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Scientists and others from academia, gov-
ernment, and the private sector increas-
ingly are using climate model outputs in 
research and decision support. For the 
most recent assessment report of the Inter-
governmental Panel on Climate Change, 
18 global modeling centers contributed out-
puts from hundreds of simulations, coor-
dinated through the Coupled Model Inter-
comparison Project Phase 3 (CMIP3), to the 
archive at the Program for Climate Model 
Diagnostics and Intercomparison (PCMDI; 
http://pcmdi3.llnl.gov) [Meehl et al., 2007]. 
Many users of climate model outputs prefer 
downscaled data—i.e., data at higher spatial 
 resolution— to direct global climate model 
(GCM) outputs; downscaling can be statis-
tical [e.g., Maurer et al., 2007] or dynami-
cal [e.g., Mearns et al., 2009]. More than 800 
users have obtained downscaled CMIP3 
results from one such Web site alone (see 
http:// gdo -dcp .ucllnl .org/ downscaled _cmip3 
_projections/, described by Maurer et al. 
[2007]). 

A common request from those applying 
any of these outputs—whether to conduct 
impact research or to support adaptation 
planning—is guidance on how to select, 
treat, and combine the vast amount of cli-
mate model output into useful climate sce-
narios. A scenario is a postulated sequence 
of events, whether of human development, 
climate, etc. Specifically, two questions are 
often asked: (1) How best can scientists 
understand and characterize uncertainty? 
(2) What are some key considerations when 
selecting and combining climate model out-
puts to generate scenarios? Addressing these 
questions in the context of recent research 
leads to some possible guidelines for creat-
ing and applying climate scenarios [see also 
Knutti et al., 2010]. At this juncture, with a 
new generation of global and regional cli-
mate projections becoming available, such 
guidelines may prove useful to researchers 
and policy makers. 

Understanding and Characterizing 
 Uncertainty

Descriptions of future climate change 
should include both a central estimate and 
some representation of uncertainty. Major 
contributors to uncertainty are imperfect 
knowledge of (1) the drivers of change, 
chiefly the sources and sinks of anthro-
pogenic greenhouse gases and aerosols; 
(2) the response of the climate system to 
those drivers; and (3) how unforced variabil-
ity may mask the forced response to drivers. 

Quantifying uncertainty in greenhouse 
gas emissions and other forcings—the driv-
ers of change—remains problematic, and 
although some studies have attempted to 
assign probabilities, many instead simply 
choose among the three forcing scenarios 
that were widely used for CMIP3. Between 
now and about 2050 this source of uncer-
tainty is less important than others, because 
concentration scenarios diverge substan-
tially only after that and because changes 
before then include a substantially delayed 
response to previous emissions. 

The response of the climate system, the 
second major contributor to uncertainty, is 
sometimes characterized by its “climate sen-
sitivity,” defined as the change in globally 
averaged temperature in response to a speci-
fied radiative forcing. While this provides a 
simple characterization based on a single 
parameter, a full description of response 
uncertainty would also involve uncertain-
ties in the time-evolving response, and in 
responses at subglobal scales and of vari-
ables other than temperature, which may 
be proportional to the climate sensitivity, 
whether on global or regional scales. 

Climate sensitivity can be estimated from 
observations [e.g., Hegerl et al., 2007], but 
these estimates are subject to uncertain-
ties in both forcing and response. It is hard 
to rule out very high rates of warming: Most 
studies estimate that there is at least a 5% 
chance that the sensitivity exceeds 7°–9°C, 
for a doubling of atmospheric carbon diox-
ide (CO2). Some of these studies account 
for uncertainties in aerosol forcing. Model 
estimates of climate sensitivity, on the 
other hand, range only from 2.1°C to 4.4°C 

[Randall et al., 2007]. No climate model 
in the CMIP3 archive represents a low- 
likelihood, high-sensitivity future climate. 

