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Abstract 

We propose a multi-stage machine learning (ML) architecture to improve the 

accuracy of offline handwritten mathematical symbol recognition. In the first stage, we 

train and assemble multiple deep convolutional neural networks to classify isolated 

mathematical symbols. However, certain ambiguous symbols are hard to classify without 

the context information of the mathematical expressions where the symbols belong. In the 

second stage, we train a deep convolutional neural network that further classifies the 

ambiguous symbols based on the context information of the symbols. To further improve 

the classification accuracy, in the third stage, we develop a set of rules to classify the 

ambiguity or otherwise the syntax of the mathematical expressions will be violated. We 

evaluate the proposed method by using the Competition on Recognition of Online 

Handwritten Mathematical Expressions (CROHME) dataset. The proposed method results 

the state-of-the-art accuracy of 94.04%, which is 1.62% improvement compared with the 

previous single-stage approach.                             

 

Keywords: Competition on Recognition of Online Handwritten Mathematical Expressions 

(CROHME). Context-based Offline Handwritten Mathematical Recognition. 

Convolutional Neural Network (CNN). HAndwritten SYmbols (HASYv2). Machine 

Learning (ML). Multi-Column Deep Neural Network (MCDNN).  
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1. Introduction 

 Deep learning has achieved great success in many areas. From single perceptron 

to very deep neural network, the rapid technology advancement in computation power 

has driven the success of deep learning. Recently, many challenging tasks, from 

computer vision to neutral language processing, most state-of-the-art solutions are based 

on deep learning. The success of deep learning in these areas has demonstrated its 

powerful capability. Particularly, convolutional neural network has achieved great 

success in computer vision, including handwritten symbol recognition. For example, 

machine recognition of the MNIST dataset of handwritten digits has achieved great 

success with deep learning. The top 2 error rates of the MNIST dataset are only 0.21% 

and 0.23% [19, 6]. On the other hand, handwritten mathematical symbol recognition is a 

much harder task in machine intelligence. Not only there are many mathematical symbol 

classes, but also some symbols can be very similar in shapes and thus harder to classify. 

For instance, the symbols “l” and “1” are very hard to distinguish due to handwriting 

styles. Therefore, the general approach to the problem of handwritten mathematical 

symbol recognition is to design a better regularized classifier. However, isolated 

mathematical symbol classifiers all face the difficulties in distinguishing the ambiguous 

symbols, e.g., “s” and “S”, and this challenge may only be resolved by using context 

information – the mathematical expressions where the symbols are appeared [1, 8]. In 

order to utilize the classification results and further improve the classification accuracy, 

we must combine the isolated symbol recognition with context information. We refer this 

combined approach as the context-based classification. In this work, we focus on context-

based classification for offline handwritten mathematical symbol recognition using deep 

learning. 

We summarize our main contributions below. In the first stage of isolated 

mathematical symbol recognition, we extend and improve the current state-of-the-art 

approach by using ensemble of multiple deep neural network classifiers. Also, compared 

to previous approaches, our first stage classifier is constructed through a more generic 
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and deterministic method. In the second stage of context-based recognition, we propose a 

scheme to encode the context information and train a deep convolutional neural network 

to classify ambiguous symbols using the encoding scheme. In the third stage, we develop 

an algorithm to further improve the classification accuracy by enforcing a set of rules that 

mathematical symbols must be obeyed or otherwise the resulting mathematical 

expressions will be invalid.  

The rest of the paper is organized as follow. Section 2 surveys the related 

backgrounds in deep learning methodologies. Section 3 surveys the related works in 

handwritten mathematical symbol recognition. Section 4 presents the proposed deep 

neural network based multi-stage architecture for context-based classification. Section 5 

elaborates on the background of the dataset evaluated in this paper. Section 6 

demonstrates the results and comparisons with previous works. And finally, we conclude 

the paper in section 7. 

 

2. Related Works in Deep Learning and Multi-Column Deep Neural 

Network 

 In offline handwritten mathematical symbol recognition, assuming a “perfect” 

function exists such that it can classify all the handwritten mathematical symbol images 

correctly, then the goal is to approximate this function from an observable set of inputs 

and outputs. Under the universal approximation theorem [10], given the proper 

parameters and conditions, a neural network can approximate a wide range complicated 

function. Therefore, neural network can be an effective technique for classification 

problems. Furthermore, through the aid of backpropagation and gradient descent 

algorithms [15], many modern hardwares, such as GPU, can be used to train/identify the 

close-optimal parameters of a neural network very efficiently based on the available 

training samples. Many recent researches have shown that very deep neural network 

(DNN) is very effective on approximating certain complex functions. On the other hand, 

using very deep neural network on image classification will significantly increase the 



                                                                                                                                11 

 

complexity of the neural network, such as the number of learnable parameters, and thus, 

make it very hard to train. To address these challenges, convolutional neural network was 

proposed [11] and recent researches have demonstrated its effectiveness on improving 

neural network for handwritten symbol image classification [6, 9, 14, 19].  

 

Figure 1: A 2D convolution operation on 3x3 image with 2x2 kernel (stride 1) and the 

resulting 2x2 output image. The resulting top left pixel value 22 = 1x1 + 2x2 + 3*4 + 

1*5. 

 

Figure 2: A 2D max pooling operation on 4x4 image with 2x2 kernel (stride 2) and the 

resulting 2x2 output image. The resulting top left pixel value 6 = max(1, 2, 5, 6). 

