
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-22-2019

TSAR : A System for Defending Hate Speech
Detection Models Against Adversaries
Brian Tuan Khieu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the Other Computer Sciences
Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Khieu, Brian Tuan, "TSAR : A System for Defending Hate Speech Detection Models Against Adversaries" (2019). Master's Projects.
740.
DOI: https://doi.org/10.31979/etd.6tsk-redu
https://scholarworks.sjsu.edu/etd_projects/740

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/215423288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/740?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

TSAR : A System for Defending Hate Speech Detection Models Against Adversaries

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Brian Tuan Khieu

May 2019

2

©2019

Brian Tuan Khieu

ALL RIGHTS RESERVED

3

TABLE OF CONTENTS

Abstract 5

I.Introduction 8

II.Related Work 10

III. Literature Survey 12

CURRENT METHODS AND FEATURES 12

Methods 12

Definition 13

Features 13

TF-IDF 14

Bag of Words 14

N-grams 15

GloVe or Word Embeddings 15

Semantic Features 16

IV. Problem Statement Error! Bookmark not defined.

V. Proposed Solution 21

A. Models and Datasets 21

B. Proposed Defenses 23

C. Pre-processing Defenses 23

D. Training Defenses 25

VI. Performance and Results 26

A. Typos 27

B. Whitespace Removal 28

C. Benign Word Insertion 30

D. Character Boundary Appending 32

E. Combined attacks 34

Classification of Evasion Schemes 35

VII. Conclusion and Future Work 37

4

LIST OF FIGURES

Figure 1: Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under Typo

Attack and Applied Defenses

Figure 2: Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under

Whitespace Removal Attack and Applied Defenses

Figure 3: Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under “Love”

Insertion Attack and Applied Defenses

Figure 4: Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under

Different CBA Attacks and Applied Defense

Figure 5: Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under

Combination Attack

5

LIST OF TABLES

Table 1: Macro Averaged F-1 Scores for Model, Dataset Combinations under Typo Attack and

Applied Defenses

Table 2: Macro Averaged F-1 Scores for Model, Dataset Combinations under Whitespace

Removal Attack and Applied Defenses

Table 3: Macro Averaged F-1 Scores for Model, Dataset Combinations under “Love” Insertion

Attack and Applied Defenses

Table 4: Macro Averaged F-1 Scores for Model, Dataset Combinations under Different CBA

Attacks and Applied Defense

Table 5: Macro Averaged F-1 Scores for Model, Dataset Combinations under Combination

Attacks

Table 6: Macro Averaged Precision, Recall, F-1 Scores of Model, Feature Type Combinations

For Lexical Evasion Scheme Classification

6

Abstract

Although current state-of-the-art hate speech detection models achieve praiseworthy

results, these models have shown themselves to be vulnerable to attack. Easy to execute lexical

manipulations such as the removal of whitespace from a given text create significant issues for

word-based hate speech detection models. In this paper, we reproduce the results of five cutting

edge models as well as four significant evasion schemes from prior work. Only a limited amount

of evasion schemes that also maintain readability exists, and this works to our advantage in the

recreation of the original data. Furthermore, we demonstrate that each lexical attack or evasion

scheme can be overcome with our new defense mechanisms with some reducing the

effectiveness of the scheme to 1%. We also propose a new evasion scheme that outperforms the

those in previous work along with a corresponding defense. Using our results as a foundation, we

contend that hate speech detection models can be defended against lexically attacked data

without the need for significant retraining.

7

ACKNOWLEDGEMENTS

I would like to sincerely thank Professor Melody Moh, my project advisor, for the enormous

amount of help and guidance she bestowed upon me. Without her help or her belief in my

abilities, this project never would have come to fruition. I would like to thank Prof. Robert Chun,

my committee member, for his support and advice. I would also like to thank Professor Teng

Moh for his many helpful suggestions and feedback regarding the project. His advice steered this

project towards the correct direction and helped me catch some issues I may have overlooked

otherwise.

I would like to thank all of the friends I have made at San José State University for the help and

advice they gave me on using machine learning tools.

And finally, I want to thank my family for their continuous support and encouragement

throughout my studies.

8

I.Introduction

Armed with the power of anonymity, many groups and individuals abuse social media

tools in order to proliferate messages advocating for violence and suppression of another people.

Such language and its spread across online social networks (OSNs) presents several issues to the

managers of such networks, but there is an inherent issue with rooting out such speech. The

definition and classification of hate speech has not reached a universal consensus. Merriam-

Webster designates hate speech as language “expressing hatred of a particular group of people”

while the European Union defined it as speech that “spread, incite, promote or justify racial

hatred, xenophobia, antisemitism or other forms of hatred based on intolerance”. There is a

notable distinction between the two definitions above; the latter places an emphasis on hateful

“calls to action” while the former does not. This difference, the “call to action”, typically is the

borderline between merely offensive speech and hateful speech in the eyes of OSN moderators

and admins. Even with this boundary, the problem of classifying hate speech remains a

troublesome one since declaring whether one has crossed the border is still murky. Regardless,

the identification of hate speech a persistent problem for OSN moderators, and due to the sheer

volume of generated content on said networks, manual moderation is infeasible.

Several approaches towards detecting such language have been proposed and recently

developed in order to combat the rise of hate speech. With the spread of social networking

websites, it has become easier than ever to broadcast one’s opinions on whichever topic one may

choose. While the quick dissemination of information through such sites can elicit much good, in

irresponsible or scheming hands, such power can bring about great division and anguish. One

such example of the harm that can come about is the birth of echo chambers on the internet;

9

misguided or misinformed people can find themselves trapped in a vicious cycle of ingraining

more and more radical and polarizing sentiments [1].

Hate speech and its prevalence in online social networks have proven to be an ongoing

problem on social media sites such as Facebook and Youtube. While manual user flaggings of

comments or posts can help, the process can be abused to silence opinions one disagrees with.

