
Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-14-2018

Virtual Reality Sherlock: A Crime Scene
Reconstructor
Ellen Tseng
Santa Clara University, etseng@scu.edu

Ken Wakaba
Santa Clara University, kwakaba@scu.edu

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_senior

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Tseng, Ellen and Wakaba, Ken, "Virtual Reality Sherlock: A Crime Scene Reconstructor" (2018). Computer Engineering Senior Theses.
126.
https://scholarcommons.scu.edu/cseng_senior/126

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior/126?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

DEPARTMENT OF COMPUTER ENGINEERING

Date: June 13,2018

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Ellen Tseng
Ken Wakaba

ENTITLED

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINBERING

ZLj_

. ?-_
Thesis Advisor

Department Chair

Virtual Reality Sherlock: A Crime Scene Reconstructor

by

Ellen Tseng
Ken Wakaba

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science in Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 14, 2018

Virtual Reality Sherlock: A Crime Scene Reconstructor

Ellen Tseng
Ken Wakaba

Department of Computer Engineering
Santa Clara University

June 14, 2018

ABSTRACT

When an investigation team arrives to the scene, they only have a limited amount of time to gather as much
evidence as they can. Evidence can include, but is not limited to: fingerprints, pictures/videos, blood samples, or
any other biological evidence. Due to the limited amount of time, a few risks arise; they may not have collected
enough evidence, the evidence itself may not have captured the full scope of the scene, and the possibility that the
evidence itself may have been damaged or destroyed. Our aim is to develop a low-cost, customizable VR crime scene
reconstructor. This software allows CSI as well as the court to revisit a crime scene by inputting only the necessary
components of the crime in question based on previously collected data and witness accounts. Rather than using
expensive cameras to capture an overly-realistic scene, a solution that is not computationally expensive is required
because of not only the amount time it takes to render the setting, but also the requirement of high-end hardware to
process the data. We propose a reconstructor that allows the user to construct the scene piece by piece, which lets the
user understand the details individually rather than as a whole picture.We believe our VR simulator will be helpful
not only in training CSI investigators but also in the courtroom by allowing juries to concentrate on the most pertinent
details of a scene.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Related Work . 1
1.3 Objective . 1

2 Requirements 3
2.1 Functional . 3
2.2 Non-Functional . 3
2.3 Design Constraints . 4

3 Use Cases 5
3.1 View Scene . 5
3.2 Edit Scene . 6
3.3 Create Scene . 6

4 Activity Diagram 8

5 Technologies Used 9

6 Architectural Diagram 10

7 Design Rationale 11
7.1 Technology . 11
7.2 User Interface . 12

8 Description of System Implementation 13
8.1 Functional requirements . 13
8.2 Non-functional requirements . 15
8.3 Implementation . 15

9 Test Plan 16
9.1 Unit Testing . 16
9.2 Integration Testing . 16
9.3 Acceptance Testing . 16

10 Societal Issues 17
10.1 Ethical . 17

10.1.1 Group Ethics . 17
10.1.2 Project Ethics . 17

10.2 Social . 18
10.3 Political . 18
10.4 Economic . 18
10.5 Health and Safety . 18
10.6 Manufacturability . 19

3

10.7 Sustainability . 19
10.8 Environmental Impact . 19
10.9 Usability . 19
10.10Lifelong Learning . 19
10.11Compassion . 20

11 Conclusion 21

12 References 23

Appendices 25

A User Manual 26
A.1 Tutorial . 27
A.2 Create a Scene . 29
A.3 Load a Scene . 32

B Source Code 33

4

List of Figures

3.1 Use case diagram for VR Sherlock: A Crime Scene Reconstructor 5

4.1 Activity diagram for VR Sherlock: A Crime Scene Reconstructor . 8

6.1 Event Based Architecture for Sherlock . 10

8.1 Inventory menu with object spawned . 13
8.2 Save menu with date and time confirmation . 14
8.3 Scenes available for viewing . 14
8.4 A saved scene in sherlock . 15

A1 Start Menu . 26
A2 Controls Menu . 27
A3 Description of Sherlock . 27
A4 Introduction to Tutorial . 28
A5 Learning How to Grab Objects . 28
A6 Learning How to Select a Scene and Navigate Scene Buttons . 28
A7 Learning How to Spawn Objects and Move Them Around . 29
A8 Select to Create a Scene or Load a Scene . 29
A9 Select the Type of Environment For Your Scene . 30
A10 Day Scene Sandbox Upon Spawning In . 30
A11 Inventory Menu Options . 30
A12 Save Options . 31
A13 Load Scene Selection . 32
A14 Load Environmental Scene Selection . 32

5

Chapter 1

Introduction

1.1 Problem Statement

A crime scene is defined as an area where a crime has been committed and physical evidence pertaining to the crime
can be collected [1]. Crimes include, but are not limited to, homicide, car accidents, theft, and assault. When an
investigation team arrives to the scene, they only have a limited amount of time to gather as much evidence as they
can. The type of evidence gathered from a crime scene depends on the type of crime; a murder may have blood samples
to gather, whereas in a burglary, fingerprints may be left behind. Collected evidence entails pictures and videos taken
at the scene of the crime, as well as any biological evidence obtained. Though the team may be thorough in their
collection of evidence, some evidence may be neglected; the pictures themselves may not capture the full scope of the
scene, and the possibility exists of biological evidence being destroyed or damaged due to contamination or negligence
in the care of the evidence. Therefore, juries only have a limited view of a scene when the pictures are shown to them,
making it ever more difficult for them to come to a verdict.

1.2 Related Work

3D laser scanners are already on the market and survey the environment, saving the information collected from points
of references into memory. With multiple scanners combined, a larger recreation of a scene can be stitched together.
Unfortunately, scanners typically cost thousands of dollars, though smaller, cheaper ones are becoming available.
However, the range in scanning area is not as great and so it can still cost a lot of money to scan a large area. Although
helpful, the current technology can also be difficult to use. If the investigation team chooses to pursue the 3D modeling
route, they still must either hire an expert to scan the scene, or attempt to figure out the technology themselves [2].
The software, although powerful, can come with a large learning curve, which could be expensive both in time and
money to train others to use. Additionally, there is very little interaction with the results from these scans. Much like
Google Earth, users are able to view the scene in 3D but they cannot interact with any of the objects, such as picking
up certain objects.

1.3 Objective

Our aim is to develop a low-cost, customizable VR crime scene reconstructor. This software allows CSI (Crime Scene
investigation) teams as well as the court to revisit a crime scene by inputting only the necessary components of the
crime in question based on previously collected data and witness accounts. Rather than using expensive cameras to

1

capture an overly-realistic scene, a solution that is not computationally expensive is required because of not only the
amount time it takes to render the setting, but also the requirement of high-end hardware to process the data. We
propose a reconstructor that allows the user to construct the scene piece by piece, which lets the user understand the
details individually rather than as a whole picture. Though simplistic, the scene contains less noise and has less mate-
rials to process. With the added benefit of more efficient training, it can also remove any sort of bias people, especially
the jury, may have. From there, we can assign actions to human and car models to perform a playback of the crime
based on the information provided. Our solution provides a full visual of the crime view in different perspectives.We
believe our VR simulator will be helpful not only in training CSI investigators but also in the courtroom by allowing
juries to concentrate on the most pertinent details of a scene.

2

Chapter 2

Requirements

We have established three types of requirements to make sure that our system works and meets our criteria: functional
requirements, which describe how our system will work; non-functional requirements, which describe how a system
should behave; and design constraints, which provide limits on how our system operates. Each requirement has a level
of priority; Critical indicates that our system must include that requirement, and Suggested indicates that we would
like to include the requirement into our system but it is not mandatory.

2.1 Functional

The system will allow:

• users to edit the scene and the components that go along with it (critical)

• users to build the scene piece by piece (critical)

• scenes to be saved for future editing (recommended)

• users to input new data collected from the field such as photos (suggested)

• the viewing of different scenes (suggested)

• for multiple users, each with a VR headset, to view a scene at the same time (suggested)

• the ability to power save in case of power failure (suggested)

• allow for the connection of multiple Head-Mounted Displays (HMD) (suggested)

• allow users to scale objects within the scene (suggested)

2.2 Non-Functional

The system will:

• operate smoothly to prevent users from experiencing motion sickness from the frame per second delay (critical)

• allow scenes to be displayed in a clear manner (critical)

3

• be low cost (critical)

• have an intuitive user interface (recommended)

2.3 Design Constraints

• The system must be able to run on the Oculus Rift

4

Chapter 3

Use Cases

Within this chapter, we will list the use cases of Sherlock. Each use case will describe how an actor, in this situation a
user and the audience, will interact with our software and the actions/events that may take place [3].

User

View Scene

Audience

Edit Scene

Create Scene

VR Sherlock
Change

environmental
setting

Add an object

Delete an object

<<include>>

<<include>>

<<include>>

Figure 3.1: Use case diagram for VR Sherlock: A Crime Scene Reconstructor

3.1 View Scene

Goal: The user will be able to view a crime scene that has been previously created

Actor: User, Audience

Pre-Conditions: System must be on and user must have selected the option to start and select the option to view

5

Post-Conditions:User in a crime scene environment

Steps:

1. User turns on Crime Scene Simulator

2. User selects option to view crime scene

3. User selects which scene to view

4. Audience views from other HMDs or on a screen

Exceptions: No crime scenes have been previously created and saved

3.2 Edit Scene

Goal: The user will be able to enter the system and edit a previously created crime scene

Actor: User

Pre-Conditions: System must be on and a crime scene must have already been created

Post-Conditions: User has successfully edited certain components of the crime scene

Steps:

1. User turns on Crime Scene Simulator

2. User selects option to edit crime scene

3. User selects the scene in which they want to edit

4. User selects from multiple options what they want to add/remove/edit in the active scene

(a) User has the option to change the environmental setting of the crime scene
(b) User can open up the inventory menu and add more objects in
(c) User can select an object already in scene and delete it
(d) User can select an object already in scene and edit it if possible

Exceptions: No crime scenes have been previously created and saved

3.3 Create Scene

Goal: The user will be able to enter the system and create a crime scene

Actor: User

Pre-Conditions: System must be on and crime scene components must have been previously created

Post-Conditions: User has successfully created a crime scene

Steps:

6

1. User turns on Crime Scene Simulator

2. User selects option to create crime scene

3. User walks through steps to select different aspects such as time of day and environment object

Exceptions: No objects have been created for the user to user

7

Chapter 4

Activity Diagram

Figure 2 shows the activity diagram for the user. When the user starts up the VR program, he or she has the options to
create a scene, edit a scene, or view a scene if available.

