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ABSTRACT

Prescription and over-the-counter drugs are abundant now more than ever, and many people use them on a regular
basis. These drugs come with a variety of side e↵ects, ranging from common to very rare. However, the symptoms
listed on drug packaging might not be the only symptoms that a consumer might experience when taking a specific
drug. When experiencing a symptom, consumers might think they have a disease, turn to the Web for answers, and
attempt to diagnose themselves when a disease is not necessarily the cause. Instead, these symptoms might be reactions
to medications; however, the first thought that people have when experiencing a symptom is that they most likely have
a disease. This often hinders us from thinking of alternative solutions. In addition, people often take multiple drugs
simultaneously, which makes pinpointing the source of a bad reaction or unexpected symptom increasingly di�cult.
These factors make it challenging to locate the true source of a symptom. Our product, Symptom Search, is a tool
that assists in this search for answers. Symptom Search uses FDA Adverse E↵ects Report data and machine learning
to provide users with a method to search for potential root causes of their symptoms. Our system conveys how likely
given drugs are correlated with given symptoms, and it suggests other products that could be triggering symptoms or
reactions based on other users’ interactions with the products.
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Chapter 1

Introduction

In our lives, we can experience strange symptoms with causes that we cannot pinpoint. For example, we get rashes or

experience stomach troubles but are unable to figure out the cause. Since we use a large variety of products in our day

to day lives, such as food and drugs, it can be hard to isolate what is causing a reaction or if the reaction is caused by

multiple products that are interacting with one another. If there was a way to easily search for connections between

symptoms and products we use regularly, we might more easily find the source of our symptoms.

Currently, when we want to discover the cause of our symptoms, we might use Google search or check health related

sites such as WebMD or healthline.com. These websites only predict the diseases that could be causing the symptoms

but not necessarily the products that could be causing adverse reactions. There is clearly a demand for a way to search

for other causes.

Our product, Symptom Search, utilizes FDA Adverse E↵ects data to make the search process possible. When a user

inputs specific drugs and symptoms, the system finds correlations between them based on the number of complaints

within the dataset. Symptom Search makes it easy for the user to quickly receive information about what could be the

root of their symptoms. Once they have an idea of what might be the problem, they should consult their doctor with

this information in mind.

There is a need for a tool that draws connections between the day to day products we use and the symptoms or reactions

we might experience that are unlikely to be caused by a disease. Currently, everything is disease-based and there is

not an easy way to search for answers. Symptom Search aims to make the search for answers easy and accurate.
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Chapter 2

Requirements

This section details our project requirements including functional and non-functional requirements and design con-

straints. Functional requirements dictate what the system will do. Non-functional requirements dictate how the system

will be. Lastly, design constraints detail limitations and criteria that must be taken into account when constructing the

solution. Along with each requirement is its priority level, ranging from suggested to critical. A critical requirement

must be implemented for the project to be complete. Recommended requirements are not essential but greatly improve

the quality of the system and provide a better user experience. Finally, suggested requirements are the lowest priority

and should only be implemented once the others have been properly executed to add additional features or improve

ease of use.

2.1 Functional Requirements

• Critical

– The system will allow users to input their current health symptoms.

– The system will allow users to input any products or medications they recently started using.

– The system will display potential products, medications, or foods that might be causing the user’s symp-

toms.

– The system will display correlations to the user based on previous FDA complaints relating symptoms to

goods and products and the current user’s similarities to these cases.

– The system will implement an algorithm to generate correlations between products and user-inputted

symptoms.

2



• Recommended

– The system will allow users to create an account before searching.

– The system will suggest next steps for the user to address the problem indicated by the search.

• Suggested

– The system will temporarily save a user’s basic information for a subsequent search.

– The system will allow users to save searches and their results for future reference.

– The system will allow the user to generate a printable report of the search results.

2.2 Non-Functional Requirements

• Critical

– The system will be free of major bugs.

– The system will be responsive.

• Recommended

– The system will be intuitive to use.

– The system will have a simple and clean user interface.

