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Abstract 

Although current state-of-the-art hate speech detection models achieve praiseworthy 

results, these models have shown themselves to be vulnerable to attack. Easy to execute lexical 

manipulations such as the removal of whitespace from a given text create significant issues for 

word-based hate speech detection models. In this paper, we reproduce the results of five cutting 

edge models as well as four significant evasion schemes from prior work. Only a limited amount 

of evasion schemes that also maintain readability exists, and this works to our advantage in the 

recreation of the original data. Furthermore, we demonstrate that each lexical attack or evasion 

scheme can be overcome with our new defense mechanisms with some reducing the 

effectiveness of the scheme to 1%. We also propose a new evasion scheme that outperforms the 

those in previous work along with a corresponding defense. Using our results as a foundation, we 

contend that hate speech detection models can be defended against lexically attacked data 

without the need for significant retraining.  
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I.Introduction 

Armed with the power of anonymity, many groups and individuals abuse social media 

tools in order to proliferate messages advocating for violence and suppression of another people. 

Such language and its spread across online social networks (OSNs) presents several issues to the 

managers of such networks, but there is an inherent issue with rooting out such speech. The 

definition and classification of hate speech has not reached a universal consensus.  Merriam-

Webster designates hate speech as language “expressing hatred of a particular group of people” 

while the European Union defined it as speech that “spread, incite, promote or justify racial 

hatred, xenophobia, antisemitism or other forms of hatred based on intolerance”. There is a 

notable distinction between the two definitions above; the latter places an emphasis on hateful 

“calls to action” while the former does not. This difference, the “call to action”, typically is the 

borderline between merely offensive speech and hateful speech in the eyes of OSN moderators 

and admins. Even with this boundary, the problem of classifying hate speech remains a 

troublesome one since declaring whether one has crossed the border is still murky. Regardless, 

the identification of hate speech a persistent problem for OSN moderators, and due to the sheer 

volume of generated content on said networks, manual moderation is infeasible. 

Several approaches towards detecting such language have been proposed and  recently 

developed in order to combat the rise of hate speech. With the spread of social networking 

websites, it has become easier than ever to broadcast one’s opinions on whichever topic one may 

choose. While the quick dissemination of information through such sites can elicit much good, in 

irresponsible or scheming hands, such power can bring about great division and anguish. One 

such example of the harm that can come about is the birth of echo chambers on the internet; 
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misguided or misinformed people can find themselves trapped in a vicious cycle of ingraining 

more and more radical and polarizing sentiments [1].  

Hate speech and its prevalence in online social networks have proven to be an ongoing 

problem on social media sites such as Facebook and Youtube. While manual user flaggings of 

comments or posts can help, the process can be abused to silence opinions one disagrees with. 

With the constant stream of content generation, simply employing an army of moderators will 

not solve the issue either. Thus, there is a need for an effective and automated system for 

identifying hate speech. 

Unfortunately, sources of hate can undertake actions to morph their text to evade 

detection thus complicating the problem. The inherent goal of morphing text is to introduce 

enough noise so that detection models cannot correctly classify phrases and passages as “hateful” 

while also maintaining the meaning and readability of the original message. Prior work has 

shown that simple modifications such as the removal of whitespace can decimate the accuracy of 

state-of-the-art models and that there is a need for some method of defense against these evasion 

schemes. 

We replicate the results of five cutting edge model architectures from four papers as well 

as four lexical attacks presented in a separate paper. In addition, we propose one new attack that 

we demonstrate to be more effective than all prior attacks. We show that we can construct a 

defense that significantly mitigates the effect of each evasion scheme despite alterations to the 

attack method’s parameters. This suggests that evasion schemes are inherently limited by the 

need for preserved readability, and one can leverage this property to build appropriate 

countermeasures. Our best defenses can all be categorized as a “pre-processing” stage defense; 

there is significant difficulty in training hate speech detection models on adversarial data. While 
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we did include one defense of the latter category, we demonstrate the stark performance 

difference in the two methods and propose that “pre-processing” stage defenses be built to 

address any evasion schemes encountered. 

The remainder of this paper is structured as follows: in Section II we cover related work 

and present our motivations. In Section III provide a problem statement and subsequently 

propose a solution in Section IV. Section V details and discusses our experimental settings and 

results. In Section VI, we conclude this paper and discuss avenues of future work. 

II.Related Work 

One method of identifying hate speech is to use a rule-based approach where certain 

negative words are always flagged to indicate a need for further inspection. Certain words are 

statistically identified to appear in manually identified hate speech more than others, and they are 

subsequently added to a ruleset to follow. Classification of hate speech is determined by the 

construction of a dictionary compiling all “hate” words [2] or through a binary classification of 

“benign” or “hate” types [3]. Unfortunately, such approaches are somewhat naive and ill-

equipped to handle slang and symbolism. It should be noted that some of these rule-based 

approaches are used in conjunction with other methods to form a more robust solution. 

The more generally accepted method of identifying hate speech is the use of machine 

learning and deep learning algorithms. This approach more readily handles slang and symbolism 

since the models will be trained upon a dataset that includes such words and phrases. Machine 

learning and deep learning models built for hate speech detection can fall into one of two 

categories, word-based and character-based models. Word-based models rely on extracting 

features from n-grams of different tokenized word combinations while character-based models 
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do so from n-grams of characters. Word-based models can also utilize rule-based techniques and 

factor in a word’s sentiment or connotation. 

