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ABSTRACT

Image compression using Neural Networks

by Kunal Rajan Deshmukh

Image compression is a well-studied field of Computer Vision. Recently, many

neural network based architectures have been proposed for image compression as well

as enhancement. These networks are also put to use by frameworks such as end-to-end

image compression.

In this project, we have explored the improvements that can be made over

this framework to achieve better benchmarks in compressing images. Generative

Adversarial Networks are used to generate new fake images which are very similar

to original images. Single Image Super-Resolution Generative Adversarial Networks

(SI-SRGAN) can be employed to improve image quality.

Our proposed architecture can be divided into four parts : image compression

module, arithmetic encoder, arithmetic decoder, image reconstruction module. This ar-

chitecture is evaluated based on compression rate and the closeness of the reconstructed

image to the original image.

Structural similarity metrics and peak signal to noise ratio are used to evaluate the

image quality. We have also measured the net reduction in file size after compression

and compared it with other lossy image compression techniques. We have achieved

better results in terms of these metrics compared to legacy and newly proposed image

compression algorithms. In particular, an average PSNR of 28.48 and SSIM value

of 0.86 is achieved as compared to 28.45 PSNR and 0.81 SSIM value in end to end

image compression framework [1].

Keywords - Convolutional Neural Networks, Generative Adversarial Net-

works, Structural Similarity Metrics, Peak Signal to Noise Ratio.
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CHAPTER 1

Introduction
1.1 Problem Statement

Image compression is a kind of data compression. Research in data compression

is at least four decades old. The Lempel-Ziv data compression algorithm as well as

Differential Pulse-Code Modulation were developed in the 1970s. A modification of

this algorithm : Lempel-Ziv-Welch (LZW) was published by Welch in the year 1984.

This algorithm is still used in GIF image formats.

Many techniques such as Run-Length Encoding (RLE), Discrete Cosine Transform

(DCT), etc. are used traditionally for image compression. These deterministic image

compression algorithms rely mainly on image filters, discrete transformations and

quantization. Because of Moore’s law, handheld devices and personal computers now

have much higher processing power than they had at any time in the past. This

has allowed the development of modern image compression algorithms. Many image

compression frameworks have now been proposed, based on deep neural networks.

Several recently published articles on image processing frameworks used deep

learning networks. We used parts and ideas from several of those frameworks to

develop a new architecture. The goal of this project was to develop a new deep neural

network architecture which is an improvement upon existing architectures in terms of

efficiency and image quality metrics such as SSIM, PSNR. We also wanted to do this

in most time efficient manner possible.

Jiang, et al. considered an end to end image compression network [1] in which

fully convolutional neural network based encoder is used for image compression. Our

proposed architecture closely follows this model. Hence on several instances,we have

used this architecture as out baseline model and we have compared our performance

with this architecture. In this architecture, a smaller image is constructed by encoder.
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This image is nothing but a smaller replica of the original image. The decoder, in this

instance called re-constructor, is designed to generate an original image back from

its smaller replica. In our own implementation, average PSNR and SSIM metrics

obtained were 28 and 0.56 respectively. We achieved better results than this model.

Another convolutional neural network based architecture proposed by Cavigelli,

et al. [3] is efficient is suppressing the artifacts which are introduced during image

compression process. This architectures makes efficient use of several skip connections

to train the model. We have used skip connections in our model to train our model

faster.

Space separable operations such as pointwise and depthwise operations are useful

to speedup training and inference process even further. We used such operations at

some levels of our neural network. This has reduced the training as well as inference

time required to train our model.

We have also designed a loss function such a way that image generated from

compression module has a very low variance in pixel values. This limits the pixel

values the resultant compresses image can have. The arithmetic encoder is used to

process this compressed image. Since the compressed image now has a very small

number of distinct values, an arithmetic encoder can use lossless data compression

algorithms such as entropy coding or RLE to further compress the results obtained

from compression module.

Hyper-parameter optimization was performed on this network to calculate hyper-

parameters such as number or layers, learning rate, coefficients for loss function etc.

We used hyperband scheduler for this purpose. We could improve our results using

values obtained hyper-parameter search.
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1.2 Overview

This report is organized as follows: The next chapter explores work related to

legacy image compression algorithms and deep neural network based frameworks. In

the following chapter, data augmentation techniques that are used, The motive behind

using PyTorch framework and some useful API, a library used for hyper-parameter

optimization, concepts such as residual learning and datasets we explored as a part of

this project are explained. The report later explains a new proposed architecture and

experiments carried out on it. We conclude this report with achievements and future

work.
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CHAPTER 2

Background

Image compression is necessary so as to enable saving large amounts of images

in a limited storage area. Most images captured today are for human consumption.

Human vision is sensitive towards some features of an image. e.g. Low-frequency

components of an image are easily noticed while high-frequency components are

not. This fact is used in lossy image compression algorithms. Hence, lossy image

compression algorithms focus on the removal of such features from the image. In

this project, our aim was to propose a new lossy image compression framework which

could provide better image compression ratio while maintaining the quality of the

images. In this chapter, we will explore some legacy image compression techniques

along with some recently proposed architectures. Our architecture which is proposed

in the fourth chapter is motivated by these existing architectures.

