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Abstract 
Rheumatoid arthritis (RA) is a widespread, debilitating autoimmune disease characterized by 
painful inflammation of the joints. Current treatments for RA are either ineffective, expensive, or 
have undesirable effects, such as an adverse immune response. To mitigate these effects, we 
have designed an exosome-based treatment for inflammation. We chose to utilize exosomes for 
their longer half-life in the body, better penetrative capacity, and biocompatibility, thus 
improving upon previous RA treatments. To do this, we created a stable cell line to produce 
exosomes modified at the surface to express a tumor necrosis factor receptor (TNFR), which 
possesses the ability to act as a decoy and soak up soluble tumor necrosis factor alpha (TNFα), a 
notable cytokine responsible for inducing inflammation. Exosomes were then harvested from this 
cell line and characterized with various imaging techniques to confirm that our desired 
modifications had been made. Then we tested the efficacy of our experiment in two models: 
direct treatment and coculture. Both models showed decreased levels of inflammation with the 
addition of our modified, treatment exosomes. If proven to be clinically successful, this therapy 
has the potential to be the first ever exosome decoy treatment.  
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1. Introduction 

 

1.1 Background and Motivation 
Over 1.3 million people suffer from rheumatoid arthritis (RA) in the United States. RA is a 

chronic autoimmune disease of unknown origin, the hallmark symptom of which is swollen, 

painful joints.1 Eventually, this condition can result in the irreversible destruction of joints. 

Unfortunately, current treatments for RA are limited and have numerous drawbacks. The most 

effective treatments for RA are protein-based biologics that prevent inflammation-causing 

cytokines from binding to cells, however, use of these drugs can result in suppression of the 

immune system, leading to serious and sometimes fatal infections. For this reason, we aimed to 

develop and test an anti-inflammatory therapy for RA that utilizes biocompatible nanoparticles 

called exosomes. 

 

1.2 Literature Review 
1.2.1 Rheumatoid Arthritis 

As a progressive autoimmune disease, RA results in chronic joint pain and stiffness that 

drastically reduces the quality of life in the people it affects. Typically, the disease manifests 

itself through severe discomfort in the hands and wrists, though it may also affect other regions 

of the body.2 The underlying pathophysiology behind RA is the body’s immune system attacking 

the joints, which leads to thickening of the synovium embedded in the joint capsule. In the 

disease mechanism, macrophages of the immune system secrete inflammatory cytokines: 

Interleukin-1 (IL-1), Interleukin-6 (IL-6) , and Tumor Necrosis Factor α (TNFα).3 Together, 

these cytokines stimulate fibroblast-like synoviocytes to proliferate uncontrollably, in part by the 

phenotypic suppression of contact inhibition. These fibroblast-like synoviocytes attract other 

                                                
1 S. Cohen and P. Emery, “The American College of Rheumatology/European League Against Rheumatism Criteria 
for the Classification of Rheumatoid Arthritis: A Game Changer,” Arthritis & Rheumatism 62 no. 9 (2010): 2592-
2594, doi:10.1002/art.27583. 
2 “NIAMS Health Information on Rheumatoid Arthritis,” National Institute of Arthritis and Musculoskeletal and 
Skin Disease, March, 21, 2018, Accessed June 10, 2018, https://www.niams.nih.gov/health-topics/rheumatoid-
arthritis. 
3 Ankur Shah,  Harrison's Principle of Internal Medicine, 18th ed., United States: McGraw Hill, 2738. 
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immune cells to the area, creating a chain of deleterious positive feedback that results in 

osteoclast and protease activation.4 This contributes to the degradation of both protective 

cartilage and bone, as observed in RA pathology.  

 

1.2.2 TNFα and the Inflammation Pathway 

As indicated above, pro-inflammatory cytokines IL-1, IL-6, and TNFα represent major players in 

the RA transduction cascade. Of these cytokines, TNFα responds the most rapidly, only a few 

hours after stimulation, and is found in high concentrations in the synovial fluid of affected 

patients.5 Further, research conducted on the interplay between these cytokines has illuminated 

the desirability of selective TNFα inhibition, which is sufficient in mitigating the downstream 

effects of IL-1 and IL-6, and thus reducing the inflammation response in RA.6 At the cellular 

level, inflammation is mediated through the NFkB pathway. When TNFα binds to the TNF 

receptor on the exterior cell membrane, the receptor stimulates an enzyme that activates NFkB, a 

transcription factor consisting of p65 and p50. Translocation of NFkB to the nucleus allows it to 

bind upstream of quintessential inflammation response elements, promoting transcription and 

upregulation of inflammation inducing cascades.7 Section 1.2.4 explains how we took advantage 

of this pathway to quantify inflammation in a cell culture model. 

 

1.2.3 Exosomes and their Therapeutic Potential 

Exosomes are naturally secreted nanovesicles roughly 30-100 nm in size originating from the 

intraluminal budding of multivesicular endosomes (MVEs).8 Once thought to be a system of 

cellular waste elimination, exosomes have recently been characterized as a model for cell-cell 

communication, revitalizing interest in their drug delivery capacity.9 Unlike liposomes and other 

synthetic nanoparticle vehicles, exosomes contain transmembrane and membrane-bound proteins 

                                                
4 Shah, 2738.  
5 M. Feldmann et al, “Definition of TNFα as a Therapeutic Target for Rheumatoid Arthritis,” TNF-Inhibition in the 
Treatment of Rheumatoid Arthritis, 2004, 1-22, doi: 10.3109/9780203624388. 
6 Feldmann.  
7 Z. Zhang et al, “AAV-Based Dual-Reporter Circuit for Monitoring Cell Signaling in Living Human Cells,” 
Journal of Biological Engineering 11, no. 1 (2017), doi:10.1186/s13036-017-0060-9, 18.   
8 J. Kowal and M. Tkach, “Biogenesis and Secretion of Exosomes,” Current Opinion in Cell Biology 29 (2014): 
116-125, Doi: 10.1016/j.ceb.2014.05.004. 
9 M. Rashed et al, “Exosomes: From Garbage Bins to Promising Therapeutic Targets,” International Journal of 
Molecular Science 18, no. 3 (2017): 538, Doi: 10.3390ijms18030538. 
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that could promote the endocytosis and delivery of their internal content.10 So far, exosomes 

have been suggested in a wide range of animal disease models, from cancer,11 to parasitic 

infection,12 and even as far as traumatic brain injury.13 

 

1.2.3.1 Exosome Biogenesis  

Exosome biogenesis is intimately associated with the endosomal system. Molecules on the 

plasma membrane are delivered to early endosomes in endocytic vesicles. Early endosomes 

mature into late endosomes where invagination of the membrane causes the formation of 

multivesicular bodies (MVBs) containing intraluminal vesicles.14 Finally, fusion of MVBs with 

the plasma membrane causes the release of the intraluminal vesicles, now called exosomes.  