Watanabe et al [4] used unigrams along with extracted patterns to develop dictionaries. 

They used these dictionaries  paired with sentiment, semantic and polarity features with a 

machine learning algorithm, “J48graft” to classify speech into binary and ternary classifications. 

The researchers made the distinction between hate speech and offensive speech; the ternary 

classifier used “hateful”, “offensive”, and “clean” labels. 

Rutwandika et al [5] experimented with supervised and unsupervised learning techniques 

and a variety of different features for hate speech detection. Unlike [4], the researchers focused 

on binary classification. Amongst the methods , naive bayes, logistic regression, svm, decision 

tree, and k-means, naive bayes achieved the highest f-1 score when using tf-idf features. [5] also 

noted the ineffectiveness of K-means clustering in this problem space; it ranked the worst in 

performance in nearly every scenario. 

Grondahl et al. [6] utilized new hate speech detection models from four papers 

[7][8][9][10] as the basis for testing new evasion schemes. While the five models used from 

[7][8][9][10] performed well on their own datasets, [6] noted that performance dropped once 

each model trained upon all datasets. Grondahl et al. noted that hate speech detection models fail 

to take into account the existence of adversarial examples. Current state of the art hate speech 

detection models only consider naive examples that originate from entities that do not attempt to 

avoid detection. However, the real world is filled with adversaries who wish to spread hate 

speech on a platform while going undetected. 
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III. Literature Survey 

A. Current Methods and Features 

i. Methods 

One method of identifying hate speech is to use a rule-based approach where certain 

negative words are always flagged to indicate a need for further inspection. Certain words are 

statistically identified to appear in manually identified hate speech more than others, and they are 

subsequently added to a ruleset to follow. Classification of hate speech is determined by the 

construction of a dictionary compiling all “hate” words or through a binary classification of 

“benign” or “hate” types. Unfortunately, such approaches are somewhat naive and ill-equipped 

to handle slang and symbolism. It should be noted that some of these rule-based approaches are 

used in conjunction with other methods to form a more robust solution. 

The more generally accepted method of identifying hate speech is the use of machine 

learning and deep learning algorithms. This approach more readily handles slang and symbolism 

since the models will be trained upon a dataset that includes such words and phrases. Machine 

learning and deep learning models built for hate speech detection can fall into one of two 

categories, word-based and character-based models. Word-based models rely on extracting 

features from n-grams of different tokenized word combinations while character-based models 

do so from n-grams of characters. Word-based models can also utilize rule-based techniques and 

factor in a word’s sentiment or connotation. 
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ii. Definition 

There is no agreed upon standard for hate speech detection, several papers contain 

significant departures from one another in terms of definitions, classes, features, and architecture 

used. This complicates the problem of hate speech detection while underlining how it remains an 

actively worked upon challenge.  

In the case of definitions, there is no consensus upon what hate speech actually is. The 

generic idea consists of language expressing a large degree of hatred of a people, but it becomes 

tricky differentiating it from offensive speech. As noted before, the European Union draws the 

line at the “call to action”, speech is not considered hateful until it advocates for the suppression 

or violence against others. For those who utilize this distinction for the categorization of speech, 

the problem turns into a ternary classification situation with benign, hate, and offensive speech 

labels [8]. Not everyone abides by this definition however, and in those instances, the line 

between hate speech and offensive speech blurs. In other cases, hate speech is divided not by the 

severity or by the existence of a “call to action” but rather the areas for attack such as racism and 

sexism [7]. Thus, different hate speech detection models do not necessarily compare directly to 

one another due to the variations in definitions and classes used. It follows that with different 

classes or labels used, these models use quite different datasets as well. With these variations, the 

direct evaluation and comparison of different hate speech detection models is difficult. 

iii. Features 

There is a common thread of features used in addressing hate speech detection. The most 

commonly used features consist of Term Frequency Inverse Document Frequency (TF-IDF), bag 

of words vectors, n-grams of characters or words, Global Vectors for Word Representation 
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(GloVe),. From each of these features, the statistical properties and makeup of hate speech can 

be determined. Nobata et al. [11] found that these statistical based features are more effective in 

classifying speech than semantic features such as polarity and sentiment. This may be due to how 

sentiment based features can be mixed within both benign and hate speech. Benign speech can 

contain words that register negatively in sentiment while hateful material can contain words that 

register positively. Contrastingly, statistical based features make class associations based on the 

appearance of a combination of words or characters within a test class. Despite this issue, 

sentiment based features are still commonly paired with statistical based features as seen in Gao 

and Huang [12]. 

a. TF-IDF 

TF-IDF or Term Frequency Inverse Document Frequency is a numerical statistic that 

reflects the importance of a word or term in a given document. This statistic is primarily based 

upon the frequency with which a term appears within a given document; if the term appears 

frequently, it presumably holds more importance than terms that do not. Notably, the second 

portion of the term, Inverse Document Frequency, reflects that the weight of the frequency of 

occurrence is inversely proportional to the amount of times the term appears in other documents. 

