with respect to S∗ and TfmP
is the

linear viscous torque model on the pendulum mP given by

TfmP
= [−(Dψ2 +Kψ2)l

2
P ψ̇2sψ1, (Dψ2 +Kψ2)l

2
P ψ̇2cψ1,−(Dψ1 +Kψ1)l

2
P ψ̇1s

2ψ2]T , (2.23)

where Dψk
and Kψk

(k = 1, 2) are damping and stiffness coefficients, respectively. lP is

the length of the pendulum. We note that the pendulum is spring-restrained too as the spring

represents the surface tension forces, which are not zero in low-g environment. As described

in section 2.3, the model is in low-g then the surface tension forces are critical to the determi-

nation of the behavior of the propellant.

Taking into consideration generalized active and inertia forces, Eq. (2.16) can be written in

matrix form as:

Ġ = M−1(F − E), (2.24)
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where G ∈ R5×1, and the elements of the vectors E, F ∈ R5×1 and matrix M ∈ R5×5 are

listed in the Appendix.

2.4.2 The Kinematic Equations

We use a unit quaternion to describe the attitude motion of the spacecraft in the inertial frame.

Let’s define q0 ∈ R and q̄ = [q1, q2, q3]T ∈ R3×1 as the scalar and vector components of a unit

quaternion. The kinematic equations in terms of this unit quaternion are given by [83]

N q̇S =
1

2
B(q) NωS, (2.25)

where

B(q) =

 −q̄T

q0I3 + q̃

 , (2.26)

where I3 ∈ R3×3 is the identity matrix, ω = [ω1, ω2, ω3]T and q = [q0, q̄
T ]T ∈ R4×1 satisfying

the constraint q2
0 + q̄T q̄ = 1. We note that q0 has the value +1 and −1 if the attitude of the

spacecraft is zero. q̃ is a skew-symmetric matrix.

The set of Eq. (5.54) along with the kinematic equations, Eq. (2.25), constitute a mathematical

model of the system.

Mathematical model of the system can be written in the form of nonlinear systems as:

ΣNL :

 ẋ = f(x) + g(x)u,

y = Cx,
(2.27)

where the state vector, x(t) ∈ R11×1, and the control vector, u(t) ∈ R3×1, are defined as:

x = [ω1, ω2, ω3, ψ̇1, ψ̇2, ψ1, ψ2, q0, q1, q2, q3]T , (2.28)
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u = [u1, u2, u3]T , (2.29)

where u1, u2, and u3 are the components of the control torque produced by the actuators. We

assume that angular rates and attitude of the spacecraft are available for measurement through

rate gyros and horizon sensors [10] and C = [I3×3 03×8; 04×7 I4×4]. The slosh parameters as

of pendulum positions and angular rates are difficult or impossible to measure and, therefore,

they will be estimated. Details are described in section 3.3. f(x) and g(x) are obtained in the

following forms:

f(x) = (M ′)−1E ′, (2.30)

g(x) = (M ′)−1I′. (2.31)

The block matrix M ′ ∈ R11×11 is defined as:

M ′ =

 M 0

0 I

 , (2.32)

where M ∈ R5×5, I ∈ R6×6. The block matrix I′ ∈ R11×3 is defined as I′ = [I1, 0]T with

identity matrix I1 ∈ R3×3. The elements of the matrixM and vectorE ′ ∈ R11×1 are presented

in the Appendix (A.1).
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CHAPTER 3

Takagi-Sugeno Fuzzy Modeling

3.1 Introduction

Takagi-Sugeno (T-S) fuzzy model was proposed by Tomohiro Takagi and Michio Sugeno in

1985 [49]. The basic idea of the T-S model is to approximate the complex nonlinear sys-

tems by fuzzy blending of the local linear models in different state regions. Furthermore,

the obtained fuzzy model can be used to control and study the stability of the system using

the Lyapunov method [52]. The T-S fuzzy model is a universal approximator of any smooth

nonlinear control system. In recent years, there has been great interest in using the T-S model

to approximate the complex nonlinear dynamical system of spacecraft for stability analysis

and control [58–62, 71–73].

In this chapter, T-S fuzzy model is constructed to approximate the nonlinear system of space-

craft with fuel sloshing. The T-S fuzzy observer is constructed to estimate the unmeasurable

states. Further, the T-S model with uncertainties are constructed. In the end, the presented

T-S model is validated.

3.2 T-S Fuzzy Modeling

To construct the T-S fuzzy model, we consider the nonlinear system in Eq. (2.27) and use the

local approximation method [52]. The fuzzy linear model approximates the nonlinear system

around the selected parameter values (or premise variables) and uses membership functions
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in the universe of discourse of each premise variable and IF-THEN rules corresponding to

each point.

The ith rule of the T-S fuzzy model can be described in the following form:

Plant Rule i:

IF z1 is µi1 AND . . . AND zp is µip,

THEN

Σi :

 ẋ(t) = Aix(t) +Biu(t), (i = 1, . . . , r),

y(t) = Cix(t),
(3.1)

where zj is the premise variables and µij[zj] is the grade of membership of zj in the fuzzy set

µij , r is the number of model rules, and x(t) ∈ Rn×1, u(t) ∈ Rm×1, and y(t) ∈ Rq×1 are the

state, input and output vectors, respectively. Ai ∈ Rn×n, Bi ∈ Rn×m, and Ci ∈ Rq×n are the

system, input and output matrices, respectively, for each rule. Furthermore, we show that Σi

is controllable and observable.

Combining all the rules of T-S models, the nonlinear system Eq. (2.27) can be approximated

by the following form:

ΣTS :

 ẋ(t) =
∑r

i=1 hi[z]{Aix(t) +Biu(t)},

y(t) =
∑r

i=1 hi[z]Cix(t),
(3.2)

where the nonnegative fuzzy basis functions are

hi[z] =
wi[z]∑r
i=1 wi[z]

, (3.3)

and their summation equals one. The firing strength of each model rule is determined using
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the T − norm product as follows:

wi[z] =

p∏
j=1

µij[zj], (3.4)

where
p∑
i=1

µij[zj] = 1, 0 ≤ µij[zj] ≤ 1. (3.5)

To apply the T-S fuzzy model to the nonlinear system Eq. (2.27), we choose the fuzzy premise

variables to be the angular velocities of the spacecraft and the unit quaternion from the state

vector Eq. (2.28):

z1 , ω1, z2 , ω2, z3 , ω3, z4 , q0, z5 , q1, z6 , q2, z7 , q3. (3.6)

For each fuzzy premise variable we choose their possible minimum and maximum values

Table 3.1: Fuzzy Rule Table (Negative = N,Positive = P )

Rules z1 z2 z3 z4 z5 z6 z7

R1 N N N N N N N
R2 N N N N N N P
R3 N N N N N P N
R4 N N N N N P P
...

...
...

...
...

...
...

...
R127 P P P P P P N
R128 P P P P P P P

representing as zj ∈ {Negative, Positive}, (j = 1, ..., 7) and construct 27 = 128 rules. Be-

low we describe the third plant rule, and all possible combinations for 128 rules are described

in Table 3.1.

Plant Rule 3:

IF z1 is Negative AND z2 is Negative AND z3 is Negative AND
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Fig. 3.1: Fuzzy membership functions and universe of discourse for the premise variables: a)
µij[zj(ω)] (i = 1, ..., 128; j = 1, 2, 3) and b) µij[zj(q)] (i = 1, ..., 128; j = 4, 5, 6, 7).

z4 is Negative AND z5 is Negative AND z6 is Positive AND z7 is Negative,

THEN

Σ3 :

 ẋ(t) = A3x(t) +B3u(t),

y(t) = C3x(t).
(3.7)

State space matrices can be obtained by linearizing the nonlinear system in Eq. (2.27) around

the possible sets from Table 3.1. The membership functions of the fuzzy sets µij (i =

1, ..., 128; j = 1, ..., 7) can be defined through Negative and Positive sets as shown in

Fig. 3.2.

3.3 T-S Fuzzy Observer

In real control problems, all states cannot always be directly measured. Therefore, the fuzzy

observer is considered to estimate the unavailable states. Rate gyros and horizon sensors are

used to measure the angular rates and attitude of the spacecraft [10] but the slosh parameters

as of pendulum positions and angular rates are difficult or impossible to measure. We consider

the T-S observer based, output feedback stabilization for the nonlinear system, Eq. (2.27), and
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the measurable output is y(t) = Cx, where matrix C = [I3×3 03×8; 04×7 I4×4], assuming that

the states of angular velocities and the unit quaternion are available. Thereafter, we consider

the case when the premise variables depend on the available state variables. The ith rule of

the T-S fuzzy observer can be described in the following form [52]:

Observer Rule i:

IF z1 is µi1 AND. . . AND zp is µip,

THEN

ΣOi :


˙̂x(t) = Aix̂(t) +Biu(t) + Li[y(t)− ŷ(t)], (i = 1, . . . , r),

ŷ(t) = Cix̂(t),
(3.8)

where Li ∈ Rn×p is the observer gain for the ith observer rule, x̂(t) is the state vector esti-

mated by a fuzzy observer. y(t) ∈ Rp×1 is the measurable output, and ŷ(t) ∈ R(n−p)×1 is the

estimated output vector.

The overall fuzzy observer can be defined as

ΣO :


˙̂x(t) =

∑r
i=1 hi[z]{Aix̂(t) +Biu(t) + Li[y(t)− ŷ(t)]},

ŷ(t) =
∑r

i=1 hi[z]Cix̂(t).
(3.9)

The fuzzy observer is required to satisfy e(t) = [x(t) − x̂(t)] → 0 when t → ∞, i.e., the

steady-state error between x(t) and x̂(t) converges to zero.

3.4 T-S Fuzzy Model with Uncertainty

To construct the T-S fuzzy model with uncertainty, we add uncertainty blocks to the T-S fuzzy

model addressing the structure and actuator uncertainties. The ith rule of the T-S fuzzy model

with uncertainty can be described in the following form:
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Plant Rule i:

IF z1(t) is µi1 and . . . and zp(t) is µip,

THEN

Σi :

 ẋ(t) = (Ai +Dai∆ai(t)Eai)x(t) + (Bi +Dbi∆bi(t)Ebi)u(t), (i = 1, . . . , r),

y(t) = Cix(t),

(3.10)

where zj is the premise variables and µij[zj] is the grade of membership of zj in the fuzzy

set µij , r is the number of model rules, and x(t) ∈ Rn×1, u(t) ∈ Rm×1, and y(t) ∈ Rq×1 are

the state, input and output vectors, respectively. Ai ∈ Rn×n, Bi ∈ Rn×m, and Ci ∈ Rq×n are

the system, input and output matrices, respectively, for each rule. Furthermore, we show that

Σi is controllable and observable. Dai ∈ Rn×p, Eai ∈ Rp×n, Dbi ∈ Rn×q and Ebi ∈ Rq×m

are constant row vectors, which characterize the structure of the uncertainty. The uncertain

blocks for all i satisfy

||∆ai(t)|| ≤
1

γai
, ∆ai(t) = ∆T

ai(t), (3.11)

||∆bi(t)|| ≤
1

γbi
, ∆bi(t) = ∆T

bi(t). (3.12)

Combining all the rules of T-S models, the nonlinear system (2.27) can be approximated to

the following form:

ΣTS :

 ẋ(t) =
∑r

i=1 hi[z(t)]{(Ai +Dai∆ai(t)Eai)x(t) + (Bi +Dbi∆bi(t)Ebi)u(t)},

y(t) =
∑r

i=1 hi[z(t)]Cix(t),

(3.13)
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where the fuzzy basis functions are

hi[z(t)] =
wi[z(t)]∑r
i=1 wi[z(t)]

, (3.14)

and the firing strength of each model rule is determined using T − norm product as follows

wi[z(t)] =

p∏
j=1

µij[zj(t)], (3.15)

where
p∑
i=1

µij[zj] = 1, 0 ≤ µij[zj] ≤ 1. (3.16)

To apply the T-S fuzzy model on nonlinear system Eq. (2.27) we choose fuzzy premise vari-

ables to be angular velocities of the spacecraft and unit quaternion from state vector Eq. (2.28):

z1 , ω1, z2 , ω2, z3 , ω3, z4 , q0, z5 , q1, z6 , q2, z7 , q3. (3.17)

For each fuzzy premise variable we choose their possible minimum and maximum values

representing as zj ∈ {Negative, Positive}, (j = 1, ..., 7) and construct 27 = 128 rules.