[edit scene]

[view saved
scenes]

[save scene]

Open program

Press create
scene

Press start Press exit
[start] [exit]

[create scene]

Are there scenes
saved?

Go back

[yes]

continue to
new scene

open inventory

add objects

choose
settings

open a saved
scene

scene saved

confirm exit

[no]

[view scene]

interact with
objects

press exit
[exit]

Figure 4.1: Activity diagram for VR Sherlock: A Crime Scene Reconstructor

8

Chapter 5

Technologies Used

Hardware

• Oculus Rift Consumer Version (CV): The Oculus Rift CV comes with an HMD that provides 3D-like imaging
and audio, Constellation, its position tracking sensor, and motion controllers to operate the system [4].

Software

• Unity: Unity is a game engine that supports 3D graphics and scripting with C# which will be useful for pro-
viding models with actions. Unity also provides texturing and lighting tools that will enhance the simulated
environment [5].

• Autodesk Maya: Maya is a 3D modeling software that was used to model many of the objects in Sherlock. What
set it apart was that it includes a human rig which was useful in our development [6].

• Blender: Blender is a free 3D modeling software used to model many of the objects in addition to Autodesk
Maya [7].

• Adobe Photoshop: Photoshop is an image editing software that was used for the texturing and coloring of the
objects modeled in Autodesk Maya and Blender [8].

9

Chapter 6

Architectural Diagram

Figure 6.1 highlights the architectural design we chose. We deemed it best to use an Event Based architecture due to
the way our system will function [9]. The system will wait and listen for user input such as head movement of the
VR headset or input from the controllers. Once they system has received the input, it will then respond with an action
within the system such as processing an image/text or object manipulation.

Figure 6.1: Event Based Architecture for Sherlock

10

Chapter 7

Design Rationale

7.1 Technology

We chose to use the Oculus Rift as opposed to the HTC Vive [10] for various reasons. The Rift offers prolonged use
due to its level of comfort. With the padding provided around the face, adjustable straps, and a lighter, smaller profile,
it offers a higher level of comfort when compared to the Vive. The Rift is also more intuitive to set up and requires
less time. With the Vive, the sensors must be mounted at a specific height and are not allowed to move because it will
mess up the calibration; however, the Rift sensors can simply be placed on a table and plugged into the system it is
running on, making it more user friendly. In addition, the Rift controllers provide a hand-like presence with its gesture
controls versus the feel of gripping a long object like the HTC wand. With the added benefit of the SCU Imaginarium
housing many units of Oculus Rifts, acquiring a VR headset was fairly simple.

The Unity Game Engine is a top choice when it comes to VR development on the Oculus Rift. The game engine is
focused on simplifying the development of a new product or game with features such as the Unity Editor. Virtually
everything within the editor is visual, meaning you have the ability to select, build, and modify your product with
minimal effort. It also allows users to test their projects within the editor so they may preview the look the target
audience will receive. Unity also allows the benefit of scripting in either JavaScript, C#, and Boo. We chose to build
our design in C# because it allows for more flexibility and faster iterations. Once again because the SCU Imaginarium
is dedicated to VR development, the systems within the lab all have Unity licences for students to use, so there is no
need to buy the licences.

Our basic product will allow users to select objects to create their own crime scenes. To enable us to create these
objects, we chose to use a few 3D modeling softwares as well as image editors. Both Maya and Blender are 3D
modeling softwares but each offer their own benefits. When you are creating 3D objects, you first create the objects
texturing then you apply it onto the object model. These textures can be downloaded off the web or can be created from
scratch. We utilize Photoshop for texturing because it allows us to both edit any texturing we may have found from
the web and create our own. With the textures created, we then apply them onto the object model. Maya has a built in
human rig, which is essentially a full body skeleton that allows full control over any of its joints and movements. With
this added benefit, applying the textures onto the rig is made easy with Mayas user interface. We also use Blender for
3D modeling because it is more portable and less clustered, allowing intuitive use.

11

7.2 User Interface

The starting appearance of the software is based off of the holodeck from Star Trek [11]. Our idea is to have the user
enter a blank virtual world that slowly becomes a ”solid” environment. Rather than having static images produced by
3D laser scanners as it is with some crime scene reconstructors, we have the user add objects included in the software
(e.g. tables, chairs, knives, shattered glass, etc.)that we believe would be relevant to the crime scenes. We want our
software to be interactive and for the user to get all the details of an object. In a static scene, only one side of every
object is seen. With our design, we are giving the user the flexibility to interact with the scene with activities such as
picking up a piece of evidence and rotating it around.

We want the software to be intuitive and user-friendly. Upon starting, the user is shown a screen in the center of their
field of vision. Because the user has to look at a button before selecting it, we designed the menu screens in a way that
would only require limited head movements.

When a user creates a new scene or edits a scene, he or she is shown a screen that allows them to select the environment
setting of the scene. The five options provided (Day, Night, Cloudy, Raining, Snowing) determine the lighting for the
scene and provides the effect of being in a solid place rather than a virtual world. When it comes to adding objects
from the inventory provided, we have the user adjust the size and appearance so that it can fit the real crime scene as
closely as possible.

12

Chapter 8

Description of System Implementation

This section is dedicated to describing the functionality delivered in the final iteration of this product compared to the
requirements as well as how the product was developed.

8.1 Functional requirements

The system will allow:

• users to build the scene piece by piece

Our system provides an inventory menu for users to add objects into an environment. Users can grab an object
and place it wherever they wish as well as manipulate its rotation.

• users to edit the scene and the components that go along with it

Figure 8.1: Inventory menu with object spawned

13

• scenes to be saved for future editing

Figure 8.2: Save menu with date and time confirmation

• the viewing of different scenes

Figure 8.3: Scenes available for viewing

14

8.2 Non-functional requirements

The system will:

• operate smoothly to prevent users from experiencing motion sickness

• allow scenes to be displayed in a clear manner

Figure 8.4: A saved scene in sherlock

• be low cost

To use VR Sherlock, the user only needs and oculus rift and a computer.

• have an intuitive user interface

8.3 Implementation

With our goal and requirements outlined, we needed to begin building our product. This process involved enrolling in
the Virtual Reality Bootcamp courses. With the aid of this course, we created a user backlog listing our objectives.

First we compiled a list of items that would be in a crime scene, such as human bodies in various poses, knives, guns,
blunt objects, and blood. The items were modeled and textured in both Blender and Maya. They were then exported
into Unity where we adjusted the textures and size of each model. To make our project work for the Oculus Rift, we
imported Oculus’s Virtual Reality utilities and development kits into Unity. With these libraries, we were able to set
up an environment in which the user can move around with only the thumbsticks and use the right controller to point
and select.

Next came actually building the simulation so that the objects imported could be used. The environments created were
built in scene files that contained the data menus needed and the coded that allowed the objects to be generated. With
a menu selection script, the user is able to switch from scene to scene through the menu on the head up display. While
the user can build his or her own crime scene, we included two demo scenes as well for training purposes.

15

Chapter 9

Test Plan

9.1 Unit Testing

Unit testing is the testing of individual components of our project to make sure that they could work independently
of each other [12]. When building Sherlock, we used a bottom-up method, testing as we went. We would build
separate scene files, one for player control and grabbing of primitive objects, one for defining the size of the models
we imported, and several scenes for the menus and buttons.

9.2 Integration Testing

We would then integrate the scenes together, first with having the player grab the imported models to see if they were
the proper size and had the right bounding box for grabbing. We would then script the menu scene to lead to this
grabbing scene. Once all the user interface menus and controls were tested in their respective scenes and we ensured
that the communication between all components was smooth, we would then have Unity built the project and create
an executable file [13].

9.3 Acceptance Testing

For acceptance testing [14], while we were in the Virtual Reality Bootcamp class, we would have our peers and
professor test our executable file. We would also bring in people from outside the VR lab, especially those unfamiliar
with the device to test our project. Through their verbal and usage feedback, we would make adjustments to Sherlock
so that it would be more user friendly. This feedback is what inspired our tutorial scene.

16

Chapter 10

Societal Issues

10.1 Ethical

Due to the fact that we were the ones defining the specifications of our system, we had to consider the ethical implica-
tions that may come about during the development of our project.

10.1.1 Group Ethics

We examined the Association for Computing Machinerys Code of Ethics and the IEEE Code of Ethics during the
production of our project [15]. The code of ethics describe a set of principles in which all engineers should follow
when developing a product for the public. These rules, such as “Be honest and trustworthy” and “Give proper credit
for intellectual property” helped our group avoid any ethical issues that may arise. By following the set of principles
provided, we were able to work alongside each other with utmost trust and acknowledging and honoring each others
achievements. The Software Code of Ethics provides insight on how ethics can be applied to software developers [16].
Using these set of ethics, we ensured that Sherlock was developed with the publics’ interest in mind and ensuring that
it met professional standards.