Convolutional neural network extends the ordinary artificial neural network in 

three important properties: local receptive field, shared weights, and sub-sampling [11]. 

Local receptive field defines the kernel/filter size that will be convolutionally applied to 

the input image. The shared weights property identifies that the same kernel weights to be 



                                                                                                                                12 

 

used across the input image. Figure 1 illustrates the process of a 2x2 kernel applied to a 

3x3 input image. The resulting image is a 2x2 feature map. Notice that the 2x2 kernel 

weights are shared and applied across all 2x2 regions of the input image. The kernel 

weights will be updated through the back-propagated error signals so that the results of 

the convolution will extract the most relevant features for subsequent layers. A typical 

convolution neural network will consist of multiple convolutional layers. The lower 

convolutional layers help extract simple low-level features from the image, while the 

higher convolutional layers construct high-level features through these low-level features. 

Sub-sampling layers can be inserted between these convolutional layers to further reduce 

the dimensionality of the intermediate output feature maps, as well as help reduce the 

non-trivial variances from the inputs [14]. Examples of the most common sub-sampling 

layers include max pooling and average pooling. An example of a max pooling operation 

is shown in Figure 2. 

 

Figure 3: An example of a MCDNN architecture. Training data is expanded by different 

preprocessing (P0, ..., Pn). Results from trained DNNs are aggregated to produce the final 

result. 
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A frequently used technique to construct a better regularized DNN classifier is by 

assembling multiple DNN classifiers. A Multi-Column Deep Neural Network (MCDNN) 

architecture can be utilized to achieve this purpose for symbol recognition [6]. Figure 3 

illustrates an example of such MCDNN architecture. First, training data is expanded 

through different preprocessing techniques. Second, for each expanded training dataset, it 

can be used to train one or more DNN classifier(s). Finally, during the inferencing/test 

step, the input data is classified by all trained DNN classifiers, and their results will be 

aggregated to produce the final classification result. This MCDNN architecture tends to 

be a better regularized classifier than each individual DNN classifier because of the 

concepts similar to bagging [4]. From the view of the bagging technique, in the overall 

MCDNN network, training data is expanded through preprocessing. These expanded 

training data is then split to train multiple individual DNN networks. Experiments have 

shown that the final result from combining these individual DNNs can often achieve 

better accuracy [4, 6]. 

 

3. Background and Related Works in Handwritten Mathematical 

Symbol Recognition 

In online handwritten mathematical symbol recognition, the pen trace information 

of the handwritten symbol is provided. The overall shape of the symbol can be obtained 

by re-plotting and connecting the pen trace information to a digital image. In offline 

handwritten mathematical symbol recognition, there is no pen trace information. Only the 

final shape of the symbol image is provided. Thus, offline symbol recognition is 

traditionally considered as a harder problem.  

For online handwritten mathematical symbol recognition, there are many studies 

conducted and great results are obtained. The “Competition on Recognition of Online 

Handwritten Mathematical Expressions (CROHME)” currently is the most well-known 

dataset used in the researches [12, 13]. Davila et al. observed that the training and test 

data samples per symbol class is highly imbalanced. They used Perlin Noise (PN) to 
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expand and balance the training data by creating new distorted online training samples. 

They extracted a feature vector of 102 values that consists of global feature, crossing 

feature, 2D fuzzy histogram of points, and fuzzy histograms of orientations for each 

sample. Their best performance was obtained through the use of Support Vector Machine 

(SVM), and they achieved the accuracy of 85.89% in CROHME 2013 test dataset [8]. 

Álvaro et al. further enhanced this work by combining both online and offline features for 

recognizing online mathematical symbols. They generated a sequence of online and 

offline features for each symbol, and then used Bidirectional Long Short Term Memory 

(BLSTM) to classify the symbols. They evaluated multiple offline features and the best 

performance was obtained by combining the online 7-time based features and the offline 

features used by Pattern Recognition and Human Language Technologies (PRHLT) [1]. 

They achieved 87.1% and 91.24% accuracy in CROHME 2013 and 2014 test set 

respectively [1, 13]. Moreover, Dai et al. further extended this work through the 

ensemble of two classifiers, Deep Maxout Convolutional Network (DMCN) and BLSTM 

[7]. DMCN operated directly on the offline image generated from the online pen traces. 

BLSTM used a sequence of online and offline features. They used 6-time based online 

feature, and gradient direction offline features based on the 8-chain code direction. Their 

methods improved the accuracy of CROHME 2013 and 2014 test set to 87.35% and 

91.28% respectively [7]. Lastly, MyScript resulted the current state-of-the-art accuracy of 

92.81% for online mathematical symbol recognition in CROHME 2016 test set [12]. 

However, they used a large private dataset and their methodology remained unpublished 

[20]. 

On the other hand, there are fewer studies that focus only on offline handwritten 

mathematical symbol recognition. One reason is due to the lack of large offline 

mathematical symbol datasets. Therefore, most studies in offline mathematical symbol 

recognition conduct experiments through the usage of the CROHME dataset by first 

converting the online symbols to offline images. Ramadhan et al. was the first research 

that focused only on offline mathematical symbol recognition. They used a deep 

convolutional neural network, which had 2 5x5 convolutional layers with max pooling, 

and followed by a single MultiLayer Perceptron (MLP) layer with softmax [14]. The best 
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performance they achieved was 87.72% accuracy in CROHME 2014 test set. L. Dong 

and Liu further enhanced the work by expanding the training dataset using elastic 

distortion and random rotation. They also enhanced the deep learning model by using 4 

3x3 convolutional layers with max pooling along with other advanced regularization 

techniques, such as, dropout, batch normalization, and global average pooling [9]. Their 

model resulted the best performance of 91.82% and 92.42% in CROHME 2014 and 2016 

test set. This was the best accuracy so far for offline handwritten mathematical symbol 

recognition to the best of our knowledge. 