All possible combinations for 128 rules are described in Table 3.1. State space matrices can

be obtained by linearizing the nonlinear system in Eq. (2.27) around the possible sets from

Table 3.1. The membership functions of the fuzzy sets µij (i = 1, ..., 128; j = 1, ..., 7) can be

defined through Negative and Positive sets as shown in Fig. 3.2.

3.5 T-S Fuzzy Model Validation

We use MATLAB/ SIMULINK® to model and simulate the response of the open and closed-

loop systems. For the numerical simulation, we use the data of the Deep Space One (DS1)

spacecraft described in the paper by Quadrelli [25]. The DS1 spacecraft contains a monopro-
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pellant hydrazine propulsion system for the attitude control. The system includes one spher-

ical titanium propellant tank with diameter 0.418 m and the center of the tank is attached to

the center of the axis of the spacecraft.

Table 3.2: The spherical pendulum and spring-damper parameters

Parameter Value Units
m 643.6 kg
m0 26.6310 kg
mP 2.0686 kg
lP 0.07 m
h0 0 m
h1 0.10 m

Dψ1=Dψ2 0.03 N.s/m
Kψ1=Kψ2 0.34 N/m
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Fig. 3.2: Time response of the selected states for the open-loop validation.

The simulation is conducted for the third-stage vehicle after post-burn. The physical parame-

ters of the whole third-stage vehicle including the STAR 37 FM solid-rocket motor attached

to the DS1 spacecraft and the spherical pendulum are given in Table 3.2. The inertia matrix of

the spacecraft with respect to its principal axes is IS∗
= diag(540.97, 540.97, 173.5) kg.m2,

where diag(·) function denotes a diagonal matrix.
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Table 3.3: Initial Conditions
Parameter Value Units
ω1(0) 0.1 rad/s
ω2(0) -0.2 rad/s
ω3(0) 0.3 rad/s
q0(0) 0.720006
q1(0) 0.411592
q2(0) 0.170797
q3(0) -0.531989
ψ1(0) 15π/180 rad
ψ2(0) 10π/180 rad

ψ̇1(0) 2π/180 rad/s

ψ̇2(0) 3π/180 rad/s

Let us define the universe of discourses as: zω = [z1, z2, z3] ∈ [−π/2, π/2] rad/s and

zq = [z4, z5, z6, z7] ∈ [−1, 1]. The model rules are constructed based on the strategy pre-

sented in Table 3.1. Linearizing the nonlinear system Eq. (2.27) around the possible sets

presented in Table 3.1 with given values, including ψ1 = ψ̇1 = ψ̇2 = 0, and ψ2 = π/180 rad,

we obtain the local state-space models. Then, we construct the T-S fuzzy model by following

the 128 rules described in section (3.2) with the membership functions of the fuzzy sets µij

(i = 1, ..., 128; j = 1, ..., 7) shown in Fig. 3.2. We validate the T-S fuzzy model by compar-

ing the open-loop response of all the states of the T-S fuzzy model with the nonlinear model,

Eq. (2.27). The time history of ω2(t) and q2(t) are shown in Fig. 3.2 with the initial conditions

presented in Table 3.3.
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CHAPTER 4

Fuzzy Controller Design

4.1 Introduction

Designing an active attitude control system for a spacecraft with partially filled tank is a chal-

lenging task because of the highly nonlinear and coupled dynamics of the system. Different

controllers are designed to stabilize the attitude of a spacecraft with fuel sloshing such as PID,

LQR, Lyapunov based nonlinear feedback control, adaptive control [37,40–42,44,46,48]. In

this chapter we present and compare fuzzy controllers as fuzzy PDC, fuzzy LQR and robust

optimal fuzzy control to stabilize the attitude of spacecraft with a partially filled tank. We

introduce an observer to estimate the unmeasurable states.

Fuzzy PDC control design with the actuator amplitude constraint utilizes the Parallel Dis-

tributed Compensation (PDC) technique [50, 51, 55] based on T-S fuzzy model described in

Chapter 3. The main idea of the PDC controller is to design a linear feedback control for

each local model and obtain the overall nonlinear controller by fuzzy blending these linear

controllers. The advantage of the PDC controller is the simple structure, and it’s easy to im-

plement. Another advantage is the control design procedure can be formulated in terms of

linear matrix inequalities (LMIs), which addresses the stability, performance, and robustness

of the closed-loop system at the same time. Furthermore, with small modification in the set

of LMIs, the design procedure can be easily modified to address the problem of maximizing

the size of the reachability set, and maximizing the decay rate.

The proposed robust-optimal fuzzy controller/observer design with the actuator amplitude
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constraint for spacecraft with fuel sloshing is based on the PDC technique [52] that simul-

taneously considers both the robust fuzzy and the optimal fuzzy controller designs. Using

Lyapunov stability theory and linear matrix inequalities (LMIs) the problem is formulated as

a convex optimization problem. The robust control addresses the uncertainties in the struc-

ture and actuators while the optimal fuzzy control addresses the optimality in certain quadratic

performance function.

Recently, the fuzzy control was synthesized with classical control designs such as LQR, PID,

sliding mode control etc. [65–68]. We propose the fuzzy control synthesized with LQR (fuzzy

LQR), which we apply to spacecraft with fuel sloshing. The Linear Quadratic Regulator

(LQR), a design method for multivariable system, is known to yield good performance for

linear systems while the fuzzy control yield good performance for nonlinear systems.

This chapter presents the controller designs in the following order: the fuzzy PDC; robust

optimal fuzzy control; fuzzy LQR; and PID as a baseline controller. It follows with the nu-

merical simulation results of designed controllers including the efficacy and robustness of the

proposed fuzzy controllers. In the end, design case studies are presented.

4.2 Fuzzy PDC Controller Design

This section introduces the Parallel Distributed Compensation (PDC) nonlinear control tech-

nique in the presence of the T-S fuzzy observer, Eq. (3.9). First, for each model rule the

control law is designed by the fuzzy IF-THEN implications. The third control rule is de-

scribed below, and the other 127 control rules are defined in an analogous way based on the

model rules from Table 3.1.

Control Rule 3:

IF z1 is Negative AND z2 is Negative AND z3 is Negative AND
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z4 is Negative AND z5 is Negative AND z6 is Positive AND z7 is Negative,

THEN

u3(t) = −K3x̂(t), (4.1)

and the overall fuzzy controller becomes

u(t) = −
r∑
i=1

hi[z]Kix̂(t), (4.2)

where hi[z] are obtained from Eq. (3.14) and Ki are the feedback gains.

Using a quadratic Lyapunov function, V (x) = xTPx, where P = P T > 0, we can show

that the problem of determining the feedback gains Ki (i = 1, ..., 128) and observer gains

Li (i = 1, ..., 128), which stabilize the T-S fuzzy system Eq. (3.2) and fuzzy observer system

Eq. (3.9), can be cast into the following linear matrix inequalities form [52] including LMIs

of control input constraints:

LMI1 :



P−1 = G > 0,

−GATi − AiG+MT
i B

T
i +BiMi − 2dG > 0, (i = 1, ..., 128),

−GATi − AiG−GATj − AjG+MT
j B

T
i +BiMj +MT

i B
T
j +

+BjMi − 4dG ≥ 0, (i, j = 1, ..., 128),

(4.3)

and

LMI2 :



R−1 = Q > 0,

−ATi Q−QAi + CT
i N

T
i +NiCi − 2dG > 0, (i = 1, ..., 128),

−ATi Q−QAi − ATj Q−QAj + CT
i N

T
j +NjCi + CT

j N
T
i +

+NiCj − 4dG ≥ 0, (i, j = 1, ..., 128),

(4.4)

such that i ≤ j for hi
⋂
hj 6= ∅. In Eqs. (4.3) and (4.4), the Mi and Ni matrices are defined
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as:

Mi = KiG or Ki = MiG
−1, (4.5)

and

Ni = QLi or Li = Q−1Ni. (4.6)

d is the decay rate and d > 0. We obtain a stable fuzzy controller design when d = 0.

We include the control input constraint equations |ui(t)| ≤ αi (i = 1, 2, 3) in the form of the

following LMIs:

LMI3 :

 G (Mk)
T
i

(Mk)i α2
k

 ≥ 0, (i = 1, · · · , 128), and (k = 1, 2, 3). (4.7)

where (Mk)i = (Kk)iG and Kk is the kth row of Ki. The initial constraint is defined by the

following LMI:

LMI4 :

 1 x(0)T

x(0) G

 ≥ 0. (4.8)

To make the solution of the system independent of the initial conditions, we assume ||x(0)|| ≤

β and, therefore, we can replace Eq. (4.8) with

LMI5 : G ≥ β2I. (4.9)

The feasible solution of Eqs. (4.3), (4.4), (4.7), and (4.9)—which is to find the common pos-

itive definite matrix G, Q and Mi, Ni (i = 1, ..., 128)—yields the local state-feedback gains,

Ki, and observer gains, Li. We are interested in minimizing the control input upper bound

or actuator size while the upper bound on the initial states and decay rate are known. The

modified LMIs for input bound constrains |ui(t)| ≤ αi, (i = 1, 2, 3) are given in Eq. (4.7).

Defining α = [α1, α2, α3]T , the optimization problem is formulated as:

39



Local 

Approximation

LMI Solver

Nonlinear System

uxgxfx )()( 

iK

x

iii hBA ,,

T-S Fuzzy Model





r

i

iii uBxAzhx
1

])[(

T-S Fuzzy Observer

)]ˆ(ˆ)[(ˆ
1

yyLuBxAzhx i

r

i

iii 




iL

C

x̂ uPDC Controller

xKzhu
r

i

ii
ˆ)(

1






y
C


ŷ
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Fig. 4.1: Schematic diagram of the fuzzy PDC observer-based feedback control.

