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Abstract 

 

A hydrologic model was driven by the climate projected by 11 GCMs under two 

emissions scenarios (the higher emission SRESA2 and the lower emission SRESB1) to 

investigate whether the projected hydrologic changes by 2071-2100 have a high 

statistical confidence, and to determine the confidence level that the A2 and B1 emissions 

scenarios produce differing impacts. There are highly significant average temperature 

increases by 2071-2100 of 3.7°C under A2 and 2.4°C under B1; July increases are 5°C 

for A2 and 3°C for B1. Two high confidence hydrologic impacts are increasing Winter 

streamflow and decreasing late Spring and Summer flow. Less snow at the end of Winter 

is a confident projection, as is earlier arrival of the annual flow volume, which has 

important implications on California water management. The two emissions pathways 

show some differing impacts with high confidence: the degree of warming expected; the 

amount of decline in summer low flows; the shift in streamflow timing for higher 

elevation basins, with more extreme impacts under higher emissions in all cases. This 

indicates that future emissions scenarios play a significant role in the degree of impacts to 

water resources in California. 
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1. Introduction 

 

Climate change is affecting the water resources on which populations in the Western U.S. 

rely (e.g. Mote et al., 2005; Stewart et al., 2005; Trenberth et al., 2003), and continued 

anthropogenic emissions of greenhouse gases will exacerbate these effects for future 

decades and centuries. (e.g., Dettinger et al, 2004; Hayhoe et al., 2004; Knowles and 

Cayan, 2004; Stewart et al., 2004) Recognizing the crucial role management of water 

resources plays in sustaining California’s economy (Draper et al, 2003), the high 

sensitivity of its ecosystems to climatic changes (Field et al., 1999), and the vulnerability 

of California’s water supply to changes in precipitation or temperature, studies of the 

potential impact of climate change on California began nearly two decades ago. (Gleick, 

1987; Lettenmaier and Gan, 1990). 

 

The importance of this issue continues to generate considerable research using relatively 

coarse resolution Global Climate Models (GCMs) to drive land surface hydrology models 

(e.g., Brekke et al., 2004; Knowles and Cayan, 2004; Maurer and Duffy, 2005; Miller et 

al, 2003; Van Rheenan et al., 2004). Recent efforts using finer resolution regional climate 

models have attempted to define with more precision the spatial variability of anticipated 

changes in future hydroclimatology over California. (Kim et al., 2002; Kim, 2005; 

Snyder et al., 2002). While there are many points of qualitative agreement between the 

wealth of studies on the topic, these studies tend to emphasize one or several selected 

potential outcomes, and the uncertainty in the projected impacts is not quantitatively 

addressed. 
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Quantifying the uncertainties in projections of climate change and its impacts is essential 

for assisting California policy-makers and water managers in adopting coherent and 

informed response strategies reflecting the state of scientific understanding of the 

likelihood of outcomes. (Dettinger, 2004; Kiparski and Gleick, 2004) For assessing 

regional hydrologic impacts, one can consider four levels of uncertainty. The first three 

relate to the generation of regional climate information (Intergovernmental Panel on 

Climate Change, IPCC, 2001) and consist of uncertainty in the future emissions of 

greenhouse gases, differing responses of GCMs to the resulting concentrations of these 

gases, and the uncertainty added by the downscaling technique used to translate the 

coarse scale GCM output to a regional spatial scale. The fourth level of uncertainty 

relates to the selection and implementation of the land surface hydrology model. For 

regional hydrology impact studies, only recently have these differing sources of 

uncertainty been examined separately: for example Hayhoe et al. (2004) examined two 

GCMs and two emissions scenarios over California; Zierl and Bugmann (2005) evaluated 

hydrologic responses with four SRES scenarios using one GCM, and four GCMs under 

one emissions scenario. 

 

Maurer and Duffy (2005) studied the projected regional impacts of rising CO2 levels on 

California streamflow using GCM simulations performed between 1995 and 2002, 

archived as part of the Coupled Model Intercomparison Project (CMIP, Covey et al, 

2003; Meehl et al, 2000). They examined only the second level of uncertainty outlined 

above, that is, the differing sensitivities of different GCMs under identically changing 
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atmospheric conditions (a 1% per year CO2 increase) to address the question of how 

variability in GCM responses affects the confidence with which we can expect different 

streamflow changes. In this study, more recent GCM simulations are used, reflecting the 

most recent improvements in model parameterzations and structures. In addition, the new 

GCM simulations are performed for many different SRES scenarios (rather than a fixed 

rate of increase in CO2), which allows comparison across different potential futures, 

addressing both the first and second levels of uncertainty discussed above. 