10.1.2 Project Ethics

The biggest ethical concerns faced when developing Sherlock was the issue of our system being used by younger age
groups. One of our future goals is to place Sherlock in the Oculus Asset Store for free to allow the public to use.
The age group of VR users ranges from children to adult professionals with the majority in the younger generations.
Because our project is a crime scene reconstructor, it presents the possibility of scenes being created that may not
be suitable for young kids. It also raises the concern that our project may create a sense of violence in children by
presenting objects such as weapons during the VR experience. We address this issue by making reducing the number
of objects that may be deemed as graphic and violent. Although our project is intended to be used by adults who work
in the crime field, we were sure to take into account all the possible users that may come across our project. Another
ethical issue that was considered was the concern that people could “reverse engineer” these animations, meaning
there’s a possibility that one can plan how to commit a crime based on the outcome they want. Although there is no
sure way of preventing this from happening, we made sure that the functionality of Sherlock aids in solving crimes,
not facilitating and planning them.

17

10.2 Social

Sherlock was ultimately designed to aid not just the individuals in a crime scene unit, but each and every individual in
a community. With Sherlock giving CSI teams a better understanding of forensic investigation and more practice with
forensic analysis, the rate at which crimes will be solved should increase. With more cases being closed, crime rates
will drop as incarcerations go up, leading to a safer society to live in.

10.3 Political

We hope for the political impact of our project upon the society to be a positive one. We would like for our software
to be used in court as evidence as well as to help with testimonies. There have been numerous occasions in which the
evidence collected by CSI teams has led to wrongful convictions and imprisonment. This is a result of poor training of
the forensic teams and problems with the method in which they analyze the scenes and evidence themselves [17]. With
the help of our software, police departments can properly train their forensic teams how to better interpret evidence,
making it more concrete when used in court. This could also have the potential to reform forensic techniques.

10.4 Economic

There was no concern of money during the course of the project development. Most of our development was done in
the Unity Game Engine which can be downloaded for free from the Unity website. In addition, thanks to being granted
access to the Santa Clara University Imaginarium, all the resources needed to develop our software were provided to
us; the Unity Game Engine was downloaded on all computers along with Autodesk Maya, Blender, and Microsoft
Visual Studio. Each computer also had its own Oculus Rift configure to it.

If we were to develop our software on our own, the main cost of concern would be the Oculus Rift itself for testing and
ensuring our software runs in a VR environment, as well as the Autodesk Maya software which is a paid subscription,
much like Adobe Photoshop.

10.5 Health and Safety

There are quite a few health and safety concerns associated with our Senior Design project. When booting up the
headset, you are always presented with a safety warning about using the VR system. While wearing the headset, your
vision of the outside world is completely taken away, making you blind to the environment around you. This leads to
potential accidents such as tripping and falling over objects or hitting individual around you when using the system.
When setting up the play area, always ensure that you have given yourself enough room to move around and that all
of your surroundings have been cleared away.

Another health concern that is presented by not only our software, but VR systems in general, is the risk of eye
damage and motion sickness. As with staring at electronic screen such as tablets and phones, users have the potential
to develop myopia or what is commonly referred to as nearsightedness. Along with the risk of myopia comes eyes
stain, headaches, and for some users, nausea; “In real life, our eyes naturally converge and focus on a point in space,
and our brain is so used to this that it’s coupled the two responses together. Virtual reality separates those, confusing
the brain” [18]. This risk can be minimized by making sure the user does not use the headset for too long. If at any
point the experience is getting uncomfortable, remove the headset and stop looking at it.

18

10.6 Manufacturability

The production of our project was very cheap thanks to the resources that were provided to us by the SCU Imaginarium.
Sherlock only requires an Oculus Rift headset and a computer/laptop with a strong enough graphics card that supports
VR applications.

10.7 Sustainability

Our project will continue to be sustainable so long as we continue to modify and adapt the environment and objects
based on user experience and needs. There always be a need for forensic teams meaning that there will always be a
need for tools that will train said teams. As forensic analysis methods change, our software will change with it.

10.8 Environmental Impact

Our system does have an environmental impact because all our software is centralized within the headset and computer
itself. With the ability to view a scene that has been either previously created or imported in, users have no need to visit
the real life location in person. This removes the need of using transportation vehicles that could harm the environment
as a means of travel. In the aspects of visualization, instructors no longer have to print out visuals of what standard
scenes may look like or of what harmful objects might be. Instead, they can simply create a scene and either present
the scene to users or have the users immerse themselves in the scene. This removes paper products out of the situation.

10.9 Usability

We developed our software with usability and accessibility in mind. Our intended audience/users for our software are
CSI teams and team leaders who want to learn better methods of forensic analysis, as well as instruct others on those
methods. Our user interface is simple and quite intuitive for users. We ensured that along each step of the way our
users know how the system works by providing visual instructions as well as a tutorial to walk through our software
step-by-step. The User Experience is also important. Our goal is for first time users to come into the VR environment
and already have a sense of what to do and how to use the system.

10.10 Lifelong Learning

The biggest take away along our journey with Sherlock was a glimpse at how game and project development truly is
in the industry. We began with a simple idea and constructed a time-line in which our idea would turn into a working
product. We utilized the Scrum methodology, a growing agile project management methodology in the software
industry, as a way to plan and organize our goals and tasks. Using two week sprints, we were able to communicate
and coordinate efficiently to accomplish our goals, much as how professionals do in a full time position. Along with
learning and incorporating this methodology, we have learned to adapt and tackle any challenges that may come
along unexpectedly in development. Along with learning Unity development from scratch, our group was learning
and utilizing C# for the first time. These two technologies were the largest contributors to the development of our
software whenever we encountered errors or bugs in our software, it was our responsibility to read up and research
the technologies so that we know how to address the issue and prevent it in the future. The tech industry is always
incorporating new technologies as they gain popularity, causing others to become outdated. The ability to learn quickly
and adapt in the event of change is crucial in the field we will become a part of in the future.

19

10.11 Compassion

Compassion is the awareness of another’s suffering and the desire to alleviate the suffering. The goal for Sherlock
is to release the suffering and stress police departments and CSI teams have when a case is presented to them. As
stated earlier within the paper, one of the problems CSI teams encounter is the lack of evidence acquired or the
tampering/destruction of said evidence. With Sherlock, teams can be better equipped with knowledge when entering
a scene, being more efficient with their time and analysis. By doing so, both the team and the department are better
equipped to tackle the case at hand so that it can be closed at a swifter rate. Our functionality of being able to create
a scene makes it easier for instructors to communicate and provide a visual aid to their students to gain a better
understanding of forensic analysis methods.

20

Chapter 11

Conclusion

Our group was able to create a virtual reality software that will allow people to interact with a crime scene in a way
that they cannot in real life.

There were many obstacles that were faced along the way of developing our software but we were able to overcome
them and learn along the way. One of the biggest obstacles encountered was our work environment. Thank to the
generosity of Max Simms and the Santa Clara University Imaginarium, we were able to take advantage of working on
our system in the VR lab. However, this presented the issue of having to work locally, meaning that we always had to
travel and be in the VR lab itself to continue development. We would have to work around the class schedules since
there were courses still being taught in the lab, which meant that most of the time we would work late in the night.
Along with the fact that we has to work locally, all our work and data was saved locally onto the computers or on our
external hard drives. This meant that we had to work on the same computers each time and if they were occupied, had
to return at a later time. This also made integration and version control tedious because we always ran into the case
where one version would work on one computer but fail to work on another.

Even with all of these obstacles we were able to produce a concrete solution for crime scene analysis and investigation.
Our solution of allowing users to interact with the objects themselves rather than simply looking at a static image gives
them a better understanding of what is occurring in the scene itself. By creating objects of our own for the users to
utilize in the scene creation, we give them the freedom of focusing on specific details and instances. In a real crime
scene, there are a lot of details thrown at investigators all at once and it is virtually impossible for them to capture or
comprehend all that is going on. Our implementation allows users to focus on those details they missed, giving them a
better understanding of the scene. This also adds the benefit of eliminating the need for expensive cameras to capture
an overly-realistic instance of the crime scene.

As stated in Chapter 8, there were quite a few features in which we were able to complete and include into our system
but for the future there is still more work to be done. The saving feature of the software is functional but loading
still contains a few bugs that must be addressed. We will continue to implement and support additional objects as
development moves forward. An idea we also want to incorporate is an Object Indicator feature which, when users
hover over a certain object, will give a brief description of the object and its nature. Along with that, we would also
like to include animations for ”What Could Have Happened” when users are viewing a scene to give them visual cues
and a walk through of the scene. Once we are satisfied with our software and we have addressed all major issues, we
would like to release for public use on the Oculus Store.

Overall, developing the software was an informative experience. Having no prior VR development experience, every
step along the way was a learning experience. We were able to take advantage of the Unity Game Engine and its
powerful yet intuitive UI to create our game environments and scenes. We also began learning C# which is the choice
language when developing in Unity. Of course learning a language is an ongoing process but we were able to gain
a great deal of knowledge while working with it. Even with the obstacles and constraints, we experienced first hand

21

what game development, as well as project development, look like and we were able to work efficiently as a team to
produce software in which we are proud of and we look forward to continuing development on our project.

22

Chapter 12

References

[1] USLegal, ’Crime Scene Law and Legal Definition’. [online] Available at: https://definitions.uslegal.com/c/crime-
scene. [Accessed: 31- May- 2018].

[2] NCAVF, ’Forensic Crime Scene Reconstruction, Virtual Reality’. [online] Available at: http://www.ncavf.com/what-
we-do/crime-scene-reconstruction. [Accessed: 28- Sep- 2017].

