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ABSTRACT 
Earthen construction is the most popular building method around the world.  One particular 

building method, using earthbags, has shown promise in performing well against seismic 

activity. This project undertook the goal of developing a preliminary seismic response 

modification factor, R, to be used in the design of homes in seismically active areas. Two 4’ 

wide x 6’ tall x 1’ deep walls were cyclically loaded using a Three-Degree-of-Freedom (TDOF) 

Test Frame provided by Santa Clara University to determine the in-plane shear capacity of each 

wall. Testing revealed an average yield force of 419 lbs, an average ultimate force 1058 lbs, and 

an average R value of 6. 

Wall design and construction was focused on three aspects of the project that were modeled to 

replicate common building practices while still being modular enough to test multiple samples.  

These aspects were the base, bond beam, and wall. Wall bases were designed to withstand up to  

3500 lb-ft bending moment during forklift transport, the bond beam was designed to transfer up 

to 9,000 lbs of shear force into the wall, and, the wall was designed using common building 

practices used in earthbag construction. 

Upon completion of the Consortium of Universities for the Research of Earthquake Engineering 

(CUREE) testing protocol, it was observed that the walls failed in buckling due to compression 

resulting from the force couple created by the loading arrangement. Despite failure, the walls 

continued standing even after the pin connection was removed from the tops of wall. This 

unexpected resiliency and behavior of the walls during testing led the team to believe that 
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earthbag walls are much more ductile a material that was initially anticipated. A deeper 

understanding is needed to better understand how earthbag buildings behave against seismic 

forces.  This project is encouraging for future research and the development of a more 

standardized building method. 
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1.0 Introduction  

The goal of the project was to design, build and test two earthbag walls that contained adequate 

seismic reinforcement to withstand a typical design earthquake for a seismically active area such 

as Nepal. The dimensions of both walls were 4’ wide x 6’ tall x 1’ deep. The project addressed 

not just Nepal’s need, but a global need for sustainable housing and public safety while living in 

an earthquake prone region. This project’s focus was primarily focused on Nepal due to the 

connections the project’s advisor had with building earthbag homes in Nepal. Sustainability is 

accomplished by using an abundant, local building material, such as the local soil, as the home’s 

primary means of construction, leaving behind a minimal carbon footprint. In terms of disaster 

response, the earthbag wall would be able to be constructed quickly due to locally sourced 

materials. Furthermore, these alternative building materials are economical, as they do not 

require builders to import a large amount of building heavy materials. This technology can then 

be spread widely throughout even the most remote regions of Nepal. Public safety is addressed 

by the testing of the seismic response of these earthbag structures. As part of this project, the 

desired seismic response was tested on earthbag walls constructed with barbed wire layered 

between the rows of earth bags and rebar driven from the top to the base of the wall. The intent 

of this project was to validate the reinforcement that has been tested on small scale structures and 

contribute to the overall research in the earthbag field. The main goal of the project was to use 

the results of the project to aid local home builders in Nepal and worldwide to build resilient, 

safer earthbag homes.   

1.1 Background  

As part of the work the project team did while deciding the scope of work for the project, 

the affected area of the 2015 Gorkha earthquake was researched to see how the common 
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building materials used in the region affected. This research led the team to Guilan 

Liang’s and Zhou Niandong’s article “Background And Reflections On Gorkha 

Earthquake Of April 25, 2015”.  In their article, Liang and Zhou discussed the geological 

conditions that cause earthquakes of the intensity seen in that 2015 earthquake. The 

authors also looked at the damage caused by the 2015 Gorkha earthquake and reflected 

on how damage from future earthquakes could be mitigated. In April 2015, a magnitude 

7.8 earthquake struck the Gorkha province of Nepal, destroying 299,588 homes in the 

country and damaging 269,107 more (Liang and Zhou, 2016). Most homes in Nepal at 

the time were not designed to withstand earthquakes, even though Nepal sits in a 

seismically active area. Just in the past century, four earthquakes with a magnitude of 6.5 

or higher have occurred in Nepal (Liang and Zhou, 2016). Nepal also has a lack of 

building code regulation, which can be seen by comparing the aftermath of seismic 

events in other countries. This disparity can be seen when the 2015 Gorkha earthquake is 

compared to the 2015 Coquimbo earthquake located in Chile. For example, the 2015 

Gorkha earthquake killed 8,800 people, while the 2015 Coquimbo earthquake with ten 

times the strength of the Gorkha earthquake saw far fewer deaths with the loss of 500 

Chileans. Chile’s strict building codes, both in writing and in implementation, prior to the 

2015 Coquimbo earthquake ensured most, if not all, new buildings complied with the 

code. Nepal also passed its own new building codes in the 1990s but has done little to no 

work to enforce those new codes (Liang and Zhou, 2016). As a result, most of the 

buildings still lacked the proper reinforcement and design to withstand earthquakes. 

Analysis of the governmental structure that allowed for the dangerous building conditions 

was important to the team, however, the team sought analysis on the structures that both 
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did and did not survive the 2015 Gorkha earthquake. The team therefore turned to 

Katsuichiro Goda’s paper, "The 2015 Gorkha Nepal Earthquake: Insights from 

Earthquake Damage Survey" which provided useful insight on the building methods most 

susceptible to damage. Goda and his colleagues collected data on the damage caused by 

the earthquake through geo-tagged photos and comments made through in person 

observations (Goda, 2015). Most of the damaged buildings that were observed were built 

from stone or brick masonry. However, most of the reinforced concrete (RC) buildings 

were not damaged. Reinforced concrete in this case referred to the use of rebar as 

reinforcement in the concrete beams and slabs in the building.  Buildings built with 

masonry materials, such as stone or brick, have low ductility and are in danger of 

collapsing during a seismic event. This low ductility factor means the building will not 

move with the ground acceleration caused by an earthquake. In turn, the building will 

attempt to resist the movement caused by the earthquake. With brittle and unreinforced 

masonry, this means a total collapse of the building is likely. The RC buildings that did 

survive all had a similar structural feature, the use of moment resisting frames. 

Reinforced Concrete moment resisting frames perform well in earthquakes as to the 

members and connections in the frame designed to resist the bending forces imparted 

during ground accelerations and lateral loads. Reinforced concrete moment resisting 

frames built in accordance with the Indian standard code performed well (Goda, 2015). In 

Kathmandu, there was significant damage to historical buildings, but not to surrounding 

buildings built with RC moment resisting frames. Another noteworthy observation of the 

structures in the affected region was the fact that buildings damaged during the main 
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earthquake collapsed during aftershocks which underscores the necessity of building 

evacuation.  