 

4. Proposed Architecture 

 

Figure 4: The overall architecture for multi-stage context-based recognition system. 

In offline handwritten mathematical symbol recognition, we assume that both the 

isolated symbol and its corresponding mathematical expression images are inputs to our 

recognition system. This overall architecture consists of three main stages. The first stage 

uses an enhanced version of the existing state-of-the-art CNN model for isolated symbol 

classification. This classifier serves as the base classifier of the whole architecture that 

recognizes the symbols only based on its isolated symbol information. If the predicted 

symbol class does not belong to one of the ambiguous groups, then its top 1 and top 3 

predictions will be used directly in the third stage for the final prediction. Otherwise, this 

symbol will be fed to the second stage classifier where its context information is also 

incorporated. The top 1 and top 3 predictions from the second stage are used in the third 

stage instead. We identify two ambiguous groups based on the classification error in the 
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first stage. In the second stage of context-based classification, we train and utilize a 

similar CNN model in the first stage to classify only the ambiguous symbols [17]. 

Finally, we collect all the top 1 and top 3 classification results from either the first or the 

second stage, and then we develop an algorithm to select the best prediction based on a 

set of rules. This algorithm is used as the last stage in the overall architecture. Figure 4 

illustrates the overall multi-stage context-based recognition architecture. 

4.1 1st Stage: Isolated Symbol Classification 

 In the first stage of isolated symbol classification, it consists of three steps: 

training data expansion and balancing, model training, and ensemble of models. In the 

first step of data expansion and balancing, we expand the training data using elastic 

distortion and random rotation [16], and balance the data so that each symbol class 

contains at least k number of samples, where k is a parameter of choice. In the second 

step of model training, we train a deep convolutional neural network using the expanded 

training samples and validate on the validation set. In the last step of ensemble of models, 

we create multiple models by repeating the first two steps, and finally, and the final 

classifier is the ensemble of these individual models. 

 

Figure 5: A “plus-minus” symbol after elastic distortion and rotation of 12 degree. 

During the first step of training data expansion, we expand the training dataset by 

using elastic distortion and random rotation [16]. The amount of augmented data to 

generate per symbol class is controlled by a parameter k. This parameter k will be used in 

the last step. If the total number of training samples for a symbol class is less than k 
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thousands (minimum threshold), we randomly sample a data from that symbol class, and 

then apply the image augmentation of elastic distortion and random rotation to create a 

new distorted sample for that symbol class until the total number of samples for that 

symbol class equals to this minimum threshold. Otherwise, there is no image 

augmentation for that symbol class. This is a very similar balancing method used in [8]. 

The parameters chosen for the elastic distortion are: 11x11 gaussian kernel with standard 

deviation (sigma) of 5 and elasticity coefficient (alpha) of 12. The elasticity coefficient is 

used to control the among of the distortion [16]. The random rotation is between -25 to 

25 degree. Figure 5 shows an example of image after elastic distortion and rotation. 

 

Figure 6: A convolutional block (CB) consists of 4 3-layer-blocks with convolutional 

layer and batch normalization (BN) and ReLU activation. (C3 = 3x3 Conv. C1 = 1x1 

Conv. B = BN. R = ReLU). 

 

Figure 7: An end-to-end deep learning model with 4 convolutional blocks (CB) and 

global average pooling (GAP). Each CB doubles number of feature maps (FM) from the 

previous layer. 

 In the model training step, we create a deep convolutional neural network as the 

classifier. The fundamental building block of our deep convolutional neural network is 

illustrated in Figure 6. It consists of 4 convolutional layers followed by a 2x2 max 

pooling. The first and second convolutional layers are the same as the third and fourth 
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convolutional layers. The first convolutional layer uses a 3x3 kernel with n numbers of 

feature maps (F.M.), where n is a parameter of choice. The second convolutional layer 

uses a 1x1 kernel with also n number of feature maps. The reason of the usage of the 1x1 

convolutional layer is to increase the depth of the network, and thus, it can provide more 

representational power to the network. The full convolutional neural network model is 

created by chaining 4 of these fundamental convolutional blocks (each with different 

choice of n), and then followed by a global average pooling (GAP) with softmax. Figure 

7 presents the architecture of the full deep learning model. Notice that the number of 

feature maps are doubled after each 2x2 max pooling. The first block uses n = 32, the 

second block uses n = 64, etc. The loss function is the standard categorical cross entropy 

loss. The full model is trained using gradient descent with Adam optimizer in Keras with 

Tensorflow backend. Model weights initialization and other training parameters (e.g., 

learning rate) are the default parameters given in Keras documentation [5]. 

 

Figure 8: The MCDNN architecture is used in the experiments. 
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In the last step of model assembling, we train multiple models by using different 

amount of training samples through different expansion parameters, k = 4, 5, 6, 7, and 8 

thousand respectively. Each time we train a new model, we regenerate the training 

samples directly from the base training set, that is, when we expand the samples with 

k=5, we do not use the previously expanded train samples of k=4 because this can create 

double distorted sample from an already distorted sample. Then, the final prediction is 

made by combining the outputs of these models. This ensemble method is similar to the 

concept of bagging [4], and the overall structure forms an MCDNN architecture [6]. 