The recently developed algorithms like WebP and High-Efficiency Image File

Format (HEIF) [4, 5] use more complex encoding structures. Even though these com-

pression techniques require more computation power than the traditional algorithms

like JPEG, its use results in much smaller file size while maintaining a similar quality

of an image.

Before the advent of Deep Neural Networks, techniques such as Run-length

encoding, Entropy encoding, Differential Pulse-Code Modulation (DPCM) were used

for image compression. In run-length encoding series of bits of 0s and 1s are replaced

by a bit symbol followed by a count of the number of bits. Entropy encoding method

on the other hand work on a higher level of image representation. In this technique,

quantized pixel values are replaced by symbols. Length of these symbols is determined

on the basis of frequency of occurrence. Huffman Coding, Arithmetic Coding, and

Range Coding techniques are some examples of entropy encoding techniques. Run-
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length encoding and Entropy encoding techniques are lossless data compression

techniques. Data is lost when quantization results in the lower granularity of values.

However, it is necessary to convert analog values to its corresponding digital values.

Differential Pulse-Code Modulation [6] (DPCM) is another technique used to convert

an analog signal into a digital signal. In this technique, the difference between sampled

values from the analog signal and predicted values is quantized and encoded. Since

pixel values are predicted based on previous values, the compression factor of DPCM

is higher than quantization techniques.

An Image in WebP [4] format is represented by 32 bit format. In this format,

alpha channel is added along with ’R’, ’G’, ’B’ values which represent the opacity

value. Lossy WebP architecture uses predictive encoding technique in which, the

value of a pixel is predicted using the value of neighboring pixels. Lossless WebP

compression technique uses a variety of lossless transformation techniques such as color

de-correlation transform, Subtract Green Transform and color cache encoding in order

to provide better lossless performance than earlier techniques. HEIF is a video and

single image compression format in which images are stored in the form of thumbnails

in several containers and the final image is built using those representations. HEIF

format supports 16-bit color as opposed to an 8-bit color used by JPEG. HEIF format

supports block sizes of 8× 8 to 16× 16 pixels. Pixel value in each block is predicted

using the data in another block. This format uses Context-Adaptive Binary Arithmetic

Coding (CABAC) [7] techniques instead of Huffman coding which is used in other

popular image file formats such as JPEG. PSNR of CABAC is better than Huffman

coding. In HEIF quantization parameters are decided locally and hence, it preserves

both high as well as low-frequency components in an image.

Use of Neural Network in Image Compression is a relatively new development. Due

to the stochastic nature of Neural Network training, the Neural Network architectures
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used in Image compression are inherently lossy in nature. Generative Adversarial

Networks (GANs), Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs) are being used for image compression purpose.

Recently published Neural Network architectures [8, 1, 9, 10] demonstrate that,

apart from tasks such as Classification, Object Detection, and segmentation; Deep

Neural Networks can be employed for image compression tasks. However, these neural

networks can be optimized further not only for faster image compression and retrieval

times but also for better accuracy.

Various methods for weight initialization and optimizer function have been

proposed for computer vision related tasks. Even though random normal weight

initialization and Gradient Descent based optimization function work in many cases

other methods are being proposed for faster and better convergence in the training

phase. We will discuss these techniques in more detail in subsequent chapters of this

report.

2.1 Use of Convolution Neural Networks in Image Compression

Our proposed architecture relies heavily on CNNs to capture image artifacts.

They have been used recently in many image compression architectures.

Jiang, et al. [1] has used fully convolutional auto-encoder to obtain a compressed

representation of an image. The architecture shown in Figure 1 below, has two distinct

parts - ComCNN and RecCNN. Series of convolutional layers stacked in this way can

capture features of an image. The author claims that because of the use of multi-layer

CNNs, this architecture can maintain the structural composition of an image as well.

The ComCNN is a network responsible in compressing these images in such a way

that resultant images can be effectively reconstructed by reconstruction network. This

6



Figure 1: End to end image compression framework using CNN.

network consists of three convolutional layers with the second layer followed by batch

normalization layer. Since the first convolutional layer uses a stride of two, the image

size is reduced by half. RecCNN layer uses twenty Neural network layers. Apart from

the first and the last layer, each layer in this formation carries out Convolutional and

batch normalization operation. The author trained this network using 400 grayscale

images and 50 epochs. SSIM and PSNR metrics of these images are better than JPEG

images.

In lossy image compression techniques, artifacts of image compression algorithm

are visible in images. An example of such artifacts is visible on images for which tiling

was used for quantization. In such images, these tile boundaries continue to remain

in the images. CNN based architecture [3] proposed by Cavigelli, et al. is a twelve

layer image compression architecture used for image compression artifact suppression.

This paper not only proposes a new architecture to suppress these compression

artifacts, but it also proposes a new way to train deep neural network models which

is adaptable to other low-level computer vision tasks. In this paper, Cavigelli, et

al. proposed hierarchical skip connections and multiscale loss functions. These
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hierarchical skip connections provide two advantages - In forward pass, this method

provides information to obtain higher resolution images. In backward pass, these

skip connections allow gradient flow to skip middle layers and help train early layers.