2.3 Design Constraints

• Critical

– The system will be be web-based.

– The system will run on Google Chrome, Firefox, Safari, and Internet Explorer.

• Recommended

– The system will be hosted locally.

• Suggested

– The system will be a mobile application.

3



Chapter 3

Use Cases

The following use case diagram (Figure 3.1) and task descriptions provide a visual representation of the actions that

can be taken by a user in this solution. The figure represents a user actor, with connected lines attaching the actor to

all possible use cases. These use cases are visualized in ovals describing their specific action. Each use case has a

particular goal, actor, preconditions, postconditions, steps to execute, and exceptions. Each use case is summarized

below with descriptions of these attributes.

Figure 3.1: Use Case Diagram
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3.1 Login/Create user profile

• Login

– Goals: Enter the system.

– Actors: User.

– Pre-Conditions: User must have an account.

– Steps: User inputs email and password then clicks submit to enter the system.

– Post-Conditions: Application displays user information for confirmation purposes.

– Exceptions: Checking for correct password, valid email, etc.

• Create User Profile

– Goals: Provide general information about a user for a more accurate set of results. Access the system.

– Actors: User.

– Pre-Conditions: None.

– Steps: User selects between drop down list options, text boxes, and radio buttons to provide basic infor-

mation to Symptom Search when registering.

– Post-Conditions: Application displays user information for confirmation purposes. The account is created

when the user inputs valid information and clicks the register button.

– Exceptions: Checking for valid string entries, valid email, valid password, etc.

3.2 Input symptoms

• Goals: Provide information about symptoms a user experiences for the machine learning algorithm.

• Actors: User.

• Pre-Conditions: User must have a profile set up with basic information such as name and email.

• Steps: User selects areas on a human model or chooses words from a list to select and input the symptom(s)

they have been experiencing.

• Post-Conditions: Application displays list of symptoms that have been selected by the user.

• Exceptions: None.

5



3.3 Input currently used products and drugs

• Goals: Provide information about products a user consumes for the machine learning algorithm.

• Actors: User.

• Pre-Conditions: User must have a profile set up with the necessary basic personal information.

• Steps: User chooses from a list to select and input a product they have been consuming.

• Post-Conditions: Application displays list of products that have been selected by the user.

• Exceptions: None.

3.4 View possible causes of symptoms

• Goals: Provide information about drug/product interactions for users so they can see which products are most

likely causing their symptoms.

• Actors: User.

• Pre-Conditions: User must have a profile set up with the necessary personal information such as age, sex,

pregnancy status, etc. and the user must have already selected at least one symptom and at least one product to

check for interactions.

• Steps: None.

• Post-Conditions: User sees a table of likelihoods that the drug(s) given are correlated to the symptoms(s) given.

The user also sees a list of suggested drugs to cause the given symptom(s).

• Exceptions: None.

6



Chapter 4

Activity Diagrams

The Activity Diagram (Figure 4.1) illustrates the flow of possible activities that can be performed by the user in this

solution. The diagram does not include the system actions, such as processing symptom and product information.

Figure 4.1: Activity Diagram

7



Chapter 5

Architectural Diagram

We used a client-server architecture to build our project as shown in (Figure 5.1). The client, a user, will interact with

our web page and input basic information and symptoms. This information will be sent to the server, and the server

will compare the given data with the data stored in the database. The client’s screen will then display the results of the

prediction. We used this architecture specifically because the server handles the requests from the clients and generates

results using information stored in the database.

Figure 5.1: Architectural Diagram
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Chapter 6

Technologies Used

• HTML: A language used for web page structure and form fields.

• CSS: A language used for web page styling.

– Skeleton: A CSS library used for uniformity of style as well as responsiveness of webpages.

• MEAN.js: A full-stack JavaScript tool that assists in the development of web applications using MongoDB,

Express, AngularJS, and Node.js.

– MongoDB: A database used because of its ability to quickly process unstructured data, which is needed

for machine learning and data mining.

⇤ Mongoose: A tool to model MongoDB objects in an asynchronous environment like Node.js.