As it relates to this project, earthbag construction must first and foremost be designed to 

withstand the next seismic event in the region. There was a sense of urgency to rebuild as 

quickly as possible and house the now millions of homeless. It is crucial, however, that 

earthbag construction is implemented correctly. It was this project team’s responsibility 

to address the factors that caused buildings to collapse during the 2015 Gorkha 

earthquake and to design earthbag structures that will be able to withstand not only the 

next seismic event in the Nepal region but in other earthquake prone areas of the world as 

well. 

The research done by Goda and Zhou above have educated the methods used with 

earthbag construction to become more economically viable and safe. Nepalese home 

builders and builders in other seismically active regions of the world have been building 

with this material since the devastating 2015 Gorkha earthquake. This earthquake left 3.5 

million people homeless in Nepal alone and destroyed tens of thousands of homes. 

Furthermore, the seismic aspect of earthbag construction has been largely unexplored. 

This project drew upon a past Santa Clara University (SCU) senior design project 

completed in 2017, Design of a Single Family Home and Rooftop Rainwater Catchment 

System in Nepal Using Earthbag Technology, by Makena Wong, Olivia Carreon and 

Nabila Farah Franco, in which the group assumed a value for seismic performance. The 

team sought to conduct this research with the goal of informing builders working in 

Nepal about the proper construction of earthbag structures and looked at existing research 

to ensure these homes will be ready for the next potential earthquake.  
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1.2 Sustainability Characteristics 

Building homes out of earthbags means using an abundant and easily accessible material, 

such as the local soil, which allows families access to an affordable and permanent home 

if properly designed. This type of construction also means using minimal concrete, 

drywall or other materials that leave behind a large carbon footprint. The team sought to 

further validate the use of earthbag walls for home construction; doing so contributed not 

just to the academic field but to the humanitarian field as well. With this project, the team 

has contributed to the building of communities with sustainability and safety at the 

forefront. Through the research performed here, this project became one of the first in the 

field of earthbag construction that has built and tested a large scale, seismically 

reinforced earthbag wall. A lack of research into earthbag construction has inhibited its 

mainstream use, as little is known about their response to various loading cases.  

Much of the carbon emissions related to construction come from transportation of 

materials. This process can be even more difficult in Nepal, which has very mountainous 

terrain in many areas. Additionally, minimal infrastructure can make transporting 

materials around the country even more difficult. This use of earthbags for homes would 

drastically reduce the need to transport traditional building materials. The soil found in 

Nepal has typically been found to have acceptable levels of clay for cohesion (20-30%), 

which makes for acceptable soil to build with (Geiger, 2015). These conditions make 

Nepal ideal for the use of earthbag homes. 
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2.0 Summary Alternative Analysis  

During the development phase of the project, the team considered numerous different variations 

on the standard confined earth wall. The team’s main priority was to test the method of 

construction that earth home builders have been utilizing in the field. Testing this building 

method would allow the project to provide relevant data on previously constructed earthbag 

structures, as well as provide builders a measure of confidence in their building techniques. 

Initially, the team considered using only barbed wire reinforcement between the bag layers. This 

method was later combined with vertical rebar reinforcement driven through the courses of bags. 

The use of vertical rebar reinforcement is common practice in the field, which influenced the 

decision to choose this hybrid design. The following designs were considered: 

1. Earthbag wall with barbed wire as reinforcement. Concrete or plaster base. 

(chosen design) 

2. Earthbag wall with rebar driven through bags as reinforcement. 

3. Earthbag wall with bamboo driven through bags as reinforcement. 

 

Use of barbed wire as reinforcement is the most common building practice and requires few 

materials that are difficult to source. This method would be a lower cost and sustainable, due to 

the simple materials required to build the wall. The second option the team evaluated was the use 

of rebar to help transfer shear loads and provide reinforcement against out of plane loading. This 

option was expected to provide the most structural reinforcement but was also seen as not as 

sustainable, since many of the places that use earthbag construction do not have easy access to 

quality rebar. The third alternative, bamboo, would provide similar structural reinforcement 

when compared to rebar, while at the same time being a sustainable material. Rebar and bamboo 
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would have served the same purpose, as they would both act as dowels holding together the 

courses they would penetrate. 

2.1 Selection of Project’s Design  

After evaluating the different aspects of each alternative, a hybrid between the first two 

alternatives was chosen due to their compatibility with each other and theoretically more 

seismically resistant structure. The use of barbed wire matched common building 

practices, as did the use of rebar. Both techniques combined provided the team structures 

with a higher expected seismic resistance. The option of using bamboo in place of rebar 

was eliminated due to workability concerns during construction, despite being more 

sustainable than rebar. 

The selected building method for testing met the project’s needs, as it blended current 

earthbag building practices with added reinforcement to better protect against damage 

from earthquakes.  The inclusion of rebar in the walls allowed for a more consistent 

performance during testing. This consistency gave the team the confidence required to 

use the values from testing in a design setting. As the use of earthbag building continues 

to increase, experimentation with the material will follow as the community’s insight on 

the material’s performance grows. As the team sought to research the unknown seismic 

capabilities of earthbag structures, the chosen test set-up satisfied both the need for 

research into the seismic resistance of these structures and provided a meaningful 

contribution to the larger scholarly conversation of standardizing earthbag walls with 

consistent testing practices.  
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3.0 Design Components of Project 

There were three distinct portions of the system which needed to be designed; the base, the bond 

beam connection to the testing rig, and the wall itself. Each of these portions were designed 

using a different material (or combination of materials), and as a result required different 

assumptions in the design process. An overview of the wall design can be seen in Figure 1.  

 

Figure 1: Front & Side View of Wall Showing Rebar Placement & Barbed Wire. 

The wall bases utilized a combined concrete and structural timber system, which required the 

design of various design components. First, the base design required that connections between 

the concrete and wood were sufficient to transfer the loads the team was expecting to see during 

the test. These constraints resulted in a designed base that had the capacity to resist both shear 

and moment stresses that were to be generated by the test frame onto the wall. Connections 

between the two systems were provided by a series of six (6) five eighth inch (⅝”) lag bolts, 
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which were found to be adequate to transfer the maximum expected shear loads in the base. 

Additionally, it was determined that the concrete of the base would never experience a 

significant negative moment, resulting in minimal tensile forces in the top portion of the concrete 

beam. As a result, reinforcing bars were placed only in the bottom portion of the beam. The 

culmination of these design considerations resulted in the final design values which are 

elucidated later in this report. 