[3] Jacobson Ivar, Christerson Magnus, Jonsson Patrik, vergaard Gunnar, ”Object-Oriented Software Engineering” - A
Use Case Driven Approach, Addison-Wesley, 1992. [Online] Available at: https://en.wikipedia.org/wiki/Use case#cite ref-
1 [Accessed: 11- June- 2018]

[4] Oculus VR, ”The Oculus Rift, Oculus Touch, and VR Games at E3”, June 11, 2015. [Online] Available at:
https://www.oculus.com/blog/the-oculus-rift-oculus-touch-and-vr-games-at-e3/ [Accessed: 11- June- 2018]

[5] Unity, ”Game Engines - How do they work?”. [Online] Available at: https://unity3d.com/what-is-a-game-engine
[Accessed: 11- June- 2018]

[6] Autodesk, ”Maya features”. [Online] Available at: https://www.autodesk.com/products/maya/overview [Accessed:
11- June- 2018]

[7] Blender, ”About”. [Online] Available at: https://www.blender.org/about/ [Accessed: 11- June- 2018]

[8] Adobe, ”Adobe Photoshop CC”. [Online] Available at: https://www.adobe.com/products/photoshop.html [Ac-
cessed: 11- June- 2018]

[9] Techtarget Network, ”Event-driven architecture (EDA)”. [Online] Avaliable at: https://searchmicroservices.techtarget.com/definition/event-
driven-architecture-EDA [Accessed: 11- June- 2018]

[10] Vive, ”VIVE VR SYSTEM”. [Online] Available at: https://www.vive.com/us/product/vive-virtual-reality-system/

[AccesseD: 11- June- 2018]

[11] Star Trek, ”Holodeck”. [Online] Available at: http://www.startrek.com/database article/holodeck [Accessed: 11-
June- 2018]

[12] D. Huizinga and A. Kolawa, Automated defect prevention: best practices in software management. Hoboken, NJ:
Wiley-Interscience, 2007, pp. 75

[13] M. A. Ould and C. Unwin, Testing in software development. Cambridge: Published by Cambridge University
Press on behalf of the British Computer Society, 1994.

23

[14] R. Black, Managing the testing process: practical tools and techniques for managing software and hardware
testing. Indianapolis, MN: Wiley, 2009.

[15] ACM, ’ACM Code of Ethics and Professional Conduct’. [Online] Available at: https://www.acm.org/about-
acm/acm-code-of-ethics-and-professional-conduct. [Accessed: 2- June- 2017].

[16] IEEE, ’Software Engineering Code of Ethics’. [Online] Available at: https://www.computer.org/web/education/code-
of-ethics. [Accessed: 2- June- 2017].

[17] The Washington Post, ’Forensic science not as reliable as you may think’. [Online] Available at: http://www.pulitzer.org/files/finalists/2013/washpostps2013/washpostps05.pdf
[Accessed: 26- May- 2018].

[18] CNN, ’The very real health dangers of virtual reality’.[Online] Available at: https://www.cnn.com/2017/12/13/health/virtual-
reality-vr-dangers-safety/index.html [Accessed: 26- May- 2018].

24

Appendices

25

Appendix A

User Manual

Below are the instructions on how to use Sherlock. It has been broken up into 3 main components: Instructions on
how to run the Tutorial, how to Create a Scene, and how to Load a Scene

When Sherlock is initially loaded, the user will spawn in a cube like structure where they will be presented with the
initial Main Menu in their front view.

Figure A1: Start Menu

By turning their head and with it the Oculus Rift headset, they will see a panel which will display basic instructions
and functions for the touch controllers; this includes how to grab an object, how to select objects, and how to move
using the joy-cons. The Main menu will display 4 separate options in which the user can select.

26

Figure A2: Controls Menu

Option 1 is to click the Start button, which will prompt another menu to appear displaying the options to Create a
Scene or Load a Scene. This will be explained in more detail in subsections B.2 and B.3.

Option 2 will allow the user to select to run the Tutorial. The tutorial is meant for users who are not familiar with
Sherlock and would like some more insight and practice with it. The Tutorial will be explained in detail in subsection
B.2.

Option 3 will give the user a brief description of what Sherlock is and our main mission and intent was for creating it.

Figure A3: Description of Sherlock

The last option allows the user to select to quit the application when they are ready to do so.

A.1 Tutorial

Once you select the Tutorials Option, you will be prompted with the initial tutorial page where you will be reminded
once more how to move around in the environment using the touch controllers. To proceed to the next part of the
Tutorial, you will need to move over to the light blue box located in the right corner behind your avatar.

Once you proceed to the square, you will spawn in the next section of the tutorial where you will learn how to not only
move faster in your given environment, but also learn how to grab an object as seen in Figure 11. As you spawn in, a
table will fall from above and land right in front of your avatar. Walk forward and pick up the table with either one of
your hands, and walk over to the cube over to the right and drop the table on top of the cube.

27

Figure A4: Introduction to Tutorial

Figure A5: Learning How to Grab Objects

Once you drop the table on the cube, you will spawn once more in a different portion of the tutorial where you will
learn how to create a scene, as well as what each of the buttons do once you are in the scene, as seen in Figure 12 and
Figure 13.

Figure A6: Learning How to Select a Scene and Navigate Scene Buttons

Once you select Next, you will spawn into the last portion of the Tutorial where you will have the chance to learn how
to spawn items and use the inventory menu. When you spawn in, the Inventory Menu will be located to the left of

28

you avatar. To spawn an object, simply hover the cursor over the desired object and press the A button on your right
touch controller. The object will then spawn in the scene. From there you will have the ability to pick up the object and
move it around, similar to how you grabbed the table earlier in the tutorial. Once you are satisfied with the Tutorial,
simply press the Back button and you will spawn back to the Start menu.

Figure A7: Learning How to Spawn Objects and Move Them Around

A.2 Create a Scene

To Create a Scene select the Start when you first enter Sherlock. You will then be prompted with two options, Create
Scene or Load Scene. Select Create Scene.

Figure A8: Select to Create a Scene or Load a Scene

The next menu will display five separate environmental options: Day, Night, Cloudy, Raining, and Snowing 1. Once
the user has selected an environmental scene, they will be spawned into an empty sandbox environment with nothing
around them.

Within you selected environment, you will spawn with a few item in view. There will be an Menu button floating
above the scene as well as the user guide for the touch controllers (note that as you swivel your head to the left/right,
the menu button and user guide follow your gaze). At any point in the scene if you wish to make the menu disappear,
simply press the B button located on you right touch controller. To the right of your avatar located at the top right
corner of the sandbox will be the trash can. When spawning objects if you wish to remove them, you simply need to
pick them up and drop them on top of the trash can. The objects will then disappear from the scene.

1The difference is only apparent in the visual of each scene, not in the functionality. All objects will function exactly the same in a Day scene as
opposed to a Snowing scene. The purpose of the distinction is so each scene can have a more realistic feel for the user once they are inside.

29

Figure A9: Select the Type of Environment For Your Scene

Figure A10: Day Scene Sandbox Upon Spawning In

When you are ready to begin spawning objects and placing them where you wish, press the Menu button to spawn
more options. Once selected, an Inventory button, Quit button, Save button, and Load button will appear as seen on
Figure 17.

Figure A11: Inventory Menu Options

The Inventory button simply allows you to make the inventory menu appear or disappear (Remember, you can make
the entire menu disappear by pressing the B button on your right touch controller). To spawn objects into the scene,
simply hover the cursor over the desired object and press the A button. The object will then spawn in front of you.
From there, you will have the ability to pick up and move the object to your desired location within the scene.

When you are ready to save your scene, press the Save button. Once selected, new options will appear as seen in
Figure 18. You will be prompted to select one of 4 save slots to save your scene. Once you know which slot you wish
to save in, hover over the slot button and press A (Note that when you press the button, the text on the button will
change to show the current date and time, giving you visual confirmation that the save has occurred).

30

Figure A12: Save Options

At any point when you are working on you scene you can return to the Save option to save your scene 2. Once you are
satisfied with your scene, select the Quit button to return to the Start Menu.

2The system does not support Auto Save so please ensure to save periodically.

31

A.3 Load a Scene

To Load a Scene select the Start when you first enter Sherlock. You will then be prompted with two options, Create
a Scene or Load a Scene. Select Load Scene. Once selected, you will be prompted with a menu seen in Figure 19.

Figure A13: Load Scene Selection

You are given two types of scenes in which you can load, Demo Scenes and Saved Scenes. The Demo Scenes are
scenes provided to you by the developers to demo the system 3. The Saved Scenes are the scenes created and saved
by the actual users themselves. The scenes are organized by the five types of environment they were saved in.

Figure A14: Load Environmental Scene Selection

Selecting one of the folders will display a menu much like Figure 20 where you will be presented with the previously
saved scenes if users have worked in that environment before. There will be four slots in which scenes have been
saved, each having the date and time in which the scene is saved, along with a screen shot of when the save button was
pressed. To load a scene, simply hover the cursor over one of the images and press the A button on your right touch
controller 4. Selecting the Back button will bring back the options to select Demo Scenes or Saved Scenes.