The third important source of 
uncertainty— how unforced variability 
masks effects by known drivers of climate 
change— involves the fact that historical 
climate simulations do not, and are not 
intended to, reproduce the exact monthly 
values of climate variables. A goal of devel-
oping scenarios is to distinguish the slowly 
varying central tendency of change forced 
externally (by greenhouse gases, volcanoes, 
etc.) from the unforced variations, which 
can be important, even dominant, when try-
ing to diagnose and interpret climate change 
on small time and space scales in the con-
text of global simulations [Hawkins and 
Sutton, 2010]. Using climate projections for 
impact assessments depends on being able 
to separate forced responses from natural 
climate variability [e.g., Giorgi, 2005], which 
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Fig. 1. Projected change (in percent) in sum-
mer precipitation for the 2080s in the U.S. 
Pacific Northwest from a variety of climate 
models (open circles, as used by Mote and 
Salathé [2010]), for scenario A2 of the Inter-
governmental Panel on Climate Change’s Spe-
cial Report on Emissions Scenarios. The x axis 
shows the bias factor of Giorgi and Mearns 
[2002]; models with simulated 1970–2000 
precipitation close to the observed precipita-
tion, within the range of natural variability, are 
given a skill factor of 1. Linear fit to the data 
is indicated (sloping line). There is little differ-
ence among changes calculated with all mod-
els unweighted (horizontal line), with only the 
“best” models (models with skill factor >0.9, 
solid circle), or with weighting the models by 
their skill factor (plus sign).

http://gdo-dcp.ucllnl.org.downscaled
http://gdo-dcp.ucllnl.org.downscaled
http://gdo-dcp.ucllnl.org.downscaled
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is often accomplished by analyzing the 
mean and range in an ensemble of simula-
tions differing only in initial conditions. 

One thing to note on the uncertainty in 
climate projections is that on the regional 
to local scale, where effects are felt, stud-
ies may include extremes like cold or 
heat, storms, and droughts, and detection 
and attribution of such changes to spe-
cific causes (e.g., rising greenhouse gases) 
becomes more difficult. Consequently, esti-
mating uncertainty in future changes in 
these local quantities has little theoretical 
basis. 

Further, it must be emphasized that the 
range of available model results does not, 
and is not intended to, represent the true 
physical uncertainty of the quantity in 
question, although many studies implicitly 
assume that it does. The range of model 
results measures consensus, which is impor-
tant but distinct from uncertainty. Some 
work on parameter-space exploration has 
explicitly attempted to quantify the physical 
aspects of uncertainty [see, e.g., Stainforth 
et al., 2005].

As a final comment on sources of uncer-
tainty in climate projection information, it is 
important to understand that the relevance 
of these sources to a given decision depends 
on the climate variable and scale of interest 
(in both space and time). Consideration of 
which climate aspects are most relevant to a 
given planning or decision-making process 
(variables and scales) will help steer atten-
tion toward associated aspects of climate 
projection information, which can lead to 
a more tailored and relevant discussion of 
these uncertainties.

Selecting and Combining Models

To distill the large number of model sim-
ulations into a small group of scenarios, it 
seems logical to focus on simulations that 
seem more credible, culling or weighting 
the results on the basis of some measure 
of skill. Weighting models may be justified 
when, for instance, there is a strong correla-
tion between a physical process and a per-
formance metric [Knutti et al., 2010]. Further-
more, while many efforts have focused on 
ranking climate models based on how they 
simulate the time-averaged regional climate 
during a historical period [e.g., Gleckler 
et al., 2008; Brekke et al., 2008], for impact 
assessments, in particular, a better basis for 
model ranking might be their ability to simu-
late regional climate sensitivity to a change 
in global climate forcing, provided that a 
theoretical and observational basis for such 
analysis can be established. 

While methods have varied, it is com-
mon to use historical model performance 
to weight or to choose the “best” models 
when constructing an ensemble. Some stud-
ies have been framed on the premise that 
ranking leads to better results, though it has 

been shown that model ranking depends on 
which skill metrics are considered [Gleckler 
et al., 2008; Brekke et al., 2008]. In any case, 
while some studies have shown that rank-
ing models has led to a separation in future 
responses [e.g., Walsh et al., 2008], oth-
ers have shown that considering metrics of 
model skill has generally made little differ-
ence either to detection and attribution stud-
ies or for representing likely future change. 
For example, for future average temperature 
over the western United States, any 14 ran-
domly selected GCMs produced results 
indistinguishable from those produced by a 
combination of the “best” models, and the 
ensemble skill approached the same asymp-
tote once any 6 GCMs were included [Pierce 
et al., 2009]. Further, using a metric of pre-
cipitation trend, 11 randomly selected GCMs 
produced results almost identical to those 
using the 11 “best” GCMs [Knutti et al., 2010], 
and detection and attribution of changes in 
atmospheric water vapor were insensitive to 
whether the “best” or “worst” 10 GCMs were 
used [Santer et al., 2009]. Additionally, little 
reduction was found in estimating regional 
precipitation and temperature change uncer-
tainty over northern California [Brekke et al., 
2008] or the Pacific Northwest [Mote and 
Salathé, 2010] when based on different sets 
of “better” climate models, as illustrated 
in Figure 1. On the basis of these findings 
and focusing on CMIP3 results, it is unclear 
whether model culling leads robustly to a 
separation of future responses and is thus 
warranted in planning efforts. However, this 
topic will need to be revisited with CMIP 
Phase 5 when new GCM simulations will be 
available to establish performance metrics 
that may be more robust [Knutti et al., 2010].