3.1 Soil Profile 

The soil used for the project was sourced from Zanker Landfill located in South San Jose. 

The soil composition was a Sandy Clay Loam. The percentage breakdown of the soil’s 

composition was as follows: 45% Sand, 30% Clay, 15% Silt, and 10% Gravel. Limiting 

organic matter was important to prevent growth of organisms within the earth bags which 

could have led to a decrease in the overall bag strength.  

Compression experiments on the soil used for the project were performed in the SCU 

Structures Lab. Figure 2, below, shows the testing setup used to determine an f’c value; 

this value is used to represent the compressive strength of a soil. The numerical results of 

these tests can be found in Table 1, where the f’c value was found to be 320 psi. The test 

results shown in Table 1 were from soil with similar compaction to the earth bags the 

team made for the completed walls. 

 The cylinders of soil that were tested were 1.5” tall by 2” wide. These samples were 

created by cutting a toilet paper roll in half, then compacting soil into the tube in half inch 

increments. The standard test specimen size, used for testing earthen materials in a 

laboratory setting, is 4 x 8 in. (100 x 200 mm) or 6 x 12 in. (150 x 300 mm) cylinders for 

strength tests provided that the requirements of ASTM C31 are met (ACI, 2014) This 
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standard was not met as the team sought to validate the field methods used by earthen 

builders to test their soil on site. Through the use of the SCU Civil Engineering Structures 

Labs’ compression machine, the team sought to accomplish this goal. Ultimately, the size 

of test cylinder was chosen at the direction of our external advisor, Patti Stouter, from 

Build Simple Inc as she had used this size of cylinder as the team’s external advisor had 

been using in the field for years. The decision to use five samples per mix of soil in 

Table 1 was done to obtain a reliable average f’c value. This was also done to allow for 

adequate time to complete the full range of soil tests the team was expecting to complete. 

At the end of the compression testing, both the external advisor and the project team were 

satisfied with the f’c results obtained using the lab’s compression machine. 

Table 1: Soil Compression Tests Results  

Normal Soil w/ 
Normal 

Compaction 
Sample 

Diameter 
1 (in) 

Diameter 
2 (in) 

Height 
(in) 

Pounds 
(lb) 

Radius 
(in) 

Area 
(in2) PSI 

Average PSI 
(5 Samples) 

1 1.650 1.642 1.959 533.3 0.823 2.128 250.6 

318.8 
 

2 1.555 1.722 1.830 596.1 0.819 2.109 282.7 

3 1.511 1.634 1.966 437.7 0.786 1.942 225.4 

4 1.698 1.619 1.951 991.2 0.829 2.160 458.8 

5 1.682 1.654 1.940 843.5 0.834 2.185 386.0 

6 1.735 1.717 2.012 709.5 0.863 2.340 303.2 
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Figure 2: Setup of soil compression tests.  

3.2 Test Frame to Wall Specimen Connection 

The bond beam, which caps the top of the wall and provides a connection to the testing 

rig, was formed exclusively from wood, which simplified the design to resist the lateral 

force placed upon the bond beam. Considerations of the functionality of the beam and 

determining the best way to facilitate the desired connection to the wall, required several 

design iterations. The use of a concrete bond beam was ruled out early in the project as 

the weight of the beam would pose a safety hazard. This hazard is due to the fact that 

these concrete beams, when used on a full scale home project, are poured onto buttressed 

walls (Hart, 2015). An image of concrete bond construction in the field can be found in 

Figure 3, below. 
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Figure 3: Earthbag home built with concrete bond beam. 

 While this method is feasible for the construction of a house, the team was concerned 

with constructability of a concrete bond beam. The most notable constructability issue the 

team had with the concrete beam design was designing the formwork for use while the 

concrete was poured and cured for 28 days. When the design scopes of both the concrete 

and timber bond beams were assessed, the timber bond beam was ultimately chosen. 

From the outset of the design process, the project team along with their advisors 

determined a singular pinned connection to the wall would best simulate the loading 

pattern of an earthquake. This pin connection was paired with the use of two steel T-

plates that prevented any out of plane movement of the wall during testing. This was 

done to minimize the amount of torsional deformation that could occur in the wall. While 

earthquakes do cause torsion to occur in a building. This work focused on the direct shear 

forces that would be imparted on the wall during in-plane loading.  
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A problem posed by the single point of connection between the wall and the test frame 

was how the bond beam would be kept connected to the top course of the wall specimen 

throughout the duration of the testing cycle. The project team predicted correctly, that 

loading the wall through a single point of connection would result in a seesaw motion 

which would cause the bond beam to lift and separate from the top course. The team 

sought to prevent this by using rebar couplers attached to the rebar inserted into the wall 

and placing threaded rod on the open end of the coupler. This threaded rod would then go 

through the bond beam and terminate at the top. This is where a nut and washer 

combination was used to keep the bond beam connected to the top course. This 

connection is talked about in greater detail in Section 4.4.  

3.3 Expected Loads for Walls During Testing 

Design of the wall proved to require the most design choices of any component of the 

system. No universally accepted design standards exist for earthbag construction, this 

meant the project team’s design was based upon commonly accepted best practices from 

builders in the field. The design was also influenced by the team’s faculty and external 

advisor, which lead to the choices for rebar placement and barbed wire usage, to be 

detailed later in this report. At the end of this preliminary design phase, the team 

concluded these best practices did not include all the information needed for design, as 

they contain little quantitative information on the wall design. For example, little 

information was available regarding the expected ultimate strength of the wall, which 

was key for designing the bond beam and base. One test from the University of Bath 

(Vadgama, 2010) reported a maximum load of approximately 6,000 lbs on their test 

walls. As a result, a conservative maximum strength estimate of 9,000 lbs (1.5 times the 
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Bath tests max load) was used. The hope was that this conservative value would ensure 

that failure occurred in the wall and not in the bond beam or the base.  

3.4 Design Standards Used for Wall Design  

In order to complete the design of the system, several design standards were used. For all 

wood design, especially values for wood strength and equations for different shear 

analyses, values were taken from the AWC 2015 design standard (AWC, 2015). This is 

the industry standard in the United States for all wood design. This was key for design of 

the wooden bond beam and its connection to the testing apparatus. Similarly, for the base 

concrete, the design was based off the ACI 318-14 concrete building code standards 

(ACI, 2014). The California Building Code 2016 (CBC, 2016) was used for seismic 

requirements and performance goals for the wall.  