With the constant stream of content generation, simply employing an army of moderators will

not solve the issue either. Thus, there is a need for an effective and automated system for

identifying hate speech.

Unfortunately, sources of hate can undertake actions to morph their text to evade

detection thus complicating the problem. The inherent goal of morphing text is to introduce

enough noise so that detection models cannot correctly classify phrases and passages as “hateful”

while also maintaining the meaning and readability of the original message. Prior work has

shown that simple modifications such as the removal of whitespace can decimate the accuracy of

state-of-the-art models and that there is a need for some method of defense against these evasion

schemes.

We replicate the results of five cutting edge model architectures from four papers as well

as four lexical attacks presented in a separate paper. In addition, we propose one new attack that

we demonstrate to be more effective than all prior attacks. We show that we can construct a

defense that significantly mitigates the effect of each evasion scheme despite alterations to the

attack method’s parameters. This suggests that evasion schemes are inherently limited by the

need for preserved readability, and one can leverage this property to build appropriate

countermeasures. Our best defenses can all be categorized as a “pre-processing” stage defense;

there is significant difficulty in training hate speech detection models on adversarial data. While

10

we did include one defense of the latter category, we demonstrate the stark performance

difference in the two methods and propose that “pre-processing” stage defenses be built to

address any evasion schemes encountered.

The remainder of this paper is structured as follows: in Section II we cover related work

and present our motivations. In Section III provide a problem statement and subsequently

propose a solution in Section IV. Section V details and discusses our experimental settings and

results. In Section VI, we conclude this paper and discuss avenues of future work.

II.Related Work

One method of identifying hate speech is to use a rule-based approach where certain

negative words are always flagged to indicate a need for further inspection. Certain words are

statistically identified to appear in manually identified hate speech more than others, and they are

subsequently added to a ruleset to follow. Classification of hate speech is determined by the

construction of a dictionary compiling all “hate” words [2] or through a binary classification of

“benign” or “hate” types [3]. Unfortunately, such approaches are somewhat naive and ill-

equipped to handle slang and symbolism. It should be noted that some of these rule-based

approaches are used in conjunction with other methods to form a more robust solution.

The more generally accepted method of identifying hate speech is the use of machine

learning and deep learning algorithms. This approach more readily handles slang and symbolism

since the models will be trained upon a dataset that includes such words and phrases. Machine

learning and deep learning models built for hate speech detection can fall into one of two

categories, word-based and character-based models. Word-based models rely on extracting

features from n-grams of different tokenized word combinations while character-based models

11

do so from n-grams of characters. Word-based models can also utilize rule-based techniques and

factor in a word’s sentiment or connotation.

Watanabe et al [4] used unigrams along with extracted patterns to develop dictionaries.

They used these dictionaries paired with sentiment, semantic and polarity features with a

machine learning algorithm, “J48graft” to classify speech into binary and ternary classifications.

The researchers made the distinction between hate speech and offensive speech; the ternary

classifier used “hateful”, “offensive”, and “clean” labels.

Rutwandika et al [5] experimented with supervised and unsupervised learning techniques

and a variety of different features for hate speech detection. Unlike [4], the researchers focused

on binary classification. Amongst the methods , naive bayes, logistic regression, svm, decision

tree, and k-means, naive bayes achieved the highest f-1 score when using tf-idf features. [5] also

noted the ineffectiveness of K-means clustering in this problem space; it ranked the worst in

performance in nearly every scenario.

Grondahl et al. [6] utilized new hate speech detection models from four papers

[7][8][9][10] as the basis for testing new evasion schemes. While the five models used from

[7][8][9][10] performed well on their own datasets, [6] noted that performance dropped once

each model trained upon all datasets. Grondahl et al. noted that hate speech detection models fail

to take into account the existence of adversarial examples. Current state of the art hate speech

detection models only consider naive examples that originate from entities that do not attempt to

avoid detection. However, the real world is filled with adversaries who wish to spread hate

speech on a platform while going undetected.

12

III. Literature Survey

A. Current Methods and Features

i. Methods

One method of identifying hate speech is to use a rule-based approach where certain

negative words are always flagged to indicate a need for further inspection. Certain words are

statistically identified to appear in manually identified hate speech more than others, and they are

subsequently added to a ruleset to follow. Classification of hate speech is determined by the

construction of a dictionary compiling all “hate” words or through a binary classification of

“benign” or “hate” types. Unfortunately, such approaches are somewhat naive and ill-equipped

to handle slang and symbolism. It should be noted that some of these rule-based approaches are

used in conjunction with other methods to form a more robust solution.

The more generally accepted method of identifying hate speech is the use of machine

learning and deep learning algorithms. This approach more readily handles slang and symbolism

since the models will be trained upon a dataset that includes such words and phrases. Machine

learning and deep learning models built for hate speech detection can fall into one of two

categories, word-based and character-based models. Word-based models rely on extracting

features from n-grams of different tokenized word combinations while character-based models

do so from n-grams of characters. Word-based models can also utilize rule-based techniques and

factor in a word’s sentiment or connotation.

13

ii. Definition

There is no agreed upon standard for hate speech detection, several papers contain

significant departures from one another in terms of definitions, classes, features, and architecture

used. This complicates the problem of hate speech detection while underlining how it remains an

actively worked upon challenge.