– Express: A web framework used because of its robust set of features, compatibility with Node.js, and

simplicity of use for e�cient development.

⇤ Connect-mongo: A package used to store database sessions in Express.

⇤ Express-session: Express middleware that implements sessions in encrypted tamper-free cookies.

– Node.js: A server framework used because of its ability to scale easily, write quickly, and process data

e�ciently.

⇤ Bcrypt: A Node.js package used to process and salt passwords for security purposes.

⇤ Body-parser: A Node.js middleware used to parse response bodies from the server.

• Python: a scripting language that is commonly used in machine learning and data science. We used it for the

development of our ranking algorithm. During development, we also used a variety of Python libraries such as

Numpy, Json, Pymongo, and Scikit-learn. Listed below are the descriptions of the Python libraries we utilized

in production and in the final product.

9



– Numpy: used for matrix manipulation.

– JSON library: easily read JSON files and create JSON objects for ease of processing.

– Pymongo: a library used for accessing and manipulating data in a Mongo database.

– Scikit-learn: popular machine learning library for Python.

– MatPlotLib: used to plot diagrams of the processed data and clustering.

– SciPy: library providing tools for science and data processing. I used dendogram, linkage, clustering, for

hierarchical clustering.

– editdistance: provides a C-based Levenshtein distance algorithm that is faster than python implementa-

tions.

10



Chapter 7

Description of System Implemented

7.1 An Overview of the System

Symptom Search is a web application built using HTML, CSS, MongoDB, Express, and Node.js. Python is used for

the ranking algorithm component. Users are able to create an account and then input their symptoms and the products

that they are using. The system will return a list of products that are most likely causing their symptoms, as well as a

list of suggested products.

Our web application is comprised of a home page (Figure 7.1), a registration and login page (Figure 7.2), a symptom

and product input page (Figure 7.4), and a results page (Figures 7.5 and 7.6).

The registration and login page uses the bcrypt Node.js package to hash and store passwords. We use an asynchronous

approach to create and verify a hashed password. We store our hashed password in the database. When creating

an account, the user agrees to Symptom Search’s terms. A disclaimer is linked above the “Register” button on the

registration page. The disclaimer text that pops up upon clicking that link is shown in Figure 7.3.

The symptom and product input page is comprised of a form for symptom and product input. The user is able to

begin typing the brand name of the product that they are using, and he or she may choose an option from the smart

drop-down list that auto-completes with the desired product. Similarly, for the symptom input, the user is able to type

the name of their symptom, and he or she is able to choose an option from the smart drop-down list.

After a user has inputted their symptoms and products, they may press the “Submit” button and be directed to the

results page. This page will display the results of the ranking algorithm that uses the FDA Adverse E↵ects Report data

to determine how likely the drugs are to be correlated to the symptoms provided in the input screen.

11



7.2 The Dataset

Our dataset is a specially curated subset of the FDA Adverse E↵ects Report database. We did not need all of the

data from the FDA for this system, so we stored only what we needed. The data is organized by each drug. Within

each drug scope is a collection of all of the symptoms that a user reported experiencing with that drug. Within each

symptom is the frequency of reports to the FDA of that symptom with that drug. In other words, this is the number

of times users reported experiencing that symptom with that specific drug. An example of this tree-like structure is

shown below:

• Drug 1

– Symptom A

⇤ Frequency of Symptom A with Drug 1

• Drug 2

– Symptom A

⇤ Frequency of Symptom A with Drug 2

When curating our database, we counted the number of complains of symptoms with certain drugs and grouped them

in the above structure. These frequencies are counted and stored beforehand so when prompted by the user, Symptom

Search generates and displays results quickly since it does not need to compute anything. These frequencies are only

recomputed if we update the database with new data from the FDA Adverse E↵ects Reports dataset. We do not add

user input data to the database. This way we can make sure the information is as accurate as possible. Information in

the database comes only from the FDA where legitimate complaints about product adverse e↵ects are submitted.

