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Predictability of seasonal runoff in the Mississippi River basin
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[1] Recent advances in climate prediction and remote sensing offer the potential to
improve long-lead streamflow forecasts and to provide better land surface state estimates
at the time of forecast. We characterize predictability of runoff at seasonal timescales in the
Mississippi River basin due to climatic persistence (represented by El Niño-Southern
Oscillation and the Arctic Oscillation) and persistence related to the initial land surface
state (soil moisture and snow). These climate and land surface state indicators, at varying
lead times, are then used in a multiple linear regression to explain the variance of seasonal
average runoff. Soil moisture dominates runoff predictability for lead times of 1 1/2
months, except in summer in the western part of the basin, where snow dominates. For the
western part of the basin, the land surface state has a stronger predictive capability than
climate indicators through leads of two seasons; climate indicators are more important in
the east at lead times of one season or greater. Modest winter runoff predictability exists at
a lead time of 3 seasons due to both climate and soil moisture, but this is in areas
producing little runoff and is therefore of lessened importance. Local summer runoff
predictability is limited to the western mountainous areas (generating high runoff) through
a lead of 2 seasons. This could be useful to water managers in the western portion of the
Mississippi River basin, because it suggests the potential to provide skillful forecast
information earlier in the water year than currently used in operational forecasts. INDEX

TERMS: 1833 Hydrology: Hydroclimatology; 1860 Hydrology: Runoff and streamflow; 1863 Hydrology:

Snow and ice (1827); 1866 Hydrology: Soil moisture; KEYWORDS: hydroclimatology, predictability, soil

moisture, Mississippi River basin, runoff
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1. Introduction

[2] The history of the United States, and especially its
expansion westward, is inextricably tied to water. Beginning
with the Homestead Act of 1862, the federal government
actively promoted settlement of the arid and semi-arid west.
Incentives were increased as the available lands became less
fertile and more arid. The Reclamation Act of 1902 was
transformed in the early 1930s into a major land and water
development program, and the period of settlement that
ended around 1900 was followed by a period of intense
construction of increasingly large, multipurpose water proj-
ects, which continued into the 1960s. As the better dam sites
were developed and their economic feasibility came into
question, and with a mounting environmental opposition,
the emphasis in water policy shifted toward management of
resources [e.g., Plummer, 1994; Beard, 1994; Marston,
1987]. This last period, which continues today, arguably
began with the Wild and Scenic Rivers Act of 1968. With
population of the United States projected to rise by 20
percent by 2020 [U.S. Census Bureau, 2000] and the West,
where water scarcity is greatest, by up to 30 percent
[Western Water Policy Review Advisory Commission,

1998], water planners are being forced to look for new
opportunities for better management of a resource that is
now essentially fully developed. In addition, some have
argued that climate change may increase water scarcity in
areas of the United States where water supplies generally
are not currently constrained [Intergovernmental Panel on
Climate Change, 2001, chap. 4; National Assessment Syn-
thesis Team, 2001; Vörösmarty et al., 2000].
[3] Aside from structural changes in water use (e.g.,

reallocation of water, such as from agriculture to municipal
and industrial), perhaps the greatest potential for improving
water management is through more accurate streamflow
forecasting. Over the last decade, great strides have been
made in two areas that offer considerable potential for
improved streamflow forecasting. The first is better under-
standing of climate teleconnections as manifested by
ocean-atmosphere phenomena such as El Niño-Southern
Oscillation (ENSO), the Pacific Decadal Oscillation, and
the Arctic Oscillation (AO). A second opportunity is use of
remote sensing products for better initialization of the
hydrologic system [e.g., Walker and Houser, 2001; Pau-
wels et al., 2001; Rango et al., 2000; Carroll et al., 1999].
These include snow cover extent, snow water equivalent,
and surface skin temperature. All of these variables are
observed, with various limitations, by existing sensors, the
resolution and quality of which have improved with launch
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of Earth Observing System (EOS) Terra and Aqua plat-
forms, and with planned soil moisture missions [Hall et al.,
2002; Ma et al., 2002; Njoku and Li, 1999; Kerr et al.,
2001].
[4] Improved knowledge of climate dynamics has

resulted in demonstrable improvements in long-lead (to
lead times as long as a year) climate forecasts, based on
coupled ocean-atmosphere-land models [e.g., Goddard et
al., 2001, and references therein]. Teleconnections of cli-
mate signals, especially ENSO and also the AO, have been
established for the United States for precipitation and
temperature [Higgins et al., 2000; Livezey and Smith,
1999; Kumar and Hoerling, 1998; Gershunov, 1998; Wang
et al., 1999], snowfall [Kunkel and Angel, 1999], and
streamflow [Dracup and Kahya, 1994; Kahya and Dracup,
1993]. Despite the presence of apparent predictability in the
climate signal, and the teleconnections to land surface
hydrologic variables, the incorporation of climate forecasts
in forecasts of seasonal runoff (or streamflow) has thus far
been largely limited to experimental settings [e.g., Wood et
al., 2002; Baldwin, 2001; Garen, 1998; National Water and
Climate Center, 1998]. Monthly to seasonal streamflow
forecasts widely used in the western United States more
commonly rely on regression-based forecasts [Soil Conser-
vation Service, 1988; Garen, 1992], or use hydrologic
simulation models to capture the hydrologic memory, as
reflected in soil moisture and snow storage, and then
assume, explicitly or implicitly, climatological average
conditions during the forecast period [e.g., Twedt et al.,
1977]. We contend that recent advances in climate predic-
tion and remote sensing provide the capability to improve
long-lead streamflow forecasts by utilizing climate fore-
casts, and by incorporating better estimates of the state of
the land surface at the time of forecast, a contention that we
evaluate for the domain of the Mississippi River basin in the
remainder of this paper.
[5] Hornberger et al. [2001], in their assessment of global