 

4.0 Description of the Design Components Used for Testing 

For the project, an initial schedule was developed using Microsoft Project, which allowed for 

real time tracking of the project’s completion as well as manipulation of workflow and 

completion dates. The team planned to start basic design concept work before the academic year 

began. As the team and the project advisor, Dr. Nilsson, were in the area, this allowed the team 

to get a helpful head start on the work involved with the initial design.  Several weeks were also 

devoted to the procurement of materials and the construction of the bases of the walls. Ultimately 

the decision was made to build and test two identical (or as close to identical as possible when 

working with earth) earthbag walls, following the typical best practices outlined in Section 3.2. 

The purpose of building two identical walls was to determine with a reasonable certainty the 

expected design strength of a reinforced earthbag wall.  Prior to design, the team expected a peak 
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test strength around six thousand (6,000) pounds and decided to design the wall sections to 

withstand up to nine thousand pounds (9,000) of shear force. 

4.1 Overview of Walls Components for Testing 

The walls were designed to incorporate three main sections: the base, wall, and bond 

beam.  Bases for each wall were designed to best replicate friction to normal ground 

while still allowing for easy transport.  The walls themselves were designed with 

common earthbag building practices in mind with the inclusion of rebar for added 

strength and hopefully more consistent values. The bond beam design included the 

transfer of all shear forces from the Three Degree of Freedom (TDOF) test frame, 

through the beam, and into the wall. 

4.2 Base Design of Wall 

The wall’s base design was based off the work that a past SCU senior design group had 

done with straw bale walls (Ackerson, 2017), with additional concrete to help carry the 

heavier earthbag walls. The base design consisted of a 5.5” thick reinforced concrete 

beam with embedded rebar anchors that would pierce the first three courses of earthbags 

placed. This beam was formed using four by six (4 x 6) timber members which were left 

in place to provide additional strength during testing. Figure 4, below, provides an image 

of the completed bases. The design of the base allowed the use of six by twelve (6 x 12) 

timber members that were placed across the ends of the base to prevent overturning 

during testing. These beams were secured to the strong floor with the use of threaded rod, 

nuts and washers. Figure 5 illustrates how these larger timber members were laid across 

the base to prevent overturning during testing.  
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Figure 4: Finished concrete in completed bases. 

 

Figure 5: Timber beam members laid across base and connected to strong floor.  

4.3 Building Method Used for Wall Construction  

The building process consisted of compressing soil into polypropylene bags, tying each 

bag closed with metal wire. Bags were compressed at each end with a short piece of 
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lumber to prevent crumbling in this key area of compression. Each bag was then tamped 

in place on the wall using a 10 lb. tamping plate. The first four courses were compacted 

on the floor, then lifted onto the rebar pins that can be seen in Figure 4. Once the rebar 

pins were covered, the following courses were compacted on the previously laid course, 

allowing for greater ease of construction. Barbed wire was also implemented during the 

construction of the walls. This meant using one strand of four-point barbed wire (totaling 

9’ of barbed wire), placed below each bag before the next course was placed on top. The 

9’ strand of barbed wire was formed into an ellipse shape to allow for adequate coverage 

of the earthbag course. This process was repeated until the walls reached the desired 

height for testing; 15 layers tall for Wall 1 and 16 layers tall for Wall 2. 

 The timber members used in the base allowed for the attachment of vertical and 

horizontal forms which aided in the construction of plumb and compacted earthbag walls. 

While compacting bags in place, sheet metal was used to prevent the barbed wire from 

tearing the bag material. Figure 6, below, showcases what these construction practices 

looked like. Construction of the walls started inside of the SCU Civil Engineering 

Structures Lab but was moved outside to due to space constraints. After construction, the 

walls were relocated inside the SCU Structures Lab to dry until testing, which was 

scheduled for the first week of April 2018. 
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Figure 6: Construction practice used to build both wall specimens.  

4.4 Bond Beam Design of Wall 

The bond beam had to be able to withstand the forces generated by the machine, as well 

as be compatible with the layout of the machine. The team opted for a six by eight (6 x 8) 

timber beam and a ¾” sheet of plywood for the bond beam, as it met the criteria that was 

listed previously. Nails were shot into the sheet of plywood to embed with the top course 

of the wall. Nails were spaced 4” in each direction, based on shear tests which indicated 

roughly 100 lbs. of capacity for nails in cured earthbags. The nail layout is shown in 

Figure 7. After the nails were in place the six by eight (6 x 8) member was attached to 

the top of the plywood using six (6) ⅝” lag bolts. Additional height was required on the 

bond beam to reach the minimum height of the TDOF testing rig, so an additional section 

of six by four (6 x 4) lumber was added to the top of the bond beam. Finally, the pinned 

connection was secured to the beam using four (4) 1 ½” lag bolts. Additionally, channels 

were cut into each end of the beam so that T-plates on the testing apparatus could 

minimize torsional deformation. To prevent the T-plates from lifting out of the channels 
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during testing, two 16” long 2x4 timber members were added to the sides of the channels. 

Figure 8 demonstrates the finalized channel design that was cut into the bond beam.   

 

Figure 7: Nail connection to top earthbag layer. 

 

Figure 8: Guide channel at ends of bond beam. 

Figure 9 displays the completed bond beam used during the first test. This was the final 

design that was used for both wall tests.  
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Figure 9: Bond beam from top side with plate-pin connection. 

4.5 Coupler System Used for Bond Beam to Wall Interaction 

The team used a coupler system to connect the rebar inside the wall to a piece of threaded 

rod. This threaded rod then had a washer and nut connection to prevent the bond beam 

from uplifting and twisting; Figure 10 below displays this connection. Appendix A, page 

A-21 contains an image of the installation of the nut and washer used to connection the 

bond beam to the top course of the wall. After collecting and synthesizing results from 

the first test, the bond beam was redesigned for the second wall to better transfer forces 

from the testing machine to the wall.  These changes included expanding the guide 

channels and attempting to better secure the rebar couplers.  Figure 11 shows the coupler 

inside the bond beam, and this was the final design the team decided on.  
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Figure 10: Rebar coupler to threaded rod connection. 

 

Figure 11: Threaded rod connection set into underside of beam. 
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4.6 Reinforcement Used for Walls  

The reinforcement of the wall consisted of using barbed wire between each course of 

bags and the use of rebar driven into the courses at three foot height intervals. Nine foot 

strands of barbed wire were used between each course of bag in order to facilitate the 

friction force that would occur between courses trying to slide past each other. Figure 12, 

below, shows the layout of barbed wire that was used for both walls. The friction factor 

between the barbed wire and polypropylene bags was found to be 0.67 (University of 

Bath). This means that for every one pound (1 lb) of normal force applied at the  

interaction between bags, 0.67 lbs of shear resistance were generated. Two 4.5’ lengths of 

#4 rebar were driven vertically into each end of the wall at 3’ foot high intervals with the 

use of a fence post driver. This installation method resulted in a lap of approximately 18” 

between this rebar. Figures 12 and 13, below, shows the process used for both walls.  