7.3 The Results Page: The Ranking Algorithm

The results page displays two kinds of results.

7.3.1 Table of Likelihoods

First, the results page displays a table of likelihoods of the given drugs and symptoms (Figure 7.5). Each likelihood

is calculated using the following algorithm. Given a drug and symptom, the algorithm finds that drug in the database,

and for each symptom stored within that drug scope in the database we retrieve the stored frequency. We then find

12



the maximum frequency within that symptom scope. We calculate the likelihood of each given symptom using the

following equation:

Likelihood of a given drug and symptom =
Given symptom frequency

Maximum frequency of a symptom in the given drug scope
⇤ 100%

For example, in the tree structure above, if we are given “Drug 2” and “Symptom A,” we would retrieve the “Frequency

of Symptom A with Drug 2.”

This table is accompanied by a key to help the user interpret the results (Figure 7.5). If the symptom is not listed under

that drug, the frequency of the symptom, and therefore the likelihood, is zero. If the likelihood is 100, this means that

the given symptom was the most reported symptom for that drug in the FDA database. This does not mean that the

given drug is necessarily causing the symptom or reaction. This means that the given symptom is the most likely to be

correlated with that drug compared to all the other symptoms reported for that drug.

7.3.2 Suggested Products

The results page also displays one or more lists of suggested products that are ranked in order, beginning with the most

likely to be correlated with the inputted symptoms. The number of lists is equal to the number of symptoms the user

input to the system. In each list, each of the products’ likelihoods is calculated using the following equation:

Likelihood of each item in the ranked list =
Given symptom frequency

Total number of complaints in the given drug scope
⇤ 100%

The system then orders the top ten likelihoods found from largest to smallest. The system only displays ten results for

readability. This does not mean there are only ten products that are likely to be correlated with the given symptom(s).

The system might also output less than ten products in the case that there are few likelihoods. Additionally, the

products might not necessarily be highly correlated with the symptoms at all. This list is just a suggestion of other

products that might be correlated. The greatest likelihood could potentially not be very high at all, but it happens to be

the greatest of all the likelihoods calculated.

This result is useful because it provides users with information on other products that might also be correlated with

the symptoms they input (if not more correlated). This way, users can see a list of other drugs that may be more likely

to be correlated with their symptoms than the combination they originally input.

13



Figure 7.1: Start Screen
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Figure 7.2: Register or Sign In
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Figure 7.3: Disclaimer With Registration
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Figure 7.4: Input Drugs and Symptoms

17



Figure 7.5: Initial Results: A Table of Likelihoods and an Accompanying Key
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Figure 7.6: Suggested Drugs
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Chapter 8

Design Rationale

To build the product, we decided to use MEAN.js, which is a full-stack JavaScript solution that assists in the develop-

ment of web applications using MongoDB, Express, AngularJS, and Node.js. This tool makes web development easy

on the front end and has a simple back end.

We chose MEAN.js specifically because it uses MongoDB as its data storage. Out of the MEAN stack, we used

MongoDB, Express, and Node.js. According to the developer, Ryan Dahl, “the aim of Node.js was to create real-time

websites with push capability.” Node is useful for building fast, scalable network applications. The NPM tool allows

users to install a set of publicly available packages. Some of the packages that we installed were bcrypt, express,

express-session, mongoose, and mongodb. We used the express-session package to set up sessions. Since HTTP is a

stateless protocol, the web servers do not keep track of who is visiting a page. In order to keep track of a user after

they have registered or logged in, implementing sessions and cookies was necessary.

MongoDB is an open source NoSQL database that stores JSON-like documents that provides scalability and flexibility

in querying and indexing data. Due to the fact that we are using the FDA Adverse E↵ects Report data, which is kept

in JSON files, we wished to find a way to easily store and quickly access this unstructured data. Since MongoDB uses

JSON formatting and we have a lot of JSON-formatted data, we decided to use MongoDB as our database. MEAN.js

uses MongoDB and makes front end easy to develop, so we decided to use it to develop our product.