 

Taking advantage of many new GCM simulations under different emissions scenarios, 

the following questions are posed: 1) What are the projected hydrologic impacts of 

climate change on Sierra Nevada mountain hydrology, and with what confidence, relative 

to the variability between GCMs, are these different from the base period of 1961-1990? 

2) With what confidence are the impacts under the two scenarios considered here 

different at the end of the century? These questions are addressed by forcing a land 

surface hydrology model with the future climate projected by different GCMs, and 

creating an ensemble of hydrologic responses under each emissions scenario. 

 

2. Data and Methods 

 

2.1 Study Region 

 

The area of focus for this study is California, which is depicted in Figure 1. In particular, 

the analyses that follow initially included four basins, the outlets of which are shown on 

Figure 1
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Figure 1. The basins drain western slopes of the Sierra Nevada mountain range, 

supplying fresh water to the extensive system of dams and reservoirs serving the water 

demands of much of the state. All four points are at inflows to large reservoirs. 

Characteristics of the four points identified in Figure 1 are in Table 1, which shows the 

southern two basins (basins 3 and 4) contain more high elevation areas than the northern 

two (basins 1 and 2), and together a range of mean basin elevations is represented. Snow 

plays a crucial role in the management of seasonal water storage and delivery: on average 

the amount of water stored as snow in the Sierra Nevada on April 1, about 12.4 km3 

(Hayhoe et al., 2004), is more than twice the total capacity of Lake Shasta, the largest 

manmade reservoir in California. Since one of the principal impacts of climate change on 

California water resources is on snowpack, and hydrologic changes exhibit a strong 

dependence on elevation (Knowles and Cayan, 2004), the selection of basins included in 

this study is designed to illuminate these differing responses. 

Table 1 

 

2.2 Global Climate Models 

 

Many international modeling groups are completing simulations of present climate and 

future climate under selected IPCC SRES scenarios in preparation for the IPCC 4th 

Assessment Report (AR4). (Meehl et al., 2005) For this study, simulations are used from 

the 11 GCMs that by March 1, 2005 had completed at least one simulation each of the 

20th century climate and future climate (through 2100) using emissions scenarios SRES 

A2 and B1. While A2 does not represent the highest CO2 emissions (at least through 

2100) of the SRES scenarios (IPCC, 2001), it is the highest emission scenario being 
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archived as part of CMIP. As such, although it is by no means a “worst case,” it does 

represent the higher emission case in this study. B1 assumes an increasing reliance on 

clean and resource-efficient technologies, and represents the best case of the SRES 

scenarios. (IPCC, 2001)  

 

The GCMs included in this study are shown in Table 2. For each GCM, and each period 

(20th century, scenarios A2, B1) monthly precipitation (P) and temperature (T) data were 

obtained from the IPCC AR4 data archive hosted by the Program for Climate Model 

Diagnosis and Intercomparison. Where a GCM has archived more than one simulation 

under a particular scenario, the ensemble average is used, so as not to bias the population 

of GCMs toward any specific model. All GCMs are interpolated onto a common 2° 

latitude-longitude grid, approximately equal to the spatial scale of the finest GCMs 

included in this study, to standardize the analysis that follows. 

Table 2 

 

2.2.1 GCM bias correction and spatial downscaling 

 

While large scale patterns of precipitation and temperature simulated by state-of-the-art 

GCMs can be realistic, even the best models display biases on regional scales that are 

large enough to confound studies of the hydrologic impacts of climate change. To cope 

with this, many different techniques have been employed to process the raw GCM output 

to retain the large scale signal of the evolving climate simulated by the GCM while 

reproducing historical climate patterns on the landscape at local scales, an essential 

characteristic for meaningful hydrologic analysis (Wood et al., 2004). One method used 
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in many studies is to use a shift or scaling factor derived by comparing a climate model’s 

future precipitation or temperature to its climatology, and to apply this shift to a historical 

record (e.g., Miller et al., 2003; Lettenmaier and Gan, 1990). While this method 

effectively removes the bias of the mean GCM climatology from the future climate, it 

does not address the potential bias in the variability of the climate model and constrains 

inter-annual variability to be constant. 

 

For this study, we employ a bias correction technique originally developed by Wood et al. 

(2002) for using global model forecast output for long-range streamflow forecasting. This 

technique was later adapted for use in studies examining the hydrologic impacts of 

climate change (Hayhoe et al., 2004; Maurer and Duffy, 2005; Payne et al., 2004; Van 

Rheenan et al., 2004). This is an empirical statistical technique that maps precipitation 

and temperature during a historical period (1950-1999 for this study) from the GCM to 

the concurrent historical record. The historical data used in this study is gridded National 

Climatic Data Center Cooperative Observer station data, developed as described in 

Maurer et al. (2002), and aggregated up to a 2° latitude-longitude spatial resolution. For P 

and T, cumulative distribution functions are built for each of 12 months for each of the 2° 

grid cells for both the gridded observations and each GCM for the climatological period. 