Even after using skip connections in deep neural networks, it still does not eliminate

the possibility of very long paths. Hence, loss is calculated on many intermediate

low-resolution images. The author has observed that batch normalization does not re-

duce the accuracy of the network; moreover, it adds batch-to-batch jitter in the system.

2.2 Use of Generative Adversarial Networks in Image Compression

Generative Adversarial Networks (GANs) are useful for tasks such as image

enhancement. GANs are trained to imitate original distribution. This property is

useful in image compression problem since GANs can be used for tasks such as de-

blurring, to provide a better alternative for interpolation. We have used photo-realistic

Single Image Super-Resolution Generative Adversarial Network (SRGAN) to perform

up-scaling task in the proposed framework.

Ledig, et al. [9] explained how GANs can be used to recover finer detail about

the image when it is lost because of compression. The framework proposes perceptual

loss function which is made up of content loss and adversarial loss. We have used

this architecture as an efficient way of image up-scaling.

This architecture up-scales the images by 4 times. Mean-Opinion-Score (MOS)

of images generated using this method is close to the MOS of original images. It uses

the VGG network as a Discriminator. In this paper, the author claimed that deeper

neural network architectures are difficult to train and hence batch normalization layer

is useful to offset co-variate shift. In a generator network, Ledig, et al. used the

block layout with two convolutional layers in each block. They used parametric relu

8



Figure 2: Photo realistic Single Image Super resolution using GANs.

as an activation function to avoid the use of max-pooling layer in the network. In

VGG, strided convolution is used to reduce image resolution as the number of kernel

increases with each layer. This network was trained on 350 thousand images from

ImageNet dataset.

In an other GAN based network [10] for image enhancement, instead of using

perceptual loss function, Cheng, et al. used a non-parametric Bayesian model. In

this model, a Dirichlet process and Gaussian process are applied in patches of a

low-resolution image to obtain a high-resolution image. Markov Chain Monte Carlo

(MCMC) algorithm was used for hyper-parameter optimization. Markov Chain was

calculated using by sampling posterior distributions for each hyperparameter. This

process is known as Gibbs sampling. This proposed method performs better than

the Sparse Coding and Gaussian Process Regression Model. However, PSNR and

SSIM values obtained using this process are lesser than those obtained using the

earlier method. The average PSNR and SSIM matrices obtained from this method

are 29.5dB and 0.843 respectively.

9



2.3 Use of Recurrent Neural Networks in Image Compression

Recurrent Neural Networks (RNNs) are typically used for sequential time series

data predictions. RNNs ahve been used for image compression in an architecture [8]

proposed by Toderici, et al. This architecture was developed small network bandwidth

for handheld devices. In this architecture, the output image is refined and improved

successively as more data is obtained from the network. This network consists of

Encoder, Decoder, and Binizer. Long Short Term Memory (LSTM) cells are used along

with convolutional layer. In each iteration of this network, an input image is encoded

in encoder and binzer, as the name suggests, transforms it to a binary file. This binary

file can be transferred over the network. The decoder can generate original image

from this binary file. Even though this network performs better compared Vanilla

CNN based approaches, every iteration of a network requires a minimum of eleven

layers of RNN convolutional layers and hence, it can be a more complicated model

to train. This model is more useful in the instances where compressed image data is

received while image is being constructed. Since this model might have required much

more processing power than available with us we decided to not to use this network.
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CHAPTER 3

Tools and Techniques

This section explains various concepts and implementation details used in project

implementation.

3.1 Convolutional Neural Networks

Convolutional Neural Networks [11] are primarily used for a grid-like data. This

often involves image as well as other data arranged in a grid-like shape. In CNNs, each

kernel results in a new convoluted layer. These layers are also called activation maps.

As the name suggests, in this network, the convolution operation is used instead of

matrix multiplication. As shown in Figure 3, In this operation, a kernel or a mask

moves over an image and a convoluted representation is calculated as an output.

CNNs can capture special and temporal dependencies in an image. This property

Figure 3: Alexnet architecture [2].

is extremely useful in computer vision tasks such as Image classification and image

classification. In an image classification [2, 12, 13, 14] networks, series of convolution

layers are followed by fully connected layers which help in classification. Depth of

Convolutional Neural Networks decides how nuanced the observations of a network

can be. Lower layers of CNNs are responsible for lower level features such as line,

corners, etc. while higher level layers are responsible for more higher level features.
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Size of intermediate results can be reduced by using stride. Stride is an offset by

which kernels are moved during convolution operation.

Point-wise Convolutional Neural Networks

Point-wise convolutional operation is a type of special operation where the size of

the kernel is always 1× 1. This operation returns a layer with the same dimensions

as that of input layers.

Depthwise Convolutional Neural Networks

As the names suggest, Depthwise CNNs work on depth. Each kernel can have

any height and width, however, its depth is always one. Separate kernels act on each

depth level. Stacking all these layers together results in an image.

Point-wise and Depth-wise convolutions involve much fewer multiplications. This

can be proved by a simple calculation [15] - let us assume there are 16 kernels in total.

Let us assume the kernel size is 5x5x3 and we move it 8 times for both length and

breadth.