We used Python to process all of our data and compute our results to display on the web page. Python is a scripting

language that is simple, and it can be used server-side for web development. We chose Python to write our ranking

algorithms due to its simplicity and the variety of libraries available to Python for data processing. We used libraries

such as Numpy, Json, Pandas, and Mongoose to manipulate, process, and handle the data.
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Chapter 9

Test Plan

Our test plan has focused on testing the accuracy of the suggested symptom and product interaction that is generated

by our prediction system. We have also gained feedback on the usability of the system and during Beta testing. We

made adjustments to our system based on the results of both phases of testing.

9.1 Alpha Testing

During Alpha Testing, we tested the implementation of our system using both iterative and regression testing. In

iterative testing, we designed our system, build it out, then repeated the process based on how the system operated.

With regression testing, we ensured that our system continued to work with all the additional pieces as the design

built upon itself. Using these tests, we continued to verify that the system worked correctly and make any necessary

adjustments before they became large-scale problems.

9.2 Beta Testing

During Beta Testing, we have acquired input from real users by having them try out our prediction engine. We have

reached out to peers and had them test our system and give us feedback on its accuracy as well as the site’s ease of use

and user interface. Through this level of testing, we have and will continue to gain feedback and improve our system.
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Table 9.1: All Test Cases

Feature Test Procedure Expected Outcome Result

First user creation Sign up for a new account

with the database empty

A user account is created Success

Returning user sign-in Login with user informa-

tion already in database

Validate login data and

redirect to symptom input

page

Success

User input symptoms Input 1 or 2 symptom(s)

into form fields and click

“Add Information”

Symptom information is

added to the database as-

sociated with correct user

Success

User input medicine taken Input 1 or 2 medicine(s)

into form fields and click

“Add Information”

Medicine information is

added to the database as-

sociated with correct user

Success

Select symptom or

medicine from drop down

Click the arrow in a form

field, and select a symp-

tom or medicine from the

list

The symptom or medicine

is shown in the form field

Success

View results Click “View Results” A page of symptom

causes and likelihoods is

displayed

Success

Logout Click the logout button The user is returned to the

login page and cannot ac-

cess input page until they

log in again.

Success
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Chapter 10

Ethical Analysis

Symptom Search can be classified both as medical technology and as machine learning technology. As a result, the

team working to design, implement and produce this piece of software has an ethical imperative to ensure that sound

ethical practices are employed in all technical areas of our project and throughout the life cycle of our product.

10.1 Team and Organization

10.1.1 Team

The team designing and implementing this solution consists of four students, Isabela Figueira, Neesha Godbole,

Angelina Poole, and Kelly Wesley, along with their faculty advisor, Dr. Yi Fang. All four students maintain open

and frequent lines of communication, ensuring that any inter-team ethical issues will be identified early and dealt

with swiftly. All team members have a long-time relationship with each other, and with the faculty advisor, Dr. Yi

Fang. This will ensure that the team remains open and honest about progress, design decisions, obstacles, and ethical

quandaries.

10.1.2 Organizational

Though all student group members are individual contributors to this project, our advisor Dr. Yi Fang is an employee

of Santa Clara University. Santa Clara University is also our primary sponsor of this project. Santa Clara University,

as well as the individual contributors to this project, maintains high ethical standards for all projects and partnerships

it plays a role in. For these reasons, we believe that our organizational ethics are sound with respect to this project.
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10.2 Social

Symptom Search aims to o↵er helpful and accurate information to its users about products and medicines that may

be contributing to symptoms they experience. As a result, the product risks misinforming its users if the machine

learning algorithm isn’t perfect or if a disease is causing symptoms instead of an FDA-regulated product. To maintain

an ethical product, the team behind Symptom Search broadly displays a disclaimer (Figure 7.3) warning users that any

conclusions or suggestions made by our product should be taken under a doctor’s advisement. The team discussed the

details of the disclaimer with Dr. Yi Fang and other o�cials at Santa Clara University to guarantee that the disclaimer

conforms to established legal and ethical guidelines.