In short, a term may appear quite frequently while holding no real significance, and one such 

example is a common word “the”. This statistic has been used in many hate speech detection 

models, ones that are primarily lexical based [5][8][9]. 

b. Bag of Words 

Bag of Words is a representation of text using frequencies with an assortment of words. 

This is a surface level feature that reflects the statistical makeup of a given piece of text. It has 
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been used in several works, primarily lexical based models but also some neural network based 

models [5][9]. 

c. N-grams 

In a broad sense, n-grams refer to continuous sequences of n items from a document or 

given piece of data. Specifically for hate speech detection, these sequences consist of letters or 

words. N-grams are utilized by many different hate speech detection models, but in the case of 

neural networks, they are typically used to learn word embeddings [7][9][11]. Character based n-

grams are suited for handling typos due to majority of n-grams being preserved even with typos. 

On the other hand, word based n-grams are better at capturing implicit hate as well as less 

computationally intensive to generate. Word based n-grams look to be more popular overall than 

character based n-grams for hate speech detection models. 

d. GloVe or Word Embeddings 

This type of feature consists of representing terms or more usually words as vectors. 

These vectors are numerical representations of words or terms in a vector space and are used to 

denote whether certain words are closely associated with one another or not. Word embeddings 

are primarily used by neural network hate speech detection models since a neural network is 

usually required to create them in the first place. Several pre-trained embeddings are available 

and used by several papers for their neural networks [9][10][12]. Of note is that these 

embeddings rely heavily on proper tokenization, and any variations in spelling will cause a new 

vector to be created instead of modifying the original term’s vector. 
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 e. Semantic Features 

 While statistic based and surface level features have been used to great effect, models 

incorporating these as well as semantic features have shown performance improvements [12]. 

Semantic features typically revolve around the positive and negative connotations of words or 

polarity. Some of these rely upon a pre-built lexicon dictionary to judge whether a given word is 

good or bad. It follows that semantic features are useful in aiding hate speech detection because 

by nature hate speech should contain more words with negative polarities than benign text. Gao 

and Huang [12] showcase the usefulness of semantic features by making chiefly utilizing both 

the polarity and a lexicon dictionary in their hate speech detection model along with other 

statistical based features. Of note is that semantic features can overlap with one another while 

coming from different classes. As an example, hate speech can contain many words with a 

positive polarity while expressing a passionate fervor for the condemnation of another group of 

people. Meanwhile, benign text that consists of complaints for ordinary problems will contain 

many words with negative polarities. This “cross contamination” signifies that semantic features 

are not usually linearly separable by class; to our knowledge, no hate speech detection model 

uses only semantic features. Semantic features are quite useful in supplementing statistical 

feature based models but not that useful on their own. 

B. Neural Network Hate Speech Detection Models 

Neural Network based methods use neural networks to learn abstract feature 

representations of test hate speech data through several stacked layers. Input features consist of 

task-specific embeddings learned using FastText, CNNs and LSTMs and other forms of feature 

encoding. The goal of these neural network based approaches is to learn new abstract feature 
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representations from simple input text. Some of the popular methods used in this category 

consist of Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

Long Short-Term Memory (LSTM) networks. For the most part, this approach relies upon 

character or word n-gram one hot encodings. 

Wuclzyn, Thain, and Dixon [7] used a multilayer perceptron (MLP) models, a type of 

artificial neural network, in addition to logistic regression models to handle the binary 

classification problem.  They noted that the MLP models were better at detecting implicit hate 

speech as opposed to the logistic regression models. 

Badjatiya, Gupta, Gupta, and Varma [9] treated the hate speech detection issue as a 

binary classification problem and used a variety of deep neural networks to attempt to address it. 

Amongst the various features, tf-idf, bag of words vectors and embeddings learned, and models, 

FastText, CNNs, and LSTMs, LSTMs using random embeddings and Gradient Boosting 

Decision Trees (GDBT) performed the best. The authors reasoned that this may be due to the 

inherent nature of LSTMs.  LSTMs are a subset of RNNs and both retain memory of past events 

through use of an internal state. However, LSTMs do not suffer from an issue that RNNs do that 

prevents them from propagating information far into the future. The authors noted that the 

random embeddings version outperformed the pre-trained versions which may be due to the need 

for backpropagation for the associated GDBTs to learn embeddings for the task [9]. 

Contrastingly, Zhang, Robinson, and Tepper [10] used a combination approach of CNN 

and RNN combination architecture to classify hate speech. Specifically, a Gated Recurrent Unit 

(GRU), a type of RNN, was used in conjunction with a CNN. Recurrent Neural Networks suffer 

from the vanishing gradient problem which prevents the propagation of information into the 

distant future. Gated Recurrent Units were developed to address the issue and are often paired 
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with Convolutional Neural Networks, networks that apply convolution and pooling operations. 

In this case, the purpose is to have the CNNs extract co-occurring word n-grams as patterns 

while having the Gated Recurrent Units retain past pattern information to give context. The 

authors concluded that while both LSTM networks and the combination of CNNs and GRUs  can 

identify hate speech comparably well to one another, the training time for the combination is 

significantly less than that of the LSTMs [10]. 