In the case of definitions, there is no consensus upon what hate speech actually is. The

generic idea consists of language expressing a large degree of hatred of a people, but it becomes

tricky differentiating it from offensive speech. As noted before, the European Union draws the

line at the “call to action”, speech is not considered hateful until it advocates for the suppression

or violence against others. For those who utilize this distinction for the categorization of speech,

the problem turns into a ternary classification situation with benign, hate, and offensive speech

labels [8]. Not everyone abides by this definition however, and in those instances, the line

between hate speech and offensive speech blurs. In other cases, hate speech is divided not by the

severity or by the existence of a “call to action” but rather the areas for attack such as racism and

sexism [7]. Thus, different hate speech detection models do not necessarily compare directly to

one another due to the variations in definitions and classes used. It follows that with different

classes or labels used, these models use quite different datasets as well. With these variations, the

direct evaluation and comparison of different hate speech detection models is difficult.

iii. Features

There is a common thread of features used in addressing hate speech detection. The most

commonly used features consist of Term Frequency Inverse Document Frequency (TF-IDF), bag

of words vectors, n-grams of characters or words, Global Vectors for Word Representation

14

(GloVe),. From each of these features, the statistical properties and makeup of hate speech can

be determined. Nobata et al. [11] found that these statistical based features are more effective in

classifying speech than semantic features such as polarity and sentiment. This may be due to how

sentiment based features can be mixed within both benign and hate speech. Benign speech can

contain words that register negatively in sentiment while hateful material can contain words that

register positively. Contrastingly, statistical based features make class associations based on the

appearance of a combination of words or characters within a test class. Despite this issue,

sentiment based features are still commonly paired with statistical based features as seen in Gao

and Huang [12].

a. TF-IDF

TF-IDF or Term Frequency Inverse Document Frequency is a numerical statistic that

reflects the importance of a word or term in a given document. This statistic is primarily based

upon the frequency with which a term appears within a given document; if the term appears

frequently, it presumably holds more importance than terms that do not. Notably, the second

portion of the term, Inverse Document Frequency, reflects that the weight of the frequency of

occurrence is inversely proportional to the amount of times the term appears in other documents.

In short, a term may appear quite frequently while holding no real significance, and one such

example is a common word “the”. This statistic has been used in many hate speech detection

models, ones that are primarily lexical based [5][8][9].

b. Bag of Words

Bag of Words is a representation of text using frequencies with an assortment of words.

This is a surface level feature that reflects the statistical makeup of a given piece of text. It has

15

been used in several works, primarily lexical based models but also some neural network based

models [5][9].

c. N-grams

In a broad sense, n-grams refer to continuous sequences of n items from a document or

given piece of data. Specifically for hate speech detection, these sequences consist of letters or

words. N-grams are utilized by many different hate speech detection models, but in the case of

neural networks, they are typically used to learn word embeddings [7][9][11]. Character based n-

grams are suited for handling typos due to majority of n-grams being preserved even with typos.

On the other hand, word based n-grams are better at capturing implicit hate as well as less

computationally intensive to generate. Word based n-grams look to be more popular overall than

character based n-grams for hate speech detection models.

d. GloVe or Word Embeddings

This type of feature consists of representing terms or more usually words as vectors.

These vectors are numerical representations of words or terms in a vector space and are used to

denote whether certain words are closely associated with one another or not. Word embeddings

are primarily used by neural network hate speech detection models since a neural network is

usually required to create them in the first place. Several pre-trained embeddings are available

and used by several papers for their neural networks [9][10][12]. Of note is that these

embeddings rely heavily on proper tokenization, and any variations in spelling will cause a new

vector to be created instead of modifying the original term’s vector.

16

 e. Semantic Features

 While statistic based and surface level features have been used to great effect, models

incorporating these as well as semantic features have shown performance improvements [12].

Semantic features typically revolve around the positive and negative connotations of words or

polarity. Some of these rely upon a pre-built lexicon dictionary to judge whether a given word is

good or bad. It follows that semantic features are useful in aiding hate speech detection because

by nature hate speech should contain more words with negative polarities than benign text. Gao

and Huang [12] showcase the usefulness of semantic features by making chiefly utilizing both

the polarity and a lexicon dictionary in their hate speech detection model along with other

statistical based features. Of note is that semantic features can overlap with one another while

coming from different classes. As an example, hate speech can contain many words with a

positive polarity while expressing a passionate fervor for the condemnation of another group of

people. Meanwhile, benign text that consists of complaints for ordinary problems will contain

many words with negative polarities. This “cross contamination” signifies that semantic features

are not usually linearly separable by class; to our knowledge, no hate speech detection model

uses only semantic features. Semantic features are quite useful in supplementing statistical

feature based models but not that useful on their own.

B. Neural Network Hate Speech Detection Models

Neural Network based methods use neural networks to learn abstract feature

representations of test hate speech data through several stacked layers. Input features consist of

task-specific embeddings learned using FastText, CNNs and LSTMs and other forms of feature

encoding. The goal of these neural network based approaches is to learn new abstract feature

17

representations from simple input text. Some of the popular methods used in this category

consist of Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and

Long Short-Term Memory (LSTM) networks. For the most part, this approach relies upon

character or word n-gram one hot encodings.

Wuclzyn, Thain, and Dixon [7] used a multilayer perceptron (MLP) models, a type of

artificial neural network, in addition to logistic regression models to handle the binary

classification problem. They noted that the MLP models were better at detecting implicit hate

speech as opposed to the logistic regression models.

Badjatiya, Gupta, Gupta, and Varma [9] treated the hate speech detection issue as a

binary classification problem and used a variety of deep neural networks to attempt to address it.

Amongst the various features, tf-idf, bag of words vectors and embeddings learned, and models,

FastText, CNNs, and LSTMs, LSTMs using random embeddings and Gradient Boosting

Decision Trees (GDBT) performed the best. The authors reasoned that this may be due to the

inherent nature of LSTMs. LSTMs are a subset of RNNs and both retain memory of past events

through use of an internal state. However, LSTMs do not suffer from an issue that RNNs do that

prevents them from propagating information far into the future. The authors noted that the

random embeddings version outperformed the pre-trained versions which may be due to the need

for backpropagation for the associated GDBTs to learn embeddings for the task [9].