Every person is unique in their reaction to di↵erent products and medications: just because a few other people got

a rash after taking a certain pill does not necessarily mean the same pill is the cause of your rash as well perhaps a

new lotion is the culprit or an illness. Symptom Search can only return to the user correlations based on the number

of people who reported their symptoms and the drug that caused the symptoms through the FDA complaint system.

The tool analyzes this data and returns which drugs have a high likelihood of causing the inputted symptoms based on

previous user experience and the optional input of any drugs or medications the user started taking recently. However,

there is a large amount of personalization and additional factors such as medical history, environmental factors, etc.

that contribute to an accurate medical diagnosis. Symptom Search as a tool has a large room for error; if users take the

results at face value and alter their lifestyle accordingly, there is a large chance they will be doing so in error. The tool

is intended to be a resource, not a recommendation system.

The potential to misinform a user introduces the possibility of harm to the user and her health and well-being. To

prevent this harm, as previously mentioned, our system website includes visible disclaimers informing that the results

indicated on this site are not to be taken as recommendations or causations and that Symptom Search does not replace

a conversation with ones doctor. In this way, the system reminds any visitor that Symptom Search is a tool based

only on numbers and does not consider an individuals situation the way a medical professional would. By providing

users this information, our design reduces the potential for harm and supports the health and well-being of users. The

decision to include this disclaimer is justified through the perspective of the Rights Approach, in that it respects the

moral rights of the individual to know the truth about the knowledge they are receiving and make their own decisions

accordingly.
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10.3 Product

Symptom Search takes in user health information and uses it to generate predicted symptom and product interactions.

This information is a crucial aspect of the product’s functionality. One ethical consideration with our product is deter-

mining if user health information needs to be stored and, if so, how to best securely store sensitive health information.

Another consideration is the machine learning model and its ability to predict relationships between symptoms and

products. In order to be ethically mindful and ensure accurate predictions, Angelina, Isabela, Kelly, and Neesha

checked in with their advisor, Dr. Yi Fang, and heavily tested the model. Since this project is based in software, there

are no physical safety risks that are involved.

As mentioned, user privacy is a key ethical concern. When someone uses the Symptom Search platform, they have the

option to create a login with a user name and password, which will be stored in our database. The next page prompts

the user to input their symptoms and any medications or products they recently started taking or using, information

which will also enter the database as inputs tied to that users login. Because the user input data is stored in our

database in relation to a users personal login information, it is imperative that our project take careful consideration

of its privacy. The ACM Code of Ethics obligates computing professionals to Respect the privacy of others. By this

tenet, our system must ensure that user data is protected from attacks by malicious parties.

Part of this is accomplished by our system only storing the user data that is relevant to the program. In our websites

original design, the user was asked to input a variety of details including age, location, and gender. These details

were stored along with the symptoms the user input and her login information. If the system was hacked, these health

details associated with that person via her login would be available to external parties. As we continued working with

the machine learning component of this project, we realized that due to insu�cient data from the FDA complaints, it

was not possible to incorporate the age, gender, and location factors when returning possible problematic medications

or products to the user. Hence, these inputs were irrelevant. Rather than leaving them on the website, we elected to

remove them as inputs only storing the necessary personal information and thereby reducing the potential severity

of damage in the event of a security breach. In addition to limiting user inputs, our system also incorporates some

security measures to decrease the potential of a breach. Particularly, the website uses secure sessions and encrypted

passwords, which provide built-in security and secret keys to mitigate the risk of an external party stealing user data.