Minimize:
(G,Q,Mi,Ni)

J = αTRα, R = RT > 0,

subject to: Eqs. (4.3), (4.4), (4.7), and (4.9).
(4.10)

The set of LMIs can be solved by any convex optimization software such as the Matlab LMI

Control Toolbox [84], or the Matlab toolbox YALMIP which uses an interior-point solver

[85].

The schematic diagram of the T-S fuzzy observer-based feedback control is presented in

Fig. 4.1. The design procedure consists of the following steps:

1. Obtain the mathematical model of the plant to be controlled.

2. Design and validate the T-S fuzzy model for the nonlinear system stated in Step 1.

3. Design the fuzzy PDC controller.

4. Design the fuzzy observer for the T-S fuzzy model from Step 2.

5. Solve the LMIs to find feedback gains and observer gains for each rule.

6. Obtain the overall controller in Step 3 and apply to nonlinear system stated in Step 1.
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4.3 Robust-Optimal Fuzzy Control

We design a robust-optimal fuzzy controller to stabilize the attitude of spacecraft with fuel

slosh. The Parallel Distributed Compensation (PDC) nonlinear control technique [55] based

on the T-S fuzzy observer model (3.9) is implied. For each model rule described in section

2 the control law is designed by the fuzzy IF-THEN implications and the overall fuzzy con-

troller results to

u(t) = −
r∑
i=1

hi[z]Kix̂(t), (4.11)

where hi[z] are obtained from Eq. (3.14) and Ki are the feedback gains. Using a quadratic

Lyapunov function, V (x) = xTPx, we can show that the problem of determining the feed-

back gains Ki (i = 1, ..., 128) and observer gains Li (i = 1, ..., 128) which stabilize the T-S

fuzzy system Eq. (3.13) and fuzzy observer system Eq. (3.9) can be cast into the following

linear matrix inequalities [52] including LMIs of control input constraints [96]:

Minimize:
λ,γ2ai,γ

2
bi,X,M1,...,Mr

J = λ+
r∑
i=1

{αiγ2
ai + βiγ

2
bi},

Subject to: Eqs. (4.13)–(4.17)

(4.12)

LMI1 :


P−1 = X > 0,

Sii < 0,

Tij < 0,

(4.13)

LMI2 :

 Uii < 0,

Vij < 0,
(4.14)
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LMI3 :



R−1 = Q > 0,

−ATi Q−QAi + CT
i N

T
i +NiCi − 2dX > 0,

−ATi Q−QAi − ATj Q−QAj + CT
i N

T
j +NjCi + CT

j N
T
i +

+NiCj − 4dX ≥ 0,

(4.15)

LMI4 :

 X (Mk)
T
i

(Mk)i µ2
k

 ≥ 0, (4.16)

LMI5 :

 1 x(0)T

x(0) X

 ≥ 0, (4.17)

where (i = 1, 2, ..., r) and i < j ≤ r such that hi
⋂
hj 6= ∅, and (k = 1, 2, 3). d is the decay

rate and d > 0. We obtain a stable fuzzy controller design when d = 0.

As noted in Eq. (4.12), the objective of the design is to synthesize 1) the robust fuzzy con-

troller design minimizing γai and γbi described in Eq. (3.11) in the class of the PDC controller,

Eq. (4.11), while satisfying the robust stability conditions, Eq. (4.13), and 2) the optimal

fuzzy controller design minimizing λ, the upper bound of the quadratic performance func-

tion, Eq. (4.18), while satisfying the optimal stability conditions, Eq. (4.14). αi and βi are the

design parameters and λ is the upper bound of the quadratic performance function

J1 =

∫ ∞
0

yT (t)Wy(t) + uT (t)Ru(t)dt < xT (0)Xx(0) < λ, (4.18)

where

y(t) =
r∑
i=1

hi[z(t)]Cix(t) (4.19)
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Fig. 4.2: Schematic diagram of the robust-optimal T-S fuzzy observer-based feedback control.

and W = W T > 0 and R = RT > 0 are weighting coefficient matrices.

Note that in the robust-optimal stability conditions, Eq. (4.13) and Eq. (4.14), we have

Sii =



XATi + AiX −BiMi −MT
i B

T
i ∗ ∗ ∗ ∗

DT
ai −I ∗ ∗ ∗

DT
bi 0 −I ∗ ∗

EaiX 0 0 −γ2
aiI ∗

−EbiMi 0 0 0 −γ2
biI


, (4.20)

and

Uii =


XATi + AiX −BiMi −MT

i B
T
i ∗ ∗

CiX −W−1 ∗

−Mi 0 −R−1

 , (4.21)

and
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Tij =



Tij(1, 1) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

DT
ai −I ∗ ∗ ∗ ∗ ∗ ∗ ∗

DT
bi 0 −I ∗ ∗ ∗ ∗ ∗ ∗

DT
aj 0 0 −I ∗ ∗ ∗ ∗ ∗

DT
bj 0 0 0 −I ∗ ∗ ∗ ∗

EaiX 0 0 0 0 −γ2
aiI ∗ ∗ ∗

−EbiMj 0 0 0 0 0 −γ2
biI ∗ ∗

EajX 0 0 0 0 0 0 −γ2
ajI ∗

−EbjMi 0 0 0 0 0 0 0 −γ2
bjI



, (4.22)

and

Vij =



Vij(1, 1) ∗ ∗ ∗ ∗

CiX −W−1 ∗ ∗ ∗

−Mj 0 −R−1 ∗ ∗

CjX 0 0 −W−1 ∗

−Mi 0 0 0 −R−1


, (4.23)

where

Tij(1, 1) = Vij(1, 1) = XATi + AiX −BiMj −MT
j B

T
i +XATj + AjX −BjMi −MT

i B
T
j .

(4.24)

The Mi and Ni matrices are defined as:

Mi = KiX or Ki = MiX
−1, (4.25)

44



and

Ni = QLi or Li = Q−1Ni. (4.26)

In the above designed optimization problem the LMI constraints include the robust, optimal,

observer stability conditions, respectively Eq. (4.13), Eq. (4.14), and Eq. (4.15), the control

input constraint equations |ui(t)| ≤ µi (i = 1, 2, 3) in the form of LMIs, Eq. (4.16), and the

initial constraint defined in the form of LMI, Eq. (4.17). In the result of solving LMIs we

can find the feedback gains Ki (i = 1, ..., 128) and observer gains Li (i = 1, ..., 128), which

stabilize the T-S fuzzy system Eq. (3.13) and fuzzy observer system Eq. (3.9).

The schematic diagram of the T-S robust-optimal fuzzy observer-based feedback control is

presented in Fig. 4.2. The design procedure consists of the following steps:

1. Obtain the mathematical model of the plant to be controlled.

2. Design and validate the T-S fuzzy model for the nonlinear system stated in Step 1.

3. Design the T-S fuzzy model with uncertainties.

4. Design the robust-optimal fuzzy PDC controller.

5. Design the fuzzy observer for the T-S fuzzy model from Step 2.

6. Solve the LMIs to find feedback gains and observer gains for each rule.

7. Obtain the overall controller in Step 4 and apply to nonlinear system including uncertainties

ẋ = [f(x) + ∆f(x)] + [g(x) + ∆g(x)]u.

4.4 Fuzzy LQR Controller Design

A fuzzy LQR controller integrates fuzzy logic with the LQR [65]. First, the nonlinear sys-

tem in Eq. (2.27) is linearized around some operating points using the T-S fuzzy modeling

approach described in subsection 3.2. For each linearized model, we construct the local op-

timal control law, uLQR = −Ki,LQRx̂, (i = 1, ..., 128), which minimizes the following cost
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Fig. 4.3: Schematic diagram of the fuzzy LQR observer-based feedback control.

function:

Ji[x(t), u(t)] =
1

2

∫ ∞
0

[xT (t)QLx(t) +uTLQR(t)RLuLQR(t)] dt, (i = 1, ..., 128), (4.27)

where QL ∈ R11×11 and RL ∈ R3×3 are the state and control weighting matrices. For each

local linearized system the feedback gain matrices, Ki,LQR = R−1
L BT

i Pi, and observer gain

matrices, Li,LQR = Pi,OC
T
i R
−1
O , are obtained by solving the following algebraic Riccati equa-

tions, respectively:

ATi Pi + PiAi − PiBiR
−1
L BT

i Pi +QL = 0, (i = 1, ..., 128), (4.28)

AiPi,O + Pi,OA
T
i − Pi,OCT

i R
−1
O CiPi,O +QO = 0, (i = 1, ..., 128). (4.29)

For the simulation, the matrices QL and RL are obtained by Bryson’s rule [87], which states

these matrices are being diagonal:

QL =
1

x2
max

I11×11, RL =
1

u2
max

I3×3, (4.30)
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where xmax is the highest tolerable value for the state xj (j = 1, ..., 11), and umax is the

highest tolerable value for the input uk (k = 1, 2, 3). QO and RO are obtained similarly.

Thereafter, we obtain the overall fuzzy LQR controller as

u(t) = −
r∑
i=1

hi[z]Ki,LQRx̂(t), (i = 1, ..., 128), (4.31)

where Ki,LQR are the feedback gains and hi[z] are obtained in analogously, as described in

subsection 3.2. The schematic diagram of the fuzzy LQR observer-based feedback control is

presented in Fig. 4.3. It is analogous to the schematic diagram described in Fig. 4.2, except

that to obtain the LQR controller and observer gains we solve the algebraic Riccati equations,

Eqs. (4.28)-(4.29), instead of LMIs.

4.5 PID Controller Design

We compare the effectiveness of the robust-optimal fuzzy PDC controller with a fuzzy PDC

and proportional-integral-derivative (PID) controllers. Fuzzy PDC was constructed and eval-

uated in our previous work [86]. The PID controllers have the following form:

ui = −KPi
qi(t)−KIi

∫
qi(t)dt−KDi

d

dt
qi(t), i = (1, 2, 3), (4.32)

where qi (i = 1, 2, 3) are the components of the unit quaternion, and KPi
, KIi , and KDi

are

the proportional, integral and derivative gains for each of the three torque inputs, respectively.

These gains can be tuned using the closed-loop Ziegler-Nichols method [88].
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4.6 Numerical Simulation

4.6.1 A note on the Interior-Point Method

The class of numerical optimization problems called Linear Matrix Inequality (LMI) has re-

ceived a significant attention in recent years [52–54, 84, 85]. The stability analysis and the

most control design problems can be reduced to LMI problems. LMIs can be solved in poly-

nomial time based on interior-point methods [89]. We use YALMIP, Yet Another LMI Parser,

with solver SDPT3 [85] to find the feedback and observer gain matrices in the result of LMI

optimization problems described in sections 4.2 and 4.3. YALMIP is a modeling language

integrated and developed in the MATLAB environment. The infeasible primal-dual interior-

point algorithm [90, 91] that uses the path-following paradigm is implemented in SDPT3. To

decrease the duality gap as much as possible, the predictor search direction is computed in

each iteration followed by generation of a Mehrotra-type corrector step [92] with the inten-

tion to keep the iterates close to the central path. The iteration is terminated if the infeasibility

measure and the relative duality gap are sufficiently small, or numerical problems are encoun-

tered such as the iterates or the Schur complement matrix are not being positive definite. The

search direction uses the HKM direction method, which is a Newton direction found from the

linearization of a symmetrized version of the optimality condition.