Figure 8 shows the overview of this MCDNN. 

For each expanded training samples, we train an instance of the CNN model with 

20 epochs because after approximately 10 epochs, there is no further accuracy increase to 

the validation set. We then select two trained model instances that give the two highest 

accuracies for the validation set. Thus, we have a total of 10 trained models. The top 1 

and top 3 predictions are made by combining all 10 models using the novel Borda Count 

voting [3]. 

 

4.2 2nd Stage: Context-based Classification 

In the second stage of context-based classification, since we are only classifying 

ambiguous symbols, for each ambiguous symbol group, we train a deep CNN to classify 

that symbol group. Although there could be more ambiguous groups, we use only the two 

most significant ambiguous groups in our dataset during the experiments. Since we use 

two ambiguous groups, there are total of two CNNs in this stage. The first group is x-like 

group, containing “X”, “x”, and “\times”. The second group is 1-like group, containing 

“1”, “|”, “)”, and “/”. Even though the definition of the ambiguous group could be data 

dependent, this context-based classification approach can be generalized to any dataset 

once such ambiguity is identified. In our experiments, these two ambiguous groups are 

identified by analyzing the top errors from the first stage due to symbol ambiguity [9]. 
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Figure 9: A 256x64 3-channel symbol with context information. Each RGB channel 

(from top to bottom) is illustrated separately. When viewing it as a regular RGB image, 

since the last channel (blue) consists of the full expression, non-targeted symbols will 
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appear in blue color. The first and second channels (red and green) contain only the target 

symbol so its color appears in white. 

 

 We encode the context information in the following way. For each ambiguous 

offline handwritten mathematical symbol to classify, we generate a three-channel image 

from the dataset. Because most mathematical expressions have width much greater than 

its height, we choose an image of resolution 256x64. The last channel of the image 

consists of the grey scale handwritten mathematical expression where the symbols 

belong. The first and second channels are identical grey scale images that contain only 

the symbol itself as other symbols in the same expression are hidden. Figure 9 illustrates 

an example of a such image. The training/validation data is generated by the same 

manner. It selects a subset from the original training/validation data, where the subset 

only contains the ambiguous groups. 

 

Figure 10: Dilated CNN model for context-based ambiguity classification. Dilation rate 

(D) doubles from the previous layer to increase the field of view. 

 Figure 10 shows the CNN model used in this second stage of context-based 

classification. This CNN model is the same as the CNN used in the first stage except the 

dilation rate for the purpose of increasing the receptive field on the convolutional layers. 

Dilated convolution is a very effective way to increase the field of view of the 

convolutional filter without increasing the kernel size directly [2]. Increasing the field of 

view of the convolutional kernel can help the neural network capture features for a large 

area on the input images. By definition, the regular convolutional layer has default 

dilation rate of 1. This CNN model doubles the dilation rate in each subsequent 
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convolutional block. The model is also trained with the standard categorical cross entropy 

loss through gradient descent with Adam optimizer in Keras with Tensorflow backend. 

Weights initialization and other training parameters (e.g., learning rate) are the default 

parameters given in Keras documentation [5]. 

 

4.3 3rd Stage: Prediction Selection Algorithm 

Once the CNN models from stage 1 and stage 2 are finished training, during the 

test phase, the top 1 prediction from stage 1 will first be used. If the top 1 prediction for a 

symbol does not belong to any of the ambiguous symbol groups, then its top 1 and top 3 

predictions will be used directly by the third stage. Otherwise, the top 1 and top 3 

predictions from stage 2 will be used instead. The prediction selection algorithm in this 

stage will select the best prediction from the top 3 predictions. The inputs to the 

algorithm will be the following: top 3 predictions for the targeted symbol, top 1 

predictions for other symbols from the same mathematical expression of the targeted 

symbol, and their location information related to other symbols in the expression. The 

location information is encoded using the bounding box of the symbols. In the dataset of 

our evaluation, the bounding box information can be determined by finding the starting 

and ending pixel positions of columns (width) and rows (height) of the symbol through 

scanning the symbol-only channel of the expression image (e.g., the top image in Figure 

9). Then the bounding box coordinates are normalized between 0 and 1. Without loss of 

generality, we assume bounding box can be represented by four points (x0, y0, x1, y1), 

which corresponds to starting and ending positions in width and height in its 

mathematical expression image. The output of the algorithm is the final prediction for the 

targeted symbol. 

The algorithm works as follow. First, the left and right neighbors of the targeted 

symbol are identified through the following way. For all the symbols that overlap with 

the targeted symbol in y-direction, all symbols that have smaller x-coordinate midpoint 

values than the targeted symbol’s x-coordinate midpoint value are defined as the left 
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neighbors. Similarly, all symbols have larger x-coordinate midpoint values are defined as 

its right neighbors. Second, for the right neighbor that is immediately to the right of the 

targeted symbol, it is also identified as one of the following categories: superscript, 

subscript, and neither, based on their relative position. For it to be considered as a 

superscript or subscript, it must have smaller height compared to the height of the 

targeted symbol. Then, if both the length of the right symbol’s portion that is above the 

targeted symbol and the length of the targeted symbol’s portion that is below the right 

symbol are greater than some percentage (threshold) of the right symbol’s height, it is 

defined as the superscript. Similarly, if both the length of the targeted symbol’s portion 

that is above the right symbol and the length of the right symbol’s portion that is below 

the targeted symbol are greater than some percentage (threshold) of the right symbol’s 

height, it is defined as the subscript. The percentage of choice are 20% for both cases. We 

summarize the algorithms below. The detailed pseudo-code is also provided in Appendix 

A. 