 

Another known fate of late endosomes is fusion with the lysosome organelle, a transfer 

considered to be unidirectional.15 Soluble molecules within late endosomes, including 

intraluminal proteins tagged with ubiquitin, are transported to the lysosome for degradation.16 

Hence, molecules potentially secreted in exosomes could otherwise find themselves degraded. 

This alternate fate is important to note in our project to observe the extent of colocalization of 

our therapeutic exosomes within the lysosomal compartment. Unfortunately, not much is 

understood about cellular selection between the fates of late endosomes or MVBs since the 

population is thought to be distinctly heterogenous.17 

 

 

 

                                                
10 S. Kamerkar, and V. LeBleu, “Exosomes Facilitate Therapeutic Targeting of Oncogenic KRAS in Pancreatic 
Cancer,” Nature, 2017, 546: 498-503, Doi: 10.1038/nature22341. 
11 D. Moris and E. Beal, “Role of Exosomes in Treatment of Hepatocellular Carcinoma,” Surgical Oncology 26, no. 
3 (2017): 219-228, doi: 10.1016/j.suronc.2017.04.005. 
12 F. Aline et al, “Toxoplasma Gondii Antigen-Pulsed-Dendritic Cell-Derived Exosomes Induce a Protective 
Immune Response Against T. Gondii Infection,” Infection and Immunity 72, no. 7 (2004): 4127-37, doi: 
10.1128/IAI.72.7.4127-4137. 
13 Y. Xiong et al, “Emerging Potential of Exosomes for Treatment of Traumatic Brain Injury,” Neural Regeneration 
Research 12, no. 1: 19-22, doi: 10.4103/1673-5374.198966. 
14 N. Hessvik and A. Llorente, “Current Knowledge on Exosome Biogenesis and Release,” Cellular and Molecular 
Life Sciences 75, no. 2: 193-208, doi:10.1007/s00018-017-2595-9. 
15 Hessvik. 
16 Hessvik. 
17 Hessvik.  



 4 

1.2.3.2 Tetraspanin CD63 

CD63 is the most abundant of tetraspanin proteins and it is considered a hallmark localizer of 

exosomes.18 Tetraspanins consist of both intra and extra-vesicular domains, making them a great 

target for modifications.19 Previous studies have shown that both RFP and GFP have been fused 

with tetraspanin CD63 and used to track the secretion and uptake of modified exosomes.20 

 

1.2.4 Inflammation Reporter 

In order to quantify inflammation in vitro, we utilized a reporter that signaled when the NF-kB 

pathway was initiated. Specifically, we used a HEK 293 NF-κB GFP/Luciferase reporter. The 

reporter uses a adeno-associated virus (AAV) helper system that contains transcription factor 

response elements (TREs) followed by a minimal CMV promoter and GFP-2A-Firefly-

luciferase.21 When this dual reporter cell line is in the presence of the inflammatory cytokine 

TNFα, Nf-KB is activated and binds to the TREs which leads to the expression of both GFP and 

luciferase, which can be quantified and related to cellular levels of inflammation.22  
 

 

 

 

 

 

 

 

 

 

 

                                                
18 Z. Stickney et al, “Development of Exosome Surface Display Technology in Living Human Cells,” Biochemical 
and Biophysical Research Communications 472, no. 1 (2016): 53-59, doi: 10.1016/j.bbrc.2016.02.058, 53. 
19 Stickney, 53.  
20 Stickney, 54. 
21 Zhang, 2.   
22 Zhang, 5. 
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1.3 Drawbacks of Current Technologies 
Given rheumatoid arthritis prevalence in the US population, there is a plethora of medications 

and therapies currently used for treatment. However, many have significant drawbacks impacting 

patient quality of life. In Table 1-1, we outline the mechanism of current treatments, list their 

drawbacks, and propose how an exosome-based therapy may circumvent these problems.  

 

Table 1-1: Drawbacks of Current RA Treatments 

Treatment Mechanism of action Treatment side effects Exosome-based therapy 
solutions 

Non-steroid anti-
inflammatory drugs 
(NSAIDs) 

Reduces vasodilation by 
inhibiting production of 
prostaglandins23 

Adverse reactions in those 
with hepatic and renal 
sensitivities24 

Exosomes will not block 
prostaglandins 

Steroids Mimics anti-inflammatory 
properties of naturally 
secreted hormones10 

Can displace natural 
steroid production, 
creating dependency10 

Localized exosome 
therapy will not displace 
natural exosomes 

Disease modifying 
antirheumatic drugs 
(DMARDs) 