4.6.2 Closed-Loop Simulation

First, we examine and compare the fuzzy PDC and fuzzy LQR controllers. The MAT-

LAB /SIMULINK® software is used to model, simulate and analyze the closed-loop sim-

ulations for both controllers following the design procedures presented in the schematic di-

agrams 4.1 and 4.3. After validation of the T-S fuzzy model, we use the model rules and

construct the fuzzy controller, Eq. (4.11), for the Fuzzy PDC controller. The feedback gains
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Ki (i = 1, ..., 128) and the observer gains, Li (i = 1, ..., 128), are found by solving the

optimization problem described in Eq. (4.10) using the Matlab toolbox YALMIP [85] with

SDPT3 described in subsection 4.6.1, which is a modeling language for solving convex and

non-convex optimization problems. We choose the upper bound of the norm of the initial

condition β = 3, and the decay rate parameter d = 0.01. Assuming all αi(i = 1, 2, 3) are

equal and R = diag(1, 1, 1), we found that the minimum upper bound value for the control

input is 79 N.m.
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Fig. 4.4: Time responses of the spacecraft angular velocities using fuzzy PDC and fuzzy LQR
controllers.

For the fuzzy LQR model, the feedback gain and observer gain matrices are found by solving

the algebraic Riccati equations Eqs. (4.28)–(4.29) for each local linearized system. We note

that for comparison the highest tolerable value for the control input in Eq. (4.30) is taken to

be 79 N.m, which is the optimized value of the minimum upper bound value for the control

input for the fuzzy PDC model.

The simulations of a closed-loop system for the fuzzy PDC and fuzzy LQR models are con-
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Fig. 4.5: Time responses of the quaternions using fuzzy PDC and fuzzy LQR controllers.
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Fig. 4.6: Actual and estimated responses of the pendulum angles.

ducted with the initial conditions presented in the Table 3.3 and with the observer initial

conditions presented in Table 4.1.

Figures 4.4 and 4.5 show the time history of the body angular velocities and quaternions,
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Fig. 4.7: Time responses of the control inputs using fuzzy PDC and fuzzy LQR controllers.

Table 4.1: Observer Initial Conditions
Parameter Value Units
ψ̂1(0) 12π/180 rad

ψ̂2(0) 13π/180 rad
˙̂
ψ1(0) 2π/180 rad/s
˙̂
ψ2(0) 3π/180 rad/s

respectively, both for the fuzzy PDC and fuzzy LQR controllers. The results show the fuzzy

PDC has a smaller settling time and less overshoot compared to the fuzzy LQR. Figure 4.6

shows how the estimated states — the spherical pendulum angles — converge to their true

values. The magnitude of each control input—which is the control moment about the body-

fixed axis of spacecraft—are shown in Fig. 4.7. The plot shows that the fuzzy PDC satisfies

the control input constraint |ui(t)| ≤ 79 N.m, (i = 1, 2, 3) for all times while the fuzzy LQR

attempts to use its maximum tolerable value for control input.
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4.6.3 Robustness Evaluation

In this section we examine and compare the robustness of the fuzzy PDC and fuzzy LQR due

to mass-moment-of-inertia uncertainties. Our numerical investigations show that the fuzzy
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Fig. 4.8: The effect of uncertainty in the mass-moment-of-inertia on the time responses of
quaternions using Fuzzy PDC controller.

PDC and fuzzy LQR controllers can stabilize the attitude of the spacecraft in the presence

of about ±60% parameter uncertainities. It can be seen from Figs. 4.8 and 4.9 that the

fuzzy PDC has less overshoot and faster response when compared to the proposed fuzzy LQR

controller. We use the root-mean-square-error (RMSE) to quantitatively compare the perfor-

mance of the controllers. The results for different mass-moment-of-inertia for the spacecraft

angular velocity, ω, quaternions, q, and the control input, u, are summarized in Table 4.2. It

can be seen that the error between the two controllers are very close when 0.42IS
∗ . On the

other hand, when 1.6IS
∗ , the fuzzy PDC controller outperforms the fuzzy LQR.
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Fig. 4.9: The effect of uncertainty in the mass-moment-of-inertia on the time responses of
quaternions using Fuzzy LQR controller.

Table 4.2: RMSE for states and control inputs using Fuzzy PDC and Fuzzy LQR

Fuzzy PDC Fuzzy LQR
0.42IS

∗
0.0392 0.0359

ω IS
∗

0.0483 0.0430
1.60IS

∗
0.0488 0.0516

0.42IS
∗

0.2081 0.2629
q IS

∗
0.2123 0.4912

1.60IS
∗

0.2271 0.6687
0.42IS

∗
3.2520 3.2259

u IS
∗

5.3343 6.0241
1.60IS

∗
7.6595 8.4000

4.6.4 Robust-Optimal Simulation

In this section, we present the simulation results of proposed T-S robust-optimal fuzzy observer-

based controller and compare it with fuzzy PDC and PID based on Ziegler-Nichols method.

For the numerical simulation, the inertia matrix of the spacecraft is taken as [25]
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IS
∗

= diag(540.97, 540.97, 173.5) kg.m2.

The diag() function denotes a diagonal matrix. The physical parameters of the spacecraft and

the spherical pendulum are given in Table 3.2. MATLAB /SIMULINK® is used to model and

simulate the response of the open and closed-loop systems.

We follow the design procedure presented in the schematic diagrams 4.2. In section 3.5, we

validated the developed T-S fuzzy model by comparing the open-loop response of all the states

of the T-S fuzzy model with the nonlinear model, Eq. (2.27). After validation of the developed

T-S fuzzy model, we use the model rules and construct the robust-optimal fuzzy controller

Eq. (4.11). To reduce the duration of LMI solver, we choose the universe of discourses as:

zω = [z1, z2, z3] ∈ [−π/2, π/2] rad/s and proceed with the eight model rules. Although,

we note that open-loop validation deteriorated. The feedback and observer gains are found

by solving the optimization problem with LMI constraints described in section 4.3 using

the Matlab toolbox YALMIP [85] with SDPT3 solver. The simulation results of a closed-

loop system are shown in Figs. 4.10– 4.13 with the initial conditions presented in Tables 3.3

and 4.1.

The uncertainty matrices for each rule in the T-S fuzzy model, Eq. (3.13), are defined as

Da = 0.05 ∗ J11×2, Db = 0.01 ∗ J11×2, Ea = 0.05 ∗ J2×11, and Eb = 0.01 ∗ J2×11, where J

is the matrix of ones. The weighting matrix W and R in the quadratic performance function,

Eq. (4.18), are obtained as follows:

W =
1

x2
max

I7×7, R = 0.6 ∗ 1

u2
max

I3×3, (4.33)

where xmax is the highest tolerable value for the states, umax is the highest tolerable value for

the input, and I is the identity matrix.

Figures 4.10 and 4.11 show the time history of the body angular velocities and quaternions

in the N -frame, respectively. It can be seen that the closed-loop system could stabilize the
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Fig. 4.10: Time response of the spacecraft angular velocity components.
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Fig. 4.11: Time response of the quaternions.

spacecraft attitude. As mentioned earlier, we assume that states of angular velocities and unit

quaternion are available and therefore, the measurable output is defined as y(t) = Cx, where

matrix C = [I3×3 03×8; 04×7 I4×4]. A fuzzy observer described in section 3.3 is utilized to

estimate the unavailable states corresponding to pendulum positions and angular rates. We

apply the obtained fuzzy controller from Eq. (4.11) on the nonlinear model Eq. (2.27) as

shown in Fig. 4.2. The actual (solid line) and estimated (dashed line) spherical pendulum

angles are shown in Fig. 4.12. The results show that the angles and the estimation error go to

zero rapidly.

In the LMIs, Eq. (4.16), we use the upper bound value for the control input as 79 N.m,

which we found in the result of solving the optimization problem on actuator amplitude in our
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Fig. 4.12: Actual and estimated response of the pendulum angles.
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Fig. 4.13: Control inputs, |ui(t)| ≤ 79 N.m, (i = 1, 2, 3).

previous work [86]. The magnitude of each control input—which is control moment about

body-fixed axis of spacecraft—are shown in Fig. 4.13. The plot shows that the proposed

control law satisfies the control input constraint |ui(t)| ≤ 79 N.m, (i = 1, 2, 3) for all the

times.

4.6.5 Performance Evaluation

We compare the effectiveness of the robust-optimal fuzzy PDC controller with a fuzzy PDC,

fuzzy LQR and proportional-integral-derivative (PID) as a baseline controller.

The PID gains, described in Eq. (4.32), are tuned using the closed-loop Ziegler-Nichols

method [88], and the results are shown in Table 4.3, whereKu and Pu are the ultimate gain and
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Table 4.3: PID gains using closed-loop Ziegler-Nichols method

KP KI KD

0.6Ku 2KP/Pu KPPu/8
u1 47.4 4.278 131.298
u2 47.4 4.107 136.749
u3 47.4 6.996 80.284
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Fig. 4.14: Time responses of the spacecraft angular velocities using fuzzy PDC, robust-
optimal fuzzy PDC and PID controllers.

ultimate period, respectively. The state responses and control inputs for robust-optimal con-

trol in comparison with fuzzy PDC and PID are presented in Figures 4.14, 4.15, and 4.16. The

results show that the robust-optimal fuzzy PDC controller results satisfactory performance in

the presence of system and actuator uncertainties. In comparison with PID controller, we see

that fuzzy controllers have superiority over the PID controller.

In the end, as a performance evaluation measure we choose the root-mean-square-error (RMSE)
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Fig. 4.15: Time responses of the quaternions using fuzzy PDC, robust-optimal fuzzy PDC
and PID controllers.

in the following form:

fRMSE =

√
1

T

∫ T

0

[f 2
1 (t) + f 2

2 (t) + f 2
3 (t)] dt , (4.34)

Table 4.4: RMSE for states and control inputs

ωRMSE qRMSE uRMSE

Fuzzy PDC 0.0483 0.2123 5.3343
Fuzzy LQR 0.0430 0.4912 6.0241
RO Fuzzy PDC 0.0178 0.0916 5.5934
ZN PID 0.0910 0.1172 8.5805

where fRMSE can represent the root-mean-square-error for spacecraft angular velocity (ωRMSE),

quaternion (qRMSE), and control input (uRMSE) using the fuzzy PDC, fuzzy LQR, robust-

optimal fuzzy control, and PID. The results are presented in Table 4.4. The RMSEs for

the spacecraft angular velocities and attitude quaternions for the robust-optimal fuzzy con-
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Fig. 4.16: Time responses of the control inputs using fuzzy PDC, robust-optimal fuzzy PDC
and PID controllers.

troller are considerably lower then the RMSEs for the spacecraft angular velocities and atti-

tude quaternions for the other controllers. Although, the RMSEs for the control inputs are

about the same for both fuzzy PDC and robust-optimal fuzzy controllers, they are consider-

ably lower for the fuzzy LQR and PID controllers. Based on numerical simulation results

presented in Figures 4.4, 4.5, 4.7, 4.14, 4.15, and 4.16, and based on performance evaluation

measure RMSE results presented in Tables 4.2 and 4.4, we conclude that the designed fuzzy

controllers stabilize the attitude of the spacecraft with fuel sloshing with considerably better

performance in the robust-optimal fuzzy controller case.