Another piece of user privacy involves the accuracy of data. It is imperative that the system include procedures that

allow users to review their inputs and ensure they are accurate. On our input page, this is accomplished by providing a

Clear button for the user that will reset all inputs if they need to be corrected. With these features, our website promotes

ACMs ethical component of respecting user privacy and ensuring the accuracy of inputs and therefore results.
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10.4 Science, Technology, and Society

Like all engineering innovations, Symptom Search has the potential to impact society in various ways. First, as a

Web platform, it supports society’s reliance on the Internet and Web browsers for information accessibility. While

this continues to be the norm, it is debated that most (if not all) individuals have access to these resources, potentially

making our platform only usable by those with computers, smart phones, tablets, and Wifi. In this way, however, the

platform also contributes to the rise in information accessibility by making data that should be available to the public

actually available through a useful tool.
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Chapter 11

Lessons Learned

11.1 Angelina

While I have taken an introductory web programming course and done basic web programming to build a functional

multi-page website before, I have not worked with the MEAN stack. The extent of my previous knowledge was

working with HTML, CSS, PHP, and a MySQL database. Before we decided to use the MEAN stack, we tested a

variety of options, such as using LAMP or creating a web application from scratch using Flask. However, due to the

constraints of this project, we chose to use most of the MEAN stack, which included MongoDB, a NoSQL database

that allowed us to store our JSON files, Express, and Node.js. I improved my programming skills in working on the

front end with Javascript, as well as working on a clustering algorithm for the symptoms and products on the back

end. Thankfully, building a web application with Node.Js was well documented. However, we ran into some obstacles

trying to combine the knowledge that we learned with the di↵erent tutorials, as there was often more than one way to

do the same thing.

11.2 Isabela

I have worked with datasets before, but machine learning using health data is di↵erent to say the least. During the

development process, I couldn’t just think about ranking drugs and symptoms and outputting the likelihoods of their

correlations. I had to consider how the user would interpret the results, the fact that our data is limited and potentially

incomplete or skewed, and how it might a↵ect the user’s health and wellbeing. In machine learning, we often use

specific features to describe data. In our case, I thought to use age, sex, and location to represent a user. However,

due to the fact that severe cases are more often reported in this specific dataset, not every complaint is logged in

this dataset, and not every report includes age, sex, and location, it would be unwise to use these data points to truly
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describe a user. If I were to describe a user this way, I would have to ignore the incomplete user complaints, but this

could change the data completely and change the resulting recommendations, which could lead to inaccurate results.

Our product, while seemingly simple, has the potential to a↵ect people’s health. I consequently had to be weary of

this danger while we developed our product.

In regards to teamwork, I learned a great deal about project management and team communication. We are a team

of four friends, and without clearly defined leadership, it proved di�cult to assign work to di↵erent team members.

We kept open lines of communication about the project and made sure we updated the rest of the team when certain

parts of the project were finished. In the end, we just knew what had to get accomplished and made sure the tasks we

assigned ourselves were completed.

11.3 Kelly

Throughout the course of this project, I learned that communication is the single biggest factor in determining whether

or not a project will be a success. Although I was unfamiliar with all of the technologies we subsequently used in

Symptom Search, communicating my questions, concerns, and clarifications to our advisor and soliciting information

from friends who have had experience with web applications gave me the confidence to make decisions about which

technologies would yield the best result. In addition, communicating with my group mates was at times pivotal to

our success because schedules, work-division, and integration issues could not have been solved if we hadn’t take the

e↵ort throughout the project to keep every group member up to date about each teammate’s progress.

11.4 Neesha

Despite having taken almost all of my programming courses at this point in my academic career at Santa Clara, I

struggled immensely when our group attempted (at first) to utilize the MEAN stack. I also struggled to use the various

tools we incorporated throughout the project such as Github, MongoDB, and Node JS. These tools are all unfamiliar

to me and at no point was I taught them in a classroom setting. As a result, I learned that the Internet is a great resource

for knowledge about technological tools. I also learned the frustration of trying to accomplish a task one way for a

large amount of time only to learn that your way is incorrect. In sum, many of my lessons came from trial and error,

as that is often the zigzag path to success in the world of engineering.
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Chapter 12

Conclusions

Symptom Search is a Web application for individuals experiencing untraceable symptoms. The product generates

predictions of drugs that might be the source of the user’s ailments. This system uses a machine learning algorithm

with FDA Adverse E↵ects Reports data from various user complaints to make educated recommendations of possible

correlations between products and inputted symptoms. The technologies we used - including the MEAN Stack and

Python data processing tools - allowed us to develop a responsive and useful Web application to address the need. The

design decisions and documentation in this report allowed us to make informed and purposeful choices regarding our

structure and implementation.