GCM quantiles are then mapped onto the climatological CDF for the entire simulation 

period. For example, if for one grid point the GCM P value in January of 2050 is equal to 

the median GCM value for January for 1950-1999, it is transformed to the median value 

for the gridded January observations for 1950-1999. For T, the linear trend is removed 

prior to this bias correction and replaced afterward, to avoid increasing sampling at the 
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tails of the CDF as temperatures rise. Thus, the probability distribution of observations is 

reproduced by the bias corrected climate model data for the overlapping climatological 

period, while both the mean and variability of future climate can evolve according to 

GCM projections. 

 

Climate model output, which at 200-500 km is at too large a scale for basin scale 

hydrologic analysis, requires spatial downscaling prior to its use in a hydrology model. 

This can be done with dynamical or statistical methods (see for example Benestad, 2001; 

Mearns et al., 2001). The main disadvantage of dynamic downscaling is the 

computational effort involved, which renders its use impractical for extended transient 

simulations of multiple emissions scenarios, as used in this study. The method used in 

this study is that applied by Wood et al. (2002), which for each month interpolates the 

bias corrected GCM anomalies, expressed as a ratio (for precipitation) and shift (for 

temperature) relative to the climatological period at each 2° GCM grid cell to the centers 

of 1/8 degree hydrologic model grid cells over California. These factors are then applied 

to the 1/8 degree gridded precipitation and temperature. The combined bias 

correction/spatial downscaling method used in this study has been shown to compare 

favorably to different statistical and dynamic downscaling techniques (Wood et al., 2004) 

in the context of hydrologic impact studies.  
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2.3 Hydrologic Model Simulations 

 

The hydrologic model used in this study is the variable infiltration capacity (VIC) model 

(Liang et al. 1994; 1996).  VIC is a macroscale, distributed, physically-based hydrologic 

model that balances both surface energy and water over a grid mesh, typically at 

resolutions ranging from a fraction of a degree to several degrees latitude by longitude.  

One distinguishing characteristic of the VIC model is its use of a “mosaic” scheme, 

allowing a statistical representation of the sub-grid scale spatial variability in topography 

and vegetation/land cover, which is especially important when simulating the 

accumulation and ablation of snow in more complex terrain. To account for subgrid 

variability in infiltration, the VIC model uses a scheme based on the work by Zhao et al. 

(1980). The VIC model also features a nonlinear mechanism for simulating slow 

(baseflow) runoff response, and explicit treatment of vegetation effects on the surface 

energy balance. The resulting runoff at each grid cell is routed through a defined river 

system using the algorithm developed by Lohmann et al. (1996). The VIC model has 

been successfully applied in many settings, from global to river basin scale (e.g., Abdulla 

et al., 1996; Maurer et al. 2001, 2002; Nijssen et al., 1997, 2001), as well as in several 

studies of hydrologic impacts of climate change (Christensen et al, 2004; Hayhoe et al., 

2004; Maurer and Duffy, 2005; Payne et al., 2004; Wood et al., 2004). For this study, the 

model was run at a 1/8-degree resolution (measuring about 150 km2 per grid cell) over 

the Sacramento-San Joaquin river system, using the identical parameterization as Van 

Rheenan et al. (2004). 
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2.4 Assessing uncertainty in hydrologic impact projections 

 

Following the approach of Maurer and Duffy (2005), results for each impact, in this case 

streamflow and snowpack, for all GCMs are assembled for each emissions scenario. For 

each variable, the mean monthly value for each GCM for each of three defined periods is 

calculated, and these values for each GCM are combined by variable and period into 

ensembles. These ensembles of hydrologic variables are statistically analyzed using 2-

sided t-tests to determine the confidence level for the change from the climatological 

period (1961-1990). In addition, the confidence with which one can claim that the two 

scenarios give different results is determined. 

 

3. Results and Discussion 

 

For a domain including all four of the study basins the hydrologic model produced 

complete estimates of the water budget using each GCM. These were then summarized 

for four periods: the base period 1961-1990, 2011-2040, 2041-2070, and 2071-2100. For 

one basin, under the A2 scenario, the results for the latter two periods are plotted in 

Figure 2. This shows that winter P increases but is quite variable between the models, 

while the T increases appear more consistent. In general the impact on flow of these 

climatic changes is that winter flows increase and late spring and early summer flows 

decrease, with greater disagreement between models during the transition between the 

two. Declining snow water equivalent (SWE) is clear, and is more severe later in the 

century as temperatures continue to rise. 