 

Figure 12: Standard barbed wire configuration between layers. 
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Figure 13: Driving sharpened rebar into wall. 

A lap splice of 16 inches was sought as the rebar was driven into the walls; this was 

based off ACI 318-14 concrete building code standards (ACI, 2014). This standard was 

not an ideal representation of the interaction that would occur between the rebar and soil, 

but it provided a starting point for this project. Further research could be undertaken to 

determine what the ideal lap distance would be within soil. 

The team also employed the use of 1/4” diameter twine that was tied around four courses 

of earthbag at a time. This use of twine was done with the goal of joining individual 

courses into groups so they could act as a unit. This procedure was done at the 

recommendation of Patti Stouter to help bind the individual courses together and allow 

them to act as more of a unit. This goal was not achieved, as the courses shrunk over time 

due to the drying of the clay in the soil. The twine was no longer taut around the courses, 

and thus did not provide the goal of unifying individual courses into one unit. The team 
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discussed tightening the strings before testing, but it was decided that the effects would 

be minimal. 

 

5.0 Description of Testing Frame Used in Testing 

The wall specimens were each tested in the Three Degree of Freedom hydraulic testing frame in 

Santa Clara University’s Structures Lab, which can be seen in Figure 14, below.  

 

 

Figure 14: Anatomy of Three Degree of Freedom Test Frame. 

This testing frame’s top beam was connected to the specimens using the pin circled in blue in the 

above image, with the T-plates circled in green preventing out of plane movement during the 

loading cycle. The wall bases were bolted into the strong floor using one inch (1”) threaded rods, 

which prevented sliding and overturning forces. Forces were applied upon the wall using three 

large hydraulic actuators. 
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5.1 Description of Testing Protocol Used in Experiments 

The walls were tested utilizing a standard CUREE loading protocol. The CUREE 

protocol was developed by the Consortium of Universities for the Research of 

Earthquake Engineering as a standardized way of simulating seismic loading on shear 

walls. The testing protocol simulates earthquake loading patterns by laterally deflecting 

test specimens incrementally and cyclically until an ultimate deflection is reached. The 

pattern of deflection is shown in Figure 15.  

 

Figure 15: CUREE Testing Protocol deflections for each cycle. 

As these cyclic deflections occur, load cells in each actuator record the vertical and horizontal 

loads resulting from these deflections. This force vs. deflection is plotted as a hysteresis loop 

similar to Figure 16, below. 
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Figure 16: A typical hysteresis loop for shear walls tested with CUREE loading protocol. 

5.2 Coordination of Facilities Used in Project 

One key aspect of the project was the coordination that was required between the team 

and Santa Clara University’s Facilities and Environmental, Health & Safety (EH&S) 

Departments. The team also coordinated with the lab manager, Brent Woodcock, and the 

other senior design teams working in the lab. Coordination with the lab manager and the 

other teams in the lab was key to ensuring every team in the lab had access to the best 

resources and the most time available to the respective projects. The coordination with 

Facilities and EH&S was key to the team’s work outside of the lab, primarily during 

construction of the walls. The work was done on Sherman Street, which was an active 

street, and was essential to the completion of the project. The team made sure proper 

personal protection equipment (PPE) was used during all phases of construction and 

testing of the walls. This meant using gloves during the installation of barbed wire and 

hard hats when working inside the Three Degree of Freedom test frame.  
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5.3 Site Safety and Waste Disposal 

The wall’s aspect ratio was chosen not only for research purposes but for safety of the 

team as well. An aspect ratio of 2:1 would have led to an unstable structure during 

construction and transportation that would have placed the team and the public in danger. 

Site safety was a major concern of the team and for all those involved in the project. The 

project’s success relied on the safe and efficient construction process, as much as on the 

experimentation of the walls.  

The construction waste from the walls, such as the base and the soil contained inside the 

polypropylene, were disposed on the dirt lot located behind Bannan Engineering at SCU. 

This disposal was done with the permission of SCU facilities due to the impending 

demolition of Bannan Engineering. 

  

6.0 Test Results 

The test samples were tested with the CUREE loading protocol described above using the Three 

Degree of Freedom testing rig. The samples were deflected to an ultimate deflection of 1.5% of 

the specimen height, or approximately 9.5”. As the cyclic deflections from the CUREE cycles 

were applied by the testing rig, the loads experienced by each of the three hydraulic rams were 

recorded. These three forces were then reduced to isolate their combined shear component 

applied within the plane of the wall. The applied shear loads versus in plane deflection were 

plotted to form the hysteresis loops shown in Figure 17.  
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Figure 17: Hysteresis Loops for first test specimen. 

The spikes in load seen on the positive deflection side of this graph are likely due to crushing of 

the wooden bond beam, which occurred when the previously mentioned T-plates slid out of the 

channels on the bond beam and failed to cleanly reenter the channel on the next portion of the 

loading cycle. As a result, these peak points were not considered when calculating seismic 

response modification factor, with a lower peak of 1242 lbs used. This issue was alleviated for 

the second specimen, resulting in a lower peak load, as can be seen in Figure 18. 

   

Figure 18: Hysteresis Loops for second test specimen. 
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6.1 Observed Failure Mode 

The failure mode observed for both test specimens was buckling in the north edge of the 

wall. This buckling was due to the force couple created by the in-plane shear forces upon 

the wall. While buckling is typically a relatively inflexible failure mode, these specimens 

were able to withstand severe buckling while remaining standing after removal of the top 

pin. This is a positive, as flexible failures are typically preferred for withstanding seismic 

loading. The out of plane deflection of the walls is shown in Figure 19, below.  

 

Figure 19: Out of plane buckling of Wall 1. 

There was also some sliding in between bag layers, especially between the top two layers. 

Where interbag sliding was noticed, there was also significant deformations of barbed 

wire reinforcement, and minimal deformations of the soil. This sliding indicates that 

when bag slippage occurs, it is due to deflections in the barbed wire, not failures within 

the soil matrix. To minimize this slippage rebar pins were driven at 45 degree angles into 
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the top four courses of Wall 2 prior to testing. This reduced the slip in the top courses 

somewhat, though did not increase overall strength of the wall.  