Reduces proinflammatory 
cytokines by reducing 
folate levels25 

Long-term liver toxicity12 Exosomes will not act on 
folate levels 

Biologics Inhibits inflammatory 
cytokines TNFɑ and IL-
626 

Increased infection risk, 
drug becomes ineffective 
if doses are skipped27 

Antibodies will not 
develop against treatment 
exosomes 

Physical therapy Maintains muscle strength 
and reduces 
inflammation28 

Accessibility and cost Not applicable 

Joint replacement 
surgery 

Removes joints too eroded 
to function29 

Risks of surgery, long 
recovery time 

Not applicable 

                                                
23 E. Ricciotti and G. Fitzgerald, “Prostaglandins and Inflammation,” Arteriosclerosis, Thrombosis, and Vascular 
Biology 31, no. 5 (2011): 986–1000, doi: 10.1161/atvbaha.110.207449. 
24 L. Crofford, “Use of NSAIDs in Treating Patients with Arthritis,” Arthritis Research & Therapy 15 (2013).  
25 M. Nurmohamed and B. Dijkmans, “Efficacy, Tolerability and Cost Effectiveness of Disease-Modifying 
Antirheumatic Drugs and Biologic Agents in Rheumatoid Arthritis,” Drugs 65, no. 5 (2005): 661-694, doi: 
10.2165/00003495-200565050-0006.  
26 J. Singh et al, “Adverse Effects of Biologics: A Network Meta-Analysis and Cochrane Overview,” Cochrane 
Database of Systematic Reviews 2. 
27 L. Putte et al, “Adalimumab,” TNF-Inhibition in the Treatment of Rheumatoid Arthritis, 2004, 71-88, doi: 
10.3109/9780203624388-5. 
28 V. Kavuncu and D. Evcik, “Physiotherapy in Rheumatoid Arthritis,” Medscape General Medicine 6, no. 2, doi: 
10.3109/9780203624388-5.  
29 “Joint Replacement Surgery,” National Institute of Arthritis and Musculoskeletal and Skin Diseases, October 4, 
2017, Accessed June 11, 2018. https://www.niams.nih.gov/health-topics/joint-replacement-surgery.   
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1.4 Project Goals and Constraints 
Our project goal is to take the specificity of biologics one step further using naturally secreted 

nanoparticles. However, it is important to note that our project is only one step in a long line of 

research necessary to safely implement a novel RA therapeutic. For instance, we cannot measure 

general clinical outcomes such as liver toxicity due to institutional limitations on animal testing, 

nor do we have the means to perform purity analysis. Our project, furthermore, is far from all-

encompassing; we do not aim to replace physical therapy or joint replacement surgery with our 

exosomal therapy, as they are required in extreme circumstances. Instead, we evaluated the 

efficacy of our exosomes in a cell culture model, extrapolating existing literature on exosomal 

treatment to make clinical predictions when appropriate. For this reason, we propose a proof of 

concept for reducing inflammation in vitro. 
 

Our project is nominally divided into three phases or goals. The first goal of our project was to 

create a stable cell line that produced engineered exosomes. The second goal involved 

confirmation of the desired modifications via fluorescence imaging. Following successful 

production of our therapeutic exosomes, we tested their efficacy in a quantitative assay in the 

third and final goal. 

 

1.4.2 Phase 1: Production 

In phase 1, we focused on creating a stable cell line that produced engineered exosomes capable 

of preventing inflammation. Next, we harvested these exosomes and store them for phases 2 and 

3 of our project.  

 

1.4.3 Phase 2: Characterization 

In phase 2, we aimed to confirm that we had made the desired modifications to our stable cell 

lines. We followed the biogenesis of exosomes using various markers to ensure that our TNFR 

had been added to the surface of the exosomes.  

 

 

 



 7 

1.4.4 Phase 3: Testing 

In phase 3, we utilized our reporter cell line to determine the effect of our engineered exosomes 

on the inflammatory response of human cells in vitro.  

 

1.5 Back-Up Plan 
Despite careful aseptic technique, research with mammalian cell lines is notably susceptible to 

unforeseen contamination in the form of bacteria or fungi. In order to prevent contamination that 

could jeopardize the timeline of our project, we continually made frozen copies of our stable cell 

lines to store at -80C. Although this procedure was critically important to staying ahead of 

deadlines, it is hardly unique to our project.  Project specific back-up plans include the option to 

engineer TNFR onto a different scaffold, such as VSVG or RD114, if our CD63-TNFR-GFP 

exosomes are not successful in significantly reducing inflammation.  Secondly, we could refocus 

our attention on other inflammatory cytokines implicated in the RA transduction cascade like IL-

1 and IL-6. 

 

1.6 Significance 
If our proposed therapy is successful in preventing inflammation in-vitro, it could be one of the 

first exosome-based therapies to be tested in animals and clinical trials. Due to the natural 

stability of exosomes in the body and the fact that they do not initiate an adverse immune 

response, our proposed therapy has the potential to be as effective as DMARDs or biologics 

without the significant drawbacks of those classes of drugs. The technology utilized by our 

proposed exosome therapy could also be applied to a number of other therapeutic uses, such as 

gene therapies, immunotherapies, and targeted drug delivery.  

 

1.7 Team Management 
As a team, we have shared equal responsibility maintaining our cell lines, designing and 

performing experiments, and analyzing data. Dr. Lu provides guidance through regular 

correspondence and weekly meetings.  
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1.8 Budget 
See Table 1-2 below for our project budget. 

Table 1-2: Project Budget 

Flasks and Plates $250 

Fetal Bovine Serum $250 

Culture Media $500 

TNFα $210 

Serum Free Media $120 

Luciferase Assay $250 

Endosomal Stains $500 

Transfection Reagent $1000 

Total Cost $3080 
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1.9 Timeline 
Our project timeline is outlined below in Table 1-3. 

Table 1-3: Project Timeline 

 Fall Quarter Winter Quarter Spring Quarter 

Establish Cell Lines      X   

Maintain Cell Lines X X X 

Characterize and Image 

Exosomes 

X X  

Track exosomes through 

endosome pathway 

 X  

Evaluate Dose Response  X X 

Write Thesis  X X 

Present Results   X 
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2. Creating Stable Cell Lines to Produce Therapeutic 

Exosomes 
 

2.1 Design Description 
In order to produce and collect modified exosomes efficiently, we decided to create two stable 

cell lines. Our treatment stable cell line utilizes CD63 tetraspanin to anchor a TNFR along with 

GFP to the surface of exosomes. Based on prior experimentation, we anticipated that this TNFR 

on the surface of the exosomes would soak up excess TNFα and thereby prevent the initiation of 

inflammation in cells. We also created a control stable cell line for experimentation purposes, 

replacing the TNFR with RFP. Both cell lines utilized HEK 293 cells transfected with our 

desired DNA constructs and a puromycin resistance gene in order to select for our transfected 

cells. 

 

2.2 Key Constraints 
To prevent cells without our desired construct from growing, we grew our stable cell lines in 

media containing the antibiotic puromycin for a period of 10 weeks. Antibiotics can be harsh on 

cells, so finding the correct dose that would kill cells without our desired modifications but 

would also allow the resistant cells to thrive can be difficult. One must consistently monitor the 

cells to ensure that only the cells without the desired modifications (the cells that do no fluoresce 

green) are killed off.  

 

2.3 Expected Results 
We expected to see GFP expressed in all of our HEK 293 CD63-TNFR-GFP cells and both GFP 

and RFP expressed in all of our HEK 293 CD63-RFP-GFP cells after the 10 week treatment with 

puromycin. This period of treatment should have been sufficient for killing off any untransfected 

cells. Final results are shown in section 6.1. 
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2.4 Materials and Methods 

The following table (Table 2-1) contains the necessary materials to create our stable cell lines.  