Figure 2
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3.1 Precipitation and temperature changes 

 

To verify statistically the observations above related to T and P, and use both emissions 

scenarios, Tables 3 and 4 are shown. Note that the 90% and 95% confidence thresholds 

highlighted in the Tables are comparable to the National Assessment Synthesis Team 

(2000) classification of “very likely or very probable” impacts as those with confidence 

>90%. Since the changes in the P and T forcing were found to be remarkably consistent 

between basins, only the northern and southernmost basins are included in this section. 

Each Table shows for each month and for the annual total the mean of the 1961-1990 

base period and the change to each of the three future periods. Annual average P 

increases significantly by about 10% in the North early in the 21st century, with most of 

the increase in December-February. A significant decline in April-June P appears later in 

the century, and the increase in Winter P persists. Table 4 shows a similar pattern toward 

the South, though with sharper declines in April-June P than in the North. While not 

shown in the tables, the T projections in the North and South are very close and are 

highly significant, even as early as 2011-2040. By the end of the 21st century, average 

annual T rises by 3.6-3.8 °C for the A2 scenario, and 2.3-2.4 °C for B1, with the greatest 

warming being in July with 3.0-3.1 °C for the B1 scenario and 5.0-5.1 °C for A2. While 

these changes are broader scale, showing high consistency between the North and South, 

the differing characters of the basins produces different hydrologic responses. 

Table 3 

Table 4 
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To assess the separation of the future climate under the two SRES scenarios, Table 5 

shows the statistical confidence with which the 2071-2100 T and P differ for the two 

scenarios. While both scenarios show highly significant changes in T by the end of the 

century, Table 5 also shows that, with the exception of March and April, the temperature 

rises are smaller for B1 as compared to A2 with high statistical confidence. For March 

and April, the confidence that the future T under the two scenarios is different is below 

90% but is higher for the higher elevation basins, suggesting that during these months T-

driven effects under the two scenarios may differentiate more by elevation.  

Table 5 

 

For the annual average P the two scenarios produce statistically indistinguishable futures. 

Even at the monthly scale the differences in projected P for 2071-2100 under the two 

scenarios are not generally different with a high degree of confidence. The exception is 

March and April, where the decline in P projected under the A2 scenario is significantly 

greater than under B1, exceeding 90% confidence for the higher elevation basins. 

 

3.2 Streamflow and snow changes 

 

The above changes in P and T produce changes in the hydrologic response of the 

landscape, which are reflected in the streamflow changes shown in Tables 6 and 7. For 

the lower elevation gauges, Table 6 shows high statistical confidence for the increases in 

December-March flows in all time periods. This reflects the increasing P during these 

months under both scenarios. The increases in December-March flows are markedly 

greater for the A2 scenario than B1. For A2, May-September flows decline, and both the 

Table 6 

Table 7 
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magnitude and the statistical confidence increase through the 21st century, since these 

changes are largely T-driven. For B1 the same pattern is evident, but is limited to May-

August, and by the end of the century the declines in streamflow are uniformly less 

severe than under A2 and generally of lower confidence. Decreased summer flows in 

2071-2100 have more limited duration under the B1 scenario than under A2, with 4 

consecutive months with flow declines at >95% confidence, compared to 5 months for 

A2. The increases in winter flow more than offset the declines in summer, producing an 

increase in annual flow for both basins, with the increase being lower for B1 and for the 

higher elevation basin. 

 

For the southern 2 basins at higher elevation, Table 7 continues the same pattern of 

annual flow changes, where annual flow increases are lower in magnitude for B1, and are 

lower in magnitude for the higher elevation basin. The southern basins show increased 

flows through April-May despite decreasing P. This is in contrast to the lower elevation 

Northern basins, where flow increases continue only through March-April, with smaller 

declines and even some increasing P. This illustrates the interplay between T and P 

changes, where at higher elevation increases in December-February P can be stored as 

snow, later to augment flow. The statistically significant declines in streamflow for 2071-

2100, are limited to 3 months in duration, in contrast to 4 months for each of the Northern 

basins. 

 

The two scenarios do not produce streamflows differing with a high degree of 

confidence, as shown in Table 8. The declines in August-September flow display the 

Table 8 
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highest confidence that A2 and B1 result in different flow responses, with A2 showing 

sharper declines. The confidence in the difference between the scenarios is lower for the 

higher elevation basins showing declining sensitivity to the differences between A2 and 

B1 for the low flow period. 