Hence the total multiplications required are : 16 · 3 · 5 · 5 · 8 · 8 = 76800

If we decide to use depthwise and pointwise convolution instead then

For depthwise convolution, we will have three kernels instead of one. Hence the

calculation will be - 3 · 5 · 5 · 8 · 8 = 4800

For pointwise convolution we got 16 · 1 · 1 · 3 · 8 · 8 = 3072

Hence, the number of multiplications required is 4800 + 3072 = 7872

This is much less than multiplications required for normal convolution layers.

Since space separable convolutions results in less number of parameters than the

normal CNNs, shallow neural networks with space separable convolutions may fail to

learn during training.

12



3.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are the improvement over Generative

Networks. GANs consists of 2 networks that are pitted against each other in order

to achieve better results in both sections. The generative network is responsible for

generating fake data as close to the original data as possible and discriminative network

is an image classification algorithm which discriminates fake images from original

images. Trained GANs are well-trained networks which closely mimics real-world data.

3.3 Image Quality Metrics

Image quality metrics are useful for us to measure how well an architecture has

performed. These can also be used to define loss in neural networks. Image quality

metrics are of two types : reference image quality metrics and non-reference image

quality metrics. Non-reference image quality metrics like Mean Subtracted Contrast

Normalized (MSCN) do not require a reference image to compare an image with.

Since we are going to compare the uncompressed image with the original image

in this project, we have used only reference image quality metrics. Here, we will

review some reference image quality metrics.

3.3.1 Mean Square Error (MSE)

MSE calculates the addition of squared differences between pixel values of two

images.

𝑀𝑆𝐸 =
1

𝑀𝑁

𝑀∑︁
𝑦=1

𝑁∑︁
𝑥=1

[𝐼(𝑥, 𝑦)− 𝐼 ′(𝑥, 𝑦)]2

Here, M and N is a size of image1 and image2 respectively. I(x,y) is a pixel value

at position x,y. This is the simplest image quality metric to understand. However,

This metric is not always a good metric to access image compression quality since it
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does not take into account the range of variations in pixel values in an image and

high, low-frequency components in an image. These factors, however, affect human

perception towards quality.

3.3.2 Peak Signal to Noise Ratio (PSNR)

PSNR is a measure of peak error between two images. This method is used to

calculate the quality of compression method where higher PSNR value represents

better quality of compression of an image.

𝑃𝑆𝑁𝑅 = 10 log10
𝑅2

𝑀𝑆𝐸

where R represents maximum fluctuation in input image pixel values.

3.3.3 Structural Similarity Index (SSIM)

SSIM calculates quality degradation in an image due to image processing

tasks such as compression. SSIM is considered a better metric to access degrada-

tion of images because it takes into account visible structures of an image. SSIM

is calculated using a combination of variance and covariance terms between two images.

3.4 Dataset augmentation

Data augmentation is used introduced to regularization in deep neural networks.

Augmentation in images increases the effective dataset size and hence helps the neural

network learn important features about images. We applied data augmentation

techniques such as random cropping, random scaling, random flips and rotation of

images and random changes in colors of an image.
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3.5 PyTorch

PyTorch, TensorFlow and Caffe are some of the most popular deep learning

frameworks. We have used PyTorch framework to design a deep neural net framework

for the following reasons :

• PyTorch methods interact natively with Python source code.

• The execution workflow of PyTorch can be altered with native python statements

and hence, tensor values can be accessed at the time of script execution by

python statement.

• PyTorch is compatible with TorchVision - a rich API for computer vision tasks

such as a module to load images into a dataset, data augmentation, etc.

• PyToch has online support second only to TensorFlow.

• Native Python operations such as addition, subtraction can be used with tensors

on PyTorch. That is to implement skip connections, users can simply add a

tensor from the previous step to the current output.

• The documentation available for anyone to get started with PyTorch is com-

prehensive and easy to understand. Starter code provided by the framework

ensures programmers don’t face a steep learning curve.

We used TorchVision API provided by pytorch for data load and data

augmentation operations. torch.nn API provides many useful high-level functions

such as conv2d to construction 2d convolution layer, BatchNorm2d function

provides an easy API to implement batch normalization layer. torch.nn API

also provides functions such as relu to implement non-linear activation functions

and MSELoss to implement mean squared error loss function. optim API pro-

vides various optimizers such as Adam optimizer, stochastic gradient descent optimizer.
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3.6 Ray - Tune

The ray library in Python is useful in the development of parallel execution

framework. We used Tune API of ray library to perform hyperparameter tuning.

This API supports schedulers such as Hyperband scheduler, Median Stopping

Rule, Population-Based Training, etc. We have used a grid search to generate

hyper-parameter values.

3.7 Residual learning

In the human brain, neurons do not always connect with each other in a sequential

manner. A residual neural network (resnet) [13] is the network designed that is designed

to mimic biological neurons. It uses skip connections in order to improve efficiency of

the learning process.

Residual learning is achieved using skip connection between multiple layers. In

residual learning, as shown in Fig. 4 non-linearity is applied after skip connections.