Table 2-1: Materials for Creating Stable Cell Lines 

Material Company/Brand Model # 

Passaging Mammalian Cells 
Materials (See Appendix) 

  

HEK 293 cells  N/A 

HEK 293 CD63-RFP-GFP Stable 
Cell Line 

  

DMEM + 10% FBS + PS media   

Puromycin 
ThermoFisher Scientific A1113802 

FuGene HD Transfection Reagent Promega E231A 

Microcentrifuge tubes Sigma-Aldrich/ Eppendorf Safe-
Lock  

T9661 

Opti-MEM Reduced Serum Media 
ThermoFisher Scientific 31985062 

DNA Plasmids (CD63-TNFR-GFP 
and CD63-RFP-GFP) 

Genscript  

 

Methods  

Day 1 

1.  Use protocol for passaging mammalian cells onto a 60mm x 15mm dish and incubate at 37°C 

for 24 hours. 

Day 2 

2. After 24 hours, combine reduced-serum media (Opti-MEM) and FuGene HD Transfection 

Reagent at a ratio of 2µg of DNA per 4µl of transfection reagent. 

3. Incubate at room temperature for 5 minutes.       
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4. Carefully add 1.5µg/mL of DNA plasmid into the reduced-serum media (Opti-MEM) and 

transfection reagent mixture.   

5. Incubate the mixture at room temperature for 20-30 minutes. 

6. Carefully add the mixture to the cell culture dish. 

7. Incubate the dish at  37°C for 24 hours. 

Days 4-70 

8. Add 5µg/ml of puromycin to 50 mL of DMEM + 10% FBS + PS media and repeat as needed. 

9. Use protocol for passaging mammalian cells and plate the cells in the media created in step 8. 
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3. Image Characterization of Therapeutic Exosomes 
 

3.1 Design Description 
After creating our treatment stable cell line (HEK 293 CD63-TNFR-GFP), we wanted to ensure 

that the exosomes it produced had been successfully modified. To do this, we decided to track 

the exosomes at each stage of their biogenesis. As discussed in the introduction, exosomes 

originate from the intraluminal budding of multivesicular endosomes. Therefore, we decided to 

utilize RFP stains for both early and late stage endosomes to visualize if our modified exosomes 

followed this path of biogenesis. We also utilized a lysosome tracker, as late stage endosomes 

can be digested by lysosomes. Finally, we performed a co-transfection of our stable cell line with 

an exosome localizer and RFP to ensure that our TNFR-GFP construct had successfully localized 

onto the surface of exosomes. All of the stains and the co-transfection were performed in a 4-

chamber glass bottom plate, as shown in Figure 3.1.1. 

 
Figure 3.1.1: Schematic of characterizing stains in a four-chamber plate. 

 

3.2 Key Constraints 
The key constraints for this portion of the project centered on the transfection and staining 

efficiency of our reagents. Some factors affecting this are cell confluency, reagent age, and 

seeding uniformity. Cell confluency and seeding uniformity can also affect image quality.  
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3.3 Expected Results 
We expected to see the GFP on our modified exosomes colocalize with the both the early and 

late endosome stains, as well as the RFP exosome localizer. When overlaying images taken with 

RFP and GFP filters, we expected to see the two colors overlap and appear yellow. Final results 

are shown in section 6.2. 
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3.4 Materials and Methods 

The following tables (Table 3-1) includes the necessary materials to perform the characterization 

experiments outlined in section 3.1.  

Table 3-1: Materials for Characterization 

Material Company/Brand Model # 

Passaging Mammalian Cells 
Materials (See Appendix) 

  

CD63-TNFR-GFP stable cell line Created in lab N/A 

Early Endosomes-RFP, BacMam 
2.0 

ThermoFisher/CellLight C10587 

Late Endosomes-RFP, BacMam 2.0 
ThermoFisher/CellLight C10589 

LysoTracker Red DND-99 
ThermoFisher/Invitrogen L7528 

Opti-MEM Reduced Serum Media 
ThermoFisher Scientific 31985062 

4-chamber 35 mm glass-bottom 
plate 

In Vitro Scientific D35C4-20-1.5-N 

1 g/L polyethylenimine (PEI) 
transfection reagent 

Created in lab N/A 

CMV-XP-RFP-EF1α expression 
vector 

System Biosciences/XPack XPAK531PA-1 

35 mm glass-bottom plate 
Matsunami Glass D35-14-1.5-U 
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Methods 

Day 1 

1. Seed cells for endosome imaging 

1.1. Use protocol for passaging mammalian cells to seed HEK 293 CD63-TNFR-GFP 

cells into all chambers of the 4-chamber 35 mm glass bottom plate at a density of 2x105 

cells/ml with DMEM + FBS + PS media.  

1.1.1. Each chamber of the glass-bottom plate contains 500 µL; add cells one 

chamber at a time to ensure equal cell density.  

1.2. Designate the 4 chambers as early endosome, late endosome, lysosome, and no 

transfection.  

1.3. Incubate at 37°C for 24 hours. 

2. Seed cells for exosome imaging 

2.1. Use protocol for passaging mammalian cells to seed HEK 293 CD63-TNFR-GFP 

cells into five 35 mm glass bottom plates at a density of 2x105 cells/ml with DMEM + 

FBS + PS media.  

2.2. Designate 4 plates to be transfected with CMV-XP-RFP-EF1α DNA and one plate to 

remain untransfected for control.  

2.3. Incubate at 37°C for 24 hours. 

Day 2 

3. Transfect cells with late and early endosome markers 

3.1. Estimate the number of cells in each chamber via light microscopy.  

3.2. Add 2 µL of early or late endosome mix per 45,000 cells to respective chambers.  

3.3. Incubate at 37°C for 16-24 hours. 

4. Transfect cells with exosome marker (for each transfected dish) 

 4.1. Aliquot 100 µL of opti-MEM media.  

4.2. Since each dish requires about 2µg of CMV-XP-RFP-EF1α DNA and 5 µL of 1 g/L 

PEI is required to encapsulate 1 µg of DNA, add 10 µL of PEI to opti-MEM.  