C. Context Aware Hate Speech Detection Models 

 A new type of approach to hate speech detection involves the leveraging of context as a 

semantic feature. Hate groups often attempt to avoid detection by the use of words with hidden 

meaning. In addition, current events give background information that can turn seemingly 

innocuous text into hate speech once considering the context. There is relatively a small amount 

of work done in this niche area compared to the generic version of hate speech, but some papers 

have identified it grondahl et al. as an area for future work. 

 To our best knowledge, only one significant work has been published in the area of 

context aware hate speech detection. Gao and Huang [12] define context as any information not 

included within the original text itself. In addition to typical word and character n-grams, Gao 

and Huang utilized lexicon derived features such as polarity and emotion as well as context 

features consisting of usernames and article titles. The authors created a corpus of Fox News 

comments that were annotated according to strict guidelines; this included context features and is 

purported to be the first of its kind. 

 Gao and Huang [12] tested both logistic regression and bi-directional LSTM models 

while treating hate speech detection as a binary classification problem. They found that in both 

models’ cases, there was an improvement in F-1 score by using the additional context 
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information. The authors noted the pros of both model approaches. Logistic regression makes 

good use of character n-grams which helps with capitalizations and misspellings while LSTMs 

can capture the hidden and subtle meanings of implicit hate speech. To maximize usage of both 

models strengths, the authors combined the two into an ensemble model which yielded 

significant performance increases over the use of a single model. 

IV. Problem Statement 

Grondahl et al. [6] created six different evasion schemes to morph text; these schemes 

reliably diminished the effective of each detection model while preserving the meaning of the 

original text. The six attacks proposed fall into one of three categories: word modifications, 

whitespace manipulation, and benign word insertion. Word modifications are simple changes to 

the hate speech text, and they include simple typos or deterministic LEETSPEAK where letters 

are exchanged for numbers. Whitespace manipulation revolves around the removal or insertion 

of spaces within a given text to throw off word-based models. Finally, benign word insertion is 

the addition of normal or positive words not normally associated with hate speech, such as 

“love”, in order to fool the model. These attacks require essentially no training for the average 

person to use, and [6] found that the combination of whitespace removal and benign word 

insertion zeroed out the F1 scores for many of the state-of-the-art models. The following 

passages detail the attacks addressed in this paper along with our newly proposed attack. 

The typo attack used in [6] consists of a single swapping of letters within the middle of a 

word. This was done to more effectively trick spell checkers while also maintaining readability 

and the original meaning of the text. The preservation of readability and meaning must be taken 

into account for the creation of any lexical attack; fooling detection models can be done easily if 
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the new text loses all meaning. In this case, the evasion scheme relies on previous cognitive 

research that determined single character swaps have the least impact on retaining readability. 

Whitespace removal converts a given piece of text into one single chunk of characters. 

This attack greatly hinders the effectiveness of word-based models due to their reliance on 

proper tokenization of words. Word-based models rely on word-embeddings; if fed improperly 

tokenized data, these models fail to leverage these embeddings. In this case, such models treat 

text with removed whitespace as new words with no particular associations thereby allowing 

adversaries to evade detection. Conversely, character-based models better handle this issue; 

removing whitespace does cause issues in terms of the separation of words, but the majority n-

gram character combinations remain the same. 

Benign word insertion attacks, more specifically the word “love”, involve the random 

placement of a positive or neutral word into a text. [6] notes that this attack affected both word-

based and character-based models comparably. The effectiveness of this evasion schemes comes 

from an asymmetric problem regarding the insertion of material. Inserting hateful material into a 

benign or positive piece of text results in the creation of hateful material while the reverse, 

inserting positive material into hateful material, does not yield positive material. However, 

detection models do not take this into account and thus significantly decrease in performance 

when faced with the evasion scheme. 

Our newly proposed attack, character boundary appending (CBA), adds patterns of 

random letters to the edges of a word. This attack maintains a high amount of readability due to 

humans’ ability to effectively parse out original word as can be seen in the following example: 

“Jack and Jill went up the xxxhillxxx” 
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This attack can be extremely customized with a length of the patterns, pool of letters to draw 

from, and the balance of the attack. Balance in this case refers to the ratio of letters to append to 

the left of the word versus that of the right of the word. In the interest of maintaining as much 

readability as possible, patterns of multiple consonants are used to minimize the chance of a 

random word being created within the appendings. 

In summary, hate speech detection models are not well equipped to handle adversarial 

examples originating from entities that wish to evade detection. These attacks are effective and 

easy to execute. We aim to address this security gap of these models and propose several new 

methods to aid these detection systems against evasion schemes. 

V. Proposed Solution 

 The following sections cover the details of proposed defenses against the aforementioned 

attacks. We begin with a brief overview of the datasets and the models used. Then, we cover our 

proposed defense schemes and attack replication process. 

A. Models and Datasets 

 This section describes the models and datasets used in the replication the work conducted 

by Grondal et al. [6]. The models, named W, T1, T2, and T3, and datasets are sorted by which 

paper they originally came from. 

 Wulczyn et al. [7] utilized the W dataset comprising of Wikipedia edit comments; these 

comments were separated into personal attacks and ordinary speech. These researchers used both 

multilayer perceptron (MLP) models and logistic regression (LR) with n-gram features. The n-

gram features were of both character and word types; the models with the former outperformed 
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those of that latter which is why [6] chose to use both MLP and LR character models over their 

word-based counterparts. The MLP and LR models are the only character-based models used in 

both our experiments and those of [6]. 