6.2 Numerical Analysis of Test Results   

Using the recorded experimental data, values for ultimate and yield deflections and forces 

were determined. Based upon these values, a value for seismic response modification 

factor, R, value was calculated. This is a standardized measure of a system’s ductility 

during seismic loading and is based on the ratio of yield to ultimate strength and 

deflection. A higher R value is desired for earthquake loading, as it indicated a more 

ductile system. In code based seismic design, as prescribed by the CBC, the seismic 

design force is divided by the R value, reduces design force. The average R value found 

for these walls was 6.0 and is shown in Table 2. This R value was calculated using the 

APA formula where R = Rd * R0. R0 is taken as the ratio of 0.8 * ultimate strength over 

the yield and strength, (APA, 1998)  

Table 2: Numerical test results for both walls. 

 Wall 1 Wall 2 Average 

Yield Force (lbs) 440 396 419 

Ultimate Force (lbs) 1242 873 1058 

Yield Deflection (in) 0.21 0.43 0.32 

Ultimate Deflection 
(in) 

2.54 2.20 2.38 

R 7.7 4.3 6 

 

The R values calculated for these walls should not be used as design values for a full 

scale earthbag structure. This uncertainty is due to the fact that the R values noted in 

design codes worldwide are values based on full scale tests of entire systems. In addition, 
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the wide variance between the two values makes it difficult to say for certain what the 

true R of the system is. Future testing would give a better indication of what the actual R 

value of earthbag systems is. The R values for this system can be said with some 

confidence to show the earthbag system that was tested was found to be more ductile than 

unreinforced masonry, as can be seen in Table 3 (CBC 2016). 

Table 3: R values for common building materials.  

Building System R Value 

Reinforced Concrete Shear Wall 5 

Ordinary Reinforced Masonry Shear Wall 2 

Light Frame Wood 6.5 

Steel Plate Shear Wall 6.5 

 

 In addition, the ultimate loads are in excess of what a similar wall might be expected to 

withstand based upon a design earthquake in San Jose, CA. Based on USGS spectral 

accelerations and the California Building Code, these walls should be able to withstand 

roughly 174 plf, or 696 pounds per four foot (4’) section. While loads of this magnitude 

would likely cause the earthbag walls to yield they are well below the ultimate failure 

forces. This is aligned with modern targets for seismic design of buildings, which allows 

for permanent damage but not complete collapse. All of this data indicates that these 

walls would likely be structurally acceptable for use in seismically active regions, 

provided the entire system is detailed properly.  

6.3 Soil Characteristics after Testing  

Wall 1 cured inside the SCU Civil Engineering Structures Lab for 75 days at an average 

humidity of 63%. Wall 2 cured inside the SCU Civil Engineering Structures Lab for 85 
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days at the same humidity as Wall 1. Moisture content tests were also performed on the 

bottom three courses of the walls as well as the middle course of the walls. The moisture 

content results for Walls 1 and 2 can be seen in Table 3 and Table 4, respectively. These 

soil samples were oven dried for 24 hours before they were weighed for a second time.  

Table 4: Moisture content results for Wall 1, Tested @ 75 days.  

 1st Weight (g) 2nd Weight (g) MC (%) 
MC Average 

(%) 

Bottom 
Course 

46.3 41.93 9.44  

39.57 36.1 8.77 9.06 

33.36 30.37 8.96  

2nd to Bottom 

42.2 38.79 8.08  

50.74 46.84 7.69 7.95 

36.07 33.15 8.10  

3rd to Bottom 

45.36 41.57 8.36  

38.21 35.11 8.11 8.24 

37.48 34.39 8.24  

Middle Course 

47.17 43.14 8.54  

42.31 38.76 8.39 8.36 

40.82 37.49 8.16  
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Table 5: Moisture content results for Wall 2, Tested @ 85 days.  

 1st Weight (g) 2nd Weight (g) MC (%) 
MC Average 
          (%) 

Bottom 
Course 

17.24 15.9 8.35  

24.15 22.35 7.87 8.11 

30.84 28.44 8.11  

2nd to Bottom 

30.82 28.67 7.30  

33.93 31.54 7.34 7.51 

32.61 30.14 7.88  

3rd to Bottom 

25.11 23.18 8.08  

25.44 23.46 8.18 8.13 

30.7 28.3 8.14  

Middle Course 

34.33 31.57 8.33  

34.42 31.58 8.54 8.44 

23.31 21.44 8.45  

 

6.4 Observed Status of Soil in Earthbags during Deconstruction 

An area of great interest for the project team was the condition of the soil in the bags post 

testing. Great care was taken by the team to ensure the soil was preserved in the state it 

was in after being tested. This meant cutting open each course starting from top to 

bottom, removing one course at a time. Overall, the soil in each of the courses for both 

walls was found to have held together in large cohesive chunks, separated by several 

large cracks. There was minimal crumbling of the edges of the courses, and the soil itself 

was dense and hard packed, with significant effort required to break the courses apart. 

There was concern within the team that movement of the walls on the forklift would 

damage the earthbags. After deconstruction of both walls was complete, there was 
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minimal indication of damage to the wall due to transportation. The typical status of the 

soil in the courses can be seen in Figure 20, below. 

 

Figure 20: Typical status of soil in courses of walls, Wall 2.  

Figure 20 was taken at mid-height of Wall 2. This course had many cracks along the 

width of the course, similar to what was observed for the majority of Wall 1’s courses. 

The lower portion of Wall 2 tended to have fewer cracks, but the upper and middle 

portions were similarly damaged. 

 The soil around the rebar splice from the first wall test can be found in Figure 21.  

 

Figure 21: State of soil around rebar lap splice, Wall 1.  



35 
 

One of the key components the group considered was the effects of the rebar splice on the 

nearby soil. The cracks that are observed in Figure 21 were found at both lap splices on 

Wall 1. The team believed these cracks developed from the rebar moving out of plane 

during testing. This out of plane movement, the team believes, was caused by the rebar 

being loaded by the bond beam at the top of the wall. The rebar was connected to the 

bond beam via the aforementioned coupler system, this is what allowed the rebar to be 

loaded in such a way that allowed for the out of plane movement observed in Wall 1. 

This back and forth movement created the same cracks observed in Figure 21 two to 

three courses above the rebar splice. This was due to the out of plane movement of the 

rebar occurring throughout the length of the stick of rebar. The bottommost piece of rebar 

did not experience the same out of plane movement. The marks left by the post driver, 

which was used to drive the rebar down the length of the wall, can also be seen in Figure 

21. It is not known to the team exactly what effect the impacts from the post driver had 

on the strength of the course. The team did try to mitigate damage to the course during 

the placement of the rebar. This took the form of slowly driving the rebar as the fence 

post driver approached the earthbag course as well as avoiding any alteration of the 

courses once the walls started the drying process.  