Whether or not models are culled, sce-
nario development requires decisions on 
what to sample from the available ensem-
ble. Some may focus on changes in mean 
climate, in which case it may be advisable 
to define such change based on a multi-
model average rather than on any single 
model. However, such definitions still need 
to be blended with assumptions about cli-
mate variability, which may be taken from 
past observations. Alternatively, the ensem-
ble of opportunity—that is, all the available 
model runs (as distinct from runs designed 
to form a meaningfully representative 
ensemble)—may also be used to estimate 
changes in both mean and variability. Fur-
ther work is needed to quantify the cred-
ibility of CMIP3 and the new CMIP5 output 
on various space and time scales, beyond 
assessing relative skill and culling models, 
as discussed above. For estimating the cen-
tral tendency or selecting a single “best” 
model, then, a suitable approach may be 
simply to take an unweighted average or 
median result based on as many models as 
possible. 

In summary, and based on the evalu-
ations cited above, it seems justifiable to 

forgo culling or weighting climate projec-
tions based on perceptions of credibil-
ity. This leaves a rather large ensemble of 
opportunity that may be sampled for cli-
mate scenario information. Such sampling 
may involve identifying individual climate 
projections that express changes that gener-
ally represent the spread of projection infor-
mation, or choosing a scheme that com-
bines projection information (e.g., ensemble 
median projected condition through time, 
or ensemble mean change in period sta-
tistics). When several simulations from the 
same model are available, important ques-
tions to ask involve whether differences 
between outputs of the same model are as 
large as differences between outputs of dif-
ferent models for various starting parame-
ters. The answer depends on the space and 
time scales considered, but several stud-
ies suggest the answer is that time- averaged 
differences between outputs of the same 
model are negligible, especially for longer 
time horizons [e.g., Pierce et al., 2009]. This 
implies that the formation of a large ensem-
ble of model simulations [e.g., Maurer et al., 
2007] should recognize that two runs from 
the same model are not likely to be as differ-
ent as two runs from different models, and 
therefore one should not simply lump all 
available simulations together, as this effec-
tively gives more weight to the models con-
tributing more simulations. 

Proposed Guidelines for Model Evaluations

Results from new evaluations of mod-
els including CMIP5 (see http:// cmip -pcmdi 
.llnl .gov/ cmip5/) and the North American 
Regional Climate Change Assessment Pro-
gram [Mearns et al., 2009] are arriving, 
along with new downscaled data reposi-
tories. Volunteers are also contributing 
time on their personal computers to cre-
ate a superensemble of regional climate 
simulations at 25- kilometer resolution for 
the western United States (see http:// www 
. weatherathome .net). While these new 
efforts augment the options of climate sce-
narios available, they also complicate the 
development of climate scenarios. 

Because modeling efforts both new and 
old can be difficult to navigate, the follow-
ing guidelines may help scientists and man-
agers who intend to use climate model 
scenarios for impact or climate diagnostic 
research:

1. Understand to which aspects of climate 
your problem or decision is most sensitive 
(e.g., which climate variables, which statisti-
cal measures of these variables, and at what 
space and time scales). 

2. Determine which climate projection 
information is most appropriate for the prob-
lem or decision (e.g., variables, scales in 
space and time). 

3. Understand the limitations of the 
method you select. 

http://www.weatherathome.net
http://www.weatherathome.net
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4. Obtain climate projections based 
on as many simulations, representing as 
many models and emissions scenarios, as 
possible. 

5. It may be worth the effort to evaluate the 
relevant variables against observations, just to 
be cognizant of model biases, but recognize 
that most studies have found little or no differ-
ence in culling or weighting model outputs.

6. Understand that regional climate pro-
jection uncertainty stems from uncertainties 
about (1) the drivers of change (e.g., green-
house gases, aerosols), (2) the response 
of the climate system to those drivers, and 
(3) the future trajectory of natural variability. 

7. Use the ensemble to characterize con-
sensus not only about the projected mean 
but also about the range and other aspects 
of variability. 

These guidelines make use of several 
recent research efforts and may provide a 
better foundation for developing and apply-
ing climate scenarios to a range of research 
and planning questions.
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