 4.3. Allow PEI and opti-MEM mixture to sit at room temperature for 5 minutes.  

4.4. Add 2µg of CMV-XP-RFP-EF1α DNA to mixture and allow to sit at room 

temperature for 20 minutes.  

4.5. Add 100 µL of mixture to each transfected dish.  
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4.6. Incubate dishes at 37°C for 24 hours. 

Day 3 

5. Stain lysosomes and image all cells 

5.1. Dilute stock LysoTracker Red DND-99 to a concentration of 50-75nM in cell culture 

media. 

5.2 Add 1µL of lysosome stain to designated chamber.  

5.3 Incubate at 37°C for 45 minutes.  

6. Capture phase contrast, RFP, and GFP images of each transfection at 40x 
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4. Testing Efficacy of Therapeutic Exosomes: 

Direct Treatment 
 

4.1 Design Description 
After creating our stable cell line, we wanted to test the efficacy of our CD63-TNFR-GFP 

exosomes. To do this, we added TNFα to half of the wells of our HEK 293 Nfkb dual reporter 

cells to simulate inflammation as well as varying concentrations (0.5mg/ml, 0.1mg/ml, and 0 

mg/ml) of our CD63-TNFR-GFP treatment exosomes or our CD63-RFP-GFP control exosomes. 

Each experimental condition was run in triplicate. We then utilized a luciferase assay to 

determine whether our treatment exosomes had successfully inhibited TNFα initiated 

inflammation in vitro. 

 

4.2 Key Constraints 
The key constraints for this portion of the project centered on the response sensitivity and 

volume of the HEK 293 Nfkb dual reporter cells. These constraints were controlled by reporter 

system expression and the number of seeded cells, respectively. A second constraint was the 

degradation of the luciferase assay reagent (LAR). LAR is time and light sensitive, therefore our 

results also depended on this substrate’s quality.  

 

4.3 Expected Results 
We expected to see a statistically significant reduction in luciferase fluorescence--corresponding 

to a reduction in inflammation--only when we add CD63-TNFR-GFP exosomes. We also 

expected this response to be dependent on the exosome concentration. Final results are shown in 

section 6.3. 
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4.4 Materials and Methods 
The following table (Table 4-1) includes the materials required to perform the direct treatment 

efficacy assay.  

Table 4-1: Materials for Efficacy of Design Experiment: Direct Treatment 

Material Company/Brand Model # 

Passaging Mammalian Cells 
Materials (See Appendix) 

  

DMEM + 10% FBS + PS media Created in lab N/A 
 

Serum-Free Medium without L-
Glutamine   

BioWhittaker/ UltraCULTURE 12-725F 
 

96 well plate, clear bottom Greiner Bio-one/Cellstar 655180 

Recombinant Human TNFα Protein R&D Systems 210-TA-020 

Materials for Luciferase Assay (See 
Appendix A4) 

  

 

Methods 

Day 1 

1. Seed cells 

1.1 Use protocol for passaging mammalian cells to seed HEK 293 NfKB reporter cells 

into 36 wells of the 96-well plate at a density of 1x105 cells/ml with DMEM + FBS + PS 

media.  

1.2 Incubate the plate at 37°C for 24 hours.  

Day 2 

2. Treat cells with recombinant human TNFα and exosomes. 

2.1 Add recombinant human TNFα protein to serum-free media to create a stock 

concentration of 100 ng/mL TNFα. 

2.2. Create stock concentrations of CD63-TNFR-GFP exosomes of 0, 0.1, and 

0.5mg/mL in serum-free media. 

2.3. Create stock concentrations of CD63-RFP-GFP exosomes of 0, 0.1, and 

0.5mg/mL in serum-free media. 



 20 

2.4. Add stock TNFα protein solution to appropriate exosome solutions to create a 

working concentration of 1 ng/mL TNFα.  

2.5 Tilt the plate and carefully aspirate the media off each well. 

2.6. Carefully add 100µL of the various serum-free media conditions to each well.  

2.7. Incubate at 37°C for 24 hours. 

Day 3 

3. Perform luciferase assay (See Appendix A4). 
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5. Testing Efficacy of Therapeutic Exosomes: Coculture 
 

5.1 Design Description 
In this experimental model, we wanted to determine the effect our CD63-TNFR-GFP exosomes 

would have in reducing inflammation in coculture with the HEK 293 Nfkb dual reporter cells. 

The cells were seeded in a 3:1 ratio of exosome producing cells to reporter cells. This allowed 

for a sufficient number of modified exosomes to be produced and released from the stable cell 

lines. HEK 293 CD63-RFP-GFP cells were used as control and plain HEK cells were used as 

background. Six wells of each coculture condition were plated and TNFα was added to half of 

the wells. A luciferase assay was then performed to determine the extent to which our exosomes 

inhibited TNFα. 

 

5.2 Key Constraints 
The biggest constraint with this experimental model was that we did not know how many 

exosomes were produced by the cells in coculture with the reporter cell line. Therefore, we were 

unable to determine an effective dosage of CD63-TNFR-GFP exosomes using this model.  

 

5.3 Expected Results 
We expected that the exosomes secreted by our stable cell line in coculture with the reporter cell 

line would effectively decrease levels of TNFα. However, since the overall concentration of 

treatment exosomes was likely lower in this model than in the direct treatment model, the effect 

was not as pronounced. Final results are shown in section 6.3. 
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5.4 Materials and Methods 

Table 5-1 includes the materials necessary to perform the coculture efficacy assay.  

 

Table 5-1 Materials for Efficacy of Design Experiment: Coculture 

Material Company/Brand Model # 

Passaging Mammalian Cells 
Materials (See Appendix) 

  

DMEM + 10% FBS + PS media Created in lab N/A 
 

Recombinant Human TNFα Protein R&D Systems 210-TA-020 

Serum-Free Medium without L-
Glutamine   

BioWhittaker/ UltraCULTURE 12-725F 
 

96 well plate, clear bottom 
Greiner Bio-one/Cellstar 655180 

Materials for Luciferase Assay (See 
Appendix A4) 

 N/A 

 

Methods 

Day 1 

1. Seed cells 

1.1 Create stock concentrations of exosome producing cells (HEK 293, HEK 293 CD63-

RFP-GFP, HEK 293 CD63-TNFR-GFP) and reporter cell line HEK 293-NfKB Dual 

Reporter in suspension at 1x105 cells/ml. 