Skip connections were first introduced by Long et al [16]. They are highly used in

very deep neural networks such as resnet. Much deeper neural networks suffer from

the problem of degradation of the gradient. The backpropagation, thus, cannot train

a very long sequential deep model. This results in higher training error for the model

even if the problem is not overfitted to the training data. Instead of hoping that

layers will fit the underlying distribution, it is easier to train the neural network

with skip connections. If a function can be trained by a deep neural network with

nonlinear layers, it can also be approximated using residual connections. Any deep

neural network can be approximated by its shallow version, added skip connections

add the layers with identity mapping which moves the weights of multiple nonlinear

mapping towards identity function. Even though identity mapping is unlikely to be
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Figure 4: Alexnet architecture.

an underlying function, it is useful to bring the network closer to identity mapping

than the zero mappings.

3.8 Optimizers

The 𝑡𝑜𝑟𝑐ℎ.𝑜𝑝𝑡𝑖𝑚 package provides an Adam optimizer, a RMSprop optimizer

and a Stochastic Gradient Descent (SGD) optimizer. SGD is a variant of the gradient

descent optimizer. We only considered SGD and Adam optimizer in this project. The

SGD optimizer works on a small subset of randomly selected data. It produces similar

result to gradient descent when the learning rate is set to low. However, due to this

limitations, SGD proves to be too slow for some deep learning tasks.

A recently proposed optimizer known as Adam optimizer provides faster conver-

gence time.It combines the advantages of two SGD extensions : Root Mean Square

Propagation (RMSProp) and Adaptive Gradient Algorithm (AdaGrad). Even though

SGD optimizer sometimes provide better performance over adam, Adam is widely

used in deep learning field because it provides quicker results. In this project, we tried

Adam as well as SGD optimizer, however, we observed that adam provided better
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performance for 50 epochs on CIFAR10 dataset.

Adam optimizer is declared in pytorch using the code as below -

optim .Adam( model1 . parameters ( ) , l r=1e−3)

We used two separate optimizes for image compression as well as reconstruction

part. However, both modules are trained simultaneously. With better computational

resources and bigger dataset, or a dataset of narrower domain, effort can be made to

use SGD optimizer in place of Adam optimizer to ensure global minima is achieved.

Use of Adam optimizer has allowed us to compared performance of newly proposed

network with baseline architecture.

3.9 Dataset

We explored CLIC, ImageNet, STL10, COCO and CIFAR10 datasets.

CLIC

The CLIC dataset is published by Workshop and Challenge on Learned Image Com-

pression. This dataset contains 1600 train images and 102 validation images. These

images are high-resolution images which are a very good representation of real-world

images being captured at present.

ImageNet

The ImageNet dataset contains more than 14 million images. Most modern world deep

neural networks are trained on ImageNet dataset. It consists of images of random

resolution and format.

CIFAR10

This dataset consists of 60K images of 32 x 32 size. Due to its image size, it can not

be used to train a network for visualization. However, we have found this dataset

very useful for benchmarking and for hyper-parameter optimization.
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STL10

This dataset contains 100K images of 96× 96 size. We have used this dataset for the

visualization of our results.

COCO

This dataset is primarily used for image segmentation tasks. It consists of over 330K

images. While using this dataset, we have resized all images to 200× 200 size due to

resource constraints.
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CHAPTER 4

Network Design

Our proposed architecture consists of four parts - Image Compression Module

(ICM), Arithmetic Encoder, Arithmetic Decoder and Image Reconstruction Module

(IRM).

Out of these four modules, ICM and IRMs are used for lossy image compression

while Arithmetic Encoder and Decoder deliver a lossless image compression. Both

ICM as well as IRM is based on deep neural networks.

4.1 Arithmetic coder and decoder

Arithmetic coder and decoder are made up of python implementation of Huffman

coding [17]. In Huffman coding, 0-255 values of pixels are treated as separate symbols,

the frequency table is calculated, and this symbol is replaced by a sequence of bits.

The number of bits used to represent a given symbol is inversely proportional to

the frequency of that symbol. Huffman coding was implemented using reference

arithmetic coding library in python. Since original data can be completely retrieved in

the decoder part, it is a lossless compression algorithm and its introduction or removal

does not affect other neural network-based modules.

For the purpose of neural network training, we did not use an arithmetic coder

or decoder so as to avoid unnecessary computational overhead.

4.2 Image compression module

The image compression module consists of a series of CNN layers. These CNN

layers are used to learn features of the images which can be useful for further image

reconstruction tasks. Series of convolutional neural networks identify latent features

in images and helps to develop series of feature maps which could hold information

useful for identifying critical components in an image. These components includes
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overall structure of an image as well as some salient features such as edges and corners

which can not be regenerated by reconstruction layer unless they are provided as an

input. Thus, this module acts as a filter though which only few critical components are

passed to an intermediate image. We have performed hyper-parameter optimization

on this component where we tried three, five and ten layers. However, performance of

overall network did not improve with more layers in this module. Hence, we have

used a three layer CNN module as shown in fig. 5 Network specification is as below:

Block 1

First Block includes a CNN layer followed by a rectified linear unit (relu)

non-linearity. This CNN layer has a kernel of size 3x3 and depth as three in case of

RGB image. This depth can be changed to one for the grayscale image. PyTorch

reads an image in such a way that all pixel values are between zero and one. Hence,

we concluded that relu function is a good fit for the data in this range. This layer

is responsible for identifying low-level features in an image which are required for

reconstruction framework in order to generate a realistic image.