water cycle research necessary to address critical water
problems facing society, identified as one of their three
key science questions the predictability of variations in the
global and regional water cycle. The National Research
Council [2002] built on that assessment and raised the
questions of whether accurate observation of initial land
surface conditions increases hydrometeorological predict-
ability, and when and where this predictability is likely to be
most important. In this study, we address these questions by
taking advantage of a recently developed hydrologically
based land surface data set [Maurer et al., 2002] to
characterize hydrological predictability due to climatic
persistence and persistence related to the initial state of
the land surface. We focus on distributed runoff (e.g., spatial
fields of runoff) rather than the space-time convolution of
runoff (streamflow), in order to identify regional patterns
and influences in runoff predictability. The primary ques-
tions we address are as follows: (1) During which seasons is
the predictability of runoff greatest? (2) How does the
contribution of initial hydrologic conditions relative to
climate predictability vary geographically? (3) Where are
potential improvements in seasonal runoff forecast accuracy
due to improved observations (e.g., through remote sensing
or in situ observations) of the land surface moisture state the
greatest? We focus our attention on the Mississippi River

basin (Figure 1), which coincides with the study area of the
World Climate Research Programme’s Global Energy and
Water Cycle Experiment (GEWEX) Continental-Scale In-
ternational Project (GCIP), a project established with the
long term goal of demonstrating skill in predicting changes
in water resources on timescales up to seasonal, annual and
interannual [World Meteorological Organization, 1992].

2. Methods and Data

[6] The gridded data set of land surface and climatic
variables of Maurer et al. [2002] is used to determine the
predictability of runoff throughout the Mississippi River
basin from currently available, or potentially available infor-
mation. Details of the data derivation and validation are given
byMaurer et al. [2002]. To summarize briefly, the runoff data
were produced using the Variable Infiltration Capacity (VIC)
hydrologic model driven by observed precipitation and
temperature, and other derived surface radiative and meteo-
rological forcings (see Liang et al. [1994] and Cherkauer et
al. [2003] for details of the model structure). The model was
run at a 3-hour time step for the period January 1950 to July
2000, with a grid cell size of 1/8 degree (approximately
140 km2 per grid cell). Throughout this paper, predictability
is assessed for seasonal average runoff on a grid cell by grid
cell basis for a range of lead times for hydrologic and climatic
initial conditions extracted from theMaurer et al. [2002] data
set, as shown in Figure 2. Following the convention of
Barnston [1994], the lead time is the number of seasons
‘‘skipped’’ between the predictor(s) and the predictand, so
a lead-0 indicates a lead time of 1.5 months from the
initialization to the midpoint of the predicted season. Seasons
are defined as December–February (DJF), March–May
(MAM), June–August (JJA), and September–November
(SON). The date on which initial conditions are determined,
i.e., the initialization date or date of forecast, is shown with
vertical lines in Figure 2 for the example of predicting DJF
runoff. Because we use climate and land surface variables on
the initialization date to predict runoff in a future season, we
do not include any runoff forecast skill obtainable through
predictability of the evolution of these variables. For the case
of climate initial conditions, this is discussed in more detail in
section 2.2.
[7] Climate indicators (represented in this study by the

Southern Oscillation Index, SOI, and the Arctic Oscillation,
AO, Index: see section 2.2) and land surface state (snow
water equivalent, SWE, and soil moisture, SM: see sections
2.3 and 2.4, respectively) influence seasonal runoff as
indicated in Figure 3, which shows schematically the effect
of unpredictable weather noise in the climate system. Note
that we ignore the possibility of an additional noise com-
ponent between the soil moisture and snow states and runoff
in this study. Because the runoff and land surface states in
the Maurer et al. [2002] data set are derived from the same
model simulation, the only direct effect of noise on runoff in
the data set is though the unpredictable weather component
that drives the hydrologic model.
[8] For this study, we consider only the initial conditions

of the climate indicators and land surface moisture state as
predictors of future runoff, so the process illustrated in
Figure 3 is ‘‘one-way,’’ in that no feedback from the initial
land surface moisture state to climate evolution is included.
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Initial soil moisture, varying between extreme wet and dry
initial states, has been shown to greatly change 30-day
forecasts of precipitation averaged over regional to conti-
nental areas [Beljaars et al., 1996; Betts et al., 1996],
though the effects of initial soil moisture anomalies repre-
sentative of typical interannual variability have been shown
to have little impact on the evolving atmosphere [Oglesby et
al., 2002]. Because we include initial soil moisture explic-
itly as a predictor, any predictability due to feedback to the
atmosphere, at least that which can be captured by the linear
relationships used in this study, is attributed to knowledge
of the initial moisture state rather than knowledge of climate
evolution due to initial land surface state.

2.1. Evaluation of Predictability

[9] To assess the predictability of seasonal average run-
off, we used multiple linear regression, using as predictors
various combinations of the SOI, AO, SM, and SWE at
different lead times. The regressions were performed on a
grid cell by grid cell basis across the domain. The multiple
regression equations developed for the combinations of
variables are not used as predictive models; only the
variance explained by the regression is used. The values
of the variance explained by the predictors, r2 (where r is
the correlation coefficient of the regression) were plotted
spatially at the different lead times to illustrate their predic-

tive capability of seasonal runoff by season and by lead
time. The predictor variables are assigned to three tiers,
where the climate indicators that are currently available for
incorporation into forecasts, are assumed to be the best
known variables, and SWE, which in practice is estimated
by ground surveys and remote sensing, is less known, and
SM is essentially unobserved, and hence is least well
known. The variances explained by each tier are the
incremental amounts over and above that already explained
by better known variables. In this way, variances explained
by two correlated variables are only counted once, and are
attributed to the better known variable.
[10] To test for significant correlations, the two-step

process outlined by Livezey and Chen [1983] was used.
First, temporal autocorrelation was taken into account, and
the effective number of temporal degrees of freedom was
determined. As applied in this study, the time between
independent samples was computed for each grid cell for
each combination of predictors as [Livezey and Chen, 1983]

tP ¼ 1þ 2
XN
i¼1

CP i�tð ÞCR i�tð Þ
" #

�t ð1Þ

where CP is the autocorrelation function for the selected
combination of predictors (separated by season, e.g., a 50
year sequence of DJF values of SOI), CR is the autocorrela-
tion function of the seasonal runoff, i is the sample number of
N total samples, and �t is the sampling time (one season for
this study), so i�t represents a lag of i seasons. The effective
number of degrees of freedom, n, was then determined by
[Livezey and Chen, 1983]

n ¼ N�t

tP
ð2Þ

At each grid cell the computed value of the correlation
coefficient r was compared against the 95% significance

Figure 1. Location of the Mississippi River basin in North
America. The basin boundary is shown in white, as is a
north-south line at longitude 100�W.