1.2 Plate 100 ul per well comprised of 75 ul of exosome producing suspension and 25 ul 

of reporter cell suspension across the following groups: HEK 293 vs Reporter, RFP-GFP 

vs Reporter, TNFR-GFP vs Reporter.  

1.3 Incubate 48 hours 

Day 3 

2. Treat half the groups with Recombinant Human TNFα Protein at 1 ng/ml. Incubate 24 hours at 

37°C. 

Day 4 

3. Perform Luciferase Assay (See Appendix A4). 
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6. Results 
 

6.1 Creation of Stable Cell Lines 
We succeeded in creating a stable cell line that produces our modified, decoy exosomes, as well 

as a second stable cell line for experimental control. Figures 6.1.1 and 6.1.2 show the expression 

of our desired DNA constructs in HEK 293 cells. The localization of fluorescence to small dots 

outside the cells’ nuclei shows that our constructs have been integrated into the membranes of 

exosomes.  

 
Figure 6.1.1: HEK 293 CD63-TNFR-GFP stable cell line. Modified exosomes represented by GFP. 

 Images taken at 40x. 

 
Figure 6.1.2: HEK 293 CD63-RFP-GFP stable cell line for experimental control. Images taken at 40x. 
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6.2 Characterization 
Imaging confirmed that our desired modifications had been made to the surface of exosomes 

produced by the HEK 293 CD63-TNFR-GFP stable cell line. Images show colocalization of 

exosomes with both early and late stage endosomes (Figure 6.2.1 A and B), which demonstrates 

that our modifications are following the path of exosome biogenesis. As discussed in 1.2.3.1, 

exosomes may follow an alternate path and reside within lysosomes. Imaging shows that our 

modified exosomes also colocalize with lysosomes (Figure 6.2.1 C). An exosome-specific 

marker (XPACK-RFP) also colocalizes with our CD63-TNFR-GFP exosomes (Figure 6.2.2). 

Colocalization of each of the RFP markers with GFP is represented as yellow in the overlaid 

images.  

 
Figure 6.2.1: HEK 293 CD63-TNFR-GFP cells with A: Early Endosome RFP Marker, B: Late Endosome RFP 

Marker, and C: Lysosome RFP Marker. All images taken at 40x. 

 
Figure 6.2.2: HEK 293 CD63-TNFR-GFP cells with XPACK-RFP, an exosome localizer. Images taken at 40x. 
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6.3 Efficacy 
The presence of our treatment exosomes was successful in reducing levels of TNFα in both the 

coculture and direct treatment models. Inflammation was quantified in both models using the 

HEK 293 Nfkb dual reporter cell line. A decrease in levels of TNFα corresponds to a decrease in 

luminescence detected during our assay.  

 

As shown in Figure 6.3.1, our exosomes produced in coculture with the reporter cell line were 

able to significantly reduce (p=0.036) the levels of TNFα compared to the experimental 

condition with natural, HEK exosomes only.  

 
Figure 6.3.1: Efficacy of exosome producing stable cell lines in coculture with HEK 293 Nfkb dual reporter cells. 

N=9 from three separate trials. Error bars represent standard error of the mean. 
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The direct treatment model also showed a significant decrease in TNFα levels with the addition 

of 0.5mg/ml of CD63-TNFR-GFP exosomes (Figure 6.3.2).  

 

 
Figure 6.3.2: Efficacy of 0.5mg/ml exosomes added directly to HEK 293 Nfkb dual reporter cells. N=9 from three 

separate trials. Error bars represent standard error of the mean. 
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7. Discussion and Conclusion 
 

Our results show that the concept of an effective, exosomal decoy treatment for inflammation is 

possible. In the production phase of our project, we find that our stable cell lines expresses GFP 

and RFP, as expected. In the verification phase, we confirm that the particles our cell lines 

produce are exosomes due to colocalization features with other cell compartments. Most 

importantly, we prove that both models of efficacy experiments show a significant decrease in 

inflammation due to the presence of the exosomes we created. This fact, combined with the 

penetrative capacity known of exosomes and their longer biological half-life, indicates a solid 

footing into further exosome research for RA. If our treatment is proven to work in animal and 

human models, it has the potential to be one of the first exosomal treatments. Future work, such 

as purity testing, high-throughput production design, and observation of cytotoxic and organ 

system effects would be the best way to continue this project, but would require outside help and 

better equipment. 

 

We hope that our project will trigger more research into exosomal decoy therapies for other 

human diseases. Besides RA, exosomes have a promising ability to deliver enzymes to the lumen 

of the lysosomes for patients with a wide-variety of lysosomal storage diseases such as 

Gaucher’s or Tay Sachs.  
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8. Engineering Standards and Realistic Constraints 
 

8.1 Social impact 
By utilizing exosomes for our treatment, we believe that the therapeutic effects of our anchored 

TNF receptor will be superior to treatments utilizing soluble TNFR. This would primarily be due 

to exosomes’ long half-life in the body, as well as their ability to deeply penetrate inflamed 

tissues. This targeted therapeutic will also be less wasteful than current soluble TNFR 

treatments; soluble TNFR will degrade much faster than TNFR anchored to an exosomal 

membrane. Hopefully, this will result in the patient requiring fewer injections, which will 

improve their quality of life by decreasing the number of times they have to visit a doctor.  

 

8.2 Health and Safety 

Any medical therapy must undergo rigorous testing before being administered to humans. Our 

project is focused on manufacturing, characterizing, and testing therapeutic exosomes in vitro, 

and can therefore be classified as pre-clinical. The first step to ensuring the safety of our 

therapeutic would be to perform a toxicity assay in a mammalian cell culture model. 

Unfortunately, our lab does not have the resources to move forward with the next steps in safety 

testing. However, if our therapeutic were to proceed to clinical trials, it would be tested in 

animals before beginning four phases of human trials. 

 

8.3 Manufacturability 
A major issue encountered in our design project was the efficient and reliable production of 

engineered exosomes at a rate that would warrant its use as a therapeutic. Previous to our work 

on the project, the procurement of therapeutic exosomes required transient transfection of our 

construct immediately prior to each harvest being performed. Sustained gene expression 

guaranteed by stable cell lines allowed us to more quickly and reliably harvest therapeutic 

exosomes and cut down the cost incurred through prodigal use of transfection reagents.  