Contrastingly, Zhang, Robinson, and Tepper [10] used a combination approach of CNN

and RNN combination architecture to classify hate speech. Specifically, a Gated Recurrent Unit

(GRU), a type of RNN, was used in conjunction with a CNN. Recurrent Neural Networks suffer

from the vanishing gradient problem which prevents the propagation of information into the

distant future. Gated Recurrent Units were developed to address the issue and are often paired

18

with Convolutional Neural Networks, networks that apply convolution and pooling operations.

In this case, the purpose is to have the CNNs extract co-occurring word n-grams as patterns

while having the Gated Recurrent Units retain past pattern information to give context. The

authors concluded that while both LSTM networks and the combination of CNNs and GRUs can

identify hate speech comparably well to one another, the training time for the combination is

significantly less than that of the LSTMs [10].

C. Context Aware Hate Speech Detection Models

 A new type of approach to hate speech detection involves the leveraging of context as a

semantic feature. Hate groups often attempt to avoid detection by the use of words with hidden

meaning. In addition, current events give background information that can turn seemingly

innocuous text into hate speech once considering the context. There is relatively a small amount

of work done in this niche area compared to the generic version of hate speech, but some papers

have identified it grondahl et al. as an area for future work.

 To our best knowledge, only one significant work has been published in the area of

context aware hate speech detection. Gao and Huang [12] define context as any information not

included within the original text itself. In addition to typical word and character n-grams, Gao

and Huang utilized lexicon derived features such as polarity and emotion as well as context

features consisting of usernames and article titles. The authors created a corpus of Fox News

comments that were annotated according to strict guidelines; this included context features and is

purported to be the first of its kind.

 Gao and Huang [12] tested both logistic regression and bi-directional LSTM models

while treating hate speech detection as a binary classification problem. They found that in both

models’ cases, there was an improvement in F-1 score by using the additional context

19

information. The authors noted the pros of both model approaches. Logistic regression makes

good use of character n-grams which helps with capitalizations and misspellings while LSTMs

can capture the hidden and subtle meanings of implicit hate speech. To maximize usage of both

models strengths, the authors combined the two into an ensemble model which yielded

significant performance increases over the use of a single model.

IV. Problem Statement

Grondahl et al. [6] created six different evasion schemes to morph text; these schemes

reliably diminished the effective of each detection model while preserving the meaning of the

original text. The six attacks proposed fall into one of three categories: word modifications,

whitespace manipulation, and benign word insertion. Word modifications are simple changes to

the hate speech text, and they include simple typos or deterministic LEETSPEAK where letters

are exchanged for numbers. Whitespace manipulation revolves around the removal or insertion

of spaces within a given text to throw off word-based models. Finally, benign word insertion is

the addition of normal or positive words not normally associated with hate speech, such as

“love”, in order to fool the model. These attacks require essentially no training for the average

person to use, and [6] found that the combination of whitespace removal and benign word

insertion zeroed out the F1 scores for many of the state-of-the-art models. The following

passages detail the attacks addressed in this paper along with our newly proposed attack.

The typo attack used in [6] consists of a single swapping of letters within the middle of a

word. This was done to more effectively trick spell checkers while also maintaining readability

and the original meaning of the text. The preservation of readability and meaning must be taken

into account for the creation of any lexical attack; fooling detection models can be done easily if

20

the new text loses all meaning. In this case, the evasion scheme relies on previous cognitive

research that determined single character swaps have the least impact on retaining readability.

Whitespace removal converts a given piece of text into one single chunk of characters.

This attack greatly hinders the effectiveness of word-based models due to their reliance on

proper tokenization of words. Word-based models rely on word-embeddings; if fed improperly

tokenized data, these models fail to leverage these embeddings. In this case, such models treat

text with removed whitespace as new words with no particular associations thereby allowing

adversaries to evade detection. Conversely, character-based models better handle this issue;

removing whitespace does cause issues in terms of the separation of words, but the majority n-

gram character combinations remain the same.

Benign word insertion attacks, more specifically the word “love”, involve the random

placement of a positive or neutral word into a text. [6] notes that this attack affected both word-

based and character-based models comparably. The effectiveness of this evasion schemes comes

from an asymmetric problem regarding the insertion of material. Inserting hateful material into a

benign or positive piece of text results in the creation of hateful material while the reverse,

inserting positive material into hateful material, does not yield positive material. However,

detection models do not take this into account and thus significantly decrease in performance

when faced with the evasion scheme.

Our newly proposed attack, character boundary appending (CBA), adds patterns of

random letters to the edges of a word. This attack maintains a high amount of readability due to

humans’ ability to effectively parse out original word as can be seen in the following example:

“Jack and Jill went up the xxxhillxxx”

21

This attack can be extremely customized with a length of the patterns, pool of letters to draw

from, and the balance of the attack. Balance in this case refers to the ratio of letters to append to

the left of the word versus that of the right of the word. In the interest of maintaining as much

readability as possible, patterns of multiple consonants are used to minimize the chance of a

random word being created within the appendings.

In summary, hate speech detection models are not well equipped to handle adversarial

examples originating from entities that wish to evade detection. These attacks are effective and

easy to execute. We aim to address this security gap of these models and propose several new

methods to aid these detection systems against evasion schemes.

V. Proposed Solution

 The following sections cover the details of proposed defenses against the aforementioned

attacks. We begin with a brief overview of the datasets and the models used. Then, we cover our

proposed defense schemes and attack replication process.

A. Models and Datasets

 This section describes the models and datasets used in the replication the work conducted

by Grondal et al. [6]. The models, named W, T1, T2, and T3, and datasets are sorted by which

paper they originally came from.