12.1 Suggested Additions to the Implemented System and Future Work

If allotted more time, we would add the following features:

• Using clustering to group the symptoms and products would improve the auto-fill displayed in the smart drop-

down menu. Since the FDA dataset contained a wide variety of products and symptoms, it would make it easier

for the user to find the symptom or product that they want to input. For example, the system has symptoms

of “blood glucose decreased,” “blood glucose increased,” and “blood glucose.” It would improve usability to

cluster these similar phrases.

• We solely used a ranking algorithm so that we knew what the results meant. Since we are not specialists with

health data, we did not want to make any predictions using features that were not immediately connected to

the drug and reactions that could create results that were potentially not accurate. We aimed to create the best

product possible despite the fact that we did not have much direction on the health aspect of the data. Much

of the data such as gender, age, and location was not filled in for many of the complaints. We chose to not use
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those features in the machine learning process since we did not want to leave any data out of our system due to

incomplete entries. In the future, we would somehow incorporate this data to more completely analyze the data

and hopefully return di↵erent predictions than just a ranking algorithm would.

• We only used a subset of the large amount of data in the FDA database. To make this product live on the Web,

we would add all the rest of the data from the database and put the website on a server to make it accessible.

Since this is a senior design project, we decided to build the system on local host so we would not be hindered

by space limitations on rented servers.

• Adding a user profile page that keeps track of past uses of the system would allow the user to see a profile page

after logging in. Their personal information, as well as previous searches would be shown. The user would then

be able to update their personal information. The user would also be able to view previous searches without

having to complete the form again.

• Instead of a fixed number of input boxes for symptoms and products in the form, we would add the ability to

change the number of inputs. Adding this functionality would give the user the ability to customize how many

symptoms and products he or she is able to input. This would give the user the ability to compare more drugs

and symptoms simultaneously on the results page rather than completing multiple searches.

• To make the product more accessible for those without computers, we wanted to turn the system into a mobile

application. We did not implement this during this project because we were constrained by the framework

we chose to build the system in on the Web. With more time, we could create a mobile application using the

necessary frameworks as well as the Web application we focused on.
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Chapter 13
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Appendix A

User Manual

A.1 User Functionality

It is a known fact that almost all drugs that are used to treat any kind of ailment or disease have the possibility of

causing side e↵ects. When experiencing symptoms with seemingly no cause, a patient often turns to online resources

to seek answers before they decide to meet with a medical professional. The first thought that a patient typically

has when experiencing a strange symptom is not that they are experiencing their symptom due to a side e↵ect of

medication, but rather that they are experiencing this symptom because they are ill.

In order to make this distinction, our web application, Symptom Search, uses the symptoms that the user is experienc-

ing and the products that they are taking and displays a likelihood metric of how likely it is that the product is causing

that symptom, as well as a suggested list of other products that are likely to cause the user’s inputted symptoms.

A.1.1 Account Creation and Login

1. On the home page, the user clicks “Begin” and is directed to the registration and login page.

2. On this page, the user creates an account by inputting their name, email, and password.

3. To login, the user inputs their email and password into the login section.

A.1.2 Symptom Input and Product Input

1. After the user has either registered or logged in, they are directed to the symptom and product input page.

2. At this page, the user inputs one or two symptoms that they are currently experiencing.
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3. Then, the user inputs one or two products that they are currently taking that they suspect might have contributed

to their symptoms.

4. For ease of use, the user can click “Reset” if they made a mistake in their symptom or product input to reset the

input fields.

5. After inputting this information, the user submits their information and is directed to the results page.

A.1.3 Results

1. On the results page, the user is able to see a likelihood table of their symptoms and products, as well as a list of

suggested products that are most likely to cause the user’s inputted symptoms.

2. The user can log out of the system by clicking the “Logout” button or click the “Back” button to return to the

symptom and product input page to check other symptoms and products.
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