Figure 22, below, shows the soil around the rebar lap splice for Wall 2. 
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Figure 22: State of soil around rebar lap splice, Wall 2. 

Wall 2 did not develop the same level of cracks that were observed at Wall 1’s lap splice, 

but there was still some movement as can be seen by the small cracks originating from 

the rebar lap splice. Wall 2’s rebar did not experience the same level of buckling as was 

seen in Wall 1. The team believes this was because Wall 1 failed due to the force couple 

that occurred at the rebar lap splices. The compression component of the force couple 

created in the wall caused this buckling deflection in the wall that was discussed 

previously. This same force couple was not seen in Wall 2, as can be seen by the lack of 

cracked soil around the lap splice in Figure 22. The variations in the installation of the 

rebar, along with the variations in how the soil dried in the bags, created the conditions 

that allowed for the creation of the force couple observed in Wall 1 and not in Wall 2. 

Without the force generated within the wall by the force couple, the rebar within the 
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walls would not have sufficient enough force to create the movement required to generate 

the level of cracking observed in Wall 1.   

6.4.1 Observed Status of Barbed Wire during Deconstruction 

During deconstruction, the team also took note of the state of the barbed wire that 

was placed between each course. The team found that on average, 15 barbs out of 

the 20 were deformed due to the movement that occurred between the courses 

located at the rebar lap splices. The average in this case refers to the level of 

deformation listed above being constant for most layers in both Wall 1 and 2. A 

special case for the barbed wire deformation were the four courses located at the 

rebar lap splices for both walls. Although most of the barbs were found to be 

deformed at these lap splices, the barbs themselves did not cause a significant 

amount of damage to the polypropylene bags. This observation can be seen on 

Figure 23.  

   

                             Figure 23: Marks left by barbed wire placed, Wall 1.  
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These same sized holes were found throughout Wall 1, as well as on Wall 2. The 

team does believe the barbed wire played a significant role in preventing bag 

slippage, however, the team was expecting to see more substantial holes in the 

polypropylene bags by the barbed wire. The deformation observed in the barbs of 

the barbed wire showed how much the barbed wire prevented the shifting of the 

bags in both walls during testing. Additional images of the bag slippage that was 

observed for both walls can be found in Appendix A, pages A-17 through A-20. 

The barbs of the barbed wire located at the bottom four courses of both walls 

were found to be less deformed than the barbs located at other points in the walls. 

The team believed this was due to the shear forces failing to fully transfer from 

the top of the wall to the base. Most of the shear forces were found to have 

focused around the rebar lap splices, which accounted for the lack of transfer of 

forces to the base.    

6.4.2 Observed Status of Rebar during Deconstruction 

The rebar used in Wall 1 can be found in Figure 24 and 25. 

 Figure 24 (L) and 25 (R): Rebar used in Wall 1. 
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The rebar in Wall 1 was bent due to the testing protocol the wall was subjected to. 

This can be clearly seen in Figure 24 as this rebar was heavily subjected to the 

load being transferred from the bond beam down into the rebar. Figure 25 shows 

the rebar slightly bent, but this could be attributed to the lack of force couple that 

developed in this rebar lap splice. The team believes this was the case due to the 

aforementioned force couple that was developed in the wall, this led to the 

buckling failure that was observed. Wall 2’s rebar can be seen in Figure 26 and 

27, below.  

 

 

 

 

 

 

 

 

Figure 26 (L) and 27 (R): Rebar used in Wall 2. 

Wall 2’s rebar did not experience the same bending that the rebar from Wall 1 

experienced. The team believes this result was because Wall 2 did not experience 

the same buckling failure that was observed in Wall 1.  

 6.4.3 Observed Status of Top Course of Walls during Deconstruction 

Another point of interest for the project team was the top course and the bond 

beam interaction. The team had expected to see minor crushing of the soil located 
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at this interaction, however what was observed was more crushing than what was 

expected. Figure 28 shows the crushed soil that was seen after Wall 2’s test. The 

crushing seen in Figure 28, below, was observed in both Walls 1 and 2.  

 

Figure 28: Crushed soil found at the top layer and bond beam interaction, Wall 2.  

The team can credit most of the crushing of the soil at the top course and bond 

beam interaction due to the movement of the bond beam throughout testing. The 

bond beam also began to lift and separate from the top course, which resulted in a 

seesaw motion that would crush one side of the top course. This resulted in the 

crushing of the side opposite of the direction the TDOF was loading in as the test 

progressed from side to side.  

It is not known exactly how much of the soil crushing that occurred at the top 

course was due to nail shear, crushing from movement of the bond beam and 

installation of the bond beam onto the course. Crushing of the top course soil 

from nail shear and crushing from the movement of the bond beam should be the 

focus of a future team, as this project team did not have enough time to 

investigate this. 
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 The bond beam was placed using sledgehammers as the nails in the bond beam 

had to be pushed firmly into the top course. The team believes this caused a 

significant amount of crushing of soil in the top course for both walls. Future 

teams should take greater care in the installation of the bond beam to control for 

this unwanted crushing soil. The team recommends placement of the bond beam 

as soon as the top course is compacted and placed, if possible. If not, the top 

course’s soil should be rehydrated to allow for greater ease of installation, then 

allowing for enough time for the top course to dry around the nails from the bond 

beam. 

 

7.0 Humanitarian Impact of Project 

The original motivating factor to pursue a project related to earthbag building was a response to 

the housing crisis in Nepal following the Gorkha earthquake in 2015.  This factor played a huge 

part in outlining the scope of the project because determining the earthquake response of 

earthbag buildings will help to protect the people of this region after potential future earthquakes.  

With so many people around the world without housing due to natural disasters, more knowledge 

about earthbag homes could make a huge difference by providing adequate housing to people in 

need. 

The nature of earthen building has always been sustainable since the main building material is 

soil.  Soil can be sourced from anywhere and in practice is typically gathered directly from the 

site where a building is to be built.  The project team took this fact into account when deciding 

where to source soil from to build the earthbag walls.  Unable to gather soil directly from the 
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Santa Clara University campus, a decision was made to purchase soil from a nearby company to 

cut down on transportation and best mimic the local soil profile. 