 Wulczyn et al. [7] utilized the W dataset comprising of Wikipedia edit comments; these

comments were separated into personal attacks and ordinary speech. These researchers used both

multilayer perceptron (MLP) models and logistic regression (LR) with n-gram features. The n-

gram features were of both character and word types; the models with the former outperformed

22

those of that latter which is why [6] chose to use both MLP and LR character models over their

word-based counterparts. The MLP and LR models are the only character-based models used in

both our experiments and those of [6].

 Davidson et al. developed the T1 dataset which labelled speech in one of three classes,

hate speech, offensive, and ordinary. The text comprises of tweets gathered from hatebase.org

and gathered using searches for common phrases associated with hate speech. [6] conflates the

two labels, hate speech and offensive, when using the T1 dataset due to the lack of ternary

classification capability of every detection model used. Our use of the T1 dataset was modified

to follow that of [6], but for clarity’s sake we only will refer to the modified dataset as T1 and

make no mention of the unmodified version. Davidson et al. [1] created a LR word-based model

to perform ternary classification with great success.

 Badjatiya et al. worked with the T2 dataset which also contained three class labels, but

conversely to that of the T1 dataset, these labels consisted of “sexism”, “racism”, and “neither”.

Similar to the T1 dataset, we replicated the conflation of the sexism and racism labels done by

Grondahl et al. [6]. The T2 dataset comprises of tweets as well, and the Badjatiya et al. classified

them using a long short-term memory (LSTM) network. LSTM models are particularly useful in

text classification due to their ability to retain information from the past better than recurrent

neural networks (RNNs) do. RNNs tend to lose information that is too far away due to the

vanishing gradient problem.

 Zhang et al. utilized both the T1 as well as their own new dataset, T3. In addition, the

researchers also combined the hate speech and offensive labels into one class. The T3 dataset

contains about 2400 tweets with the hateful portion specifically attacking muslims and refugees.

Zhang et al. created a model based on a mix of convolutional neural networks (CNNs) and

23

RNNs. CNNs are typically useful for extracting features while RNNs retain information from the

past. The team used gated recurrent units (GRUs) which are a type of RNN that does not face the

vanishing gradient issue that normal RNNs do. The CNN and GRU hybrid model approach

achieves comparable results to a LSTM, but they only use up a fraction of the resources a LSTM

requires.

B. Proposed Defenses

 We propose defenses that fall into one of two categories, pre-processing and retraining.

Pre-processing defenses modify incoming data before they reach the model and attempt to

recreate the original text. Contrastingly, retraining addresses text morphs through training the

model on pre-attacked data. To keep things fair, we design our defenses to be as generic as

possible to simultaneously address variations on the attack.

C. Pre-processing Defenses

 The first pre-processing defense we propose, word segmentation no redo (WSNR),

addresses the whitespace removal attack through separating the one large chunk of words back

into separate words. Word segmentation, the separation of words without whitespace, has been

thoroughly studied in itself, and many python libraries that support this function are available.

Note that the api used to carry out this defense significantly impacts results; given the nature of

the data, word segmentation functions may yield unsatisfactory results if they cannot deal with

typos.

 Our second proposed defense, word balance no redo (WBNR), reverses the typo attack

described beforehand. Since the typo attack creates an error in two letters of a word, typical spell

24

checkers do not properly rectify the mistake [6]. Since we know the effects of the typo attack, we

determined that we only need to swap back the letters involved. The algorithm is defined as

follows:

1) Match the attacked word to entries inside a dictionary based on the same length of

characters

2) Of those matching words, select those with the same outside characters

3) Of those matching words, select those with the same ascii values

4) Of the remaining, select the word that differs with the attacked word by one swap of

letters. If no word can be found, return failure status.

Our proposed defense can handle any variations on the typo attack so long as they do not swap

more than three letters or modify the outside letters. However, we do not believe that an attack

that violates the above two principles would retain a high level of readability.

 Thirdly, we present a defense, good grammar no redo, that defends against perhaps the

most difficult attack to detect, benign word insertion. The defense first comprises of flagging any

words that violate grammar rules. This is done to yield a list of words for polarity checking and

is effective versus the benign word insertion attack due to the inherent properties of word

insertion. Insertion of a word into a sentence, especially non-adjectives and non-adverbs, most

likely cause a break in grammatical sense. In the event that the insertion of the word does not

cause a violation of a grammatical rule, the meaning of the text will then change. Since we know

that the benign word insertion attack will insert a word of neutral or positive connotation, we can

address it by removing the words with such a polarity from the list of words compiled

beforehand.

25

 Our fourth proposed defense, vowel search no redo (VSNR), addresses our newly created

attack, character boundary appending. The tricky part in addressing this attack is derived from its

large amount of customization; an attacker can easily switch between appending characters in a

balanced manner to appending them only on one side while not losing readability and meaning.

In order to address this attack, we factored in the limitations of text morphings, the need for

preservation of readability and meaning. Given these limits, we know that characters appended

to a word must not create a new word lest it violate the aforementioned clause. Apart from this,

we also know that every word in the english language, barring some exceptions such as “tv” and

“dr.”, has a vowel. Thus, we formed our VSNR defense to search for words that can be found in

a dictionary based on the position of vowels within an attacked text. Since the characters

appended should not form a word either within themselves or in conjunction with the original

text, we do not have to worry about the presence of any newly created words. Thus, the longest

word found with based on vowel positional searching should be the original word itself.

D. Training Defenses

 The first retraining defense we propose attempts to address the whitespace removal

attack. Whitespace removal training (WSRT) involves training the models on text data with

whitespaces already removed. Any new test data must also have any whitespaces removed from

the text, even if the test data has not been attacked. Failure to do so will cause a performance

decrease since the models are not trained on clean data and thus do not recognize whitespaces

properly. This defense is only applicable to character-based models due to the issues with word

tokenization for word-based models. An initial test backed these claims which is why we did not

bother applying this defense to non-character-based models.