4.7 Design Case Studies

We study three design cases and compare them to the "nominal" case that we designed in

previous section. In Case 1, the performance cost function is the upper bound of the norm
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of initial condition, i.e. ||x(0)||, where we assume that initial states are unknown, and the

actuator amplitude and decay rate are known. Our objective here is to maximize the size of

a controllable set of the nonlinear system. The modified LMIs for independent initial state

condition is given in Eq. (4.9). Hence, the optimization problem is formulated as following:

Maximize:
(G,Q,Mi,Ni)

J1 = β2,

Subject to: Eqs. (4.3), (4.4), (4.7), and (4.9).
(4.35)

In Case 2, the objective is to minimize the actuator size while the upper bound on the initial
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Fig. 4.17: Design on the responses of quaternions: Nominal, Case 1–max(β2), Case 2–
min(α2), Case 3–max(d).

states and decay rate are known. The modified LMIs for input bound constrains |ui(t)| ≤

αi, (i = 1, 2, 3) are given in Eq. (4.7). Defining α = [α1, α2, α3]T , the optimization problem
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is formulated as following:

Minimize:
(G,Q,Mi,Ni)

J2 = αTRα, R = RT > 0,

Subject to: Eqs. (4.3), (4.4), (4.7), and (4.9).
(4.36)

Finally, in Case 3, the objective is to improve the response time by maximizing the decay

rate, d, given the upper bound on the initial states and actuator amplitude. The optimization

problem in this case can be formulated as following:

Maximize:
(G,Q,Mi,Ni)

J3 = d,

Subject to: Eqs. (4.3), (4.4), (4.7), and (4.9).
(4.37)

Note that for the nominal model we have β = 3, αi = 200 N.m, (i = 1, 2, 3), and d = 0.01.
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Fig. 4.18: Design on the responses of input control: Nominal, Case 1–max(β2), Case 2–
min(α2), Case 3–max(d).

We use the Matlab toolbox YALMIP [85] with SDPT3 solover to solve the optimization
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problems. We found that for case 1, the largest bound on the β is 4.818 and for case 2, the

largest bound on the α is 149.756 N.m. Assuming all αi are equal and R = diag(1, 1, 1). In

case 3, the maximum decay rate is 0.178. The time history of quaternions and input control

for each optimization problem along with the nominal case are shown in Figs. 4.17 and 4.18,

respectively. The results shows that the performance of the designed controller for case 3 has

a better performance in compare to the nominal and the other two cases. Also, as we expected,

case 2 has the worst performance due to reduction in control authority.
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CHAPTER 5

Modeling and Analysis of Spacecraft with
Fuel Sloshing in High-G Maneuvers

5.1 Introduction

In this chapter, we derive the equations of motion of spinning spacecraft with partially-filled,

multiple-tanks, a nutation damper, and momentum wheels in the high-g environment. We

model the fuel sloshing in each tank by means of two spherical pendulums with torsional

dampers at hinge points. Using the Kane’s method, the nonlinear equations of motion of a

spacecraft containing liquid fuel stores are derived. The developed model is an extension of

the existing models in the literature [20, 27, 36]. Derived equations of motion of spacecraft

are numerically solved, and the effects of the slosh-model parameters on the spacecraft nu-

tation angle are investigated. We note that the spacecraft is said to be in a "high-g" environ-

ment when it is under high acceleration provided by the main engine and the surface tension

forces of liquid in tanks do not significantly affect the propellant motion during main engine

burns [36, 37].
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5.2 Modeling of Spacecraft with Fuel Sloshing

5.2.1 Model Description

Let us consider a spin-stabilized spacecraft with partially-filled multiple spherical fuel tanks.

Three momentum wheels, W1, W2, W3, are aligned with the gyrostat (spacecraft+momentum

wheels) principal axes, g1, g2, and g3, as shown in Fig. 5.1. The gyrostat, G, is a fictitious

rigid body that has the mass distribution of the combined system of spacecraft body, B, and

the wheels, but moves like B, while the rotors spin with respect to B frame. [28] We define

inertial, body (gyrostat) and pendulum fixed-frames as the reference frames by N , G, and P ,

respectively. The inertial frame N corresponds to the Earth center. G∗ is the center-of-mass,

and IG∗ is the central principal moment-of-inertia of the gyrostat. The nutation damper is

represented by a mass, mQ, supported by a spring of stiffness, σ, and damping coefficient, δ.

We adopt two spherical pendulums as the mechanical analogy model of high-g propellant

sloshing in the gyrostat [36]. Each pendulum mass,mij (i = 1, 2 shows the pendulum number,

and j = 1, . . . , S shows the tank number), represents the first two modes of sloshing in each

tank, correspondingly, and the remaining fluid mass,m0j , is attached along the tank centerline

as a static body. The model of spherical tank j with spherical pendulums is presented in

Fig. 5.2. Oj is defined as an empty-tank centroid. Pendulums with fixed lengths are defined

by lij and are hinged at point Oij along the tank centerline off the gyrostat main axis. The

locations of pendulum hinges and static body are referenced to the center of the empty tank

by h0j , and hij . The presented model must preserve the static and dynamic properties of the

liquid [14]. In other words, the total fuel mass in each tank must be equal to the sum of all

masses in the pendulum model, and the center of the mass of the model must be at the same

elevation as the liquid. Therefore, we can write

m0j +m1j +m2j = mfj, (j = 1, . . . , S), (5.1)

64



n1

n2

n3
N

g1

g2w3

w2

G
*

g3

w1

FTh(t)
N

*

σ

δ

D

G

E

B

S

W

Q0

Fig. 5.1: A gyrostat model with multiple, partially-filled, spherical tanks.

m0jh0j = m1j(h1j − l1j) +m2j(h2j − l2j), (j = 1, . . . , S). (5.2)

We choose the generalized speeds, uk, as follows:

uk = NV G∗
. ĝk, (k = 1, 2, 3), (5.3)

u3+k = NωG. ĝk, (k = 1, 2, 3), (5.4)

u3+4k = α̇1k, (k = 1, . . . , S), (5.5)

u4+4k = β̇1k, (k = 1, . . . , S), (5.6)
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Fig. 5.2: Equivalent model of fuel sloshing in spherical tank j for high-g environment.

u5+4k = α̇2k, (k = 1, . . . , S), (5.7)

u6+4k = β̇2k, (k = 1, . . . , S), (5.8)

u7+4k = q̇, (k = S), (5.9)

where S is the number of tanks. The components of the velocity of the center of massG∗ with

respect to inertial frame N are defined by uk(k = 1, 2, 3), and the components of the angular

velocity of the gyrostat with respect to frame N are defined by u3+k(k = 1, 2, 3). The angles

αij and βij represent the relative orientation of the massless rod of the spherical pendulum in

the tank j as shown in Fig. 5.3, and α̇ij and β̇ij are the corresponding generalized speeds. In
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Eq. (5.9), q is the displacement of the mass particle, mQ. The angular speed of momentum

wheels Wk(k = 1, 2, 3) with respect to the gyrostat frame G are not included in generalized

speeds as the motion of the momentum wheels are prescribed in gyrostat. The number of

degrees of freedom is 7 + 4S .

m1j

O1j

l1j

α1j

β1j

O2j

l2j

α2j

β2j

m2j

g1

g2

g3

G*

r
G
*O

2j

r
G*O1j P1j

P2j

Fig. 5.3: Angles αij and βij represent the relative orientation of the spherical pendulum
with respect to the G-frame.

5.2.2 Equations of Motion

Now, we are going to derive the equations of motion of the presented model using the Kane’s

method. The velocity of point G∗, angular velocity of the gyrostat, angular velocities of the

pendulums with respect to inertial frame N can be written as

NV G∗
= u1 ĝ1 + u2 ĝ2 + u3 ĝ3, (5.10)

NωG = u4 ĝ1 + u5 ĝ2 + u6 ĝ3, (5.11)
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NωPij = NωG + GωPij , (i = 1, 2; j = 1, . . . , S), (5.12)

where GωPij is the angular velocity of the Pij frame with respect to the G frame.

Angular velocity of the static body m0j in each tank with respect to the inertial frame N is

the same as the angular velocity of the gyrostat with respect to the inertial frame N .

The acceleration of point G∗ with respect to the inertial frame, N , can be obtained as

NaG
∗

=
Gd

dt
NV G∗

+ NωG × NV G∗
, (5.13)

where the first term in Eq. (5.13) represents the time-derivative of the velocity vector in the

G frame. The acceleration of point G∗ can be written as

NaG
∗

= (u̇1 + Z1)ĝ1 + (u̇2 + Z2)ĝ2 + (u̇3 + Z3)ĝ3. (5.14)

Here Z1, Z2, and Z3 are defined as

Z1
∆
= u5u3 − u6u2, (5.15)

Z2
∆
= u6u1 − u4u3, (5.16)

Z3
∆
= u4u2 − u5u1. (5.17)

Using Fig. 5.3, we can show the transformation matrix from the gyrostat frame, G, to the

pendulum frame Pij as

PijRG(αij, π/2− βij) = R2(π/2− βij)R3(αij), (5.18)
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PijRG(αij, π/2− βij) =


cαijsβij sαijsβij −cβij

−sαij cαij 0

cαijcβij sαijcβij sβij

 , (5.19)

where c and s denote the cosine and sine functions, respectively. Using the transformation

matrix, Eq. (5.19), GωPij can be written in vector form as

GωPij = α̇ij ĝ3 + β̇ijsαij ĝ1 − β̇ijcαij ĝ2, (i = 1, 2; j = 1, . . . , S), (5.20)

and using Eq. (5.12), the NωP1j and NωP2j are determined by

NωP1j = (u4 + u4+4jsα1j) ĝ1 + (u5 − u4+4jcα1j) ĝ2 + (u6 + u3+4j) ĝ3, (5.21)

NωP2j = (u4 + u6+4jsα2j) ĝ1 + (u5 − u6+4jcα2j) ĝ2 + (u6 + u5+4j) ĝ3. (5.22)

Therefore, the velocity of the pendulum mass mij with respect to inertial frame N can be

determined as

NV mij = NV G∗
+ NωG × rG∗Oij + NωPij × rOijmij . (5.23)

After simplification, we get

NV m1j = {u1 + u5r1j,3 − u6r1j,2 − l1jcβ1ju5 + l1jcβ1ju4+4jcα1j−

l1jsα1jsβ1ju6 − l1jsα1jsβ1ju3+4j} ĝ1 + {u2 + u6r1j,1 − u4r1j,3+

+ l1jcα1jsβ1ju6 + l1jcα1jsβ1ju3+4j + l1jcβ1ju4 + l1jsα1jcβ1ju4+4j} ĝ2+

+ {u3 + u4r1j,2 − u5r1j,1 + l1jsα1jsβ1ju4 + l1js
2α1jsβ1ju4+4j − l1jcα1jsβ1ju5+

l1jc
2α1jsβ1ju4+4j} ĝ3,

(5.24)
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and

NV m2j = {u1 + u5r2j,3 − u6r2j,2 − l2jcβ2ju5 + l2jcβ2ju6+4jcα2j−

l2jsα2jsβ2ju6 − l2jsα2jsβ2ju5+4j} ĝ1 + {u2 + u6r2j,1 − u4r2j,3+

+ l2jcα2jsβ2ju6 + l2jcα2jsβ2ju5+4j + l2jcβ2ju4 + l2jsα2jcβ2ju6+4j} ĝ2+

+ {u3 + u4r2j,2 − u5r2j,1 + l2jsα2jsβ2ju4 + l2js
2α2jsβ2ju6+4j − l2jcα2jsβ2ju5+

l2jc
2α2jsβ2ju6+4j} ĝ3.