Block 2

The second block uses a CNN layer, relu for non-linearity and a layer for batch-

normalization. The CNN layer in this block uses padding values of two between the

layers. This results in the tensor of half the size of the original image. We used

pointwise and depthwise convolution instead of normal convolution layer in this block.

This block is tasked with resizing an original image. This layer thus reduces the size

and resolution of an image by half, if the stride is defined as two. Even if the image

size can be reduced by interpolation techniques, the use of neural network helps in

removing the information that is not useful of IRM, instead of simply re-scaling the
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tensor to the desired size.

Figure 5: Image Compression Module.

We used space separable CNN layer in this block. Despite its minimal

performance gain for inference task, this was preferred as its performance was better

than the baseline convolutional layer. The resultant tensor is passed through batch

normalization layer. This layer helps [18] avoid gradient overflow or underflow and

makes the neural network less sensitive towards the choice of random initializer and

its variation.

Block 3

A single convolution layer is used as the third block of the network. This layer

generates the feature maps which helps the network to learn higher level features.

The output of this layer is not subject to non-linearity as the goal of this layer is to

reproduce an image as close to the original image as possible.

This module is trained along with reconstruction module. Hence, the goal of this

network is to generate an intermediate representation of an original image, which

could be used by reconstruction layer to generate an image as close to the original

image as possible. Size of this intermediate result decides the compression factor of

the compression algorithm. This compression factor can be changed by variation of

stride and dilation values in the intermediate layer.

22



4.3 Image reconstruction module

Reconstruction module is tasked at regenerating an image such that it is very

similar to the original image. The reconstruction module has on two responsibilities -

Resize an image to the original size and improve the quality of the resized image.

Since this module is tasked with regeneration of an image from a minimal

information passed on by compression module, this module requires more layers to

hold information on how to reconstruct an image. This information is held in feature

maps of convolutional layers. The first few layers are responsible in reconstruction

of basic shapes such as line, points, corners etc. while further layers adds more

information about the image such as facial expressions. The size of kernel used in this

network is maintained at 3× 3 since all these features are local to a region and are

less likely to have any impact on other parts of an image.

In end to end image compression framework[1], the author decided to use bicubic

interpolation method to resize the compressed image to its original size. However, We

decided to use SRGAN [9] for this purpose. This network returns the image of size

four times bigger than the actual image. This image can be scaled down to the desired

size using the interpolation technique before it is fed to the reconstruction module.

SRGAN is known to generate an image with much better quality as compared to

simple interpolation techniques. This method gives us an advantage of better input

data for image enhancement. We would like to note that, while training this network,

we decided to use interpolation technique for upscaling instead of GAN due to the

overhead GAN might have caused during the training phase.

Moreover, this allowed us to use bad quality images to train the network for

image enhancement. Slightly bad quality data is often generated as a part of data
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augmentation task for robust training. Using a bicubic interpolation instead of

SRGAN alleviated some need for data augmentation to training reconstruction network.

SRGAN was trained separately in its original proposed shape on the ImageNet dataset.

The IRM consists of five blocks each containing one convolutional layer and an

optional batch normalization or relu layer.

Figure 6: Image reconstruction module.

Block 1

Block one contains a CNN layer and relu layer. For this CNN layer, in channel value is

the same as the number of channels. We used our channel value as 64 and 3×3 kernel.

Hence, this layer accepts a tensor of size Height x Width x channels and transforms it

into tensor of size Height x Width x 64. Even though tensor is reshaped to this new

size and original structure of pixels is lost, this shape provides more avenues for the

network to add information to an image in order to produce realistic image. In other

words, this resizing allows us to have more learnable weights in the following layers

which could store more information about the latent characteristics of images used to

train this network.

Block 2

This block is an integration of CNN, ReLU and batch normalization layers. These

three layers are iterated for five times. Hence, overall, this block contains five CNN,

ReLU and Batch normalization layers. A skip connection is added to short this block.
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Block 3

We used pointwise and depthwise CNN layers instead of ordinary CNN layer in block

3. In all other aspects third block is similar to second block.

Block 4

This block is identical to second block. This block is added in order to improve

convergence of neural network while training on rich dataset like COCO. These extra

layers help in reconstruction of an image since they provide more feature maps and

allows the network to learn more nuanced feature about train images.

Block 5

Fifth block consists of a CNN layer which takes 64 in channels and outputs a tensor

of size Height x Width x channels.

Skip connections

After 2𝑛𝑑, 3𝑟𝑑 and 4𝑡ℎ block, a skip connection is added as shown in fig. 6 relu is

applied after this addition.