26

 Our second retraining defense, clean spelling training (CST), addresses the typo attack.

This defense is more of a mix of pre-processing and training as opposed to just training. The

defense involves flagging all words that are unable to be recognized, mapping them to one word

with correct spelling, and compiling this all into a dictionary. Then, the model is trained upon the

training data that has been preprocessed to switch any incorrectly spelled words to their one

word based upon the dictionary built previously. Any test data will also have any words found in

the dictionary replaced with the singular correct spelling.

VI. Performance and Results

 We performed four attacks on each of the model-dataset combinations; with seven total

combinations, this yielded 28 attacks. In addition, we used two variations of our newly proposed

attack along with two combination attacks to end with a total of 56 attacks. For each attack, we

applied the appropriate defenses in separate runs.

 Due to ethical concerns, [6] decided not to release any of the code associated with the

generation of attacks. Thus, we recreated the attacks empirically and selected the settings that

yielded the most similar results to those found in [6].

 Our experiments were conducted using the sci-kit learn python package and keras, a

tensorflow api. We used 5-fold cross validation and applied attacks to the given datasets before

they were fed into the pipeline to the models themselves. Any pre-processing defenses were run

in the pre-processing stage, and similarly, any training defenses had the model-dataset

combinations trained on the pre-attacked data before receiving any test data. As in [6], we used a

macro averaged F-1 score as our performance metric of choice. The following sections detail the

experimental results based on the attack being addressed.

27

A. Typos

TABLE I. Macro Averaged F-1 Scores for Model, Dataset Combinations under Typo Attack and

Applied Defenses

Model, Dataset Orig. Typo WBNR vs Typo CST vs Typo

LR Char, W 0.76 0.62 0.76 0.71

LR Word, T1 0.49 0.29 0.48 0.45

MLP Char, W 0.74 0.58 0.73 0.68

CNN + GRU, T1 0.44 0.32 0.44 0.38

CNN + GRU, T2 0.78 0.24 0.77 0.71

CNN + GRU, T3 0.70 0.27 0.69 0.53

LSTM 0.70 0.42 0.70 0.63

While typo attacks can significantly impact the performance of hate speech detection

models, apply either the pre-processing or training defense can significantly reduce the

effectiveness of the attack. In this case, the WBNR defense outperforms the CST defense greatly.

This can be attributed to how the WBNR defense recreates the original input data with great

reliability while the CST defense may encounter new typos in the training data that it has not

built an entry for.

28

Figure 1. Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under Typo

Attack and Applied Defenses

B. Whitespace Removal

TABLE II. Macro Averaged F-1 Scores for Model, Dataset Combinations under Whitespace

Removal Attack and Applied Defenses

Model, Dataset Orig. WS Removal

WSNR vs WS

Removal

WSRT vs WS

Removal

LR Char, W 0.76 0.58 0.62 0.64

LR Word, T1 0.49 0.00 0.44 -

MLP Char, W 0.74 0.56 0.66 0.65

CNN + GRU, T1 0.44 0.00 0.40 -

CNN + GRU, T2 0.78 0.00 0.68 -

29

CNN + GRU, T3 0.70 0.01 0.64 -

LSTM 0.70 0.00 0.67 -

Figure 2. Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under

Whitespace Removal Attack and Applied Defenses

Whitespace removal completely breaks all word-based models while also greatly

diminishing the character-based models’ performance. [6] suggests that the character-based

models lose access to all n-grams concerning whitespaces as the reason why character-based

models suffer performance issues. Regarding the word-based models, correct tokenization is key

for word-based models to properly utilize their pre-trained embeddings. The removal of

whitespace zeroes out an essential part of these models; in the case of the CNN + GRU model,

we observed the embedding matrix to only consist of 0’s.

30

 Unlike the case of typos, the training defense outperformed that of the pre-processing

one. However, the performance increase was not substantial; the word segmentation defense

yielded F-1 scores within 2% of the training defense’s. Note that we chose to only apply the

WSRT defense to the character based models since word-based models will fail when using

whitespace removed data. The WSNR defense performs admirably well and holds an advantage

over the WSRT defense in that it is applicable to any model regardless of whether it is word-

based or character-based. We utilized several different word segmentation apis and found that

results differed greatly due to natural typos encountered. The symspell api is able to address

spelling errors and yielded the best results which is why we chose it for our final WSNR

implementation. We conclude that our defenses against this attack can significantly reduce the its

effectiveness although we do note that the pre-processing version could yield better results with a

better word segmentation api.

C. Benign Word Insertion

TABLE III. Macro Averaged F-1 Scores for Model, Dataset Combinations under “Love”

Insertion Attack and Applied Defenses

Model, Dataset Orig. "Love" GGNR vs "Love"

LR Char, W 0.76 0.55 0.74

LR Word, T1 0.49 0.43 0.47

MLP Char, W 0.74 0.51 0.72

CNN + GRU, T1 0.44 0.02 0.40

CNN + GRU, T2 0.78 0.51 0.73

CNN + GRU, T3 0.70 0.17 0.68

LSTM 0.70 0.14 0.68

31

Figure 3. Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under “Love”

Insertion Attack and Applied Defenses

The GGNR defense performed extremely well in addressing the benign word insertion

attack. We chose to use “love” as our word of choice due to its nature as not being associated

with “hateful” speech. We did not develop a training defense for this attack due to the

customizability of the insertion attack. A model would have to be trained on every non-hate

word, but doing so would cause all such words to lose proper meaning. Specifically training

versus a “known” word such as “love” was deemed to be unfair as it would require us defenders

to have too much knowledge of the attack and defeat our goal of making these defenses as

generic as possible.