(5.25)

The acceleration of the pendulum mass mij with respect to inertial frame N is

Namij =NaG
∗

+
Gd

dt
NωG × rG∗Oij + NωG ×

Gd

dt
rG

∗Oij + NωG × (NωG × rG∗Oij)+

+
Pijd

dt
NωPij × rOijmij + NωPij × PijV mij + NωPij × (NωPij × rOijmij),

(5.26)

and the velocity and acceleration of the static body moj with respect to inertial frame N will

be

NV m0j = NV G∗
+ NωG × rG∗O0j , (5.27)

Nam0j = NaG
∗

+
Gd

dt
NωG × rG∗O0j + NωG × (NωG × rG∗O0j). (5.28)

Further, we assume that the nutation damper is attached at a Q0 point fixed in G frame. If we

denote the distance between G∗ and Q0 on the ĝ1 axis by zQ, the distance between G∗ and Q0

on the ĝ3 axis by d, and the displacement and velocity of the nutation damper mass point with

respect to the damper fixed-frame N , with q, and q̇, respectively, the velocities of the Q and

Q0 will be

NV Q = NV G∗
+ NωG × (zQĝ1 + qĝ3) + q̇ĝ3, (5.29)
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NV Q0 = NV G∗
+ NωG × (zQĝ1 − dĝ3). (5.30)

Correspondingly, we obtain the accelerations of the point Q and Q0, in the following forms:

NaQ =
Gd

dt
NV Q + NωG × NV Q, (5.31)

NaQ0 =
Gd

dt
NV Q0 + NωG × NV Q0 , (5.32)

as

NaQ = (u̇1 + qu̇5 +Z7)ĝ1 +(u̇2− qu̇4 +zQu̇6 +Z8)ĝ2 +(u̇3−zQu̇5 + u̇7+4k +Z9)ĝ3, (5.33)

NaQ0 = (u̇1 − du̇5 + Z10)ĝ1 + (u̇2 + du̇4 + zQu̇6 + Z11)ĝ2 + (u̇3 − zQu̇5 + Z12)ĝ3, (5.34)

where Z-s are defined as

Z7
∆
= Z1 − zQu2

5 + qu4u6 − zQu2
6 + 2u7+4ku5, (5.35)

Z8
∆
= Z2 + zQu4u5 + qu5u6 − 2u7+4ku4, (5.36)

Z9
∆
= Z3 − qu2

4 − qu2
5 + zQu4u6, (5.37)

Z10
∆
= Z1 − zQu2

5 − du4u6 − zQu2
6, (5.38)

Z11
∆
= Z2 + zQu4u5 − du5u6, (5.39)

Z12
∆
= Z3 + du2

4 + du2
5 + zQu4u6. (5.40)

Using the above equations we can calculate the partial velocities and partial angular velocities.

Thereafter, we can derive the dynamical equations of the motion of the gyrostat with fuel
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sloshing which simply state that the sum of the generalized inertia and active forces is zero

for each generalized coordinate. Defining generalized inertia and active forces by F ∗r and Fr,

respectively, Kane’s equations can be written as [29]

Fr + F ∗r = 0 , (r = 1, . . . , 7 + 4S). (5.41)

Negative generalized inertia force is determined by

−F ∗r = F ∗G∗ .NV G∗

r + T ∗G .
NωGr +

2∑
i=0

S∑
j=1

F ∗mij
.NV mij

r +
3∑

k=1

T ∗k .
NωGr +

+ F ∗Q.
NV Q

r , (r = 1, . . . , 7 + 4S),

(5.42)

where

F ∗G∗ = mG
NaG

∗
, (5.43)

F ∗mij
= mij

Namij , (5.44)

F ∗Q = mQ
NaQ, (5.45)

T ∗G = IG
∗
.NαG + NωG × IG∗

.NωG, (5.46)

T ∗k = IW
∗
k GαWk + NωG × IW ∗

k GωWk , (k = 1, 2, 3). (5.47)

It can be shown that generalized inertia forces, −F ∗r , can be written in matrix form as

−F ∗ = MU̇ + C, (5.48)

where

U̇ = [u̇1, u̇2, ..., u̇7+4k]
T , (5.49)
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and

C = [c1, c2, ..., c7+4k]
T . (5.50)

The elements of vectors C and matrix M are listed in the Appendix (A.2).

The generalized active force is determined by

Fr = FgG.
NV G∗

r +MgG.
NωGr −

3∑
k=1

Tk.
NωGr +

2∑
i=0

S∑
j=1

Fgmij
.NV mij

r −

−
2∑
i=1

S∑
j=1

Tfmij
.NωGr +

2∑
i=1

S∑
j=1

Tfmij
.NωPij

r + FTh.
NV F

r + TTh.
NωGr +

+ FgQ.
NV Q

r − (σq + δq̇).(NV Q
r − NV Q0

r ) , (r = 1, . . . , 7 + 4S),

(5.51)

where FgG is the gravitational force on the gyrostat in the body-fixed frame, MgG is the

gravitational torque on the gyrostat, Tk is the torque on momentum wheel k, Fgmij
is the

gravitational force on each pendulum, Tfmij
is the linear viscous torque models on pendulums

mij , FTh is the thrust force on the gyrostat applied at point F , TTh is the thrust torque on the

gyrostat, FgQ is the gravitational force on point mass Q, and Q0 is a fixed point in the G

frame. Equation (5.51) is valid when the gyrostat mass loss is zero or negligible in compare

to its total mass. In our case, the thrust force is generated by the upper-stage solid rocket

motor. Therefore, the gyrostat mass is constant. Knowing the position vector of the point of

thrust application, we can determine the partial velocity NV F
r .

The linear viscous torque models on pendulums are given by

Tfmij
= (−Cβij l2ijβ̇ijsαij, Cβij l2ijβ̇ijcαij,−Cαij

l2ijα̇ijsβ
2
ij), (5.52)

where Cαij
and Cβij are constants. We note that the pendulum is not spring-restrained as the

spring represents the surface tension forces, which are zero in high-g model. As described in

section 2.3, the model is in high-g if the spacecraft acceleration that is provided by the main
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engine is large enough so that surface tension forces do not significantly affect the propellant

motion during main engine burn. For example, upper-stage solid rocket motor STAR 37

produces about 47,85 kN thrust, which makes the Bond number to be much higher than 1,

Bo >> 1.

Thus, we obtain the dynamical equations of motion for the gyrostat with spherical pendulums:

MU̇ + C = F, (5.53)

or

U̇ = M−1(F − C). (5.54)

The elements of vectors C and F , and matrix M are listed in the Appendix (A.2). Equation

(5.54) consists of highly nonlinear ordinary differential equations.

5.2.3 The Kinematic Equations

To avoid the singularities of Euler angles, we use the Modified Rodrigues Parameters (MRPs)

to describe the attitude motion of the gyrostat in the inertial frame. Using the definition of

MRPs in terms of principal rotation elements, the MRPs are defined as

NσG = tan(
Φ

4
)ê, (5.55)

where the components of NσG are given by {σ1, σ2, σ3}T . In Eq. (5.55), Φ is the principal

angle, ê is a unit vector which shows the direction of the Euler (or Principal) axis.

The kinematic equations in terms of MRPs, in the matrix form, are given by

N σ̇G =
1

4
B(σ) NωG, (5.56)
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where

B(σ) =


1− σ2 + 2σ2

1 2(σ2σ1 − σ3) 2(σ1σ3 + σ2)

2(σ2σ1 + σ3) 1− σ2 + 2σ2
2 2(σ3σ2 − σ1)

2(σ3σ1 − σ2) 2(σ3σ2 + σ1) 1− σ2 + 2σ2
3

 (5.57)

and σ = ||NσG||2.

We choose a 1-2-3 (Yaw, Pitch, Roll) Euler angle sequence to visualize the attitude motion

of the gyrostat. Comparing the rotation matrix written in terms of MRPs and the 1-2-3 Euler

angle sequence transformation matrix [83] given by

NRG
123(ψ, θ, φ) =


cθcφ −cθsφ sθ

sψsθcφ+ cψsφ −sψsθsφ+ cψcφ −cθsψ

−cψsθcφ+ sψsφ cψsθsφ+ cψcφ cθcψ

 , (5.58)

we can find the relation between this Euler angle sequence and MRPs as follows:

ψ = − arctan

[
8σ2σ3 − 4σ1(1− σ2)

4(−σ2
1 − σ2

2 + σ2
3) + (1− σ2)2

]
θ = arcsin

[
8σ1σ3 + 4σ2(1− σ2)

(1 + σ2)2

]
φ = − arctan

[
8σ1σ3 − 4σ3(1− σ2)

4(σ2
1 − σ2

2 − σ2
3) + (1− σ2)2

]
,

(5.59)

where −90◦ ≤ ψ, θ, φ ≤ 90◦. This set of Euler angles is singular at θ = ±90◦.

Kinematic differential equations for 1-2-3 Euler angle sequence is


ψ̇

θ̇

φ̇

 =


cφ/cθ −sφ/cθ 0

sφ cφ 0

−sθcφ/cθ sθsφ/cθ 1




u4

u5

u6

 (5.60)

The set of Eq. (5.54) along with the kinematic equations, Eq. (5.56), constitute a mathemati-
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cal model of the system.

5.3 Analysis of Spacecraft with Fuel Sloshing in High-G Ma-

neuvers

5.3.1 Nutation Angle

Nutation angle, Θ, is defined as the angle between the total angular momentum vector,H , and

the spin axis of the gyrostat. If the gyrostat is spinning about ĝ3 axis, then Θ is determined as

Θ = cos−1

(
ĝ3.