 

Table 9 Table 9 summarizes the change in April 1 SWE for each basin for each time period. April 

1 snowpack is a widely used indicator of the water available as summer supply in the 

Western U.S. (e.g., Hamlet and Lettenmaier, 1999, Knowles and Cayan, 2004); a 

decrease indicates either earlier melt and/or reduced winter snow accumulation. There is 

a clear pattern of lower snow loss for the Southern, higher elevation basins, showing that 

rising temperatures at higher elevations are less likely to bring temperatures above 

freezing and cause snow melt. Although there is significantly greater warming under A2, 

December-February P increases more dramatically for A2 than under B1 which results in 

greater April 1 SWE losses under the lower emission B1 scenario though mid-century. 

By the end of the 21st century, the T changes have become dominant, and B1 shows 8-

10% less April 1 SWE loss compared to A2, and there is high confidence in all projected 

losses. The confidence level that the April 1 SWE loss projected under the two scenarios 

differs is below 60% (using a 2-sided t-test) for all basins, showing that although the 

impacts on April 1 SWE are high, the scenarios do not show a statistically significant 

difference by 2071-2100. Though not shown, the projected declines in December-

February monthly average SWE are 30-45% for B1 and 50-60% for A2 for the lower 

elevation basins, and for this measure the difference between the changes under A2 and 

B1 generally differ with higher confidence levels of over 80%. 
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The earlier melt due to rising temperatures produces a shift in the date of the centroid of 

the annual flow volume, which is calculated using the center-of-mass approach of 

Stewart et al. (2004) and is shown in Table 10. Due to the compounding effects of 

increasing Winter P, decreasing Spring P, more P falling as rain and earlier snow melt 

under higher T, the shift in the timing of the annual hydrograph is highly confident for all 

basins and periods. The continuing shift to earlier arrival of runoff later in the 21st century 

is robust for all basins. For the lower elevation basins, the difference between the shift for 

the B1 and A2 scenarios for 2071-2100 is only 4 days, hence the confidence that the 

response differs under the two scenarios is low (<60%). In contrast, for the higher 

elevation basins the difference is 11-12 days, and there is greater than 90% confidence 

that the impact under A2 is more dramatic than under B1. 

Table 10 

 

4. Conclusions 

 

For four basins in the Sierra Nevada Mountains in California, the simulated hydrologic 

impacts of future climate projected by 11 GCMs forced under two SRES emissions 

scenarios, a higher emission A2 and lower emission B1, were examined for statistical 

significance. While these scenarios do not represent worst and best case of possible 

emissions scenarios, of the selected SRES scenarios available for this study, they do 

represent the generally bounding scenarios for 21st century emissions. With this structure, 

this study addresses only uncertainty related to inter-GCM and inter-emissions scenario 

variability, not uncertainty due to the hydrology model transforming climate to 

 16



streamflow. The two questions posed for this study are whether (and when) the projected 

hydrologic impacts have high statistical confidence (relative to the variability between 

GCMs), and whether the impacts under the two scenarios differs with high confidence. 

 

Temperature (T) shows highly significant increases over 1961-1990 levels, even early in 

the 21st century. By 2071-2100 T rises by an average of 3.7 °C under A2 and 2.4 °C 

under B1, with July temperatures rising most dramatically by 5 °C for A2 and 3 °C for 

B1. The difference between the T increases, between 2071-2100 and 1961-1990, under 

A2 and B1 are highly significant. This indicates it can be confidently stated that the 

emissions pathway we follow significantly determines the future temperature experienced 

in the study region. 

 

The same cannot be claimed so broadly for precipitation (P). Increases in Winter P and 

smaller decreases in Spring P are projected, with higher confidence under A2 than B1, 

especially by 2071-2100. While annual P does not differ between the emissions 

scenarios, decreases in April-May P are significantly greater for A2 than B1. 

 

For streamflow at the basin outlets, flow increases for December-March, and through 

April-May for higher elevation basins. Flows decline for May-September in the lower 

elevation basins, and June-October at higher elevations. Increases in Winter and 

decreases in Summer flow are both of greater magnitude under A2 than B1. The highest 

confidence in the differing response under A2 and B1 are for August-September declines 

in streamflow, where the decreases are sharper under A2 than B1. 
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By 2071-2100, the 30-69% losses in April 1 snow water equivalent (SWE) are highly 

significant for all basins, with greater losses at lower elevations. The approximately 8-

10% greater losses under A2 than B1 is not high confidence, showing the variability in 

results for different GCMs is larger for this variable. 

 

The combined effects of changes in P, T and SWE result in an earlier arrival of the 

annual flow volume by as much as 40 days by 2071-2100. For the high elevation basins, 

the difference in this shift for B1 is significantly less than for A2. 