 Davidson et al. developed the T1 dataset which labelled speech in one of three classes, 

hate speech, offensive, and ordinary. The text comprises of tweets gathered from hatebase.org 

and gathered using searches for common phrases associated with hate speech. [6] conflates the 

two labels, hate speech and offensive, when using the T1 dataset due to the lack of ternary 

classification capability of every detection model used. Our use of the T1 dataset was modified 

to follow that of [6], but for clarity’s sake we only will refer to the modified dataset as T1 and 

make no mention of the unmodified version. Davidson et al. [1] created a LR word-based model 

to perform ternary classification with great success. 

 Badjatiya et al. worked with the T2 dataset which also contained three class labels, but 

conversely to that of the T1 dataset, these labels consisted of  “sexism”, “racism”, and “neither”. 

Similar to the T1 dataset, we replicated the conflation of the sexism and racism labels done by 

Grondahl et al. [6]. The T2 dataset comprises of tweets as well, and the Badjatiya et al. classified 

them using a long short-term memory (LSTM) network. LSTM models are particularly useful in 

text classification due to their ability to retain information from the past better than recurrent 

neural networks (RNNs) do. RNNs tend to lose information that is too far away due to the 

vanishing gradient problem.  

 Zhang et al. utilized both the T1 as well as their own new dataset, T3. In addition, the 

researchers also combined the hate speech and offensive labels into one class. The T3 dataset 

contains about 2400 tweets with the hateful portion specifically attacking muslims and refugees. 

Zhang et al. created a model based on a mix of convolutional neural networks (CNNs) and 
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RNNs. CNNs are typically useful for extracting features while RNNs retain information from the 

past. The team used gated recurrent units (GRUs) which are a type of RNN that does not face the 

vanishing gradient issue that normal RNNs do. The CNN and GRU hybrid model approach 

achieves comparable results to a LSTM, but they only use up a fraction of the resources a LSTM 

requires. 

B. Proposed Defenses 

 We propose defenses that fall into one of two categories, pre-processing and retraining. 

Pre-processing defenses modify incoming data before they reach the model and attempt to 

recreate the original text. Contrastingly, retraining addresses text morphs through training the 

model on pre-attacked data. To keep things fair, we design our defenses to be as generic as 

possible to simultaneously address variations on the attack. 

C. Pre-processing Defenses 

 The first pre-processing defense we propose, word segmentation no redo (WSNR), 

addresses the whitespace removal attack through separating the one large chunk of words back 

into separate words. Word segmentation, the separation of words without whitespace, has been 

thoroughly studied in itself, and many python libraries that support this function are available. 

Note that the api used to carry out this defense significantly impacts results; given the nature of 

the data, word segmentation functions may yield unsatisfactory results if they cannot deal with 

typos. 

 Our second proposed defense, word balance no redo (WBNR), reverses the typo attack 

described beforehand. Since the typo attack creates an error in two letters of a word, typical spell 



24 
 

checkers do not properly rectify the mistake [6]. Since we know the effects of the typo attack, we 

determined that we only need to swap back the letters involved. The algorithm is defined as 

follows: 

1) Match the attacked word to entries inside a dictionary based on the same length of 

characters 

2) Of those matching words, select those with the same outside characters 

3) Of those matching words, select those with the same ascii values 

4) Of the remaining, select the word that differs with the attacked word by one swap of 

letters. If no word can be found, return failure status. 

Our proposed defense can handle any variations on the typo attack so long as they do not swap 

more than three letters or modify the outside letters. However, we do not believe that an attack 

that violates the above two principles would retain a high level of readability. 

 Thirdly, we present a defense, good grammar no redo, that defends against perhaps the 

most difficult attack to detect, benign word insertion. The defense first comprises of flagging any 

words that violate grammar rules. This is done to yield a list of words for polarity checking and 

is effective versus the benign word insertion attack due to the inherent properties of word 

insertion. Insertion of a word into a sentence, especially non-adjectives and non-adverbs, most 

likely cause a break in grammatical sense. In the event that the insertion of the word does not 

cause a violation of a grammatical rule, the meaning of the text will then change. Since we know 

that the benign word insertion attack will insert a word of neutral or positive connotation, we can 

address it by removing the words with such a polarity from the list of words compiled 

beforehand. 
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 Our fourth proposed defense, vowel search no redo (VSNR), addresses our newly created 

attack, character boundary appending. The tricky part in addressing this attack is derived from its 

large amount of customization; an attacker can easily switch between appending characters in a 

balanced manner to appending them only on one side while not losing readability and meaning. 

In order to address this attack, we factored in the limitations of text morphings, the need for 

preservation of readability and meaning. Given these limits, we know that characters appended 

to a word must not create a new word lest it violate the aforementioned clause. Apart from this, 

we also know that every word in the english language, barring some exceptions such as “tv” and 

“dr.”, has a vowel. Thus, we formed our VSNR defense to search for words that can be found in 

a dictionary based on the position of vowels within an attacked text. Since the characters 

appended should not form a word either within themselves or in conjunction with the original 

text, we do not have to worry about the presence of any newly created words. Thus, the longest 

word found with based on vowel positional searching should be the original word itself. 