Algorithm 1: Identification of Superscript, Subscript, or Neither. 

Input: Bounding boxes of two symbols in the same expression. 

Procedure: If the symbol in the right appears at the top or bottom to the symbol in the 

left, then the right symbol is determined as a superscript or subscript respectively. 

Otherwise, it is neither. 

 

Algorithm 2: Identification of the Left and Right Neighbors. 

Input: Bounding boxes of the target symbol and other symbols in the same expression. 

Procedure: For all other symbols that overlap vertically with the target symbol (so that 

we don’t consider symbols separated by fraction), symbols to the left or right of the target 

symbol are marked as left or right neighbors respectively. 
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Finally, once the above neighboring information is identified for the targeted 

symbol, the algorithm will select the final prediction based on whether the prediction will 

result a meaningless expression. For example, for a targeted symbol, if the highest 

confident prediction from its top 3 predictions is “(“, but no right neighbors have top 1 

prediction as “)”, then the algorithm will select the next highest confident prediction, 

because otherwise the resulting expression will most likely have an open parenthesis but 

no close parenthesis – a meaningless mathematical expression. Based on this idea, we 

have developed a list of rules for the algorithm to select the best prediction. Appendix B 

gives more details about each rule and the reasons why these rules are selected. Although 

there will be more general mathematical symbol rules that can be applied, we use only a 

few simple rules in our experiments to demonstrate the effectiveness of our overall 

architecture. We summarize the steps of the prediction selection algorithm below. The 

detailed pseudo-code is also listed in Appendix A. 

Algorithm 3: Prediction Selection. 

Input: Top 3 predictions of the targeted symbol. Top 1 prediction of other symbols in the 

same expression. 

Procedure: Based on the neighboring information from Algorithm 1 and 2, if the 

prediction with highest confidence in the top 3 list will result a meaningless mathematical 

expression, then select the prediction with second highest confidence. Otherwise, select 

the prediction with the highest confidence. 

 

5. Evaluation Dataset – CROHME 

There two categories in handwritten mathematical symbol recognition in the 

highest level: offline and online. For the offline case, the input symbol is presented as a 

grayscale image. For the online case, the input symbol is given as a list of digital pen 

trajectories over times. From online symbols, we can generate its offline image by 
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connecting its trajectories to an image. Therefore, offline symbol recognition technique 

can also apply to online symbol recognition, but not vice versa. 

 

Figure 11: An example of offline handwritten mathematical expression and an extracted 

isolated symbol from the CROHME dataset. 

 During the evaluation of the architecture, the main dataset used is the Competition 

on Recognition of Online Handwritten Mathematical Expressions (CROHME) dataset. 

The CROHME dataset consists of more than 10,000 online handwritten mathematical 

expressions [12, 13]. There are total 101 different symbol classes. This competition 

dataset consists of 5 different tasks: Task 1, formula recognition. Task 2a, isolated 

symbol recognition without invalid symbol (junk). Task 2b, isolated symbol recognition 

with invalid symbol. Task 3, structure recognition. And finally, task 4, matrix recognition 

[13]. In this research, we focus only on the offline handwritten mathematical symbol 

recognition, and we will use the dataset for task 2a to evaluate our methods. We extract 

only the valid isolated symbols from the CROHME expressions, and then convert them to 

the offline symbol images using the method proposed in [9], which the pen trace 

coordinates are normalized in a given pixel range, and then connecting the coordinates 

with lines using OpenCV open source library. Figure 11 illustrates an example of a 

handwritten mathematical expression and an extracted isolated symbol from that 

expression. 

 
Dataset # of Isolated 

Symbols 

# of Expressions 

Train CROHME 2013 train 85782 8834 

HASYv2 (part) 43648 - 

Validation CROHME 2013 test 6082 986 
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Test CROHME 2016 test 10019 670 

Table 1: Dataset Usage in Experiments 

 During training, we also mix the CROHME training set with a subset of the 

Handwritten Symbols (HASY) v2 dataset as proposed by [9]. The HASYv2 dataset 

consists of images of handwritten symbols from 369 different classes [18]. Among all 

369 symbol classes, 85 classes are the same in the CROHME datasets. It is worth to note 

that the isolated mathematical symbols in CROHME 2016 test set for task 2a are the 

same with the CROHME 2014 test set [12]. They are both extracted from the same set of 

the mathematical expressions in CROHME 2014 dataset [12]. The reason that CROHME 

2016 test set for task 2a contains a smaller number of isolated symbols (10019 vs.10061) 

than the CROHME 2013 is because CROHME 2013 contains wrongly extracted symbols. 

For example, an isolated “\ldots” symbol that contains 3 strokes is wrongly extracted as 3 

“\ldots” symbols with 1 stroke each. Therefore, in this research, we use our own program 

to extract the isolated symbols from the CROHME 2014 mathematical expressions. The 

number of isolated symbols created matches with the CROHME 2016 test set. Table 1 

summarizes the usage of the datasets in this research. The first and second stage of the 

proposed architecture are trained with CROHME 2013 training set plus part of the 

HASYv2 dataset (only the first stage training is mixed with HASYv2), and use 

CROHME 2013 test set as the validation set. Finally, our trained model is evaluated 

using the CROHME 2016 test set. We do not evaluate our model with the CROHME 

2014 test set due to the above reason. 