Figure 2. Example of initialization dates for forecasting
the DJF runoff at lead times of 0 through 4 seasons.

Figure 3. Schematic of the predictable and unpredictable
influences on seasonal runoff considered in this study. Note
that for this study the interactions are one-way; feedback
from the land surface to climate is not considered: Only the
initial conditions of the climate indicators are included.
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criterion for no correlation, which provided a determination
of local significance.
[11] The total amount of significant area was determined

by counting the number of grid cells exhibiting locally
significant correlation, with each grid cell weighted by the
cosine of latitude to avoid biasing due to differences in grid
cell area. If there were no spatial correlation and each grid
cell (there are 1532 1/2-degree grid cells in the Mississippi
River basin) were an independent sample, we would expect
5% of the grid cells (77) to show significant correlation by
chance 6% of the time, based on the binomial distribution. At
lead times and seasons where greater than 6% of the area
showed local significance, statistical field significance at the
95% confidence level would be claimed. Because there is
spatial correlation between grid cells in the runoff fields (as
well as in SM and snowfields), the actual number of spatial
degrees of freedom is considerably less than 1532. As a first
estimate, the number of empirical orthogonal functions
needed to describe 95 percent of the variance in seasonal
runoff varies from 35 in DJF to 39 in JJA, which translates to
15.2–15.8% of the area that would show local significance
by chance. As a practical matter, this suggests a need to use a
Monte Carlo technique to assess spatial field significance.
[12] Monte Carlo simulations were performed in a man-

ner similar to that of Barnston [1994], in which the forecast
to observation year correspondence was randomly shuffled
over the entire domain, and the fractional area of the basin
exhibiting significant correlation at a 95% level based on a
t-test was computed. The process was repeated 500 times
for each lead time, season, and set of predictors. For each
season and lead time the area determined as significant by
this Monte Carlo technique is the minimum for a result to
achieve statistical field significance. Table 1 shows the
results of these Monte Carlo simulations, and the minimum
area with significant correlations for field significance. It
should be noted that field significance is a basin-wide test in
this study. If a particular (a priori) interest were exclusively
in one sub-area of the basin, then local significance would
still be pertinent, though basin-wide field significance of
this may not. A separate set of Monte Carlo experiments for
only the area of interest could be used to determine the area
required for field significance of a sub-area.

2.2. Climate Signals

[13] Given the established teleconnections of climate
signals with hydrologic variables over the United States
(see references in section 1), our objective was to character-
ize the seasonal predictability of runoff, and the dominant
sources of predictability. At seasonal to interannual scales,
the El Niño-Southern Oscillation (ENSO) is the best known
and most prominent predictable climate signal [Rasmussen
and Wallace, 1983]. One index used to quantify the phase of

the ENSO signal is the SOI, which is based on the surface
pressure difference across the South Pacific (Tahiti minus
Darwin). The SOI has been related to various land surface
effects in the continental United States, including seasonal
temperatures [Wolter et al., 1999], precipitation [McCabe
and Dettinger, 1999], and streamflow [Cayan et al., 1999].
Because of this past use of the SOI in teleconnection studies
we decided to use it in this study as well, and we obtained the
monthly standardized difference index from the National
Oceanic and Atmospheric Administration, National Centers
for Environmental Prediction Climate Prediction Center
(http://www.cpc.ncep.noaa.gov/data/indices/). Trenberth
[1997] recommends smoothing of the monthly SOI index
to remove the effect of high-frequency, small-scale phenom-
ena. As given by Ropelewski and Jones [1987], we applied a
five-month moving average to the monthly SOI time series.
Although the effect of this smoothing is to include some
future information of SOI state in the value for the current
month, we argue that that the smoothing, by removing high-
frequency fluctuations, makes the SOI more comparable to
the more slowly varying sea surface temperature (SST)-
based ENSO indicators. For example, the unsmoothed SOI
has a correlation with the SST index Niño 3.4, for the period
1950–1999 of �0.72, while 5-month smoothing of SOI
produces a stronger correlation of �0.87. The smoothing
therefore results in SOI values that more closely resemble the
SST-based index that would be available at the time of
forecast. These values can be used as an indicator of climate
state that would be known at the initialization time, with the
results of the predictability analysis being more robust,
irrespective of the ENSO index chosen.
[14] Shukla [1998] suggested that the evolution of ENSO

events appears to be predictable 6 to 9 months in advance,
and that SOI-based persistence forecasts may underestimate
the predictability of sea surface temperature anomalies.
Barnston et al. [1999] subsequently showed that both
coupled GCMs and statistical models outperform simple
persistence in forecasts of ENSO state at lead times of 3.5 to
9.5 months. Landsea and Knaff [2000] argued that a more
reasonable baseline of ENSO predictability than simple
persistence is a simple statistical model such as the ENSO
climatology and persistence (ENSO-CLIPER) model [Knaff
and Landsea, 1997]. Landsea and Knaff [2000] show that
this simple regression-based model outperformed coupled
GCMs and more complex statistical models for predicting
the 1997–1998 El Niño event for lead times through two
seasons, though for 3 and 4 season forecast lead times a
modest improvement was achieved using a more sophisti-
cated statistical model. The factors influencing the character-
istics of an El Niño event, and ultimately its predictability,
differ for each event [Philander, 1999; Fedorov, 2002]. This
implies that the predictability of an El Niño event achieved

Table 1. Fractional Area Thresholds (Expressed as Percentages of Entire Mississippi River Basin Area Exhibiting Local Significance)

That Must be Exceeded to Achieve Statistical Field Significance at a 95% Confidence Level