D. Training Defenses 

 The first retraining defense we propose attempts to address the whitespace removal 

attack. Whitespace removal training (WSRT) involves training the models on text data with 

whitespaces already removed. Any new test data must also have any whitespaces removed from 

the text, even if the test data has not been attacked. Failure to do so will cause a performance 

decrease since the models are not trained on clean data and thus do not recognize whitespaces 

properly. This defense is only applicable to character-based models due to the issues with word 

tokenization for word-based models. An initial test backed these claims which is why we did not 

bother applying this defense to non-character-based models. 
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 Our second retraining defense, clean spelling training (CST), addresses the typo attack. 

This defense is more of a mix of pre-processing and training as opposed to just training. The 

defense involves flagging all words that are unable to be recognized, mapping them to one word 

with correct spelling, and compiling this all into a dictionary. Then, the model is trained upon the 

training data that has been preprocessed to switch any incorrectly spelled words to their one 

word based upon the dictionary built previously. Any test data will also have any words found in 

the dictionary replaced with the singular correct spelling. 

VI. Performance and Results 

 We performed four attacks on each of the model-dataset combinations; with seven total 

combinations, this yielded 28 attacks. In addition, we used two variations of our newly proposed 

attack along with two combination attacks to end with a total of 56 attacks. For each attack, we 

applied the appropriate defenses in separate runs.  

 Due to ethical concerns, [6] decided not to release any of the code associated with the 

generation of attacks. Thus, we recreated the attacks empirically and selected the settings that 

yielded the most similar results to those found in [6]. 

 Our experiments were conducted using the sci-kit learn python package and keras, a 

tensorflow api. We used 5-fold cross validation and applied attacks to the given datasets before 

they were fed into the pipeline to the models themselves. Any pre-processing defenses were run 

in the pre-processing stage, and similarly, any training defenses had the model-dataset 

combinations trained on the pre-attacked data before receiving any test data. As in [6], we used a 

macro averaged F-1 score as our performance metric of choice. The following sections detail the 

experimental results based on the attack being addressed. 
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A. Typos 

TABLE I. Macro Averaged F-1 Scores for Model, Dataset Combinations under Typo Attack and 

Applied Defenses 

Model, Dataset Orig. Typo WBNR vs Typo CST vs Typo 

LR Char, W 0.76 0.62 0.76 0.71 

LR Word, T1 0.49 0.29 0.48 0.45 

MLP Char, W 0.74 0.58 0.73 0.68 

CNN + GRU, T1 0.44 0.32 0.44 0.38 

CNN + GRU, T2 0.78 0.24 0.77 0.71 

CNN + GRU, T3 0.70 0.27 0.69 0.53 

LSTM 0.70 0.42 0.70 0.63 

 

While typo attacks can significantly impact the performance of hate speech detection 

models, apply either the pre-processing or training defense can significantly reduce the 

effectiveness of the attack. In this case, the WBNR defense outperforms the CST defense greatly. 

This can be attributed to how the WBNR defense recreates the original input data with great 

reliability while the CST defense may encounter new typos in the training data that it has not 

built an entry for. 
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Figure 1. Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under Typo 

Attack and Applied Defenses 

B. Whitespace Removal 

TABLE II. Macro Averaged F-1 Scores for Model, Dataset Combinations under Whitespace 

Removal Attack and Applied Defenses 

 

Model, Dataset Orig. WS Removal 

WSNR vs WS 

Removal 

WSRT vs WS 

Removal 

LR Char, W 0.76 0.58 0.62 0.64 

LR Word, T1 0.49 0.00 0.44 - 

MLP Char, W 0.74 0.56 0.66 0.65 

CNN + GRU, T1 0.44 0.00 0.40 - 

CNN + GRU, T2 0.78 0.00 0.68 - 
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CNN + GRU, T3 0.70 0.01 0.64 - 

LSTM 0.70 0.00 0.67 - 

 

 

Figure 2. Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under 

Whitespace Removal Attack and Applied Defenses 

Whitespace removal completely breaks all word-based models while also greatly 

diminishing the character-based models’ performance. [6] suggests that the character-based 

models lose access to all n-grams concerning whitespaces as the reason why character-based 

models suffer performance issues. Regarding the word-based models, correct tokenization is key 

for word-based models to properly utilize their pre-trained embeddings. The removal of 

whitespace zeroes out an essential part of these models; in the case of the CNN + GRU model, 

we observed the embedding matrix to only consist of 0’s. 
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 Unlike the case of typos, the training defense outperformed that of the pre-processing 

one. However, the performance increase was not substantial; the word segmentation defense 

yielded F-1 scores within 2% of the training defense’s. Note that we chose to only apply the 

WSRT defense to the character based models since word-based models will fail when using 

whitespace removed data. The WSNR defense performs admirably well and holds an advantage 

over the WSRT defense in that it is applicable to any model regardless of whether it is word-

based or character-based. We utilized several different word segmentation apis and found that 

results differed greatly due to natural typos encountered. The symspell api is able to address 

spelling errors and yielded the best results which is why we chose it for our final WSNR 

implementation. We conclude that our defenses against this attack can significantly reduce the its 

effectiveness although we do note that the pre-processing version could yield better results with a 

better word segmentation api. 