8.0 Cost Estimate  

The team’s budget was designed within the constraints of the grant that was received from the 

Santa Clara University School of Engineering. The materials that were the most difficult for the 

team to acquire were the soil and the lumber for many of the design components. The need for 

high strength materials required the team to purchase structural select lumber, which increased 

the costs of the project. The team’s access to the SCU Civil Engineering Structures Lab greatly 

reduced the costs due to the lab’s resources being made available to the team. Table 6, below, 

indicates the components used during the project with prices and quantities included. 

Table 6: Cost estimate of project. 

Item 

Breakdown 

Description 
Quantity   Cost 

Earth Bags + 
Sewing Machine 

(Split between two 
teams) 

1 Roll 
Bag + 1 Sewing 

Machine 
@ 

 $350 
$100 

250 yd Superadobe Roll from calearth.org + Shipping and Taxes 
VEVOR Bag Closer - Amazon  

Soil  7 yd3 @ $250 Soil from Zanker Landfill 

Barbed Wire 1 Roll @  $90 1320 ft roll from Home Depot/Lowes 

Rebar 12 Rods @  $4 10 ft rods from Home Depot/Lowes 

Rebar Anchors - @  - Included in Rebar cost  

Wood Various Sizes @ $400  

One 3/4” Plywood Sheet 
Six 2 x 4 x 8’ 
Six 4 x 8 x 12’          All from Home Depot/Lowes 
Four 4 x 6 x 12’ 
Two 6 x8 x 8’  

 TOTAL:  $1200  



43 
 

 

9.0 Conclusions 

After testing was completed and data could be analyzed, the team had a couple major takeaways 

from the senior design project.  First and foremost, an average seismic ductility factor of six (6) 

shows that earthbag walls are much more ductile than the team originally anticipated. This 

ductility gave the team confidence that the common building practices currently used in earthbag 

construction, which involve the use of metal / wooden dowels with barbed wire between courses, 

are providing adequate ductility in the structures they are building. In the future, more testing 

will need to be done to continue to validate these findings and accurately determine a design 

strength value, such as an R value, for an entire earthbag home instead of just one four foot (4’) 

section of wall. 

 The team is confident in the R value of six (6) that was calculated for the four foot (4’) wall that 

was tested. This value, however, should not be used and extrapolated upon to design a full scale 

earthbag home, as this value is unique to the walls that were built for this project.  

As more research into the strength of earthbag walls is conducted, the team believes that it would 

be beneficial to expand styles of testing to a shake table. While a Three-Degree-of-Freedom 

(TDOF) test frame provides valuable information, a shake table could more accurately represent 

an earthquake. This accuracy is because a shake table would be able to simulate ground 

accelerations, which would load the walls from the bottom, as opposed to loading from the top, 

as was seen with the TDOF test frame. An advantage of using the TDOF test frame for lateral 

load tests is that it allows for the use of the CUREE testing protocol. The CUREE testing 

protocol lasts for three hours while a typical shake table test lasts only for a minute or two at 

most, as most large earthquakes last roughly this long. 
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Earthbag building shows a lot of promise regarding earthquake response, and more research is 

needed in the future to get a better idea of exactly how these walls perform.  Not only is earthbag 

building promising structurally, but it is a very sustainable building style as the soil can typically 

be sourced from the building site reducing carbon emissions for transportation and processing.  

This frugal building method could offer help to people displaced from their homes by 

earthquakes and any other factors around the world.  

9.1 Recommendations for Future Project Teams 

More research regarding earthbag walls is needed before any major recommendations or 

changes to code can be implemented and as a result, the team hopes that future students 

at SCU can continue building from this project.  Should students choose to do so, the 

team this year learned a couple of valuable lessons that would have helped the project run 

smoother had they been considered beforehand.  First, a better bond beam design is 

encouraged.  More specifically, a better connection between the rebar and threaded rod 

would be helpful because all these connections failed during testing of this project.  

Perhaps a higher quality coupler would suffice, but this project team highly advises a 

future team to consider this coupler design in a future, similar project.  In addition, using 

longer walls would be worthwhile, as it would likely result in a more shear controlled 

failure mode. This would result in lowered compressive forces, and less buckling in the 

walls. Second, the team this year failed to consider facility restraints in the initial design 

of the project.  This failure was especially true with the height of the walls because if the 

team was unable to work outside, the ceiling height would not have allowed enough 

space to drive the top strand of rebar into the walls.  Third, when moving the walls about 

on a forklift, the team realized that it is advantageous to add bracing to prevent tipping.  
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The team only did this while moving one wall, and the entire process was much less 

stressful when there was no concern that months of work might tip over in a matter of 

seconds.  These few issues, if fixed, should help future groups prevent some of the 

problems this team experienced and make the project run smoother. 

Should a team desire to research the mechanics of the reinforcement used in earthbag 

walls, one area of research recommended by the project team is looking into the 

relationship between rebar and the soil in the bags. This project team observed how the 

behavior at the interface between these two materials could be affected by both the clay 

content of the soil and the drying time. The team believes the drying time given for both 

walls in these experiments was sufficient enough for the clay in the soil to bond with the 

rebar, resulting in a strong connection between the two materials. As a result, this 

dynamic between soil and rebar and how friction in addition to the composition of the 

soil bonds the two together would be a great area for additional research. A pull-out test 

would be the best place to start with this experimentation. Further increasing the earthbag 

building community’s knowledge on this topic would be a great benefit to the field. 
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Appendix A 

 

Sieve Analysis of Soil 
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Concrete Base Beam Design. 
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Concrete Base Beam Design. 
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Concrete Base Beam Design. 
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Rebar Lap Splice in Walls. 
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Fastener Connections Used in Wall. 
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Design of Structural Timber Members for Wall Bases. 
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Expected Forces to be Seen in Wall During Testing. 
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Sieve Analysis of Soil 
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Concrete Base Beam Design. 
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Concrete Base Beam Design. 
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Concrete Base Beam Design. 
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Rebar Lap Splice in Walls. 
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Bond Beam Fastener Connection + Nail Shear Test. 
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Design of Structural Timber Members for Wall Bases. 
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Expected Forces to be Seen in Wall During Testing. 
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Free Body Diagram of Forces from TDOF to Wall. 
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R Value Calculations 
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R Value Calculations 
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R Value Calculations 
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Expected PLF for Walls. 
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Concrete Mix Design. 
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Concrete Mix Design. 
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Concrete Mix Design. 
 

 



A-17 
 

Movement of Courses in Lower Half of Wall 1. 
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Movement Observed at Top Courses for Wall 1  
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Movement Observed at Top Courses for Wall 2 
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Movement of Courses in Lower Half of Wall 1. 
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Installation of Nut + Washer for Bond Beam to Top Course connection at Top of Wall 2. 
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