Predictors

Lead (DJF) Lead (MAM) Lead (JJA) Lead (SON)

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

ALL 54 42 44 54 58 53 52 40 43 53 40 50 51 40 40 41 41 53 54 40
SOI AO 29 28 27 28 27 24 24 26 25 26 25 29 28 27 28 27 24 24 26 25
SWE 10 8 8 10 10 9 9 8 8 9 8 10 11 8 9 8 8 9 10 8
SM 10 8 8 9 9 9 8 8 8 9 8 10 8 8 9 9 9 8 8 8

GCP 2 - 4 MAURER AND LETTENMAIER: RUNOFF PREDICTION



by any particular model will vary with each event, hence the
relative skill attributed to coupled GCMs, statistical or
persistence forecasts will change accordingly. Although the
ENSO-CLIPER model will not outperform GCM forecasts
for all historical El Niño events, we use the ENSO-CLIPER
model to generate forecasts of SOI to estimate of the
potential difference in runoff predictability between simple
persistence and forecasted ENSO state.
[15] Barnston et al. [1999] note that success in forecast-

ing sea surface temperatures does not necessarily imply
comparable success in forecasting impacts in teleconnected
regions such as the continental United States The process of
translating a predicted sea surface temperature anomaly into
a remote land surface response introduces additional unpre-
dictable noise, so that a marginal increase in prediction of
ENSO will not necessarily result in measurable increase in
predictability of the land surface effects associated with
ENSO. In particular, the selection of an ENSO indicator
used in persistence mode, or with a model to predict its
evolution, may not result in substantially different land
surface predictability.
[16] To test whether, for predictions of seasonal runoff,

there is any change in apparent potential skill between using
the simple persistence of initial SOI relative to SOI fore-
casted by a statistical model, the ENSO-CLIPER model was
obtained (from http://www.aoml.noaa.gov/hrd/Landsea/
ensocliper/). It was run from 1951 (the earliest year for
which required input data are available) through July 2000,
with the climatological SOI values added for 1950 to make
the record consistent with the period of record for the land
surface variables included in this study. The SOI used for
testing the simple persistence model was the smoothed SOI
index discussed above.
[17] Seasonal average runoff values at each grid cell were

regressed against the smoothed SOI values in a persistence
mode: that is, against the SOI value for the appropriate
initialization date for each season and lead times of 0, 1,
and 2 seasons. Spatial plots of the variance explained by this
SOI initialization (persistence mode) are shown in Figure 4a.
For comparison, the seasonal runoff at each grid cell was
also regressed against the ENSO-CLIPER forecasted SOI
values. First, the ENSO-CLIPER model was initialized on
the appropriate initialization date, after which seasonal
average values of SOI were forecasted for each lead time.
These forecasted SOI values were regressed against the
seasonal average runoff for the same season. The runoff
variance explained using ENSO-CLIPER forecasted SOI
values is plotted in Figure 4b. The patterns exhibited in
these two figures are in general very similar. This suggests
that, although ENSO-CLIPER shows better sea surface
temperature forecast skill (as measured by root mean square
error, RMSE) than simple persistence (at least for the event
studied by Landsea and Knaff [2000]), consistent with the
discussion above, the marginal increase of ENSO predict-
ability does not translate to a measurable increase in land
surface predictability. We conclude that the use of the SOI
forecasts produced by the ENSO-CLIPER model has a
negligible effect on the skill of seasonal runoff predictability
in the Mississippi River basin as compared to using SOI
values in a persistence mode. Furthermore, because the
RMSE of ENSO-CLIPER is shown by Landsea and Knaff
[2000] to be 49–66% lower than the simple persistence

model for leads of 0–2 seasons, with no measurable benefit
for runoff forecasting, the additional improvement (reflected
by a further RMSE reduction by 18–24%) of more sophis-
ticated statistical models compared to ENSO-CLIPER at
leads of 3–4 seasons would not be expected to provide
additional predictability of seasonal runoff over the persis-
tence model. We conclude therefore that for our purposes,
treating SOI in a persistence manner (that is, discarding
knowledge of the climatological evolution of ENSO events),
produces results that are comparable to those achieved by
using a more sophisticated statistical model.
[18] Recent studies show that additional predictability of

air temperature and precipitation, particularly in winter, can
be obtained over portions of the United States by incorpo-
rating the modes of the AO, which encompasses the North
Atlantic Oscillation [e.g., Higgins et al., 2000; Rohli et al.,
1999; Lin and Derome, 1998]. Operational seasonal climate
predictions for the United States currently are capable of
exploiting strong ENSO signals to improve forecast skill. It
has been argued [Baldwin and Dunkerton, 2001; Higgins et
al., 2000] that future forecast improvements will require the

Figure 4. Predictability of seasonal runoff due to SOI,
expressed as the fractional variance, r2, of seasonal runoff
explained by SOI, using (a) a simple persistence model and
(b) the ENSO-CLIPER model. Countour intervals of r2

values are every 0.1, and shading indicates locations where
the r2 is statistically significant. In the lower right corner of
each panel is the fraction of the total basin area with
significant correlation.
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ability to predict subtler changes in ENSO conditions, as
well as the AO. For this reason, we use two indices to
represent the predictability of seasonal runoff due to climate
signals: the 5-month smoothed SOI index and the AO.
Values of SOI for the initialization day were interpolated
by averaging the two adjacent monthly values of the filtered
SOI. To characterize the mode of the AO, an AO index was
obtained (from http://www.atmos.colostate.edu/ao/Data/
ao_index.html; see Thompson and Wallace [1998, 2000]
for details). The AO index for the initialization day (date of
forecast) was interpolated from adjacent monthly values, as
for the SOI.