3When you load into a Demo Scene, you will only be able to interact with a few of the objects of the scene. This is different than Create Scene
where you have full control in the movement and placement of objects

4The Load feature has yet to be fully supported with the current version of the system

32

Appendix B

Source Code

u s i n g System . C o l l e c t i o n s ;
u s i n g System . C o l l e c t i o n s . G e n e r i c ;
u s i n g Un i tyEng ine ;
u s i n g Un i tyEng ine . UI ;
u s i n g Un i tyEng ine . SceneManagement ;
u s i n g Un i tyEng ine . Even tSys tems ;

p u b l i c c l a s s NewMainMenu : MonoBehaviour
{

i n t c o u n t = 0 ;

p u b l i c void B t n T e s t ()
{

Debug . Log (EventSys tem . c u r r e n t . c u r r e n t S e l e c t e d G a m e O b j e c t . name) ;
}

p u b l i c void PlayGame ()
{

SceneManager . LoadScene (SceneManager . G e t A c t i v e S c e n e () . b u i l d I n d e x + 1) ;
}

p u b l i c void QuitGame ()
{

Debug . Log (” Qu i t ” + ++c o u n t) ;
A p p l i c a t i o n . Qu i t () ;

}

p u b l i c void LoadAddOnClick (i n t l e v e l)
{

SceneManager . LoadScene (l e v e l) ;
}

}

u s i n g System . C o l l e c t i o n s ;

33

u s i n g System . C o l l e c t i o n s . G e n e r i c ;
u s i n g Un i tyEng ine ;
u s i n g Un i tyEng ine . UI ;

p u b l i c c l a s s D e l e t e O b j e c t : MonoBehaviour {

void Update ()
{

i f (OVRInput . Get (OVRInput . Bu t t on . Three))
{

Debug . Log (” works ”) ;
D e s t r o y (t h i s) ;

}

}

}

u s i n g System . C o l l e c t i o n s ;
u s i n g System . C o l l e c t i o n s . G e n e r i c ;
u s i n g Un i tyEng ine ;
u s i n g System . IO ;
u s i n g System . G l o b a l i z a t i o n ;
u s i n g System . Text ;
u s i n g Un i tyEng ine . SceneManagement ;
u s i n g Un i tyEng ine . UI ;

p u b l i c c l a s s Spawn : MonoBehaviour {
p r i v a t e boo l spawned = f a l s e ;
p r i v a t e f l o a t decay ;

p u b l i c L i s t <GameObject> a l l O b j e c t s = new L i s t <GameObject > () ;
p u b l i c s t a t i c L i s t < s t r i n g > o b j e c t l i s t = new L i s t < s t r i n g > () ;

[S e r i a l i z e F i e l d]
p u b l i c s t a t i c L i s t <UserData> o b j e c t D a t a = new L i s t <UserData > () ;

p u b l i c O b j e c t spawn ;
p r i v a t e s t a t i c Canvas inGameCanvas ;
p r i v a t e s t a t i c i n t c h i l d C o u n t ;

p r i v a t e s t a t i c i n t o b j e c t C o u n t ;

Scene s c e n e ;
s t r i n g D a y F i l e L o c a t i o n , N i g h t F i l e L o c a t i o n , C l o u d y F i l e L o c a t i o n , R a i n F i l e L o c a t i o n , S n o w F i l e L o c a t i o n , Fi leName1 , Fi leName2 , Fi leName3 , Fi leName4 , a c t i v e S c e n e , f i l e S c e n e ;
p r i v a t e s t a t i c s t r i n g pa th1 , pa th2 , pa th3 , p a t h 4 ;
UserData myData ;
s t r i n g d a t a ;

L i s t < s t r i n g > r e a d L i s t = new L i s t < s t r i n g > () ;
s t r i n g readTime1 , readTime2 , readTime3 , readTime4 ;

34

Vec to r3 V P o s i t i o n ;

p u b l i c void LoadAddOnClick (i n t l e v e l)
{

SceneManager . LoadScene (l e v e l) ;
sw i t ch (l e v e l)
{

case 3 :
a c t i v e S c e n e = ” dayScene ” ;
break ;

}

Debug . Log (” A c t i v e Scene ” + a c t i v e S c e n e) ;

/ / Sys tem . DateTime l o c a l D a t e = Sys tem . DateTime . Now;
/ / Debug . Log (l o c a l D a t e . T o S t r i n g (” g ”)) ;

D a y F i l e L o c a t i o n = A p p l i c a t i o n . d a t a P a t h + ” / Saves / DaySaves ” ;
N i g h t F i l e L o c a t i o n = A p p l i c a t i o n . d a t a P a t h + ” / Saves / N i g h t S a v e s ” ;
C l o u d y F i l e L o c a t i o n = A p p l i c a t i o n . d a t a P a t h + ” / Saves / CloudySaves ” ;
R a i n F i l e L o c a t i o n = A p p l i c a t i o n . d a t a P a t h + ” / Saves / RainSaves ” ;
S n o w F i l e L o c a t i o n = A p p l i c a t i o n . d a t a P a t h + ” / Saves / SnowSaves ” ;

Fi leName1 = ” SaveData1 . t x t ” ;
F i leName2 = ” SaveData2 . t x t ” ;
F i leName3 = ” SaveData3 . t x t ” ;
F i leName4 = ” SaveData4 . t x t ” ;

sw i t ch (a c t i v e S c e n e)
{

case ” dayScene ” :
p a t h 1 = Pa th . Combine (D a y F i l e L o c a t i o n , Fi leName1) ;
p a t h 2 = Pa th . Combine (D a y F i l e L o c a t i o n , Fi leName2) ;
p a t h 3 = Pa th . Combine (D a y F i l e L o c a t i o n , Fi leName3) ;
p a t h 4 = Pa th . Combine (D a y F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” n i g h t S c e n e ” :
p a t h 1 = Pa th . Combine (N i g h t F i l e L o c a t i o n , Fi leName1) ;
p a t h 2 = Pa th . Combine (N i g h t F i l e L o c a t i o n , Fi leName2) ;
p a t h 3 = Pa th . Combine (N i g h t F i l e L o c a t i o n , Fi leName3) ;
p a t h 4 = Pa th . Combine (N i g h t F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” c lo ud y ” :
p a t h 1 = Pa th . Combine (C l o u d y F i l e L o c a t i o n , Fi leName1) ;
p a t h 2 = Pa th . Combine (C l o u d y F i l e L o c a t i o n , Fi leName2) ;
p a t h 3 = Pa th . Combine (C l o u d y F i l e L o c a t i o n , Fi leName3) ;
p a t h 4 = Pa th . Combine (C l o u d y F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” r a i n i n g ” :
p a t h 1 = Pa th . Combine (R a i n F i l e L o c a t i o n , Fi leName1) ;
p a t h 2 = Pa th . Combine (R a i n F i l e L o c a t i o n , Fi leName2) ;
p a t h 3 = Pa th . Combine (R a i n F i l e L o c a t i o n , Fi leName3) ;
p a t h 4 = Pa th . Combine (R a i n F i l e L o c a t i o n , Fi leName4) ;
break ;

35

case ” snowing ” :
p a t h 1 = Pa th . Combine (S n o w F i l e L o c a t i o n , Fi leName1) ;
p a t h 2 = Pa th . Combine (S n o w F i l e L o c a t i o n , Fi leName2) ;
p a t h 3 = Pa th . Combine (S n o w F i l e L o c a t i o n , Fi leName3) ;
p a t h 4 = Pa th . Combine (S n o w F i l e L o c a t i o n , Fi leName4) ;
break ;

}

Debug . Log (p a t h 1) ;
Debug . Log (p a t h 2) ;
Debug . Log (p a t h 3) ;
Debug . Log (p a t h 4) ;
g e n e r a t e F i l e (pa th1 , pa th2 , pa th3 , p a t h 4) ;

/ / we need s o e m t h i n g t o s t o r e t h e i n f o r m a t i o n i n t o
myData = new UserData () ;

GameObject ma inObjec t = GameObject . F ind (” InGameCanvas ”) ;

i f (ma inObjec t != n u l l)
{

s e t C a n v a s (ma inObjec t) ;
}

Load (1) ;
i n i t C o u n t () ;
Load (1) ;

}

p r i v a t e void Awake ()
{

/ / Where we want t o save and load t o and from

s c e n e = SceneManager . G e t A c t i v e S c e n e () ;
a c t i v e S c e n e = s c e n e . name ;

System . DateTime l o c a l D a t e = System . DateTime . Now;
Debug . Log (l o c a l D a t e . T o S t r i n g (” g ”)) ;

D a y F i l e L o c a t i o n = A p p l i c a t i o n . d a t a P a t h + ” / Saves / DaySaves ” ;
N i g h t F i l e L o c a t i o n = A p p l i c a t i o n . d a t a P a t h + ” / Saves / N i g h t S a v e s ” ;
C l o u d y F i l e L o c a t i o n = A p p l i c a t i o n . d a t a P a t h + ” / Saves / CloudySaves ” ;
R a i n F i l e L o c a t i o n = A p p l i c a t i o n . d a t a P a t h + ” / Saves / RainSaves ” ;
S n o w F i l e L o c a t i o n = A p p l i c a t i o n . d a t a P a t h + ” / Saves / SnowSaves ” ;

Fi leName1 = ” SaveData1 . t x t ” ;
F i leName2 = ” SaveData2 . t x t ” ;
F i leName3 = ” SaveData3 . t x t ” ;
F i leName4 = ” SaveData4 . t x t ” ;