Further improvements to exosome harvest and purification could allow more efficient 

manufacturability in the future. Cellular exosome yield could be drastically heightened with the 

introduction of better, more suitable conditions using a controlled bioreactor. Modulation of pH, 



 29 

temperature, or agitation may change the ability of our cells to produce exosomes. Additionally, 

the efficacy experiments indicated that a high concentration of exosomes induced a modest 

reduction in the inflammation pathway response. However, we have reason to believe that the 

concentration indicated by the nanodrop lite may erroneously register the additive effect of 

artifacts and thus display false readings. A better protein expression system to gauge the purity 

and true concentration of our purified exosomes is needed to achieve desired manufacturability. 

 
8.4 Economic 
As we noted in our introduction, novel biologics that work via inhibition of inflammatory 

cytokines IL-6 and TNFα have the potential to induce antagonistic antibody production or allow 

the reactivation of latent infections such as tuberculosis. These could lead to far more expensive 

medical costs. Furthermore, effective use of these therapies requires regular and expensive 

treatment. Our exosomes have the potential to reduce cost by limiting the number of times a 

patient must return for treatment. Exosomes boast a longer half-life in the body, and do not 

threaten to evoke deleterious immune responses that pile up the medical bills. 

 

8.5 Ethical implications 

We chose to work on this project because we believed that this novel treatment had the potential 

to impact the millions of people suffering from a disease as debilitating as rheumatoid arthritis. A 

chronic illness severely limits patients’ autonomy and can prevent them from living a satisfying 

life. We hope that a therapy that aids symptom management for RA will promote patients’ 

autonomy. From a utilitarian point of view, developing a new treatment that will be less 

expensive for patients, ease their pain, and require them to visit the doctor less often is doing 

moral good.  

 
 
 
 
  



 30 

Works Cited 
Aline, F., D. Bout, S. Amigorena, P. Roingeard, and I. Dimier-Poisson. "Toxoplasma Gondii 

Antigen-Pulsed-Dendritic Cell-Derived Exosomes Induce a Protective Immune 

Response Against T. Gondii Infection." Infection and Immunity 72, no. 7 (2004): 4127-

137. doi:10.1128/iai.72.7.4127-4137.2004. 

Cohen, Stanley, and Paul Emery. "The American College of Rheumatology/European League 

Against Rheumatism Criteria for the Classification of Rheumatoid Arthritis: A Game 

Changer." Arthritis &amp; Rheumatism 62, no. 9 (2010): 2592-594. 

doi:10.1002/art.27583. 

Crofford, L. "Use of NSAIDs In Treating Patients with Arthritis." Arthritis Research and 

Therapy 15 (2013). 

Feldmann, Marc, Fionula Brennan, Richard Williams, and Ravinder Maini. "Definition of TNFα 

as a Therapeutic Target for Rheumatoid Arthritis." TNF-Inhibition in the Treatment of 

Rheumatoid Arthritis, 2004, 1-22. doi:10.3109/9780203624388-2. 

Hessvik, Nina, and Alicia Llorente. "Current Knowledge on Exosome Biogenesis and Release." 

Cellular and Molecular Life Sciences 75, no. 2 (2017): 193-208. doi:10.1007/s00018-

017-2595-9. 

"Joint Replacement Surgery." National Institute of Arthritis and Musculoskeletal and Skin 

Diseases. October 04, 2017. Accessed June 11, 2018. https://www.niams.nih.gov/health-

topics/joint-replacement-surgery. 

 

Kamerkar, Sushrut, Valerie Lebleu, Hikaru Sugimoto, Sujuan Yang, Carolina Ruivo, and Sonia 

Melo. "Exosomes Facilitate Therapeutic Targeting of Oncogenic KRAS in Pancreatic 

Cancer." Nature, 2017. doi:10.1038/nature22341. 

Kayuncu, V., and D. Evcik. "Physiotherapy in Rheumatoid Arthritis." Medscape General 

Medicine 6, no. 2. doi:10.3109/9780203624388-5. 

Kowal, J., and M. Tkach. "Biogenesis and Secretion of Exosomes." Current Opinion in Cell 

Biology 29 (2014): 116-25. doi:10.1016/j.ceb.2014.05.004. 

Moris, Demetrios, Eliza Beal, Jeffery Chakedis, Richard Burkhart, Carl Schmidt, Mary Dillhoff, 

Xufeng Zhang, Stamatios Theocharis, and Timothy Pawlik. "Role of Exosomes in 

Treatment of Hepatocellular Carcinoma." Surgical Oncology 26, no. 3 (2017): 219-28. 



 31 

doi:10.1016/j.suronc.2017.04.005. 

"NIAMS Health Information on Rheumatoid Arthritis." National Institute of Arthritis and 

Musculoskeletal and Skin Diseases. March 21, 2018. Accessed December 7, 2017. 

https://www.niams.nih.gov/health-topics/rheumatoid-arthritis. 

Nurmohamed, Michael T., and Ben A C Dijkmans. "Efficacy, Tolerability and Cost 

Effectiveness of Disease-Modifying Antirheumatic Drugs and Biologic Agents in 

Rheumatoid Arthritis." Drugs 65, no. 5 (2005): 661-94. doi:10.2165/00003495-

200565050-00006. 

Putte, Leo, Jochen Salfeld, and Zehra Kaymakçalan. "Adalimumab." TNF-Inhibition in the 

Treatment of Rheumatoid Arthritis, 2004, 71-88. doi:10.3109/9780203624388-5. 

Rashed, Mohammed, Emine Bayraktar, Gouda Helal, Mohamed Abd-Ellah, Paola Amero, 

Arturo Chavez-Reyes, and Cristian Rodriguez-Aguayo. "Exosomes: From Garbage Bins 

to Promising Therapeutic Targets." International Journal of Molecular Sciences 18, no. 

3 (2017): 538. doi:10.3390/ijms18030538. 

Ricciotti, E., and G. Fitzgerald. "Prostaglandins and Inflammation." Arteriosclerosis, 

Thrombosis, and Vascular Biology 31, no. 5 (2011): 986-1000. 

doi:10.1161/atvbaha.110.207449. 

Shah, Ankur. Harrison's Principle of Internal Medicine. 18th ed. United States: McGraw Hill. 

Singh, J., G. Wells, and R. Christensen. "Adverse Effects of Biologics: A Network Meta-

Analysis and Cochrane Overview." Cochcrane Database of Systemic Reviews 2 (2010). 