32

D. Character Boundary Appending

TABLE IV. Macro Averaged F-1 Scores for Model, Dataset Combinations under Different CBA

Attacks and Applied Defense

Model, Dataset Orig. F1 CBA (I, 2) CBA (I, 2) CBA (B, All)

VSNR vs CBA (B,

ALL)

LR Char, W 0.76 0.53 0.64 0.13 0.74

LR Word, T1* 0.49 0.39 0.39 0.00 0.47

MLP Char, W 0.74 0.58 0.68 0.15 0.71

CNN + GRU,

T1* 0.44 0.36 0.36 0.00 0.42

CNN + GRU,

T2 0.78 0.58 0.58 0.00 0.77

CNN + GRU,

T3 0.70 0.45 0.45 0.00 0.7

LSTM 0.70 0.39 0.39 0.00 0.69

 Our proposed character boundary appending attack outperformed all other attacks under

the correct customization. The CBA affected both character-based and word-based models and

markedly decreased the F-1 scores regardless of settings. The LSTM model took the largest hit in

performance with a 30% drop in F-1 score. For word-based models, the CBA performed equally

whether it had an imbalanced or balanced setting. We attribute this to the word-based models not

being concerned so much by how the attacked words were structured but rather the existence of

an unknown word. Contrastingly, character-based models performed worse with the balanced

version of the CBA attack. We suggest this may result from a how the n-grams concerning the

affected word’s boundaries are no longer usable in the case of a balanced attack. A balanced

attack completely surrounds the word with characters while an imbalanced attack has the

33

potential to append only to one side. When applied to all words, the attack zeroes out all word-

based models and reduces the F-1 score of character models by more than 50%. This version of

the attack floods the input text with too many characters for the character-based models to

properly build classifiers. The random nature of the appendings force any word-based models to

be unable to use any embeddings, because the likelihood of the same word being appended in the

same manner is quite small.

Figure 4. Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under

Different CBA Attacks and Applied Defense

 The defense we built for this CBA attack performed very well and nearly completely

reversed the effects of the CBA attack. VSNR worked regardless of the settings for CBA, and we

argue that this highlights the importance of generality in a defense. This defense reduced the

effectiveness of CBA to a maximum of 3% in the case of the multilayer perceptron model.

Similarly to the benign word insertion defense, we did not create a training defense for this

attack due to its random nature.

34

E. Combined attacks

TABLE V. Macro Averaged F-1 Scores for Model, Dataset Combinations under Combination

Attacks

Model, Dataset Orig. F1

Whitespace Removal +

Love

Whitespace Removal + CBA (B,

All)

LR Char, W 0.76 0.51 0.04

LR Word, T1* 0.49 0.00 0.00

MLP Char, W 0.74 0.49 0.02

CNN + GRU, T1* 0.44 0.00 0.00

CNN + GRU, T2 0.78 0.00 0.00

CNN + GRU, T3 0.7 0.01 0.00

LSTM 0.7 0.00 0.00

We combined two of our strongest attacks at our disposal, CBA and whitespace removal,

and compare it to the strongest combined attack from [6]. The pairing of whitespace removal and

our new attack nearly zeroes out the F-1 scores in both word-based and character-based models

thereby outperforming the “love” insertion and whitespace removal combination attack.

Use of a combination of attacks allows us to simultaneously affect two properties that hate

speech detection models rely upon, word tokenization and statistical makeup. In the case of word

tokenization, removing whitespaces completely breaks word-based models as seen in Table 2.

The evasion scheme causes word-based models to lose access to previously generated word

embeddings since each new affected text will be treated as an unknown word. CBA further

exacerbates this issue for word-based models by appending random patterns to the outsides of

words. Furthermore, CBA significantly alters the statistical makeup of affected text. By doing so,

35

the n-grams used by character-based models build false associations to a class thereby

introducing larger errors. In addition, the removal of whitespaces is suggested by [6] to have

further adverse effects on these n-grams. N-grams including whitespaces are used to signify the

starts and ends of words, and the removal of whitespace significantly impedes a model’s ability

to determine these boundaries that are large factor.

Figure 5. Graph of Macro Averaged F-1 Scores for Model, Dataset Combinations under

Combination Attack

Classification of Evasion Schemes

Although we may have an effective defense for each attack, properly applying them is

another problem. Some defenses such as GGNR may cause a false positive if applied to neutral

text which highlights the need for proper classification before applying the defense. Thus, there

36

is a need to classify which evasion scheme has been applied to a text before using a defense. To

our knowledge, this problem has not been addressed in any other published work.

TABLE IV. Macro Averaged Precision, Recall, F-1 Scores of Model, Feature Type

Combinations For Lexical Evasion Scheme Classification

Model, Dataset Macro Averaged Metric

Precision Recall F-1

Random Forest, Engineered 0.4012 0.3953 0.3982

Random Forest, Char TF-IDF 0.9827 0.9826 0.9825

AdaBoost, Engineered 0.4859 0.4038 0.4411

AdaBoost, Char TF-IDF
0.7092 0.7427 0.7014

Naive Bayes, Char TF-IDF 0.9557 0.9543 0.9543

SGD, Char TF-IDF 0.9799 0.9797 0.9797

SVM, Char TF-IDF 0.9847 0.9846 0.9846

KNN, Char TF-IDF 0.8705 0.8615 0.8637

Multilayer Perceptron, Char TF-IDF 0.9825 0.9824 0.9824

Logistic Regression, Engineered 0.4206 0.4239 0.4222

Logistic Regression, Engineered RFE 0.4261 0.4352 0.4306

Logistic Regression, Char TF-IDF 0.9845 0.9844 0.9844

LGBM, Char TF-IDF 0.9893 0.9892 0.9891

Table 4. displays our results from testing every model. We applied 5-fold cross validation

when testing and used one of three sets of features for models to train upon. The three feature

37

sets consist of Char tf-idf, Engineered, and Engineered RFE. Engineered signifies all six features

were used while Engineered RFE denotes that only character count, average word length, and

number of spaces were used as features.