 

6. Evaluation and Results 

Train Data 
Expansion 
with k 

Best 2 
Validation 
Accuracy 

Test 
Accuracy 

K = 4 88.66% 91.86% 

88.49% 90.68% 

K = 5 88.92% 91.87% 

88.80% 91.47% 

K = 6 88.84% 91.65% 
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88.82% 91.65% 

K = 7 88.57% 91.37% 

88.54% 91.65% 

K = 8 88.56% 91.23% 

88.39% 91.65% 

Combined 
ALL 

89.82% 92.58% 

Table 2: Validation and Test Accuracy of First Stage MCDNN Model with Class 

Balancing 

 The results of the MCDNN model in the first stage has been summarized in Table 

2. The best two validation accuracies are presented for each iteration of training data 

expansion (k = 4, 5, 6, 7, and 8). We use the borda count voting method to combine all 

the trained models. The results indicate that the combined model gives a validation and 

test accuracy of 89.82% and 92.58% for the CROHME 2013 and 2016 test set. It is worth 

to note that the whole process of the end-to-end model training and the final model 

selection is solely based on only the training and validation dataset. The test dataset is 

only used to evaluate the accuracy of this MCDNN model. The result indicates that the 

overall MCDNN model can have significant improvements compared to individual 

CNNs. 

Classifier CROHME 
2013 
Test 

CROHME 
2016 
Test 

HASYv2 
10-fold 
(min / 
max / 
avg) 

Feature 
Used 

HMS-
VGGNet 
[9] 

88.46% 92.42% - / - / 
85.05% 

Offline 

First 
Stage 
MCDNN 

89.82% 92.58% 85.23% 
/ 
86.08% 
/ 
85.62% 

Offline 

Table 3: First Stage MCDNN Accuracy Comparison 

 Table 3 summarizes the comparison between the first stage MCDNN model and 

the current state-of-the-art HMS-VGGNet model [9]. Both the first stage MCDNN 

classifier and the baseline HMS-VGGNet model use only the isolated offline symbols 
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during training. The results indicate that the first stage MCDNN already outperforms the 

current state-of-the-art model by 1.36% on the CROHME 2013 test set and 0.16% on the 

CROHME 2016 test set. We have also evaluated the first stage MCDNN model on the 

HASYv2 dataset using the its predefined 10-fold cross validation [18]. The expansion 

parameters for this dataset are k = 600, 800, 1000, and 1200. Other training parameters 

remain the same. So total of 8 base CNN models are combined for each fold. Comparison 

on the min/max/average 10-fold accuracy is also reported. The detailed validation and 

test accuracies on each fold are reported under Appendix C. Because the work [9] has not 

reported the min and max accuracies, we skip these accuracies in the table. It is important 

to note that, by only utilizing the first stage MCDNN classifier, our model already 

achieves better accuracy in both the CROHME 2016 and HASYv2 dataset compared with 

previous work in [9]. 

Classifier CROHM
E 2013 
Test 

CROHM
E 2016 
Test 

Feature 
Used 

MyScript [12] - 92.81% Online 
+ 
Offline 

HMS-VGGNet 
[9] 

88.46% 92.42% Offline 

First Stage Only 89.82% 92.58% Offline 

First and 
Second Stages 
Only 

90.87% 93.62% Offline 
+ 
Context 

Context-based 
Multi-stage 
Architecture 

91.37% 94.04% Offline 
+ 
Context 

Table 4: Context-based Architecture Accuracy Comparison with Previous Works 

 Table 4 summarizes the results on accuracy for each stage in the overall 

architecture, as well as the comparison with previous works [9, 12]. The overall context-

based multi-stage architecture has achieved significant accuracy improvements over 

previous works. The accuracy improvement between stage one and stage two shows that 

the additional context information can be vital for classifying the handwritten 

mathematical symbols. Our multi-stage architecture is one possible way to utilize this 
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context information. The accuracy improvement between stage two and stage three also 

reflects that effective analysis of mathematical expression structure may still be necessary 

for classifiers to achieve higher accuracy. The major accuracy improvement (compared to 

previous works) is due to resolving many classification errors caused by shape ambiguity. 

Our overall context-based multi-stage architecture has achieved the new state-of-the-art 

accuracy of 91.37% and 94.04% on both the CROHME 2013 and 2016 test set, 

respectively.  

Additional Distorted 
Training Samples 
per Symbol Class 

Best 2 
Validation 
Accuracy 

Test 
Accuracy 

500 88.67% 90.49% 

88.39% 90.33% 

1000 89.20% 90.43% 

88.52% 90.97% 

4000 88.13% 91.00% 

88.08% 91.20% 

Combined ALL 89.00% 92.02% 

Table 5: Validation and Test Accuracy of MCDNN Model without Class Balancing 

We also evaluate the effect on accuracy improvement due to balancing the 

training dataset in the first stage. In this experiment, when we expand the training data, 

we create the same number of additional samples for each symbol class regardless their 

original counts. By creating the same number of additional samples, the bias distribution 

in the training dataset approximately remains the same. We train 6 different models with 

different number of additional samples per symbol class. Similar to the class balanced 

approach, we expand the training set 3 times (with 500, 1000, 4000 additional samples 

per class using elastic distortion and random rotation). And then, for each expanded 

training set, we train the same CNN model with the same parameters, and pick the two 

trained models that give the highest validation accuracies. Table 5 summarizes the results 

on the accuracy of dataset expansion without class balancing. Compared with the results 

in Table 2, the overall accuracies for both validation and test set are 0.82% and 0.56% 

lower. This experiment shows that balancing the training set can have positive impacts on 

the overall accuracy for the CROHME 2016 dataset. Nevertheless, this experiment also 
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indicates that the MCDNN model can have significant improvements over individual 

CNN models.  