An interpolated image at the start of the network is added to the output of fifth

block. The resultant tensor is saved as an image. As we have discussed in last chapter,

skip connections are useful in backpropagation. Addition of relu also ensures that the

tensors passed in the these layers are subjected to enough non-linearity and hence

network weights in successive layers are not updated in the uniform manner during

development. Activation functions also ensures that the resultant values in tensors

are maintained in the desired domain. Since we have used batch normalization layer

in the network, use of relu does not contribute to exploding gradient problem. In skip

connections, two tensors of same dimension are added and each new tensor is passed

through at least one convolutional layer, this ensures that convolutional layer weights

are adjusted in training phase so as to accommodate the values obtained from skip

connections.
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4.4 Loss function

Loss function indicates the values to be minimized while training a neural network.

Our loss function calculates the difference between observed output ̂︀𝑦 and underlying

function y. Since this problem is a regression problem, we decided to use quadratic loss

function (mean squared error) between input and output image as our loss function.

In order to achieve image compression the compressed image should contain

least amount of information. We used mean absolute error loss function to reduce

variance in the compressed image. The image obtained from compression module

ICM is compared with the reference image. mean absolute error is calculated as a

difference between pixel values of a compressed image and the reference image.

Neural networks work efficiently with relu non-linearity when the values in a

tensor are in the range of (0,1). Hence, we decided to use tensor with all values as

127.5 as our reference image.

Hence, our first loss function is a quadratic loss between an image provided as an

input to ICM and an image received as an output from the IRM. We have defined

the second loss function as the mean absolute error between a tensor with all values

as 127.5 and a compressed image.

The penalty applied on a compressed image results in an image with very small

variance. This fact is exploited in arithmetic encoder in order to efficiently compress

the image further. Since information passed to IRM is a variance information from

this image, sufficient regularization is required on this loss function to ensure that

image can be reconstructed from this variance. Hence, loss obtained from using MSE

between the original image and targeted image is considered as a principle loss and

it is prioritized over the loss produced due to variance in compressed image. This
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prioritization is achieved by dampening the loss obtained due to mean absolute error

between the compressed and reference image.

4.5 Training

We have trained our neural network on STL10, CIFAR10, COCO and CLIC

image datasets for varying number of epochs and network sizes.

We conclude that we got the best results with 50 epochs of COCO dataset. It

required more than 110 hours of training on Google Cloud instance with Nvidia Tesla

P 100 GPU. We used the image size of 200x200 for this training. As stated earlier,

SRGAN and arithmetic encoder and decoders were not added to the network during

training time.
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CHAPTER 5

Experiments

Our first expriment made use of the baseline model [1] For this baseline model,

we did not achieve the same results as claimed by the author. This could have been

because we could not obtain the original dataset used by authors hence we trained our

the network on publicly available datasets. We implemented the image augmentation

techniques described in the paper, however, we could not train our model using only

400 images as described in the paper. We observed that network performance increased

when we increased images in our datasets. This points towards the fact that image

augmentation techniques we used were not sufficient to train the network using a

very limited dataset. In stochastic gradient descent, weights are initialized randomly

in the beginning. The choice of algorithms used to initialize these wights may affect

the overall training of the model. The framework used to implement this network

also contributed to challenges in reproducibility of the results for example, PyTorch

loaded all images as a tensor with values between 0 and 1. Thus normalization was

not required for images loaded using stand APIs in PyTorch.

The results we obtained from implementation of the baseline model are shown in

Table 1 and Table 2

Table 1: Results obtained on baseline model

Image Name PSNR SSIM
Lenna 28.07 0.59

Peppers 27.9088 0.48
Parrots 28.036 0.61

Note: This result is only the grayscale images as only grayscale images were used

by the authors.
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Table 2: Visualization of results on baseline model

Type Lenna Peppers Parrots

Original Image

Reconstructed Image

Even though the baseline model results were obtained only on grayscale images,

we could scale the model for color images as well. With the proposed method, we

could obtain much better results as shown in Table 5 and Table 6. These are the

results of color images.

Table 3: Results obtained on proposed model for color images

Image Name PSNR SSIM
Baboon 27.7869 0.89
Lenna 29.26 0.86

Peppers 28.46 0.79
Parrots 28.33 0.69
Average 28.45 0.81

These results show some distortion in color images as IRM introduced some errors

during regeneration of images. In our view, this distortion can be reduced if deeper

neural network with the much bigger dataset is used to train the network. This is an

error in our model. This can be reduced by using computer vision techniques outside

deep learning domain such as smoothing or removal of high-frequency areas.

This architecture can be used for grayscale images as well. For this change,

only the first and last layer of image compression network and image reconstruction
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Table 4: Visualization of results on proposed model for color images

Type Baboon Peppers Parrots Lenna

Original Image

Reconstructed Image

network needs to be changed. In this case, the number of in channels for the first

CNN layer is one. The number of out channels for the last CNN layer is one.

Table 5: Results obtained on proposed model for grayscale images

Image Name PSNR SSIM
Cameraman 27.34 0.78

Peppers 28.30 0.88
Lenna 29.88 0.87
Parrots 28.23 0.89
House 28.67 0.89

Average 28.48 0.86

Table 6: Visualization of results on proposed model for grayscale images

Type Cameraman Peppers Parrots Lenna

Original Image

Reconstructed Image

From the above results, it can be concluded, that the performance of grayscale is
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still better than color images. The grayscale images could be more tolerant to a small

error in pixel values because neural network performs better in smaller sample size

and in grayscale, sample size smaller by a factor of three as compared to color images.