2.3. Snow

[19] In areas where a substantial fraction of precipitation
falls as snow, water stored in the snowpack can be released
months later, providing a source of persistence that can be
exploited in seasonal streamflow forecasting. In the United
States, seasonal streamflow forecasts have been based on
estimates of the amount of water stored in the snowpack
since at least 1900 [Church, 1937]. Individual snow surveys
(which, in automated form, remain at the heart of the
streamflow forecasts produced by the National Resources
Conservation Service [Soil Conservation Service, 1988]) are
(or were, prior to automated data collection) time consum-
ing and cover relatively small areas. The need for a better
spatial context for estimates of the snow state inspired early
attempts to use panoramic photographs for forecasting
runoff from snowmelt [Potts, 1937]. Because photographs
provide a basis for estimating snow covered area (SCA)
rather than the water equivalent of the snowpack,
approaches based on SCA necessitated the development
of methods to deduce snow water content from spatial
coverage. In the satellite era, remotely sensed products have
provided estimates of SCA, which have shown to have
value for runoff forecasting [e.g., Rango and Martinec,
1979]. Although methods have been developed for direct
estimation of the water content of the snowpack (or SWE)
via remote sensing [e.g., Goodison and Walker, 1995; Shi
and Dozier, 2000], and new sensors such as the Advanced
Microwave Scanning Radiometer (launched in May 2002
on NASA’s Aqua platform) hold promise for future SWE
measurements, these methods have not been available
operationally [Rango et al., 2000] and cannot provide the
length of record needed for this study of the variability of
SWE in the context of runoff predictability.
[20] Therefore, for assessing potential predictability due

to knowledge of initial snow water storage, we use the
derived snow water equivalent product in the Maurer et al.
[2002] data set. The snow water equivalent used for
prediction is the value for the last (3-hour) time step of
the last day of the month prior to the beginning of the
forecast season. We believe that this is a reasonable surro-
gate for the initial snow water equivalent condition that
would be available at the forecast time, and therefore
represents the maximum level of predictability obtainable
through error-free observations of the water equivalent of
the snowpack.
[21] In order to avoid spurious correlations due to poorly

conditioned probability distributions of SWE in areas that
usually are snow-free, we apply a threshold to the SWE data
at each grid cell. During the entire period of 51 years, we

require for each season that during at least 10 of the years a
minimum of 0.1 mm of SWE must be on the ground in
order for SWE to be included as a candidate predictor.

2.4. Soil Moisture

[22] In addition to the water stored as snow, the water
stored in the soil column exhibits seasonal and interannual
persistence that can be exploited in seasonal forecasts. It has
beenwell known from the early days of hydrologic prediction
that SM plays a key role in predicting the effect of a given
precipitation pattern on the resulting runoff response of a
watershed [e.g., Linsley and Ackerman, 1942]. Despite its
importance to hydrologic modeling and runoff forecasting,
SM lacks a good observational database [Dirmeyer, 1995].
[23] Given the expense and difficulty of collecting SM

measurements, alternative techniques are being implemented
that offer promise for better determination of SM state, and
hence better definition of initial conditions for forecasting
seasonal water supply. Two recent advances that offer the
potential to provide more accurate estimates of SM con-
ditions for runoff prediction are macroscale hydrologic
modeling and remote sensing. The North American Land
Data Assimilation (LDAS) experiment (K. Mitchell et al.,
The GCIP Land Data Assimilation (LDAS) Project: Now
underway, GEWEX News, 9(4), 3–6, 1999) simulates SM
fields in real-time over the continental United States using
observations of precipitation and temperature to drive a suite
of several land surface models. Shortcomings of SM esti-
mates produced using this technique include errors in forcing
data due to the inhomogeneity and low station density of
near-real-time meteorological observing stations [Groisman
and Legates, 1994], and the effects of model and parameter
errors on the generated SM fields [Schaake et al., 2002].
[24] The most promising method for estimating soil mois-

ture via remote sensing is based on remote sensing using
passive microwave instruments operating at long (in excess
of 10 cm) wavelengths. A key technological constraint that
has precluded spaceborne remote sensing of soil moisture to
date is the tradeoff between the need for long wavelengths to
penetrate soil to sufficient depths (which in any event are
limited to a few cm) and to avoid obscuring the signal with
vegetation water, and the requirement for large antennas to
achieve adequate spatial resolution consistent with hydro-
logical and atmospheric models (e.g., 10–25 km) at long
wavelengths. The advanced scanning microwave radiometer
(AMSR) instrument on board the EOS Aqua platform
(launched 4 May 2002) has a 4.3 cm wavelength for one of
its channels, which although not ideal for soil moisture
sensing, provides some capabilities in regions of sparse
vegetation cover. The current observations of SM, sparser
and less consistent than observations of SWE, do not cover a
time period or have a spatial resolution adequate for the
investigation in this study.
[25] Therefore, for this study, we used an index of SM,

specifically the total moisture in the soil column on the
forecast initialization date from the derived data set of
Maurer et al. [2002]. Notwithstanding the inability at
present to observe SM directly, the Maurer et al. [2002]
data set can be considered to be a surrogate for the best
information that may eventually be available through a
combination of remote sensing and modeling. As such, it
can be considered to provide an upper limit on the infor-
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mation content that would be available from high-quality
observations, and its use is consistent with our attempts to
estimate potential runoff predictability.

2.5. Runoff Data

[26] The runoff data used in this study were the derived
product archived by Maurer et al. [2002]. For this study we
aggregated the 3-hourly runoff values to monthly and
seasonal averages. Furthermore, we aggregated spatially
from the 1/8 degree native spatial resolution of the data
set to 1/2 degree spatial resolution, in order to reduce array
sizes and produce a more computationally tractable data set.
As shown by Maurer et al. [2002] the runoff, when routed
through a channel network to basin outlet points, closely
matches observed streamflows throughout the basin.

3. Results and Discussion

3.1. Seasonal Runoff Magnitude

[27] The magnitude of runoff in the Mississippi River
basin varies considerably across the domain and throughout
the year. Figure 5 shows the seasonal runoff, expressed as the
average runoff at each grid cell divided by the basin-wide
average runoff for each season. For example, most of the
DJF runoff is produced in the southeastern part of the basin,
and the highest JJA runoff is produced along the western
edge of the basin, in the Rocky Mountains. Seasonal
predictability is generally of greatest value where (a) runoff
volumes are high, as it indicates potential for forecast skill
that could affect a relatively large part of the annual runoff,
and/or (b) in locations where infrastructure (such as large
reservoirs) exists to allow water managers to respond to long
lead forecast information.