 

7. Conclusion 

In this paper, we proposed a context-based multi-stage architecture for offline 

handwritten mathematical symbol recognition. In the absence of context information, the 

first stage of the architecture can still be used as a generalized method of training a 

MCDNN model for isolated symbol recognition. The experiments show that this 

MCDNN is a powerful tool to boost the accuracy performance of individual classifiers. 

This MCDNN model only uses the training and validation set during the process of 

model training and selection. This means the MCDNN is a generic offline isolated 

symbol classifier without the risk of overfitting on the test set. Often context information 

is available because handwritten mathematical symbols are normally written in a defined 

mathematical expression, then the overall architecture can utilize this context information 

to reduce the classification error due to shape ambiguity. Experiments show that this 

context-based multi-stage architecture outperforms all other previous approaches, and 

results the state-of-the-art accuracy on both the CROHME 2013 and 2016 dataset in 

offline handwritten mathematical symbol recognition. Future works include researching 

deep learning models/architectures to better utilize the context information as well as 

developing more rules for better enforcing the validity of the resulting mathematical 

expressions. 
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9. Appendices 

Appendix A – Algorithms Pseudo-Code 

This appendix summarizes the pseudo-code of the algorithms listed under Section 

4.3.  

Algorithm 1: Identification of Superscript, Subscript, or Neither 

Input: (1) left symbol’s bounding box (x0, y0, x1, y1). (2) right symbol’s bounding box 

(_x0, _y0, _x1, _y1). (3) Threshold percentage TH. 

Steps: 

85. if y1 – y0 <= _y1 - _y0, then  

return Neither 

2. _th = TH * (_y1 - _y0) 

3. if y0 – _y0 >= _th and y1 – _y1 >= _th, then  

return Superscript 

if _y1 – y1 >= _th and _y0 – y0 >= _th, then  

return Subscript 

4. return Neither 

 

Algorithm 2: Identification of the Left and Right Neighbors 

Input: (1) targeted symbol’s bounding box btarget=(x0, y0, x1, y1). (2) List of bounding boxes 

B (of other symbols in the same mathematical expression). (3) Threshold percentage TH.  

Steps: 

1. L = NotSet (left neighbor bounding box. If it is set, then it has four points. Lx1 represents 

the x1 coordinate). 

2. R = NotSet (right neighbor bounding box. If it is set, then it has four points. Rx0 

represents the x0 coordinate). 

3. R_type = NotSet (Right Neighbor type: superscript, subscript, and neither) 

4. _L = empty list (keep a list of left neighbors) 

5. _R = empty list (keep a list of right neighbors) 

6. c = (x0 + x1) / 2 
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7. for each box b = (_x0, _y0, _x1, _y1) in B, do 

        if there is no overlap between (y0, y1) and (_y0, _y1), then 

            continue 

        _c = (_x0 + _x1) / 2 

        if _c < c, then 

            add b to _L 

            if L is NotSet or _x0 > Lx1, then L = b 

        if _c > c, then 

            add b to _R 

            if R is NotSet or _x1 < Rx0, then R = b 

8. R_type = Neither 

9. if R is NotSet, then return L, R, R_type, _L, _R 

11. R_type = Algorithm1(btarget, R, TH) 

14. return L, R, R_type, _L, _R 

 

Algorithm 3: Prediction Selection 

Input: (1) target symbol’s top3 predictions p0, p1, p2 (assume confident level p0 > p1 > p2) 

and its bounding box btarget. (2) Other symbols’ (in the same expression) top1 prediction 

list P and corresponding bounding box list B. (We use the notation P[b] to denote the top 

1 prediction for each b ∈B. We also define P[NotSet] = NotSet) (3) Threshold percentage 

TH (in our case, we use 0.2). 

Steps: 

1. L, R, R_type, _L, _R = Algorithm2(btarget, B, TH) 

2. if p0 is “\times”, then 

if L is NotSet or R is NotSet, then 

return p1 

if P[L] ∈Operators* (e.g., “+”, “-”), then 

return p1 

if P[L] is “(” or “[”, then 

return p1 
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if P[R] is “)” or “]”, then 

return p1 

     if R_type is Superscript or Subscript, then 

return p1 

3. if p0 is “+”, then 

if L is NotSet or R is NotSet, then 

return p1 

if P[L] ∈Operators* (e.g., “sin”, “=”), then 

return p1 

if P[L] is “(” or “[”, then 

return p1 

if P[R] is “)” or “]” or “=”, then 

return p1 

     if R_type is Superscript or Subscript, then 

return p1 

4. if p0 is “(”, then 

for each b in _R, do 

if P[b] is “)”, then return p0 

return p1 

5. if p0 is “\comma”, then 

if Algorithm1(L, btarget, TH) returns Superscript, then 

              return p1 

        let (x0, y0, x1, y1)=btarget 

        if y0 is smallest among all other symbols, then 

              return p1 

6. if p0 is “g”, then 

if L is NotSet and R is NotSet, then 

              return p0 

   if (P[L] is “g” or NotSet) and (P[R] is “g” or NotSet), then 

∗Operators are listed under Appendix 
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return p1 

   sort _L and _R based on xc = (_x0 + _x1) / 2 for each box (_x0, _y0, _x1, _y1) in the 

lists: 

          tL = L 

          for each box b in descending sorted _L, do 

               if P[tL] is not “.”, then break 

               tL = b 

          tR = R 

          for each box b in ascending sorted _R, do 

                    if P[tR] is not “.”, then break 

                    tR = b 

          if P[tL] and P[tR] ∈ [numbers (0 to 9) or NotSet], then 

                    return p1 

7. return p0 
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Appendix B – Prediction Selection Rules 