HE/E∗

|HE/E∗|

)
. (5.61)

The total angular momentum is the sum of the angular momentums of the spacecraft, wheels,

nutation damper, and pendulums:

HE/E∗
= IG.NωG +mG r

E∗G∗ × NV G∗
+mQ r

E∗Q × NV Q+

+
3∑

k=1

IWk .GωWk +
2∑
i=0

S∑
j=1

(mij r
E∗mij × NV mij),

(5.62)

where E∗ denotes the mass center of the whole system formed by the gyrostat, nutation

damper, and the pendulums. The position vectors are given by

rG
∗Q = qĝ3 + zQĝ1, (5.63)

rG
∗mij = rG

∗Oij + rOijmij , (5.64)

rE
∗Q = rE

∗G∗
+ rG

∗Q, (5.65)
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rE
∗mij = rE

∗G∗
+ rG

∗mij , (5.66)

and

rE
∗G∗

= −
mQr

G∗Q +
∑2

i=0

∑S
j=1mij r

G∗mij

mG +mQ +
∑2

i=0

∑S
j=1 mij

. (5.67)

5.3.2 Dynamic Analysis

We use Mathematica® to check our derivation and to solve numerically the equations of mo-

tion and kinematic equations, (5.54)–(5.56). From now on, we use the words "gyrostat" and

"spacecraft" interchangeably. To reduce the computational time, we assume the spacecraft has

one tank and fuel sloshing is described by two spherical pendulums, i.e. (S = 1; i = 1, 2). In

addition, we assume all the gravitational forces and the thrust force are zero. The appendix

includes all coefficients from equations of motion for this special case. The spherical pendu-

lum and nutation damper parameters are listed in Table 5.1.

Table 5.1: The spherical pendulum and nutation damper parameters

Parameter Value Units
mG 5274.40 kg
m01 338.44 kg
m11 164 kg
m21 25 kg
l11, l21 0.15 m
h0 0.05 m
h1 0.20 m
h2 0.50 kg

Cαij
Cβij 26.66 N.s/m

mQ 52.74 kg
zQ 1 m
δ 105 N.s/m
σ 52.74 N/m
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The inertia matrices of the gyrostat and momentum wheels are

[IG
∗
] = diag(1375.7, 1292.5, 1402.4) kg.m2 (5.68)

IW
∗
1 = IW

∗
2 = IW

∗
3 = IW = 0.17 kg.m2 (5.69)

The initial conditions used in the simulation are presented in Table 5.2.

Table 5.2: Initial Conditions for spherical-spherical pendulum case

Parameter Value Units
u1(0)) 0 rad/s
u2(0) 0 rad/s
u3(0) 0 rad/s
u4(0) 0.03 rad/s
u5(0) 0.02 rad/s
u6(0) 20 rpm
σ1(0) 0.2
σ2(0) −0.3
σ3(0) 0.1
α11(0) π/2 rad
α21(0) π/2 rad
α̇11(0) π/2 rad/s
α̇21(0) π/2 rad/s
β11(0) π/180 rad
β21(0) π/180 rad

β̇11(0) 2π/180 rad/s

β̇21(0) 2π/180 rad/s
q(0) 0.01 m
q̇(0) 0 m/s

In further we study the following maneuvers: 1) Spinning about the maximum moment-of-

inertia axis, 2) Spinning about the minimum moment-of-inertia axis and 3) Reorientation

maneuver.

Case 1 - Spinning about the maximum moment-of-inertia axis.

Let us assume that the spacecraft has a constant spin rate of 20 rpm around its maximum
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moment-of-inertia, ĝ3 axis, and zero initial angular velocity around the other axes, i.e. ω0 =

(0, 0, 20) rpm. Fig. 5.4 shows the components of angular velocity of the spacecraft for the

spherical-spherical pendulum model. The effect of spherical-spherical pendulum model on
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Fig. 5.4: The time history of spacecraft angular velocity components with spherical-spherical
pendulum model (Case 1).
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Fig. 5.5: Nutation angle for spherical-spherical pendulum model (Case 1).

the spacecraft nutation angle is shown in Fig. 5.5. It can be easily seen that the average

nutation angle of the spacecraft for the spherical-spherical model is higher, although, it does

not grow.
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Fig. 5.6: The time history of spacecraft angular velocity components with spherical-spherical
pendulum model (Case 2).
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Fig. 5.7: Nutation angle for spherical-spherical pendulum model (Case 2).

Case 2 - Spinning about the minimum moment-of-inertia axis.

Now, we assume that the spacecraft has a constant spin rate of 20 rpm around its minimum

moment-of-inertia, ĝ2 axis, and zero initial angular velocity around the other axes, i.e. ω0 =

(0, 20, 0) rpm. Fig. 5.6 shows the components of angular velocity of the spacecraft for the

spherical-spherical pendulum model.

The effect of spherical-spherical pendulum model on the spacecraft nutation angle is shown
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Fig. 5.8: Case 2-The time history of spacecraft angular velocity components with an empty
tank and without nutation damper.
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Fig. 5.9: Case 2-The time history of spacecraft angular velocity components with an empty
tank and with nutation damper.

in Fig. 5.7. It can be easily seen that the average nutation angle of the spacecraft for the

spherical-spherical model is eventually growing.

Case 3 - Reorientation Maneuver Analysis.

In this case, we assume the spacecraft has an initial spin rate of 10 rpm around its maximum

moment-of-inertia axis, ĝ3 axis, and zero around other axes. i.e. ω0 = (0, 0, 10) rpm. We
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Fig. 5.10: Case 2-The effect of nutation damper on spacecraft nutation angle with empty tank.
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Fig. 5.11: Case 2-The time history of spacecraft angular velocity components with partially-
filled tank and without nutation damper.

also assume the third momentum wheel, along the body ĝ2 axis, spins up according to the

following piecewise function [26]:

GωW2 =


0 0 ≤ t < 1, 000

0.9375(t− 1000) 1, 000 ≤ t < 7, 400

6, 000 7, 400 ≤ t ≤ 10, 000

(5.70)
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Fig. 5.12: Case 2-The time history of spacecraft angular velocity components with partially-
filled tank and with nutation damper.
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Fig. 5.13: Case 2-The effect of nutation damper on spacecraft nutation angle with partially-
filled tank.

Figures 5.8– 5.10 show the effect of nutation damper on the angular velocity and nutation

angle of the spacecraft with an empty tank during reorientation maneuver, respectively. As

we expected, the nutation damper will damp the oscillations and causes the spacecraft to spin

about the ĝ2 axis. It can be seen that the nutation angle will oscillate with a small amplitude

about 90◦. Similarly, the nutation damper has the same effect on the spacecraft when its fuel

tank is partially-filled, as shown in Figs. 5.11– 5.13.
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Fig. 5.14: Case 1-The effect of pendulum mass-ratio on the spacecraft nutation angle.

Moreover, by using Eqs. 5.1 and 5.2, we investigate the effect of change in the mass-ratio,

m11/m21, of the spherical-spherical pendulum model on the spacecraft nutation angle, see

Fig. 5.14. It can be seen that the average nutation angle decreases as the mass-ratio increases.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

In the first part of the research, three fuzzy controllers for attitude stabilization of a spacecraft

with a partially-filled tank are presented and compared. The spherical pendulum model is

adopted to capture the behavior of the spacecraft with a partially-filled tank. The nonlinear

T-S fuzzy model is built and validated based on the weighted sum of the local linear models.

The first controller is a fuzzy PDC controller with a minimum upper bound control input. The

second controller is a fuzzy LQR which uses the premises of the T-S model, and the controller

and observer gains for each rule are obtained by solving the corresponding algebraic Riccatti

equations. The third controller is the robust-optimal fuzzy-model-based controller with a min-

imum upper bound control input. The stability, performance, and robustness of controllers are

examined via numerical simulations. The simulation results show that the fuzzy PDC exhibits

better performance and robustness compared to the fuzzy LQR, and the robust-optimal fuzzy

PDC is robust in the presence of system and actuator uncertainties. Fuzzy PDC and robust-

optimal fuzzy PDC exhibit better performance compared to the baseline PID controller. The

proposed T-S controllers are nonlinear controllers with a simple structure and, therefore, easy

for implementation.

In the second part of the research, we extended the existing models of spinning spacecraft

with fuel sloshing in the literature. The equations of motion for a spinning spacecraft with
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constant mass properties, three momentum wheels, one nutation damper, and S number of

partially-filled tanks were derived using the Kane’s method. As suggested in the literature,

a two spherical pendulum model is adopted to capture the behavior of spacecraft with fuel

sloshing during high-g maneuvers. Numerical simulations were performed to validate the

behavior of the spacecraft for standard maneuvers.

6.2 Recommendations for Future Work

Below we present recommendations that can improve and extend the research conducted in

this dissertation:

1. Conduct an experiment to verify the stability, performance, and robustness of the devel-

oped controllers.

2. Design a robust-optimal fuzzy tracking controller for flexible spacecraft with fuel sloshing.

3. Design a thrust vector controller based on T-S model for spacecraft with fuel sloshing.

4. Utilize computational fluid dynamics (CFD) instead of mechanical analogy models with

control analysis to get a more accurate model.
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APPENDIX A

A.1 The Elements of MatrixM and VectorsE and F in case

of one tank with one pendulum

We notice that the matrix M in Eq. (2.24) is a symmetric matrix with the lower half written

explicitly as:

M =



m1,1 ∗ ∗ ∗ ∗

m2,1 m2,2 ∗ ∗ ∗

m3,1 m3,2 m3,3 ∗ ∗

m4,1 m4,2 m4,3 m4,4 ∗

m5,1 m5,2 m5,3 m5,4 m5,5


, (A-1)

where * denote the transposed elements for symmetric positions. The nonzero elements of

the matrix M are:

m1,1 = m0r
2
0 − lpmpcψ2(rp − lpcψ2) + rpmp(rp − lpcψ2) + l2pmps

2ψ1s
2ψ2 + I1, (A-2)

m2,1 = −l2pmpsψ1cψ1s
2ψ2, (A-3)

m2,2 = m0r
2
0 − lpmpcψ2(rp − lpcψ2) + rpmp(rp − lpcψ2) + l2pmpc

2ψ1s
2ψ2 + I2, (A-4)

m3,1 = lpmpcψ1sψ2(lpcψ2 − rp), (A-5)

m3,2 = −lpmpsψ1sψ2(rp − lpcψ2), (A-6)
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m3,3 = l2pmps
2ψ2 + I3, (A-7)

m4,1 = lpmpcψ1sψ2(−rp + lpcψ2), (A-8)

m4,2 = −lpmpsψ1sψ2(rp − lpcψ2), (A-9)

m4,3 = m4,4 = l2pmps
2ψ2, (A-10)

m5,1 = lpmpsψ1cψ2(−rp + lpcψ2) + l2pmpsψ1s
2ψ2, (A-11)

m5,2 = lpmpcψ1cψ2(rp − lpcψ2)− l2pmpcψ1s
2ψ2, (A-12)

m5,5 = l2pmp, (A-13)

where r0 and rp are the locations of the pendulum hinge and static body described in sec-

tion 2.4. I1, I2, and I3 are the components of the inertia matrix of the spacecraft IS∗/S .