3.2. Total Runoff Predictability

[28] Figure 6 shows the total variance of seasonal runoff
explained by the climatic and land surface predictors to-
gether. The shading highlights areas with locally statistically
significant correlation. Shown on each plot are the fractions
of the basin with significant local correlation, which were
compared with the threshold values in Table 1 to test for
field significance. Statistical field significance exists in DJF
for leads up to and including 3 seasons, while MAM and
SON runoff predictability shows field significance at leads
through one season. The JJA season shows field signifi-
cance through a lead of 1 season and also at a lead of 4
seasons.
[29] For DJF runoff predictability, a very large percentage

(up to 70%) of the runoff variance at lead-0 is explained in

the northern and western areas of the basin, while Figure 5
shows the greatest runoff occurs in the south and east. These
very high levels of predictability in the western mountains
are due to three combined effects: (1) precipitation is low
during this season and snowmelt is limited, so direct surface
runoff is low; (2) the runoff leaving each grid cell is drained
from the lower soil layers; and (3) in the VIC model used to
produce the data given by Maurer et al. [2002], the rate of
soil moisture drainage is controlled by the moisture level in
the lowest soil layer. During MAM at lead-0, the variance
explained by the predictors drops to 30–50% through most
of the northern and western portions of the basin, with the
lowest values tending to occur where runoff is highest. The

Figure 5. Average seasonal runoff for the Mississippi River basin, divided by the seasonal basin-wide
average.

Figure 6. Predictability of seasonal runoff for each season
(columns) and each lead time (rows), using combined
climatic and land surface predictors, SOI, AO, SM, and
SWE. Predictability is defined as the fractional runoff
variance explained by the predictors, r2, in a multiple linear
regression. Contour interval is 0.1, with locally significant
r2 values shaded. The number in the lower right corner of
each panel indicates the fraction of the basin exhibiting
local statistical significance; this number is used in
comparison with the field significance thresholds in Table 1.
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JJA runoff variance explained by the predictors is more
uniform throughout the basin, with a concentration of higher
values along the mountainous western extreme of the basin,
which coincides with the highest runoff values in Figure 5.
JJA runoff predictability in this region is of particular
importance, because it provides the water supply used to
fill large reservoirs throughout the western part of the basin.
It is this predictability that is exploited by streamflow
forecasters in the west to anticipate available water supply.
Typically this forecasting of MAM and JJA runoff begins in
January. This figure shows that, using climatic indicators
and knowledge of the land surface moisture state some
measure of locally significant runoff predictability exists for
the mountainous western area of the basin for lead times of 4
seasons, which would be a valuable extension of the current
forecasts. By partitioning this predictability we will examine
the sources of this total predictability during different
seasons and at different lead times.

3.3. Runoff Predictability Due to Climate

[30] Figure 7 shows the runoff variance explained by the
climatic predictors. Because these predictors (SOI and AO
indices) are both available in near real-time, this represents a
source of runoff predictability that is realistically achievable
(discounting the effect of the 5-month smoothing of SOI).
Applying the threshold values from Table 1, statistical field
significance can be claimed for DJF at a lead of 0 seasons,
and also at leads of 2 and 3 seasons. Runoff in MAM and
JJA shows field significance through a 0 season lead, and
SON shows no field significance for any leads. This is
consistent with the observation that ENSO [e.g., Kumar and
Hoerling, 1998] and AO [e.g., Higgins et al., 2000] signals
typically exhibit their strongest signals in boreal winter.
Although the runoff variance explained for DJF at a lead of
three seasons is generally low (about 10%) its field signif-
icance and its overlap, at least partially, with areas of high
runoff (Figure 5) suggest that these climate indicators may
be capable of providing valuable predictive information for
runoff in the Mississippi River basin at leads of greater than
9 months. For the mountainous extreme western portion of
the basin, even with relatively small areas showing signif-
icant amounts of JJA runoff variance explained at leads of
two and three seasons, the relatively high runoff produced
by these areas (Figure 5) during JJA implies a potential
local benefit for including climatic indicators at these leads,
despite the lack of field significance at a basin-wide level.
[31] For DJF runoff, the coincidence of areas with high

runoff with modest, but statistically significant, runoff
predictability at long indicates that for prediction of DJF
runoff, climatic indicators may be the most important source
of long-lead predictability. This also illustrates a complica-
tion in using persistence of climate signals for prediction, as
is done in this study. Specifically, noting the significant
runoff predictability in the southeastern (Gulf) region of the
basin at a lead of 3 seasons, this predictability vanishes at
shorter leads of 1 and 2 seasons. Dracup and Kahya [1994]
discuss one potential explanation for this phenomenon (in
their case, it apparently occurs because observations of the
La Niña phase of the ENSO cycle during winter and spring
in the Gulf region of the United States are typically
followed by anomalously wet conditions the next year).
Although the results shown in Figure 7 include the effects of

both ENSO and AO, this highlights the point that the
predictability due to climate is not necessarily due to
persistence of the climate signals, but may reflect a region-
ally specific response to climatic forcing. It should also be
stressed that this analysis is based on a 50 year record, and
individual events in each season may have differing sources
and levels of predictability that do not match this general
climatological predictability indicator.