 

In summary, as temperatures rise through the 21st century we can expect with high 

confidence an increase in winter streamflow from the Sierra Nevada, due at least partly to 

increasing winter P, and a decrease in late Spring and Summer flow, which has important 

implications for California water management. We can confidently expect to have less 

water stored as snow at the end of winter, and we will expect an earlier arrival of the 

water, with implications on how reservoirs are managed. The emissions pathway, 

whether A2 or B1, shows some important differences in impacts, especially on the degree 

of warming expected, the decline in summer low flows, and the shift in streamflow 

timing for higher elevation basins, indicating that our emissions future determines to 

some extent the degree of impacts to water resources in California. 
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Table 1 - Locations and characteristics of the four basins in this study. 

Characteristic Outlet point and basin characteristics 
Site Name 1. Feather R at 

Oroville 
2. American R 
at Folsom Dam

3. Tuolumne at 
New Don Pedro 

Res 

4. Kings R. at 
Pine Flat Dam 

Latitude 39.522 38.683 37.666 36.831 
Longitude -121.547 -121.183 -120.441 -119.335 
Drainage Area, km2 9350 4850 3970 4000 
Mean Basin 
Elevation, m 

1553 1335 1755 2196 

Max Basin 
Elevation, m 

2655 3009 3802 4086 

Min Basin 
Elevation, m 

49 50 62 183 
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Table 2 - GCMs included in this study. 

Modeling Group, Country IPCC Model I.D. Abbrev. Primary Reference 
Météo-France / Centre National de 
Recherches Météorologiques, France 

CNRM-CM3 cnrm Salas-Mélia et al., 2005 

CSIRO Atmospheric Research, Australia CSIRO-Mk3.0 csiro Gordon, H.B. et al, 2002 
US Dept. of Commerce / NOAA / 
Geophysical Fluid Dynamics 
Laboratory, USA 

GFDL-CM2.0 gfdl Delworth et al., 2005 

NASA / Goddard Institute for Space 
Studies, USA 

GISS-ER giss Russell et al., 1995, 
2000 

Institute for Numerical Mathematics, 
Russia 

INM-CM3.0 inmcm Diansky and Volodin, 
2002 

Institut Pierre Simon Laplace, France IPSL-CM4 ipsl IPSL, 2005 
Center for Climate System Research 
(The University of Tokyo), National 
Institute for Environmental Studies, and 
Frontier Research Center for Global 
Change (JAMSTEC), Japan 

MIROC3.2(medres) miroc K-1 model developers, 
2004 

Max Planck Institute for Meteorology, 
Germany 

ECHAM5/MPI-OM mpi Jungclaus et al.., 2005 

Meteorological Research Institute, Japan MRI-CGCM2.3.2 mri Yukimoto et al., 2001 
National Center for Atmospheric 
Research, USA 

PCM pcm Washington et al., 2000 

Hadley Centre for Climate Prediction 
and Research / Met Office, UK 

UKMO-HadCM3 hadcm3 Gordon, C. et al., 2002 
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Table 3 - P  summary statistics for the Basin 1 Feather River at Oroville. Values in italics are 
significantly different from the 1961-1990 mean at a 90% confidence level, based on a 2-sided t-test 
for differences in the mean. Bold italics differ with 95% confidence. 

PRECIPITATION SRESA2 SRESB1 

Month 

1961-
1990 
Mean, 
mm/d 

2011-2040 
∆, mm/d 

2041-2070 
∆, mm/d 

2071-2100 
∆, mm/d 

2011-2040 
∆, mm/d 

2041-2070 
∆, mm/d 

2071-2100 
∆, mm/d 

Jan 6.7 1.0 1.7 1.8 1.2 0.3 1.1 
Feb 5.6 1.2 0.7 1.5 0.4 1.0 0.9 
Mar 4.1 0.2 -0.2 0.3 0.2 0.2 -0.1 
Apr 2.4 0.0 -0.1 -0.5 -0.2 -0.3 -0.1 
May 1.6 -0.2 -0.4 -0.6 -0.2 -0.1 -0.2 
Jun 0.8 0.0 -0.2 -0.3 0.0 -0.1 -0.2 
Jul 0.2 0.0 0.0 0.0 0.1 0.1 0.1 
Aug 0.3 0.0 0.0 0.0 0.2 0.2 0.2 
Sep 0.6 0.0 -0.1 0.0 0.2 0.3 0.3 
Oct 1.9 0.1 0.2 0.2 0.7 0.6 0.6 
Nov 4.3 0.6 0.6 0.5 0.8 0.4 0.6 
Dec 5.8 1.1 1.7 1.2 0.8 0.3 0.7 
Annual 2.8 0.3 0.3 0.3 0.3 0.2 0.3 
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Table 4 - Same as Table 3, but for Basin 4. Kings R at Pine Flat Dam. 