This appendix summarizes the details of the rules used in the prediction selection 

algorithm under Section 4.3 and Appendix A. There are five rules listed:  

 

Rule #1: If the top 1 prediction is the “\times” operator, then change its top 1 prediction to 

the next highest probability in the top 3 predictions if any of the following conditions are 

true: 

- The left symbol immediately to the left of the targeted symbol has top 1 prediction 

belongs to one of the following operator: ‘+’, ‘-‘, ‘/’, ‘=’, ‘\\geq’, ‘\\gt’, ‘\\leq’, ‘\\lt’, ‘\\neq’, 

‘\\div’, ‘\\pm’, ‘\\in’, ‘!’, ‘\\rightarrow’, ‘\\sin’, ‘\\tan’, ‘\\cos’, ‘\\lim’, ‘\\log’, ‘\\int’. 

Because two operators cannot be next to each other in a mathematical expression, this must 

be either “x” or “X”.  

- The left symbol immediately to the left of the targeted symbol has top 1 prediction 

either “(” or “[”. It is not possible to have an open bracket/parenthesis followed by a 

“\\times” symbol. It must be either “x” or “X”.   

- The right symbol immediately to the right of the targeted symbol has top 1 

prediction either “)” or “]”, or it is defined as a superscript or subscript. It is not possible 

to have superscript or subscript next to the “\\times” symbol. It must be either “x” or “X”.  

- There is no left or right neighbor symbols. The “\\times” symbol must have 

operands next to it. 

 

Rule #2: If the top 1 prediction is the “+” operator, then change its top 1 prediction to the 

next highest probability in the top 3 predictions if any of the following conditions are true: 

- The left symbol immediately to the left of the targeted symbol has top 1 prediction in 

one of the following: “’[‘, ‘(‘, or one of the follow operators: ‘/’, ‘\sin’, ‘\cos’, ‘\tan’, ‘=’”. 

This is based on the similar reasons in above as “+” is a very similar operator to “\times”.   

- The right symbol immediately to the right of the targeted symbol has top 1 

prediction in one of the following: “)”, “]”, and “=”, or it is defined as a superscript or 

subscript. 

- There is no left or right neighbor symbols. The “+” symbol must have operands next 

to it.  
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Rule #3: If the top 1 prediction is “(” symbol, but there is no top 1 prediction from its right 

neighbors which are “)” symbol, then change this top 1 prediction to the next highest 

probability in the top 3 predictions.  

 

Rule #4: If the top 1 prediction is “comma” symbol, change its prediction to the “\prime” 

(derivative) symbol if any of the following conditions are true: 

- The targeted symbol is defined as a superscript to its immediately left symbol.  

- The targeted symbol is located at the very top of the mathematical expression.  

 

Rule #5: If the top 1 prediction is a “g” symbol, it could be ambiguous to “9”. Change its 

prediction to “9” if any of the following conditions are true: 

- If the immediately left and right symbols to the targeted symbol have top 1 

predictions as one of the numbers (0 to 9). Also, if the left or right symbol is predicted as 

“.”, then this neighbor symbol is skipped. This is most likely a number in the mathematical 

expression other than mixing number and the letter “g”.   

- If the immediately left and right symbols to the targeted symbol have top 1 

predictions as letter “g”, change its prediction to number “9”. This is because number “999” 

is much more frequent than “ggg” in mathematical expressions. 
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Appendix C – 10-fold Cross Validation Accuracies for the HASY v2 Dataset 

on the First Stage MCDNN Architecture. 

 This appendix summarizes the accuracies for the 10-fold cross validation for the 

HASY v2 dataset. k=600 means that for each symbol class that has less than 600 training 

samples, we expand the training samples for that symbol class to 600 samples using data 

augmentation described in Section 4.1. 

Fold 1 2 3 4 5 6 7 8 9 10 Avg 

k=600 85.04% 85.15% 84.86% 84.49% 84.62% 84.60% 84.67% 84.47% 84.58% 84.89% 84.74% 

k=800 85.37% 85.34% 84.79% 84.65% 84.49% 84.95% 84.60% 84.69% 84.60% 84.78% 84.83% 

k=1000 85.28% 85.54% 84.75% 84.72% 84.50% 84.59% 84.76% 84.37% 84.98% 84.85% 84.83% 

k=1200 85.05% 85.12% 84.76% 84.65% 84.34% 84.64% 84.33% 84.57% 84.61% 85.13% 84.72% 

Combined 86.03% 86.08% 85.56% 85.48% 85.34% 85.54% 85.66% 85.23% 85.51% 85.81% 85.62% 

Table 6: 10-Fold Cross Validation Accuracies for HASYv2 
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