3.4. Runoff Predictability Due to Snow State

[32] The climatic indicators we use as predictors are based
on direct and readily available observations, whereas the soil
and snow moisture states are based on perfect knowledge of
the land surface moisture state. Because both SM and SWE
are driven by the same climatic factors, and by their nature
interact with one another, they can be highly correlated.
Figure 8 shows the correlation coefficient between SWE
and SM for each season. Not surprisingly, the two tend to be
correlated most strongly in areas undergoing episodes of
snowmelt, thus MAM shows high correlations over the
northern and western areas, while the mountainous areas
along the extreme west show very high correlation in JJA.
[33] Because of the longer history of remote sensing of

snow and the wider array of ground observations as
compared to SM, for comparative purposes we first examine
the portion of the runoff predictability due to land surface
moisture that is attributable to knowledge of SWE. To do
so, we subtract from the runoff variance explained by SOI,
AO and SWE that explained by SOI and AO. In this way,
runoff predictability due to SWE represents the incremental
increase, above that due to climatic state, in explained
runoff variance due to the knowledge of SWE alone. This
is shown in Figure 9.
[34] As would be expected, SWE explains seasonal

runoff variance most strongly where snow existing on the

Figure 7. Same as for Figure 6, but including only
climatic indicators, SOI and AO as predictors.
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initialization date melts and forms runoff during the season
being predicted. This can be seen most clearly at lead 0 in
the northwestern portion of the basin. During DJF (at lead 0,
using 30 November predictors) the correlations are strongest
in the northwestern portion of the basin, while for MAM
(28 February predictors) the area of high correlation retreats
toward the mountains and the northern central area, and
during JJA (31 May predictors) strong correlation is seen
only in the Rocky Mountains on the western boundary of
the basin. Referring to Figure 5, the predictability due to
SWE coincides closely with the areas of highest runoff
production, which illustrates the importance of snow, and its
current operational use, in forecasting late spring and
summer streamflow in the rivers originating in the western
Mississippi River basin.
[35] At longer leads of two to three seasons, locally

significant runoff predictability exists almost exclusively
in isolated areas along the western boundary of the basin,
which is again an anticipated result, as the snowpack
disappears over virtually the entire basin each year, and
deeper snowpacks that are capable of persisting longer than
three seasons exist only in the highest mountains. JJA,

which is the season with high runoff rates from the
mountainous western areas of the basin, shows areas with
locally significant runoff variance explained at a lead of two
seasons, that is, JJA runoff is partially predictable from
SWE information on 30 November. Although at the scale of
the entire Mississippi basin this spatially limited response
does not exhibit field significance, regional analyses could
reveal useful predictability at a lead of two seasons. The
current operational use of the snow state in spring-summer
streamflow forecasts begins on 1 January; however, these
results suggest that skillful forecasts could possibly begin at
least one month earlier.

3.5. Runoff Predictability Due to Soil Moisture State

[36] The predictability due to SM was computed using the
combined variance explained by the climatic and land surface
predictors, and subtracting the variance explained by the
combination of SOI, AO and SWE, and is shown in Figure
10. By estimating the predictability of runoff due to SM in
this way, Figure 10 displays the increase in predictability due
to SM knowledge beyond that already explained by climate
signals and the SWE. Field significance in Figure 10 can be

Figure 8. For each season, the correlation coefficient between the seasonal average SM and seasonal
average SWE.

Figure 9. As for Figure 6, but showing the predictability
due to SWE alone.

Figure 10. As for Figure 6, but showing the predictability
of seasonal runoff due to SM alone.
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claimed through a 4 season lead for DJF runoff prediction,
and through 3 seasons for MAM and JJA runoff.
[37] The most prominent feature in Figure 10 is the larger

area of the basin, as compared to climate predictors (Figure 7)
or SWE (Figure 9) that shows statistically significant runoff
variance explained for all seasons at lead 0. Although SM
explains considerably greater DJF runoff variance than
SWE at leads of one to two seasons for the western regions,
this area produces relatively little runoff during this period
so the value of the added predictability is lessened. During
the intense JJA runoff from the mountainous west, SM

provides a small but significant increase in explained runoff
variance in pockets of the mountainous western boundary in
addition to that achievable due to knowledge of snow state,
indicating that despite the high correlation of SWE and SM
in this area, significant independent information is obtained
from each source. The areas showing the greatest JJA runoff
(Figure 5), however, are still more highly correlated with
SWE (Figure 9) than with SM (Figure 10).
[38] In general, for the western boundary of theMississippi

River basin, SM shows greater persistence than SWE, as
indicated by higher levels of significant runoff variance

Figure 11. Unitless variable representing the importance of predictability. The variable is defined as the
fraction of the runoff explained by the climate or land surface indicators (defined in the left panel for each
row) times the unitless runoff (Figure 5), for a lead of 0 seasons.

Figure 12. Same as for Figure 11, but for a lead of 2 seasons.
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explained at longer lead times. For example, SWE provides
very little predictability of JJA runoff at a lead of three
seasons, while significant SM influence is still seen. For an
initialization date (date of forecast) of 31 August (i.e., lead-1
for DJF, lead-2 for MAM, lead-3 for JJA), snow is virtually
absent from the basin, and can provide no forecast informa-
tion, while SM shows significant explained runoff variance
for DJF, MAM and JJA at leads through 3–4 seasons. This
illustrates how knowledge of the SM and snow states can
complement each other in a forecast setting, providing
considerable independent information despite their correla-
tion with each other.

3.6. Importance of Predictability Due to Defined
Sources

[39] To quantify the importance of the climate indicators,
SWE, and SM in forecasting runoff, a dimensionless
variable is derived for each grid cell, and summed over
the entire basin. The variable defined is the product of
unitless runoff at each grid cell (Figure 5) and the variance
explained by (1) SOI and AO (as in Figure 7); (2) SWE
(Figure 9); and (3) SM (Figure 10) at each grid cell. Spatial
plots of this variable are shown in Figures 11 and 12 for
leads of 0 and 2 seasons, respectively. The basin-wide sum
of this variable provides a snapshot of the relative impor-
tance of each source of predictive information in each
season and at each lag. Table 2 presents these values for
the entire Mississippi River basin. Most of our results (e.g.,
Figures 11 and 12) show distinct differences between the
western and eastern portions of the basin Therefore Tables 3
and 4 provide the same variable, summed over areas west
and east, respectively, of longitude 100�W.
[40] Figure 11 shows the dominance of SM for runoff

prediction at a lead of 0 seasons throughout the basin, which
is also supported by Table 2. It is also obvious from Figure
11 that knowledge of SWE in the mountainous western
extreme of the basin provides the most important informa-
tion for predicting JJA runoff, as discussed in section 3.4. It
is interesting to note that the low levels of predictability of
MAM runoff due to SWE at lead-0 in Figure 9 are absent
from Figure 11, since the predictability affects a very small
amount of runoff. Figure 11 also illustrates that despite low
levels of predictability (approximately 10–20% of runoff
variance explained) by soil moisture in the southeast for JJA