PRECIPITATION SRESA2 SRESB1 

Month 

1961-
1990 
Mean, 
mm/d 

2011-2040 
∆, mm/d 

2041-2070 
∆, mm/d 

2071-2100 
∆, mm/d 

2011-2040 
∆, mm/d 

2041-2070 
∆, mm/d 

2071-2100 
∆, mm/d 

Jan 6.2 1.0 2.3 1.6 1.1 0.1 0.8 
Feb 5.5 1.5 0.6 0.8 0.9 0.8 0.7 
Mar 4.6 0.0 -0.8 -0.6 -0.3 -0.2 -0.6 
Apr 2.9 -0.3 -0.5 -1.2 -0.5 -0.6 -0.5 
May 1.6 -0.3 -0.5 -0.8 -0.2 -0.2 -0.4 
Jun 0.7 0.0 -0.2 -0.2 0.0 -0.1 -0.2 
Jul 0.4 0.0 0.0 0.1 0.1 0.1 0.2 
Aug 0.3 0.0 0.1 0.2 0.1 0.2 0.2 
Sep 1.1 0.1 0.0 0.3 0.2 0.4 0.3 
Oct 1.3 0.0 0.1 0.1 0.2 0.1 0.3 
Nov 3.8 0.4 -0.1 -0.1 0.6 0.1 0.4 
Dec 5.3 1.1 1.2 0.8 0.7 0.1 0.1 
Annual 2.8 0.3 0.2 0.1 0.3 0.0 0.1 
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Table 5 - Confidence that the A2 and B1 mean P and T differ for 2071-2100. Confidence is 
determined with a 2-sided t-test for differences in mean. Basin numbering is as in Table 1. 

 Precipitation Temperature 
Month Basin 1 Basin 2 Basin 3 Basin 4 Basin 1 Basin 2 Basin 3 Basin 4 

Jan 50% 48% 51% 54% 97% 98% 98% 97%
Feb 51% 34% 20% 6% 95% 94% 94% 93%
Mar 59% 37% 17% 4% 59% 63% 70% 71%
Apr 83% 89% 93% 94% 76% 81% 84% 86%
May 90% 90% 91% 90% 94% 96% 97% 97%
Jun 60% 52% 54% 50% 96% 96% 96% 95%
Jul 70% 72% 69% 66% 96% 94% 94% 93%
Aug 57% 35% 20% 17% 99% 99% 98% 98%
Sep 67% 54% 34% 4% 100% 100% 100% 99%
Oct 54% 56% 57% 58% 99% 99% 99% 99%
Nov 11% 34% 51% 58% 98% 98% 98% 97%
Dec 45% 50% 54% 55% 98% 98% 98% 98%
Annual 6% 2% 3% 8% 100% 100% 100% 100%
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Table 6 - Monthly and annual mean flow and percent change from the mean for the North (lower 
elevation) two gauges. Bold and italics signify the same confidence as for Table 2. Basin numbering is 
as in Table 1. 

BASIN 1 SRESA2 SRESB1 

Month 

1961-
1990 
Mean, 
m3/s 

2011-2040 
∆, % 

2041-2070 
∆, % 

2071-2100 
∆, % 

2011-2040 
∆, % 

2041-2070 
∆, % 

2071-2100 
∆, % 

Jan 258 49% 83% 88% 55% 40% 62%
Feb 312 39% 47% 66% 29% 37% 48%
Mar 302 23% 18% 30% 22% 17% 18%
Apr 299 7% 2% -6% 3% -1% -4%
May 269 -5% -14% -28% -8% -15% -20%
Jun 182 -8% -23% -38% -15% -20% -29%
Jul 92 -5% -16% -25% -8% -13% -15%
Aug 60 -2% -10% -15% -3% -6% -8%
Sep 46 -1% -8% -11% 5% 4% 5%
Oct 50 14% 20% 23% 60% 61% 49%
Nov 100 25% 30% 22% 34% 24% 35%
Dec 189 46% 53% 56% 41% 32% 40%
Annual 179 19% 21% 21% 18% 13% 17%

BASIN 2 SRESA2 SRESB1 

Jan 96 81% 140% 129% 81% 59% 87%
Feb 127 62% 70% 86% 46% 49% 65%
Mar 126 26% 7% 32% 23% 9% 14%
Apr 125 12% -2% -20% 3% -10% -11%
May 124 -11% -23% -44% -13% -26% -32%
Jun 80 -12% -31% -58% -22% -29% -44%
Jul 35 -12% -31% -45% -24% -28% -34%
Aug 15 -2% -13% -20% -5% -6% -10%
Sep 12 1% -7% -10% 9% 12% 11%
Oct 14 34% 57% 65% 118% 123% 100%
Nov 33 75% 80% 55% 79% 47% 82%
Dec 73 93% 102% 96% 76% 57% 55%
Annual 71 32% 31% 26% 26% 14% 19%
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Table 7 - Same as for Table 6, but for the South two gauges at higher elevation. 