36

sw i t ch (a c t i v e S c e n e)
{

case ” dayScene ” :
p a t h 1 = Pa th . Combine (D a y F i l e L o c a t i o n , Fi leName1) ;
p a t h 2 = Pa th . Combine (D a y F i l e L o c a t i o n , Fi leName2) ;
p a t h 3 = Pa th . Combine (D a y F i l e L o c a t i o n , Fi leName3) ;
p a t h 4 = Pa th . Combine (D a y F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” n i g h t S c e n e ” :
p a t h 1 = Pa th . Combine (N i g h t F i l e L o c a t i o n , Fi leName1) ;
p a t h 2 = Pa th . Combine (N i g h t F i l e L o c a t i o n , Fi leName2) ;
p a t h 3 = Pa th . Combine (N i g h t F i l e L o c a t i o n , Fi leName3) ;
p a t h 4 = Pa th . Combine (N i g h t F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” c lo ud y ” :
p a t h 1 = Pa th . Combine (C l o u d y F i l e L o c a t i o n , Fi leName1) ;
p a t h 2 = Pa th . Combine (C l o u d y F i l e L o c a t i o n , Fi leName2) ;
p a t h 3 = Pa th . Combine (C l o u d y F i l e L o c a t i o n , Fi leName3) ;
p a t h 4 = Pa th . Combine (C l o u d y F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” r a i n i n g ” :
p a t h 1 = Pa th . Combine (R a i n F i l e L o c a t i o n , Fi leName1) ;
p a t h 2 = Pa th . Combine (R a i n F i l e L o c a t i o n , Fi leName2) ;
p a t h 3 = Pa th . Combine (R a i n F i l e L o c a t i o n , Fi leName3) ;
p a t h 4 = Pa th . Combine (R a i n F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” snowing ” :
p a t h 1 = Pa th . Combine (S n o w F i l e L o c a t i o n , Fi leName1) ;
p a t h 2 = Pa th . Combine (S n o w F i l e L o c a t i o n , Fi leName2) ;
p a t h 3 = Pa th . Combine (S n o w F i l e L o c a t i o n , Fi leName3) ;
p a t h 4 = Pa th . Combine (S n o w F i l e L o c a t i o n , Fi leName4) ;
break ;

}

g e n e r a t e F i l e (pa th1 , pa th2 , pa th3 , p a t h 4) ;
Debug . Log (p a t h 1) ;
Debug . Log (p a t h 2) ;
Debug . Log (p a t h 3) ;
Debug . Log (p a t h 4) ;

/ / we need s o e m t h i n g t o s t o r e t h e i n f o r m a t i o n i n t o
myData = new UserData () ;

GameObject ma inObjec t = GameObject . F ind (” InGameCanvas ”) ;
Debug . Log (” Canvas : ” + mainObjec t) ;
i f (ma inObjec t != n u l l)
{

s e t C a n v a s (ma inObjec t) ;
}

Load (1) ;

37

i n i t C o u n t () ;
}

void S t a r t ()
{

/ ∗

/ / Where we want t o save and load t o and from

s c e n e = SceneManager . G e t A c t i v e S c e n e () ;
a c t i v e S c e n e = s c e n e . name ;

Sys tem . DateTime l o c a l D a t e = Sys tem . DateTime . Now;
Debug . Log (l o c a l D a t e . T o S t r i n g (” g ”)) ;

D a y F i l e L o c a t i o n = A p p l i c a t i o n . d a t a Pa t h + ” / Saves / DaySaves ”;
N i g h t F i l e L o c a t i o n = A p p l i c a t i o n . d a t aP a t h + ” / Saves / N i g h t S a v e s ”;
C l o u d y F i l e L o c a t i o n = A p p l i c a t i o n . d a t a Pa t h + ” / Saves / CloudySaves ”;
R a i n F i l e L o c a t i o n = A p p l i c a t i o n . d a t aP a t h + ” / Saves / RainSaves ”;
S n o w F i l e L o c a t i o n = A p p l i c a t i o n . d a t aP a t h + ” / Saves / SnowSaves ”;

Fi leName1 = ”SaveData1 . t x t ”;
Fi leName2 = ”SaveData2 . t x t ”;
Fi leName3 = ”SaveData3 . t x t ”;
Fi leName4 = ”SaveData4 . t x t ”;

s w i t c h (a c t i v e S c e n e)
{

case ” dayScene ”:
pa th1 = Path . Combine (D a y F i l e L o c a t i o n , Fi leName1) ;
pa th2 = Path . Combine (D a y F i l e L o c a t i o n , Fi leName2) ;
pa th3 = Path . Combine (D a y F i l e L o c a t i o n , Fi leName3) ;
pa th4 = Path . Combine (D a y F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” n i g h t S c e n e ”:
pa th1 = Path . Combine (N i g h t F i l e L o c a t i o n , Fi leName1) ;
pa th2 = Path . Combine (N i g h t F i l e L o c a t i o n , Fi leName2) ;
pa th3 = Path . Combine (N i g h t F i l e L o c a t i o n , Fi leName3) ;
pa th4 = Path . Combine (N i g h t F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” c l o u d y ”:
pa th1 = Path . Combine (C l o u d y F i l e L o c a t i o n , Fi leName1) ;
pa th2 = Path . Combine (C l o u d y F i l e L o c a t i o n , Fi leName2) ;
pa th3 = Path . Combine (C l o u d y F i l e L o c a t i o n , Fi leName3) ;
pa th4 = Path . Combine (C l o u d y F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” r a i n i n g ”:
pa th1 = Path . Combine (R a i n F i l e L o c a t i o n , Fi leName1) ;
pa th2 = Path . Combine (R a i n F i l e L o c a t i o n , Fi leName2) ;
pa th3 = Path . Combine (R a i n F i l e L o c a t i o n , Fi leName3) ;
pa th4 = Path . Combine (R a i n F i l e L o c a t i o n , Fi leName4) ;
break ;

case ” snowing ”:

38

pa th1 = Path . Combine (S n o w F i l e L o c a t i o n , Fi leName1) ;
pa th2 = Path . Combine (S n o w F i l e L o c a t i o n , Fi leName2) ;
pa th3 = Path . Combine (S n o w F i l e L o c a t i o n , Fi leName3) ;
pa th4 = Path . Combine (S n o w F i l e L o c a t i o n , Fi leName4) ;
break ;

}

g e n e r a t e F i l e (path1 , path2 , path3 , pa th4) ;
Debug . Log (pa th1) ;
Debug . Log (pa th2) ;
Debug . Log (pa th3) ;
Debug . Log (pa th4) ;

/ / we need s o e m t h i n g t o s t o r e t h e i n f o r m a t i o n i n t o
myData = new UserData () ;

GameObject ma inObjec t = GameObject . Find (” InGameCanvas ”) ;
Debug . Log (” Canvas : ” + mainObjec t) ;
i f (ma inObjec t != n u l l)
{

s e t C a n v a s (ma inObjec t) ;
}

/ / Load (1) ;
i n i t C o u n t () ;

∗ /

}

p u b l i c void r e a d F i l e (s t r i n g pa th , i n t c u r r e n t F i l e)
{

s t r i n g l i n e = ” ” ;

u s i n g (S t reamReader r e a d t e x t = F i l e . OpenText (p a t h))
{

sw i t ch (c u r r e n t F i l e)
{

case 1 :
readTime1 = r e a d t e x t . ReadLine () ;
break ;

case 2 :
readTime2 = r e a d t e x t . ReadLine () ;
break ;

case 3 :
readTime3 = r e a d t e x t . ReadLine () ;
break ;

case 4 :
readTime4 = r e a d t e x t . ReadLine () ;
break ;

}

39

f i l e S c e n e = r e a d t e x t . ReadLine () ;
Debug . Log (” F i l e Scene : ” + f i l e S c e n e) ;
whi le ((l i n e = r e a d t e x t . ReadLine ()) != n u l l)
{

r e a d L i s t . Add (l i n e) ;
}

r e a d t e x t . C lose () ;
}

}

p u b l i c void s e t B u t t o n s ()
{

i f (F i l e . E x i s t s (p a t h 1))
{

r e a d F i l e (pa th1 , 1) ;
Debug . Log (” Time 1 : ” + readTime1) ;
i f (! (s t r i n g . I sNul lOrEmpty (readTime1)))
{

GameObject . F ind (” S l o t 1 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = readTime1 ;
GameObject . F ind (” S l o t 1 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;

}

e l s e
{

GameObject . F ind (” S l o t 1 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = ” Empty S l o t ” ;
GameObject . F ind (” S l o t 1 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;

}

}

i f (F i l e . E x i s t s (p a t h 2))
{

r e a d F i l e (pa th2 , 2) ;
Debug . Log (” Time 2 : ” + readTime2) ;
i f (! (s t r i n g . I sNul lOrEmpty (readTime2)))
{

GameObject . F ind (” S l o t 2 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = readTime2 ;
GameObject . F ind (” S l o t 2 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;

}

e l s e
{

GameObject . F ind (” S l o t 2 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = ” Empty S l o t ” ;
GameObject . F ind (” S l o t 2 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;

}

}

i f (F i l e . E x i s t s (p a t h 3))
{

r e a d F i l e (pa th3 , 3) ;
Debug . Log (” Time 3 : ” + readTime3) ;
i f (! (s t r i n g . I sNul lOrEmpty (readTime3)))
{

GameObject . F ind (” S l o t 3 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = readTime3 ;

40

GameObject . F ind (” S l o t 3 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;
}

e l s e
{

GameObject . F ind (” S l o t 3 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = ” Empty S l o t ” ;
GameObject . F ind (” S l o t 3 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;

}

}

i f (F i l e . E x i s t s (p a t h 4))
{

r e a d F i l e (pa th4 , 4) ;
Debug . Log (” Time 4 : ” + readTime4) ;
i f (! (s t r i n g . I sNul lOrEmpty (readTime4)))
{

GameObject . F ind (” S l o t 4 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = readTime4 ;
GameObject . F ind (” S l o t 4 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;

}

e l s e
{

GameObject . F ind (” S l o t 4 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = ” Empty S l o t ” ;
GameObject . F ind (” S l o t 4 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;

}

}

}

p u b l i c void s e t C a n v a s (GameObject ma inObjec t)
{

inGameCanvas = mainObjec t . GetComponent<Canvas > () ;
}

p u b l i c s t a t i c Canvas ge tCanvas ()
{

re turn inGameCanvas ;
}

p u b l i c void s e t C h i l d C o u n t (i n t c c o u n t)
{

c h i l d C o u n t = c c o u n t ;
}

p u b l i c void i n i t C o u n t ()
{

o b j e c t C o u n t = 0 ;
}

p u b l i c void i n c r e m e n t C o u n t ()
{

o b j e c t C o u n t ++;
}

p u b l i c i n t g e t C ou n t ()