The elements of the vector E in Eq. (2.24) are:

e1 = I3g3g2 − I2g2g3 −m0r
2
0g2g3 +mp(lpcψ2 − rp)Z51 + lpmpsψ1sψ2Z61, (A-14)

e2 = −I3g3g1 + I1g1g3 +m0r
2
0g1g3 +mp(−lpcψ2 + rp)Z41 − lpmpcψ1sψ2Z61, (A-15)

e3 = I2g2g1 − I1g1g2 − lpmpsψ1sψ2Z41 + lpmpcψ1sψ2Z51, (A-16)

e4 = −lpmpsψ1sψ2Z41 + lpmpcψ1sψ2Z51, (A-17)

e5 = lpmpcψ1cψ2Z41 + lpmpcψ2sψ1Z51 + lpmpsψ2Z61. (A-18)

The expressions for Zi1, (i = 4, 5, 6) are found as:
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Z41 = rpg4g6 + (−g4(ψ̇1 + g6)− ψ̇2sψ1(2ψ̇1 + g6))lpcψ2 +
1

2
(−ψ̇2s(2ψ1)g4+

+3ψ̇2g5 + c(2ψ1)ψ̇2g5 + 2sψ1g4g5 − 2cψ1(ψ̇2
2 + g2

5 + (ψ̇1 + g6)2))lpsψ2,
(A-19)

Z51 = rpg5g6 + (−g5(ψ̇1 + g6) + ψ̇2cψ1(2ψ̇1 + g6))lpcψ2 +
1

2
(−3ψ̇2g4+

+ψ̇2g4c(2ψ1) + ψ̇2g5s(2ψ1) + 2cψ1g4g5 − 2sψ1(ψ̇2
2 + g2

4 + (ψ̇1 + g6)2))lpsψ2,
(A-20)

Z61 = −(g2
4 + g2

5)rp + (1 + 2sψ1g4 − 2cψ1g5)ψ̇2cψ2lp + (g2
4 + g2

5)cψ2lp+

+(ψ̇1 + g6)(cψ1g4 + sψ1g5)sψ2lp.
(A-21)

The generalized active force can be written from Eq. (2.24) in the following vector form:

F =



F1

F2

F3

F4

F5


=



u1

u2

u3

−(Dψ1 +Kψ1)l
2
pg4s

2ψ2

−(Dψ2 +Kψ2)l
2
pg5


. (A-22)

The 11×1 vector E ′ in Eq. (2.30) is

E ′ = [−e1,−e2,−e3, F4 − e4, F5 − e5, ψ̇1, ψ̇2, q̇0, q̇1, q̇2, q̇3]T . (A-23)
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A.2 The Elements of MatrixM and VectorsC and F in case

of one tank with two pendulums

We expand the dynamical Eqs. (5.54) for a special case, when the spacecraft has one tank

(S = 1) and fuel sloshing is described by two spherical pendulums (i = 1, 2). We should re-

mind here that Eq. (5.51) is valid when the gyrostat mass loss is zero or negligible in compare

to its total mass. For simplicity, we dropped the subscript j = 1 in position vector notations.

We notice that the matrix M in Eq. (5.48) is a symmetric matrix with the lower half written

explicitly as

M =



m1,1

m2,1 m2,2

m3,1 m3,2 m3,3

. . .

. . .

. . .

m11,1 m11,2 m11,3 . . . m11,11



, (A-24)

where the nonzero elements of matrix M are:

m1,1 = m2,2 = m3,3 = m01 +m11 +m21 +mG +mQ, (A-25)

m5,1 = m01r03 +m11r13 +m21r23 − l11m11cβ11 − l21m21cβ21 +mQq, (A-26)

m6,1 = −l11m11sα11sβ11 − l21m21sα21sβ21, (A-27)

m7,1 = −l11m11sα11sβ11, (A-28)

m8,1 = l11m11cα11cβ11, (A-29)
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m9,1 = −l21m21sα21sβ21, (A-30)

m10,1 = l21m21cα21cβ21, (A-31)

m4,2 = −m5,1, (A-32)

m6,2 = l11m11cα11sβ11 + l21m21cα21sβ21 +mQzQ, (A-33)

m7,2 = l11m11cα11sβ11, (A-34)

m8,2 = l11m11cβ11sα11, (A-35)

m9,2 = l21m21cα21sβ21, (A-36)

m10,2 = l21m21cβ21sα21, (A-37)

m4,3 = −m6,1, (A-38)

m5,3 = −m6,2, (A-39)

m8,3 = l11m11sβ11, (A-40)

m10,3 = l21m21sβ21, (A-41)

m11,3 = mQ, (A-42)

m4,4 =m01r
2
03 + l11m11cβ11(−r13 + l11cβ11)− r13m11(−r13 + l11cβ11)+

l21m21cβ21(−r23 + l21cβ21)− r23m21(−r23 + l21cβ21)+

+ l211m11sα
2
11sβ

2
11 + l221m21sα

2
21sβ

2
21+

+mQq
2 + I11,

(A-43)

m5,4 = −l211m11sα11cα11sβ
2
11 − l221m21sα21cα21sβ

2
21 + I12, (A-44)
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m6,4 =l11m11cα11sβ11(l11cβ11 − r13) + l21m21cα21sβ21(l21cβ21 − r23)−
mQzQq + I13,

(A-45)

m7,4 = l11m11cα11sβ11(−r13 + l11cβ11), (A-46)

m8,4 = l11m11sα11cβ11(−r13 + l11cβ11) + l211m11sα11sβ
2
11, (A-47)

m9,4 = l21m21cα21sβ21(−r23 + l21cβ21), (A-48)

m10,4 = l21m21sα21cβ21(−r23 + l21cβ21) + l221m21sα21sβ
2
21, (A-49)

m5,5 =m01r
2
03 − l11m11cβ11(r13 − l11cβ11) + r13m11(r13 − l11cβ11)−

− l21m21cβ21(r23 − l21cβ21) + r23m21(r23 − l21cβ21)+

+ l211m11cα
2
11sβ

2
11 + l221m21cα

2
21sβ

2
21+

+mQz
2
Q +mQq

2 + I22,

(A-50)

m6,5 = −l11m11sα11sβ11(r13 − l11cβ11)− l21m21sα21sβ21(r23 − l21cβ21) + I23, (A-51)

m7,5 = −l11m11sα11sβ11(r13 − l11cβ11), (A-52)

m8,5 = l11m11cα11cβ11(r13 − l11cβ11)− l211m11cα11sβ
2
11, (A-53)

m9,5 = −l21m21sα21sβ21(r23 − l21cβ21), (A-54)

m10,5 = l21m21cα21cβ21(r23 − l21cβ21)− l221m21cα21sβ
2
21, (A-55)

m11,5 = −mQzQ, (A-56)

m6,6 = l211m11sβ
2
11 + l221m21sβ

2
21 +mQq

2 + I33, (A-57)

m7,6 = m7,7 = l211m11sβ
2
11, (A-58)

m9,6 = m9,9 = l221m21sβ
2
21, (A-59)
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m8,8 = l211m11, (A-60)

m10,10 = l221m21, (A-61)

m11,11 = mQ. (A-62)

The elements of vector C in Eq. (5.48) are as follows:

c1 = m01r03u4u6 + (mG +m01)Z1 +m11Z41 +m21Z42 +mQZ7, (A-63)

c2 = m01r03u5u6 + (mG +m01)Z2 +m11Z51 +m21Z52 +mQZ8, (A-64)

c3 = −m01r03(u2
4 + u2

5) + (mG +m01)Z3 +m11Z61 +m21Z62 +mQZ9, (A-65)

c4 = Z15u5 − Z14u6 −m01r
2
03u5u6 −m01r03Z2+

+m11(l11cβ11 − r13)Z51 +m21(l21cβ21 − r23)Z52 + l11m11sα11sβ11Z61+

+ l21m21sα21sβ21Z62 −mQqZ8 + IW (GαW1 − GωW2u6 + GωW3u5),

(A-66)

c5 = −Z15u4 + Z13u6 +m01r
2
03u4u6 +m01r03Z1+

+m11(−l11cβ11 + r13)Z41 +m21(−l21cβ21 + r23)Z42 − l11m11cα11sβ11Z61−
− l21m21cα21sβ21Z62 −mQqZ7 −mQzQZ9 + IW (GαW2 + GωW1u6 − GωW3u4),

(A-67)

c6 = Z14u4 − Z13u5 − l11m11sα11sβ11Z41 − l21m21sα21sβ21Z42 + l11m11cα11sβ11Z51+

+ l21m21cα21sβ21Z52 +mQzQZ8 + IW (GαW3 − GωW1u5 + GωW2u4),

(A-68)

c7 = −l11m11sα11sβ11Z41 + l11m11cα11sβ11Z51, (A-69)

c8 = l11m11cα11cβ11Z41 + l11m11cβ11sα11Z51 + l11m11sβ11Z61, (A-70)

c9 = −l21m21sα21sβ21Z42 + l21m21cα21sβ21Z52, (A-71)
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c10 = l21m21cα21cβ21Z42 + l21m21cβ21sα21Z52 + l21m21sβ21Z62, (A-72)

c11 = mQZ9, (A-73)

where
Z13

∆
= I11u4 + I12u5 + I13u6, (A-74)

Z14
∆
= I12u4 + I22u5 + I23u6, (A-75)

Z15
∆
= I13u4 + I23u5 + I33u6. (A-76)

The generalized active force can be written from Eq. (5.48) in the following vector form:

{F} =



FgG1 + Fgm01 + Fgm11 + Fgm21 + FgQ1

FgG2 + Fgm02 + Fgm12 + Fgm22 + FgQ2

FgG3 + Fgm03 + Fgm13 + Fgm23 + FgQ3

F4

F5

F6

F7

F8

F9

F10

−σq − δq̇ + FgQ3



, (A-77)

where

F4 =MgG1 − T1 − T2 − T3 − Fgm02r03 + Fgm12(−r13 + l11cβ11)+

+ Fgm22(−r23 + l21cβ21) + Fgm13l11sα11sβ11 + Fgm23l21sα21sβ21−
− FgQ2q + (d+ q)(σq + δq̇),

(A-78)
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F5 =MgG2 − T1 − T2 − T3 + Fgm01r03 + Fgm11(r13 − l11cβ11)+

+ Fgm21(r23 −−l21cβ21)− Fgm13l11cα11sβ11 − Fgm23l21cα21sβ21+

+ FgQ1q − FgQ3zQ − (d+ q)(σq + δq̇),

(A-79)

F6 =MgG3 − T1 − T2 − T3 + Fgm12l11cα11sβ11 − Fgm11l11sα11sβ11+

+ Fgm22l21cα21sβ21 − Fgm21l21sα21sβ21 + FgQ2zQ,
(A-80)

F7 = Fgm12l11cα11sβ11 − Fgm11l11sα11sβ11 − Cα11l
2
11u7sβ

2
11, (A-81)

F8 = Fgm11l11cα11cβ11 + Fgm12l11sα11cβ11 + Fgm13l11sβ11 − Cβ11l211u8, (A-82)

F9 = Fgm22l21cα21sβ21 − Fgm21l21sα21sβ21 − Cα21l
2
21u9sβ

2
21, (A-83)

F10 = Fgm21l21cα21cβ21 + Fgm22l21sα21cβ21 + Fgm23l21sβ21 − Cβ21l221u10. (A-84)
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