BASIN 3 SRESA2 SRESB1 

Month 

1961-
1990 
Mean, 
m3/s 

2011-2040 
∆, % 

2041-2070 
∆, % 

2071-2100 
∆, % 

2011-2040 
∆, % 

2041-2070 
∆, % 

2071-2100 
∆, % 

Jan 67 62% 107% 104% 57% 40% 62%
Feb 76 54% 68% 79% 44% 41% 61%
Mar 89 29% 26% 53% 27% 20% 35%
Apr 121 22% 32% 27% 27% 28% 28%
May 198 13% -1% -17% 12% -7% -8%
Jun 148 -7% -25% -48% -20% -32% -37%
Jul 57 3% -16% -36% -10% -23% -26%
Aug 29 0% -13% -23% -5% -10% -14%
Sep 23 1% -7% -9% 5% 7% 0%
Oct 23 4% 0% 9% 15% 11% 15%
Nov 37 30% 23% 26% 35% 15% 38%
Dec 57 65% 66% 74% 50% 32% 40%
Annual 77 22% 19% 14% 17% 6% 11%

BASIN 4 SRESA2 SRESB1 

Jan 41 63% 104% 116% 57% 37% 61%
Feb 49 66% 88% 105% 54% 53% 83%
Mar 54 38% 45% 66% 35% 28% 50%
Apr 80 25% 38% 37% 30% 27% 34%
May 140 21% 12% -2% 20% 4% 3%
Jun 154 1% -16% -44% -12% -28% -32%
Jul 84 -3% -29% -52% -20% -35% -42%
Aug 32 3% -19% -34% -10% -17% -24%
Sep 23 3% -7% -4% 14% 17% -2%
Oct 21 -1% -7% -6% 3% 2% 0%
Nov 27 21% 4% 7% 23% 2% 19%
Dec 37 60% 60% 65% 40% 29% 33%
Annual 62 21% 16% 8% 14% 3% 6%
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Table 8 - Confidence that the mean flow for the A2 and B1 scenarios differ for 2071-2100. 
Confidence is determined with a 2-sided t-test for differences in mean. Basin numbering is as in 
Table 1. 

Month Basin 1 Basin 2 Basin 3 Basin 4 
Jan 68% 59% 71% 77%
Feb 60% 43% 45% 42%
Mar 64% 53% 58% 46%
Apr 18% 44% 5% 9%
May 59% 63% 47% 23%
Jun 72% 76% 63% 60%
Jul 78% 61% 60% 55%
Aug 85% 83% 72% 67%
Sep 91% 87% 70% 12%
Oct 50% 39% 29% 34%
Nov 35% 40% 38% 52%
Dec 46% 61% 60% 56%
Annual 28% 25% 14% 8%
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Table 9 - Mean April 1 SWE and percent change. Bold and Italics are used identically to Table 3. 

April 1 SWE SRESA2 SRESB1 

Basin 

1961-
1990 
Mean, 

mm 
2011-2040 

∆, % 
2041-2070 

∆, % 
2071-2100 

∆, % 
2011-2040 

∆, % 
2041-2070 

∆, % 
2071-2100 

∆, % 
1 109 -21% -42% -69% -29% -42% -59%
2 119 -15% -33% -63% -24% -33% -53%
3 302 0% -15% -38% -7% -20% -30%
4 354 0% -16% -40% -8% -22% -32%
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Table 10 - Date of the centroid of the annual flow volume, and the shift in days. Mean is in day of 
year (January 1=1). 

Flow Centroid SRESA2 SRESB1 

Basin 

1961-
1990 
Mean, 

day 
2011-2040 

∆, days 
2041-2070 

∆, days 
2071-2100 

∆, days 
2011-2040 

∆, days 
2041-2070 

∆, days 
2071-2100 

∆, days 
1 78 -15 -21 -27 -17 -17 -23
2 84 -23 -33 -38 -26 -27 -34
3 120 -15 -25 -39 -16 -19 -27
4 137 -12 -24 -40 -15 -19 -29
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Figure 1 - Location of the outlets to the four basins included in this study. Names indicate the River 
and the reservoir/dam into which the river discharges 
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Figure 2 - For one basin, for the SRESA2 scenario, the average precipitation and temperature, 
streamflow at the outlet point , and basin average snow water equivalent averaged over two 30-year 
periods. The thicker line labeled “obs” represents the baseline average for 1961-1990. 
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