C. Benign Word Insertion 

TABLE III. Macro Averaged F-1 Scores for Model, Dataset Combinations under “Love” 

Insertion Attack and Applied Defenses 

Model, Dataset Orig. "Love" GGNR vs "Love" 

LR Char, W 0.76 0.55 0.74 

LR Word, T1 0.49 0.43 0.47 

MLP Char, W 0.74 0.51 0.72 

CNN + GRU, T1 0.44 0.02 0.40 

CNN + GRU, T2 0.78 0.51 0.73 

CNN + GRU, T3 0.70 0.17 0.68 

LSTM 0.70 0.14 0.68 
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Figure 3. Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under “Love” 

Insertion Attack and Applied Defenses 

The GGNR defense performed extremely well in addressing the benign word insertion 

attack. We chose to use “love” as our word of choice due to its nature as not being associated 

with “hateful” speech. We did not develop a training defense for this attack due to the 

customizability of the insertion attack. A model would have to be trained on every non-hate 

word, but doing so would cause all such words to lose proper meaning. Specifically training 

versus a “known” word such as “love” was deemed to be unfair as it would require us defenders 

to have too much knowledge of the attack and defeat our goal of making these defenses as 

generic as possible. 
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D. Character Boundary Appending 

TABLE IV. Macro Averaged F-1 Scores for Model, Dataset Combinations under Different CBA 

Attacks and Applied Defense 

Model, Dataset Orig. F1 CBA (I, 2) CBA (I, 2) CBA (B, All) 

VSNR vs CBA (B, 

ALL) 

LR Char, W 0.76 0.53 0.64 0.13 0.74 

LR Word, T1* 0.49 0.39 0.39 0.00 0.47 

MLP Char, W 0.74 0.58 0.68 0.15 0.71 

CNN + GRU, 

T1* 0.44 0.36 0.36 0.00 0.42 

CNN + GRU, 

T2 0.78 0.58 0.58 0.00 0.77 

CNN + GRU, 

T3 0.70 0.45 0.45 0.00 0.7 

LSTM 0.70 0.39 0.39 0.00 0.69 

 

 Our proposed character boundary appending attack outperformed all other attacks under 

the correct customization. The CBA affected both character-based and word-based models and 

markedly decreased the F-1 scores regardless of settings. The LSTM model took the largest hit in 

performance with a 30% drop in F-1 score. For word-based models, the CBA performed equally 

whether it had an imbalanced or balanced setting. We attribute this to the word-based models not 

being concerned so much by how the attacked words were structured but rather the existence of 

an unknown word. Contrastingly, character-based models performed worse with the balanced 

version of the CBA attack. We suggest this may result from a how the n-grams concerning the 

affected word’s boundaries are no longer usable in the case of a balanced attack. A balanced 

attack completely surrounds the word with characters while an imbalanced attack has the 
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potential to append only to one side. When applied to all words, the attack zeroes out all word-

based models and reduces the F-1 score of character models by more than 50%. This version of 

the attack floods the input text with too many characters for the character-based models to 

properly build classifiers. The random nature of the appendings force any word-based models to 

be unable to use any embeddings, because the likelihood of the same word being appended in the 

same manner is quite small. 

 

Figure 4. Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under 

Different CBA Attacks and Applied Defense 

 The defense we built for this CBA attack performed very well and nearly completely 

reversed the effects of the CBA attack. VSNR worked regardless of the settings for CBA, and we 

argue that this highlights the importance of generality in a defense. This defense reduced the 

effectiveness of CBA to a maximum of 3% in the case of the multilayer perceptron model. 

Similarly to the benign word insertion defense, we did not create a training defense for this 

attack due to its random nature.  
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E. Combined attacks 

TABLE V. Macro Averaged F-1 Scores for Model, Dataset Combinations under Combination 

Attacks 

Model, Dataset Orig. F1 

Whitespace Removal + 

Love 

Whitespace Removal + CBA (B, 

All) 

LR Char, W 0.76 0.51 0.04 

LR Word, T1* 0.49 0.00 0.00 

MLP Char, W 0.74 0.49 0.02 

CNN + GRU, T1* 0.44 0.00 0.00 

CNN + GRU, T2 0.78 0.00 0.00 

CNN + GRU, T3 0.7 0.01 0.00 

LSTM 0.7 0.00 0.00 

 

We combined two of our strongest attacks at our disposal, CBA and whitespace removal, 

and compare it to the strongest combined attack from [6]. The pairing of whitespace removal and 

our new attack nearly zeroes out the F-1 scores in both word-based and character-based models 

thereby outperforming the “love” insertion and whitespace removal combination attack. 

Use of a combination of attacks allows us to simultaneously affect two properties that hate 

speech detection models rely upon, word tokenization and statistical makeup. In the case of word 

tokenization, removing whitespaces completely breaks word-based models as seen in Table 2. 

The evasion scheme causes word-based models to lose access to previously generated word 

embeddings since each new affected text will be treated as an unknown word. CBA further 

exacerbates this issue for word-based models by appending random patterns to the outsides of 

words. Furthermore, CBA significantly alters the statistical makeup of affected text. By doing so, 
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the n-grams used by character-based models build false associations to a class thereby 

introducing larger errors. In addition, the removal of whitespaces is suggested by [6] to have 

further adverse effects on these n-grams. N-grams including whitespaces are used to signify the 

starts and ends of words, and the removal of whitespace significantly impedes a model’s ability 

to determine these boundaries that are large factor.  