41

{

re turn o b j e c t C o u n t ;
}

p u b l i c void a d d u s e r D a t a (s t r i n g objectName , i n t c o u n t)
{

UserData u s e r = new UserData () ;
u s e r . i U s e r . name = objectName ;
u s e r . i U s e r . i d = c o u n t ;
o b j e c t D a t a . Add (u s e r) ;

}

p u b l i c void spawnObjec t (s t r i n g objectName)
{

/ / I n s t a n t i a t e (spawn , t r a n s f o r m . p o s i t i o n +(t r a n s f o r m . fo rward ∗2) , t r a n s f o r m . r o t a t i o n) ;
GameObject newObject = (GameObject) I n s t a n t i a t e (spawn , t r a n s f o r m . p o s i t i o n + (t r a n s f o r m . f o r w a r d ∗ 2) , t r a n s f o r m . r o t a t i o n) ;
newObject . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;

Debug . Log (newObject) ;
Debug . Log (o b j e c t D a t a . Count) ;
i n c r e m e n t C o u n t () ;
s e t C h i l d C o u n t (ge tCanvas () . t r a n s f o r m . c h i l d C o u n t) ;
a d d u s e r D a t a (objectName , ge t C o u n t ()) ;

}

p u b l i c void s c r e e n S h o t (s t r i n g c s c e n e , i n t s l o t)
{

s t r i n g p a t h = ” ” ;
sw i t ch (c s c e n e)
{

case ” dayScene ” :
p a t h = D a y F i l e L o c a t i o n ;
break ;

case ” n i g h t S c e n e ” :
p a t h = N i g h t F i l e L o c a t i o n ;
break ;

case ” c lo ud y ” :
p a t h = C l o u d y F i l e L o c a t i o n ;
break ;

case ” r a i n i n g ” :
p a t h = R a i n F i l e L o c a t i o n ;
break ;

case ” snowing ” :
p a t h = S n o w F i l e L o c a t i o n ;
break ;

}

s t r i n g s h o t = c s c e n e + s l o t + ” . png ” ;
S c r e e n C a p t u r e . C a p t u r e S c r e e n s h o t (Pa th . Combine (pa th , s h o t)) ;

}

p u b l i c void Save (i n t s l o t)

42

{

L i s t < s t r i n g > newLis t = new L i s t < s t r i n g > () ;
L i s t < i n t > I D L i s t = new L i s t < i n t > () ;
L i s t < s t r i n g > nameLis t = new L i s t < s t r i n g > () ;
s t r i n g l i n e = ” ” ;
s t r i n g p a t h = ” ” ;
s t r i n g t ime = ” ” ;
s t r i n g c u r r e n t S c e n e = ” ” ;
s t r i n g saveTime = System . DateTime . Now . T o S t r i n g (” g ”) ;

/ / Sys tem . DateTime l o c a l D a t e = Sys tem . DateTime . Now . T o S t r i n g (” g ”) ;
/ / Debug . Log (l o c a l D a t e . T o S t r i n g (” g ”)) ;

s c r e e n S h o t (a c t i v e S c e n e , s l o t) ;
sw i t ch (s l o t)
{

case 1 :
p a t h = p a t h 1 ;
GameObject . F ind (” S l o t 1 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = saveTime ;
GameObject . F ind (” S l o t 1 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;

break ;
case 2 :

p a t h = p a t h 2 ;
GameObject . F ind (” S l o t 2 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = saveTime ;
GameObject . F ind (” S l o t 2 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;
break ;

case 3 :
p a t h = p a t h 3 ;
GameObject . F ind (” S l o t 3 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = saveTime ;
GameObject . F ind (” S l o t 3 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;
break ;

case 4 :
p a t h = p a t h 4 ;
GameObject . F ind (” S l o t 4 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . t e x t = saveTime ;
GameObject . F ind (” S l o t 4 b u t t o n ”) . Ge tComponent InChi ld ren <Text > () . f o n t S i z e = 8 0 ;
break ;

}

u s i n g (S t reamReader r e a d t e x t = F i l e . OpenText (p a t h))
{

t ime = r e a d t e x t . ReadLine () ;
c u r r e n t S c e n e = r e a d t e x t . ReadLine () ;
whi le ((l i n e = r e a d t e x t . ReadLine ()) != n u l l)
{

newLis t . Add (l i n e) ;
}

r e a d t e x t . C lose () ;

}

43

f o r e a c h (s t r i n g newLine i n newLis t)
{

s t r i n g [] v a l u e s = newLine . S p l i t (’ | ’) ;
s t r i n g i d = v a l u e s [0] ;
s t r i n g name = v a l u e s [1] ;

s t r i n g r e a l I d = i d . S p l i t (’ : ’) [1] ;
s t r i n g realName = name . S p l i t (’ : ’) [1] ;
I D L i s t . Add (System . I n t 3 2 . P a r s e (r e a l I d)) ;
nameLis t . Add (realName) ;

}

Debug . Log (” B e f o r e save loop ”) ;
Debug . Log (c h i l d C o u n t) ;
F i l e . W r i t e A l l T e x t (pa th , s t r i n g . Empty) ;
/ / F i l e . W r i t e A l l T e x t (path , s t r i n g . Empty) ;

f o r (i n t i = 0 ; i < c h i l d C o u n t ; i ++)
{

Debug . Log (” In game loop ” + i) ;

i f (! (I D L i s t . C o n t a i n s (o b j e c t D a t a [i] . i U s e r . i d)) && ! (nameLis t . C o n t a i n s (o b j e c t D a t a [i] . i U s e r . name)))
{

o b j e c t D a t a [i] . i U s e r . x = ge tCanvas () . t r a n s f o r m . G e t C h i l d (i) . p o s i t i o n . x ;
o b j e c t D a t a [i] . i U s e r . y = ge tCanvas () . t r a n s f o r m . G e t C h i l d (i) . p o s i t i o n . y ;
o b j e c t D a t a [i] . i U s e r . z = ge tCanvas () . t r a n s f o r m . G e t C h i l d (i) . p o s i t i o n . z ;

o b j e c t D a t a [i] . i U s e r . xx = ge tCanvas () . t r a n s f o r m . Ge t C h i l d (i) . r o t a t i o n . x ;
o b j e c t D a t a [i] . i U s e r . yy = ge tCanvas () . t r a n s f o r m . Ge t C h i l d (i) . r o t a t i o n . y ;
o b j e c t D a t a [i] . i U s e r . zz = ge tCanvas () . t r a n s f o r m . Ge t C h i l d (i) . r o t a t i o n . z ;

s t r i n g xValues = ” P o s i t i o n X: ” + o b j e c t D a t a [i] . i U s e r . x + ” | ” + ” R o t a t i o n X: ” + o b j e c t D a t a [i] . i U s e r . xx ;
s t r i n g yValues = ” P o s i t i o n Y: ” + o b j e c t D a t a [i] . i U s e r . y + ” | ” + ” R o t a t i o n Y: ” + o b j e c t D a t a [i] . i U s e r . yy ;
s t r i n g zVa lues = ” P o s i t i o n Z : ” + o b j e c t D a t a [i] . i U s e r . z + ” | ” + ” R o t a t i o n Z : ” + o b j e c t D a t a [i] . i U s e r . zz ;

s t r i n g o b j e c t I n f o = ” ID : ” + o b j e c t D a t a [i] . i U s e r . i d + ” | ” + ”Name : ” + o b j e c t D a t a [i] . i U s e r . name + ” | ” + xValues + ” | ” + yValues + ” | ” + zVa lues ;
Debug . Log (o b j e c t I n f o) ;
o b j e c t l i s t . Add (o b j e c t I n f o) ;

}

}

c r e a t e F i l e (o b j e c t l i s t , pa th , saveTime) ;
}

p u b l i c void g e n e r a t e F i l e (s t r i n g f i r s t P a t h , s t r i n g secondPa th , s t r i n g t h i r d P a t h , s t r i n g f o u r t h P a t h)
{

Debug . Log (” E n t e r e d G e n e r a t e F i l e ”) ;
i f (! F i l e . E x i s t s (f i r s t P a t h))
{

Debug . Log (” F i l e 1 does n o t e x i s t ”) ;
S t r e a m W r i t e r w r i t e t e x t = F i l e . C r e a t e T e x t (f i r s t P a t h) ;

44

i f (F i l e . E x i s t s (f i r s t P a t h))
{

Debug . Log (” F i l e 1 C r e a t e d ! ”) ;
}

}

i f (! F i l e . E x i s t s (s e c o n d P a t h))
{

Debug . Log (” F i l e 2 does n o t e x i s t ”) ;
S t r e a m W r i t e r w r i t e t e x t = F i l e . C r e a t e T e x t (s e c o n d P a t h) ;
i f (F i l e . E x i s t s (s e c o n d P a t h))
{

Debug . Log (” F i l e 2 C r e a t e d ! ”) ;
}

}

i f (! F i l e . E x i s t s (t h i r d P a t h))
{

Debug . Log (” F i l e 3 does n o t e x i s t ”) ;
S t r e a m W r i t e r w r i t e t e x t = F i l e . C r e a t e T e x t (t h i r d P a t h) ;
i f (F i l e . E x i s t s (t h i r d P a t h))
{

Debug . Log (” F i l e 3 C r e a t e d ! ”) ;
}

}

i f (! F i l e . E x i s t s (f o u r t h P a t h))
{

Debug . Log (” F i l e 4 does n o t e x i s t ”) ;
S t r e a m W r i t e r w r i t e t e x t = F i l e . C r e a t e T e x t (f o u r t h P a t h) ;
i f (F i l e . E x i s t s (f o u r t h P a t h))
{

Debug . Log (” F i l e 4 C r e a t e d ! ”) ;
}

}

}

p u b l i c void c r e a t e F i l e (L i s t < s t r i n g > l i s t , s t r i n g pa th , s t r i n g t ime)
{