Stickney, Zachary, Joseph Losacco, Sophie Mcdevitt, Zhiwen Zhang, and Biao Lu. 

"Development of Exosome Surface Display Technology in Living Human Cells." 

Biochemical and Biophysical Research Communications 472, no. 1 (2016): 53-59. 

doi:10.1016/j.bbrc.2016.02.058. 

Xiong, Ye, Asim Mahmood, and Michael Chopp. "Emerging Potential of Exosomes for 

Treatment of Traumatic Brain Injury." Neural Regeneration Research 12, no. 1 (2017): 

19. doi:10.4103/1673-5374.198966. 

Zhang, Zhiwen, Zachary Stickney, Natalie Duong, Kevin Curley, and Biao Lu. "AAV-Based 

Dual-Reporter Circuit for Monitoring Cell Signaling in Living Human Cells." Journal of 

Biological Engineering 11, no. 1 (2017). doi:10.1186/s13036-017-0060-9. 

 



 32 

Appendix 
 

A1: Making Media: DMEM + 10% FBS + PS 
Table A1-1: Materials for Making Media 

Material Company/Brand Model # 

Dulbecco’s Modified Eagle 
Medium with L-Glutamine 
(DMEM) 

Thermo Fisher Scientific/Gibco 11965092  

Fetal Bovine Serum (FBS) Thermo Fisher Scientific/Gibco 10438034 

Penicillin-Streptomycin (PS) Thermo Fisher Scientific/Gibco 15140122 

 
 
1. Add 50 mL of FBS into a 500ml bottle of DMEM with L-Glutamine. 
2. Add 5 mL of PS to the combined FBS and DMEM. 
3. Mix thoroughly. 
4. Store at 4°C until needed. 
 
 

A2: Passaging Cells 
Table A2-1: Materials for Passaging Cells 

Material Company/Brand Model # 

DMEM + 10% FBS + PS media N/A N/A 

Phosphate Buffered Saline  
pH 7.4 (PBS) 

Thermo Fisher Scientific AM9625 

Trypsin 0.25% with phenol red Thermo Fisher Scientific  15050065 

15 mL conical-bottom centrifuge 
tubes 

VWR 89039-666 

 
 
1. Aspirate depleted media 
2. Wash with 3 mL of PBS. Pipet gently into side of plate. 
3. Aspirate PBS. 
4. Add 1.5 mL of trypsin to plate. 
5. Incubate at 37°C for 2 minutes. 
6. Deactivate trypsin with 4.5 mL of DMEM + 10% FBS + PS media.  
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7. Collect media in 15 mL centrifuge tube, spin at 1500 RPM for 5 minutes. 
8. Aspirate off supernatant. 
9. Resuspend the pellet in DMEM + 10% FBS + PS media. 
10. Plate at desired density. 
 
 

A3: Harvesting Exosomes 
Table A3-1: Materials for Exosome Harvest 

Material Company/Brand Model # 

Passaging Mammalian Cells 
Materials (See Appendix A1) 

  

Dish 145mmx20mm  Sigma-Aldrich/ Greiner 639160 
 

Serum-Free Medium without L-
Glutamine   

BioWhittaker/ UltraCULTURE 12-725F 
 

50 mL conical-bottom 
centrifuge tubes  

VWR  89039-658 

Syringe, 30 mL BD Biosciences/ BD Luer-Lok  

Sterile hydrophobic filter, 0.2 
micron  

BD Biosciences/ BD Influx  645270 

Exosome precipitation solution  SBI/ ExoQuick  EXOQ5A-1 

Phosphate-Buffered Saline pH 7.4 
(PBS)   

Thermo Fisher Scientific AM9625 

Cryogenic vials  Sigma-Aldrich/ Nalgene  V4757 

 
Day 1 

1. Seed Cells 

1.1. Using a passaging mammalian cells protocol (Appendix A2-B), seed stable cell lines 

onto 145mmx20mm dishes at 40-60% confluency (2-3x105 cells/mL) with DMEM + 

10% FBS + PS media. 

1.2. Incubate at 37°C for 24 hours or until 70-80% confluent. 

Day 2: 

2. Change media 
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2.1. Aspirate off DMEM + 10% FBS + PS media and replace with equal volume of 

serum-free media without L-glutamine. 

2.2. Incubate at 37°C for 48 hours.  

Day 4:  

4. Exosome Harvest Part I  

4.1. Collect the serum-free medium into a 50 mL centrifuge tube. 

4.2. Centrifuge the 50 mL centrifuge tube at 1500xg for 10 minutes. 

4.3. Filter the supernatant through a 0.2-micron filter with a sterile 30 mL syringe into a 

new 50 mL centrifuge tube. 

4.4. Add 1⁄4 of the supernatant volume of exosome precipitation solution.  

4.5. Incubate at 4°C for 24 hours. 

 

Day 5: 

5. Exosome Harvest Part II  

5.1. Centrifuge the 50 mL centrifuge tube from Day 4 at 3000xg for 45-90 minutes. 

5.2. Carefully aspirate off the supernatant, taking care to not disturb the pellet on the side 

of conical tube.  

5.3. Resuspend the pellet in 50 µl-100 µl of PBS. 

5.4. Store in a cryogenic vial at -80°C until needed. 
 
 

A4: Luciferase Assay 
Table A4-1: Materials for Luciferase Assay 

Material Company/Brand Model # 

Plate Reader BMG Lab Tech/LUMIstar Omega S/N 415-1717 

Luciferase Assay Buffer (LAB) Promega E1501 

Luciferase Assay Substrate (LAS) Promega E1501 

Passive Lysis Buffer (PLB) Promega E1501 

 

1. Prepare Luciferase Assay Reagent (LAR) by combining 10mL of LAB with an entire vial of 

LAS. Pipette up and down to mix. 
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2. Dilute the Passive Lysis Buffer (PLB) by combining stock with 4x volume of DI water. 

3. Add 20µL of diluted lysis buffer to each well. 

4. Mix with gentle rotations for 10 minutes. 

5. Turn on computer and plate reader. 

6. Set up plate reader to measure luminescence with a read time of 10 seconds and set the 

attenuation to none. 

7. Quickly add 100µL of LAR to each well, ensuring that the order in which you add the LAR is 

the order in which the plate reader will read the wells.  

8. Immediately run the plate in the plate reader. 
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