 

Figure 5. Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under 

Combination Attack 

Classification of Evasion Schemes 

Although we may have an effective defense for each attack, properly applying them is 

another problem. Some defenses such as GGNR may cause a false positive if applied to neutral 

text which highlights the need for proper classification before applying the defense. Thus, there 
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is a need to classify which evasion scheme has been applied to a text before using a defense. To 

our knowledge, this problem has not been addressed in any other published work. 

TABLE IV. Macro Averaged Precision, Recall, F-1 Scores of Model, Feature Type 

Combinations For Lexical Evasion Scheme Classification 

Model, Dataset Macro Averaged Metric 

Precision Recall F-1 

Random Forest, Engineered 0.4012 0.3953 0.3982 

Random Forest, Char TF-IDF 0.9827 0.9826 0.9825 

AdaBoost, Engineered 0.4859 0.4038 0.4411 

AdaBoost, Char TF-IDF 
0.7092 0.7427 0.7014 

Naive Bayes, Char TF-IDF 0.9557 0.9543 0.9543 

SGD, Char TF-IDF 0.9799 0.9797 0.9797 

SVM, Char TF-IDF 0.9847 0.9846 0.9846 

KNN, Char TF-IDF 0.8705 0.8615 0.8637 

Multilayer Perceptron, Char TF-IDF 0.9825 0.9824 0.9824 

Logistic Regression, Engineered 0.4206 0.4239 0.4222 

Logistic Regression, Engineered RFE 0.4261 0.4352 0.4306 

Logistic Regression, Char TF-IDF 0.9845 0.9844 0.9844 

LGBM, Char TF-IDF 0.9893 0.9892 0.9891 

 

Table 4. displays our results from testing every model. We applied 5-fold cross validation 

when testing and used one of three sets of features for models to train upon. The three feature 
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sets consist of Char tf-idf, Engineered, and Engineered RFE. Engineered signifies all six features 

were used while Engineered RFE denotes that only character count, average word length, and 

number of spaces were used as features. 

Overall, our engineered features performed poorly with most achieving a F-1 score of 

0.42. This may be due to a lack of ability for our features to capture the statistical makeup of the 

text itself. Meanwhile, the models that used Char tf-idf as a feature yielded extremely strong 

results with logistic regression managing to reach a 0.98 F-1 score. We attribute this high 

performance to the ability of Char tf-idf to capture the important character n-grams that are 

frequently modified in significant ways when an evasion scheme is applied. 

Our best performing models consist of Random Forest, Support Vector Machine, and 

Light Gradient Boosting Machines (LGBM), a new variant of gradient boosted decision trees. 

These models achieved strong results which we consider to be a result of these models’ ability to 

leverage changes in statistical information and makeup when comparing different attacks. 

VII. Conclusion and Future Work 

 Our results strongly suggest that evasion schemes employed on lexical data can be 

reliably defeated and effects minimized. Of each attack that we addressed, none were resilient 

enough to break a generically crafted defense. In crafting each defense, we leveraged the 

important requirements of any evasion scheme, the need for preserving meaning and readability, 

to defeat them. We strongly push for any future defenses to factor in this property of evasion 

schemes.  

Furthermore, we demonstrated the viability of using pre-processing defenses to reverse 

the effects of attacks. While training defenses were also effective at mitigating attacks, they only 
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outperformed their pre-processing counter in one instance in an insubstantial manner. Pre-

processing defenses require minimal computational power and time in comparison to training. 

However, training is simpler to implement since it only involves training on pre-attacked data 

while pre-processing defenses required a level of ingenuity to create. 

 The hardest attacks to defend against were those that affected the tokenization of words. 

Both the CBA and the whitespace removal attacks fall into this category; they yielded some of 

the strongest results. This suggests that tokenization is an important factor in the proper 

operation of hate speech detection models regardless of whether the model is word or character-

based.  

 Our newly proposed attack, CBA, outperformed every attack created by [6]. We attribute 

this to how attack can affect properties that both character-based and word-based models utilize, 

statistical makeup and tokenization. Due to the importance of both these properties, we suggest 

that future defenses aim to preserve these two properties . 

 We suggest several directions for future work. One direction involves the classification of 

evasion schemes. In both this work and in [6], the issue of classifying attacked data was never 

addressed. Although we may have an effective defense for each attack, properly applying them is 

another problem. Some defenses such as GGNR may cause a false positive if applied to neutral 

text which highlights the need for proper classification before applying the defense. In other 

cases, there will be a waste of computational resources if defenses are applied on benign data. 

 Another direction for future work is the development of more robust or specialized 

software for the defenses that required apis. In the case of GGNR and WSNR, both relied on 

external apis that would solve a subproblem for them. Through our experiments, we found that 

we replacing the APIs with either more specialized functions or robustness in general yielded 
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significant performance boosts to our defenses. The detection of words violating grammar rules 

and word segmentation are significant problems in themselves and thus warrant further research. 
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