Debug . Log (”Made i t i n C r e a t e f i l e f u n c t i o n ”) ;
u s i n g (S t r e a m W r i t e r w r i t e t e x t = F i l e . C r e a t e T e x t (p a t h))
{

w r i t e t e x t . F l u s h () ;
w r i t e t e x t . W r i t e L i n e (t ime) ;
w r i t e t e x t . W r i t e L i n e (a c t i v e S c e n e) ;
f o r e a c h (s t r i n g l i n e i n l i s t)
{

w r i t e t e x t . W r i t e L i n e (l i n e) ;
}

w r i t e t e x t . C lose () ;

}

Debug . Log (” F i l e W r i t t e n S u c c e s s f u l l y ”) ;

45

}

p u b l i c void Load (i n t s l o t)
{

Debug . Log (”Made i t i n Load f i l e f u n c t i o n ”) ;
L i s t < s t r i n g > newLis t = new L i s t < s t r i n g > () ;
L i s t < i n t > I D L i s t = new L i s t < i n t > () ;
L i s t < s t r i n g > nameLis t = new L i s t < s t r i n g > () ;

s t r i n g l i n e = ” ” ;
s t r i n g p a t h = ” ” ;

sw i t ch (s l o t)
{

case 1 :
p a t h = p a t h 1 ;
break ;

case 2 :
p a t h = p a t h 2 ;
break ;

case 3 :
p a t h = p a t h 3 ;
break ;

case 4 :
p a t h = p a t h 4 ;
break ;

}

u s i n g (S t reamReader r e a d t e x t = F i l e . OpenText (p a t h))
{

Debug . Log (” Time : ” + r e a d t e x t . ReadLine ()) ;
Debug . Log (” C u r r e n t Scene : ” + r e a d t e x t . ReadLine ()) ;

whi le ((l i n e = r e a d t e x t . ReadLine ()) != n u l l)
{

Debug . Log (l i n e) ;
newLis t . Add (l i n e) ;

}

r e a d t e x t . C lose () ;

}

f o r e a c h (s t r i n g newLine i n newLis t)
{

s t r i n g [] v a l u e s = newLine . S p l i t (’ | ’) ;
s t r i n g i d = v a l u e s [0] ;
s t r i n g name = v a l u e s [1] ;
s t r i n g x P o s i t i o n = v a l u e s [2] ;
s t r i n g x R o t a t i o n = v a l u e s [3] ;
s t r i n g y P o s i t i o n = v a l u e s [4] ;
s t r i n g y R o t a t i o n = v a l u e s [5] ;
s t r i n g z P o s i t i o n = v a l u e s [6] ;

46

s t r i n g z R o t a t i o n = v a l u e s [7] ;

s t r i n g r e a l I d = i d . S p l i t (’ : ’) [1] ;
s t r i n g realName = name . S p l i t (’ : ’) [1] ;
s t r i n g r e a l X P o s i t i o n = x P o s i t i o n . S p l i t (’ : ’) [1] ;
s t r i n g r e a l X R o t a t i o n = x R o t a t i o n . S p l i t (’ : ’) [1] ;
s t r i n g r e a l Y P o s i t i o n = y P o s i t i o n . S p l i t (’ : ’) [1] ;
s t r i n g r e a l Y R o t a t i o n = y R o t a t i o n . S p l i t (’ : ’) [1] ;
s t r i n g r e a l Z P o s i t i o n = z P o s i t i o n . S p l i t (’ : ’) [1] ;
s t r i n g r e a l Z R o t a t i o n = z R o t a t i o n . S p l i t (’ : ’) [1] ;

I D L i s t . Add (System . I n t 3 2 . P a r s e (r e a l I d)) ;
nameLis t . Add (realName) ;

Debug . Log (” ID from Load : ” + r e a l I d + ” | ” + realName) ;

sw i t ch (realName . Trim ())
{

case ” Bat ” :
Vec to r3 n e w B a t P o s i t i o n = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnBatObjec t = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” B a s e b a l l B a t 1 ”) , n e w B a t P o s i t i o n , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnBatObjec t . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” Dead1 ” :
Vec to r3 newDead1Pos i t i on = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnDead1Object = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” Dead5 ”) , newDead1Pos i t ion , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnDead1Object . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” Dead2 ” :
Vec to r3 newDead2Pos i t i on = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnDead2Object = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” Dead6 ”) , newDead2Pos i t ion , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnDead2Object . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” Dead3 ” :
Vec to r3 newDead3Pos i t i on = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnDead3Object = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” Dead7 ”) , newDead3Pos i t ion , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnDead3Object . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” Dead4 ” :
Vec to r3 newDead4Pos i t i on = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnObjec t = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” Dead8 ”) , newDead4Pos i t ion , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnObjec t . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ”Gun” :
Vec to r3 n e w P o s i t i o n = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnDead4Object = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (”Gun 1 ”) , n e w P o s i t i o n , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnDead4Object . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ”Hammer” :
Vec to r3 newHammerPosi t ion = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnHammerObject = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (”hammer 1 ”) , newHammerPosit ion , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
Debug . Log (ge tCanvas ()) ;
spawnHammerObject . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;

47

break ;
case ” Kni fe ” :

Vec to r3 n e w K n i f e P o s i t i o n = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnKni f eOb jec t = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” K i t c h e n k n i f e 1 ”) , n e w K n i f e P o s i t i o n , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnKni f eOb jec t . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” Rock1 ” :
Vec to r3 newRock1Pos i t i on = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnRock1Object = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” rock5 ”) , newRock1Pos i t ion , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnRock1Object . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” Rock2 ” :
Vec to r3 newRock2Pos i t i on = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnRock2Object = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” rock6 ”) , newRock2Pos i t ion , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnRock2Object . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” Rock3 ” :
Vec to r3 newRock3Pos i t i on = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnRock3Object = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” rock7 ”) , newRock3Pos i t ion , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnRock3Object . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” Rock4 ” :
Vec to r3 newRock4Pos i t i on = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnRock4Object = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” rock8 ”) , newRock4Pos i t ion , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnRock4Object . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ”woodBeam1” :
Vec to r3 newWoodBeam1Position = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnWoodBeam1Object = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (”woodBeam3”) , newWoodBeam1Position , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnWoodBeam1Object . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ”woodBeam2” :
Vec to r3 newWoodBeam2Position = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnWoodBeam2Object = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (”woodBeam4”) , newWoodBeam2Position , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnWoodBeam2Object . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” Blood ” :
Vec to r3 n e w B l o o d P o s i t i o n = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnBloodObjec t = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” b lood 1 ”) , newBloodPos i t i on , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnBloodObjec t . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” s q u a r e T a b l e ” :
Vec to r3 n e w T a b l e P o s i t i o n = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnTab leOb jec t = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” s q u a r e T a b l e 1 ”) , n e w T a b l e P o s i t i o n , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnTab leOb jec t . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” Tree ” :
Vec to r3 n e w T r e e P o s i t i o n = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject spawnTreeObjec t = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” t r e e 1 ”) , n e w T r e e P o s i t i o n , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;
spawnTreeObjec t . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

case ” E v e r g r e e n ” :
Vec to r3 n e w E v e r g r e e n P o s i t i o n = new Vec to r3 (f l o a t . P a r s e (r e a l X P o s i t i o n) , f l o a t . P a r s e (r e a l Y P o s i t i o n) , f l o a t . P a r s e (r e a l Z P o s i t i o n)) ;
GameObject s p a w n E v e r g r e e n O b j e c t = (GameObject) I n s t a n t i a t e (R e s o u r c e s . Load (” e v e r g r e e n 1 ”) , n e w E v e r g r e e n P o s i t i o n , Q u a t e r n i o n . E u l e r (f l o a t . P a r s e (r e a l X R o t a t i o n) , f l o a t . P a r s e (r e a l Y R o t a t i o n) , f l o a t . P a r s e (r e a l Z R o t a t i o n))) ;

48

s p a w n E v e r g r e e n O b j e c t . t r a n s f o r m . p a r e n t = ge tCanvas () . t r a n s f o r m ;
break ;

}

}

Debug . Log (” F i l e Loaded S u c c e s s f u l l y ”) ;
}

}

/ / UserData i s our cus tom c l a s s t h a t h o l d s our d e f i n e d o b j e c t s we want t o s t o r e i n XML f o r m a t
[System . S e r i a l i z a b l e]
p u b l i c c l a s s UserData
{

/ / We have t o d e f i n e a d e f a u l t i n s t a n c e o f t h e s t r u c t u r e
p u b l i c DemoData i U s e r ;
/ / D e f a u l t c o n s t r u c t o r doesn ’ t r e a l l y do a n y t h i n g a t t h e moment
p u b l i c UserData () { }

/ / A n y t h i n g we want t o s t o r e i n t h e XML f i l e , we d e f i n e i t he re
[System . S e r i a l i z a b l e]
p u b l i c s t r u c t DemoData
{

/ / name
p u b l i c s t r i n g name ;
p u b l i c i n t i d ;

/ / P o s i t i o n
p u b l i c f l o a t x ;
p u b l i c f l o a t y ;
p u b l i c f l o a t z ;

/ / R o t a t i o n
p u b l i c f l o a t xx ;
p u b l i c f l o a t yy ;
p u b l i c f l o a t zz ;

}

}

49

	Santa Clara University
	Scholar Commons
	6-14-2018

	Virtual Reality Sherlock: A Crime Scene Reconstructor
	Ellen Tseng
	Ken Wakaba
	Recommended Citation

	Thesis_Virtual Reality Sherlock-A Crime Scene Reconstructor
	Thesis_Virtual Reality Sherlock- A Crime Scene Reconstructor