runoff at a lead of 0 seasons, the high levels of runoff in this
region accentuates the importance of predictability attribut-
able to soil moisture.
[41] Table 2 indicates that the climate signal is dominant

at leads of one season or more at the basin-wide scale for
DJF and SON runoff, and at two seasons or more for MAM
and JJA runoff. Examining the division of the basin in
Tables 3 and 4, SWE provides the dominant source of JJA
runoff predictability in the western portion of the basin
through a lead of two seasons. SM provides the dominant
influence on MAM runoff predictability in the west through
a 2-season lead. The land surface signal, that is, SM and
SWE combined, is a stronger predictor of runoff than the
climate signal in the western portion of the basin, except for
JJA runoff at lead-3 and lead-4, though again these cases
have limited practical significance. For the eastern portion
of the basin (Table 4) the climate signal is the dominant
source of important runoff predictability at lead times of 1
season or more.
[42] Figure 12 shows that this dominance of the climate

signal in runoff predictability at a lead of 2 seasons is very
limited spatially, and is accompanied by no important
predictability from the land surface. It is evident from
Figure 12 that the values in Tables 2, 3, and 4 at leads of
two seasons (or more, though no figure is shown) represent
low predictability in spatially limited areas, with the SM and
SWE generally only providing important predictability
along the western edge of the basin, and climate information
being focused in isolated pockets in the east and southeast.
Long lead runoff predictability is geographically limited,
and is largely due to modest levels of predictability (Figures
7, 9, and 10) in areas with high levels of runoff.
[43] The field significance of the dimensionless variables

plotted in each panel of Figures 11 and 12 correspond to
those for Figures 7, 9, and 10; that is, for Figure 11, scaled
predictability due to climate and soil moisture are field
significant in all seasons, while snow is not field significant
for seasons JJA or SON. For Figure 12, the scaled predict-
ability due to climate is field significant only for the DJF
season, that due to snow is field significant only for SON,
and soil moisture passes the field significance test for all
seasons. Figures 11 and 12 show that if the interest is related
to a sub-area of the Mississippi River basin, as would be
typical for a water manager concerned with runoff contrib-

Table 2. Summary of Relative Importance of Predictors in Forecasting Seasonal Runoff a

Predictors

Lead (DJF) Lead (MAM) Lead (JJA) Lead (SON)

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

SOI AO 158 95 75 157 27 90 83 55 60 81 90 93 82 70 85 58 69 76 64 56
SWE 21 0 6 23 23 94 26 0 4 19 120 102 47 4 5 3 21 30 18 1
SM 441 75 44 26 26 189 89 45 39 27 278 53 49 36 37 228 48 35 34 38
aValues are computed by multiplying at each grid cell the runoff variance explained by the predictors by the local unitless seasonal runoff, and summing

these values over the Mississippi basin. Higher values indicate greater basin-wide predictability of seasonal runoff volume attributable to the predictor(s).
Bold indicates the most influential factor for each season and lead.

Table 3. Summary of Relative Importance of Predictors, as for Table 2, but Only for Regions West of Longitude 100�W

Predictors

Lead (DJF) Lead (MAM) Lead (JJA) Lead (SON)

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

SOI AO 2 2 3 3 2 6 4 4 5 3 25 23 25 28 25 6 8 5 5 6
SWE 1 0 6 4 2 11 5 0 4 3 120 78 39 4 5 3 21 15 9 1
SM 30 20 4 3 3 20 20 13 4 4 44 18 16 11 10 61 12 8 7 5
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uting to a reservoir, for example, the basin-wide field
significance is too stringent a test. Failure to pass the
basin-wide field significance test applied in this study does
not indicate that there is no important predictability in
localized areas, however, a separate evaluation of the area
of interest would be required.

4. Conclusions

[44] The predictability of runoff throughout the Missis-
sippi River basin has been evaluated both spatially, and by
season and prediction lead time. As surrogates for climate
predictability, we used the SOI and the AO. In general, SOI
used in a simple persistence mode (ignoring climatological
knowledge of ENSO event evolution) was found to provide
comparable information for our purposes to a statistical
forecast of SOI.
[45] The climatic indicators provided a small but signif-

icant source of predictability for DJF runoff for leads of one
through three seasons that exceeded that due to the land
surface state, especially in the eastern portions of the
Mississippi River basin. Because these climate indicators
are readily available, this represents a source of predictabil-
ity that can be exploited at present.
[46] In general, SM is the dominant source of runoff

predictability at lead 0 in all seasons. When the basin was
divided at longitude 100�W into western and eastern por-
tions, SM provided the dominant source of predictability at
lead-0 (which represents an average lead time of 1.5 months)
in both regions, except in JJA in the western mountainous
region, where SWE was most important. For lead times of
1.5 months, then, a better determination of soil moisture state
can provide valuable predictive capability of runoff through-
out the basin. For areas west of longitude 100�W, the land
surface state generally has a stronger predictive capability
than the climate indicators; whereas climate indicators are
more important for eastern areas of the Mississippi basin at
leads of one season or greater. Although SM and SWE are
correlated to varying extents during certain seasons in
different parts of the basin, they nonetheless can provide a
level of significant independent information and comple-
ment each other for runoff predictability.
[47] Although modest (though statistically significant)

DJF runoff predictability exists at a lead time of 3 seasons
due to both climate and SM, much of this predictive
capability is in areas producing little runoff, and is therefore
of lessened practical importance. For JJA runoff in partic-
ular, locally significant runoff predictability, limited geo-
graphically to the western mountainous areas, at a lead of 2
seasons is coincident with high runoff producing areas. This
information could be useful to water managers in the
western Mississippi River basin, since it suggests the
potential to provide skillful forecast information at lead
times earlier than are currently used operationally, and there

are large storage facilities allowing managers to respond to
long lead forecasts.
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