Overall, our engineered features performed poorly with most achieving a F-1 score of

0.42. This may be due to a lack of ability for our features to capture the statistical makeup of the

text itself. Meanwhile, the models that used Char tf-idf as a feature yielded extremely strong

results with logistic regression managing to reach a 0.98 F-1 score. We attribute this high

performance to the ability of Char tf-idf to capture the important character n-grams that are

frequently modified in significant ways when an evasion scheme is applied.

Our best performing models consist of Random Forest, Support Vector Machine, and

Light Gradient Boosting Machines (LGBM), a new variant of gradient boosted decision trees.

These models achieved strong results which we consider to be a result of these models’ ability to

leverage changes in statistical information and makeup when comparing different attacks.

VII. Conclusion and Future Work

 Our results strongly suggest that evasion schemes employed on lexical data can be

reliably defeated and effects minimized. Of each attack that we addressed, none were resilient

enough to break a generically crafted defense. In crafting each defense, we leveraged the

important requirements of any evasion scheme, the need for preserving meaning and readability,

to defeat them. We strongly push for any future defenses to factor in this property of evasion

schemes.

Furthermore, we demonstrated the viability of using pre-processing defenses to reverse

the effects of attacks. While training defenses were also effective at mitigating attacks, they only

38

outperformed their pre-processing counter in one instance in an insubstantial manner. Pre-

processing defenses require minimal computational power and time in comparison to training.

However, training is simpler to implement since it only involves training on pre-attacked data

while pre-processing defenses required a level of ingenuity to create.

 The hardest attacks to defend against were those that affected the tokenization of words.

Both the CBA and the whitespace removal attacks fall into this category; they yielded some of

the strongest results. This suggests that tokenization is an important factor in the proper

operation of hate speech detection models regardless of whether the model is word or character-

based.

 Our newly proposed attack, CBA, outperformed every attack created by [6]. We attribute

this to how attack can affect properties that both character-based and word-based models utilize,

statistical makeup and tokenization. Due to the importance of both these properties, we suggest

that future defenses aim to preserve these two properties .

 We suggest several directions for future work. One direction involves the classification of

evasion schemes. In both this work and in [6], the issue of classifying attacked data was never

addressed. Although we may have an effective defense for each attack, properly applying them is

another problem. Some defenses such as GGNR may cause a false positive if applied to neutral

text which highlights the need for proper classification before applying the defense. In other

cases, there will be a waste of computational resources if defenses are applied on benign data.

 Another direction for future work is the development of more robust or specialized

software for the defenses that required apis. In the case of GGNR and WSNR, both relied on

external apis that would solve a subproblem for them. Through our experiments, we found that

we replacing the APIs with either more specialized functions or robustness in general yielded

39

significant performance boosts to our defenses. The detection of words violating grammar rules

and word segmentation are significant problems in themselves and thus warrant further research.

40

References

[1] Kumar, S., and Shah, N. False information on web and social media: A survey.

CoRR abs/1804.08559 (2018)

[2] A. H. Razavi, D. Inkpen, S. Uritsky, and S. Matwin, ‘‘Offensive language detection using

multi-level classification,’’ Advances in Artificial Intelligence, vol. 6085. Ottawa, ON, Canada:

Springer, Jun. 2010,

pp. 16–27.

[3] W. Warner and J. Hirschberg, ‘‘Detecting hate speech on the world wide

Web,’’ in Proc. 2nd Workshop Lang. Social Media, Jun. 2012, pp. 19–26.

[4] Watanabe, H., Bouazizi, M., & Ohtsuki, T. (2018). Hate Speech on Twitter: A Pragmatic

Approach to Collect Hateful and Offensive Expressions and Perform Hate Speech Detection.

IEEE Access,6, 13825-13835. doi:10.1109/access.2018.2806394

[5] Ruwandika, N., & Weerasinghe, A. (2018). Identification of Hate Speech in Social Media.

2018 18th International Conference on Advances in ICT for Emerging Regions (ICTer).

doi:10.1109/icter.2018.861551

[6] Grondahl, Tommi, Pajola, Luca, Juuti, Mika, Conti, Mauro & Asokan, N (2018). All You

Need is" Love": Evading Hate-speech Detection. Proceedings of the 11th ACM Workshop on

Artificial Intelligence and Security. 2-12. doi:10.1145/3270101.3270103

41

[7] Wulczyn, E., Thain, N., & Dixon, L. (2017). Ex Machina: Personal Attacks Seen at Scale.

Proceedings of the 26th International Conference on World Wide Web - WWW 17.

doi:10.1145/3038912.3052591

[8] Davidson, T., Warmslay, D., Macy, M., and Weber, I. (2017). Automated Hate Speech

Detection and the Problem of Offensive Language. In Proceedings of the 11th Conference on

Web and Social Media. 512-515.

[9] Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017). Deep Learning for Hate Speech

Detection in Tweets. Proceedings of the 26th International Conference on World Wide Web

Companion - WWW 17 Companion. doi:10.1145/3041021.3054223

[10] Zhang, Z., Robinson, D., & Tepper, J. (2018). Detecting Hate Speech on Twitter Using a

Convolution-GRU Based Deep Neural Network. The Semantic Web Lecture Notes in Computer

Science,745-760. doi:10.1007/978-3-319-93417-4_48

[11] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang. Abusive language detection

in online user content. In WWW, 2016.

[12] Gao, L., & Huang, R. (2017). Detecting Online Hate Speech Using Context Aware Models.

RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning.

doi:10.26615/978-954-452-049-6_036

	San Jose State University
	SJSU ScholarWorks
	Spring 5-22-2019

	TSAR : A System for Defending Hate Speech Detection Models Against Adversaries
	Brian Tuan Khieu
	Recommended Citation

	tmp.1559075683.pdf.YbAO8