Grayscale images are generated using a two-dimensional tensor. Since the

possibility of error is reduced by the factor of three, an error in grayscale is not

easily perceived by a human eye. Since SSIM metric is modeled after human per-

ception, we can see grayscale images perform better SSIM metric as compared to PSNR.

The proposed algorithm is also efficient in training time (For COCO dataset):

The time required to train one epoch of the baseline algorithm: 173min

The time required to train one epoch of our proposed algorithm: 137min

The time required for inference:

We have measured time for inference in images per second (200× 200 images).

Number of images processed every second for baseline algorithm is 4.2 whereas number

of images processed per second for proposed algorithm where bicubic interpolation is

used as the first stage in reconstruction phase is 4.8. When SRGAN is used, number

of images per second for the proposed algorithm is 3.1

This can be construed from the fact that time required for reference is a number

of arithmetic operations performed in such a task. These operations vary based on

the size of a tensor, the number of layers in a neural network, size of a kernel in CNN

layers. Since the framework that uses SRGAN adds more than 20 layers to the existing

framework, this architecture suffers from performance degradation. However, since

SRGAN can be used independently, can be applied in parallel with this architecture.

Fig. 7 visualizes file size of an image was substantially reduced after going through
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Image compression module and arithmetic encoder.

Figure 7: Image file sized before and after compression

We also analyzed the compression ratios for images of various file types. average

file size and its compressed versions are as below.

Figure 8: Average file size for image file format

from the above image, it can be concluded that this architecture is useful in a
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variety of file formats. The loss and overall quality for the image file formats do not

vary substantially with the change in file formats. This is because, once an image

file is read in deep learning framework, it is represented as a tensor of floating point

numbers and performance of a model does is not affected based on the file format.

The same was true for implementation of a baseline model as well.
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CHAPTER 6

Conclusion

We implemented a baseline architecture as described by the authors in the end to

end image compression framework [1]. However, due to a variety of factors described

earlier chapter, the results we obtained from this implementation were inferior to the

ones claimed by the authors. We used open and free datasets to perform experiments

on the model and designed a new architecture with components from SRGAN[9]. The

proposed network also makes use of a few newly described techniques in deep learning

such as separable convolutions.

We performed experiments over the kernel size, types of layers, normalization

and optimizer type. The proposed framework is a mix of SRGAN[9] and end-to-end[1]

image compression network. Recurrent neural network based architecture proposed by

[8] was not considered because it was overall less flexible and required more resources

for training. In this architecture, we replace the bicubic interpolation layer in the

original network[1] with SRGAN and we have introduced some skip connections

as proposed in image compression artifact suppression network [3] to improve the

performance. We also observed that point-wise and depth-wise convolution has better

efficiency than CNN layer with 3x3 kernel hence we replaced some CNN layers in

Compression and Reconstructor network with pointwise and depthwise convolutional

layers. The resultant architecture has four components: an image compression module,

Arithmetic Encoder, Arithmetic Decoder, and an image reconstruction module.

The SSIM and PSNR metrics obtained with our new framework in some cases

beats recently proposed deep neural networks. The architecture also takes lesser time

for the training as compared to the baseline architecture.

From our experiments, we observed that this framework not only performs better

than our implementation of baseline model but also performs better than many deep
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learning based frameworks proposed[1]. The architecture performs better in a smaller

sample space.

The time required for the execution of deep learning framework is largely propor-

tional to the number of neural network layers. Since this architecture makes use of

SRGAN during image up-scaling phase, the number of layers in the model increase

dramatically as compared to the baseline model. however, SRGAN can be run in

parallel to the image reconstruction module in the inference phase. This can reduce

the overall time required for inference for this module to a time comparable with

baseline implementation.

The training time of a model can be reduced by using skip connections. These

skip connections allow the gradient to flow easily to the starting layers of the network.

This results in faster training of the layers at the start of the network and thus the

overall network trains faster using skip connections. Performance gain at the training

time along with performance boost by using point-wise and depth-wise CNN layers

results in an overall efficient network as compared to the baseline network.

We also observed that this compression framework is agnostic to file format used

for the compression. Even though image size varies based on the encoding used in the

file format, the overall performance of the model remains unchanged.

6.1 Future Scope

In our implementation, we used Ray AI library for hyper-parameter tuning. The

architecture that we proposed in this paper was the best configuration we could find

in this search. However, there is always a scope to perform such a search in a bigger

space. With more computational resources, hyper-parameters can be searched over

much larger parameter space for the same architecture. This might result in better
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performance. The literature on Batch Normalization and skip connection may develop

in the future. This could be used to redesign this network.

Instead of general purpose deep learning model, an algorithm can be designed to

perform in narrow domain or images such as landscape images, urban outdoor images,

etc.

We observed that reconstructed gray-scale image quality is better than color

images. A layer type or a network better suited for color images could be explored in

the future.

New techniques and tools are being developed in deep learning for computer vision

such as capsule networks. Use of such tools for image compression can be explored.
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