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ABSTRACT 

 

It is a significant technical and computational task to provide precise information 

regarding the activity performed by a human and find patterns of their behavior. Countless 

applications can be molded and various problems in domains of virtual reality, health and 

medical, entertainment and security can be solved with advancements in human activity 

recognition (HAR) systems. HAR is an active field for research for more than a decade, but 

certain aspects need to be addressed to improve the system and revolutionize the way humans 

interact with smartphones. This research provides a holistic view of human activity recognition 

system architecture and discusses various problems associated with the design aspects. It further 

attempts to showcase the reduction in computational cost and significant achievement in 

accuracy by methods of feature selection. It also attempts to introduce the use of recurrent neural 

networks to learn features from the long sequences of time series data, which can contribute 

towards improving accuracy and reducing dependency on domain knowledge for feature 

extraction and engineering. 

Index Terms – Human activity recognition, machine learning, mobile sensors, 

accelerometer, gyroscope, feature selection, RNN. 
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1 Introduction 
 

Mobile devices have become an integral part of our daily life. This is due to an increase 

in the sophisticated development and the integration of quality sensors, high computational 

power, large storage capacity and continuous connectivity in mobile devices. People constantly 

interact with their low cost, small-sized smartphones in their day to day activities, which has 

led to the rise in the research of extracting knowledge from data acquired by pervasive sensors 

in mobile devices [1]. Attention towards creating lifelogs, which refers to the use of technology 

to capture and document large amounts of a user’s life through mobile devices, has increased 

considerably. A good example of lifelogging is capturing the number of steps walked each day 

using a smartphone. Lifelogs can be used to document simple physical activities such as 

walking, running, sitting, etc. or complex activities such as eating, working, exercising, etc. 

This has a wide variety of application in various fields of research such as medicine, augmented 

reality, computer-human interaction, security and targeted advertising. A lifelog can be used 

to mine knowledge and give insights about the lifestyle of a user and help improve the quality 

of life by providing personalized recommendations and services. Creating context-aware 

applications and services with low-cost consumer hardware will be a significant step towards 

solving more complex problems.  

The biggest issue faced in creating a detailed lifelog is the collection of activity data 

through various wearable sensors and the accurate classification of human activity based on 

the collected data. Mobile devices come integrated with powerful sensors, such as 

accelerometers, gyroscopes, GPS, magnetometer, proximity and ambient light detectors. With 

the use of smartphones, researchers have an opportunity to collect sensor data easily with the 

use of minimal infrastructure. Modern machine learning techniques can be used to distinguish 
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and recognize human activities based on the data collected. A simple smartphone could help 

solve the problem of documenting a detailed history of a user’s daily activity. Advancements 

in deep learning and methods for feature selection along with the inclusion of a variety of 

sensors can push the boundaries of human activity recognition on deeper ontological levels. 
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2 Problem Definition 
 

Human Activity Recognition (HAR) is the problem of identifying a physical activity 

carried out by an individual dependent on a trace of movement within a certain environment. 

Activities such as walking, laying, sitting, standing, and climbing stairs are classified as regular 

physical movements and form our class of activity which is to be recognized. To record 

movement or change in movement, sensors such as triaxial accelerometer and gyroscopes, 

capture data while the activity is being performed. A triaxial accelerometer data detects 

acceleration or movement along the three axes and a gyroscope measures rotation along the 

three axes to determine direction. Data recorded is along three dimensions of the X, Y and Z 

axis at the specified frequency. For example, a frequency of 20Hz would indicate that 20 data 

points are recorded each second of the action. Various other physiological signals such as 

heartbeat, respiration, etc. and environmental signals such as temperature, time, humidity, etc. 

can further augment the recognition process. Activity recognition can be achieved by exploiting 

the information retrieved from these sensors [26].  

The challenge arises as there is no explicit approach to deduce human actions from 

sensor information in a general manner. The large volume of data produced from the sensors 

and use of these features to develop heuristics introduces the technical challenge. Storage, 

communication, computation, energy efficiency, and system flexibility are some of the aspects 

which need to be analyzed in detail to build a robust activity recognition system. Conventional 

pattern recognition methods have made tremendous progress in discovering significant 

information from scores of low-level readings. But such recognition models are successful for 

data collected in controlled environments, and for few activities only. Complex HAR tasks are 

hindered due to the naïve feature extraction techniques and limitation in domain knowledge. 
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The shallow features extracted degrades the performance of unsupervised learning algorithms 

and connected activities. Deep learning models have the capabilities to learn features of the 

higher order [27]. Advancement in such models makes it conceivable to learn and improve the 

performance of the predictive models and find deeper knowledge from human activities.  
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3 Architecture, Sensors and Design Issues 
 

3.1 General Architecture 
 

The architecture for HAR systems has a generalized architecture composing of two main 

phases – (1) Data Acquisition, (2) Activity Recognition. Data acquisition mainly deals with 

the collection and storage of the sensor data while the activity recognition deals with machine 

learning models used for predictive analytics. The data acquisition system has a standard 

structure as shown in Figure 1. The main component of the data acquisition phase is the sensors 

which measure the various attributes such as acceleration, location, audio, temperature, etc. 

The other components are the integration device, communication network, and remote 

application server. The integration device is used prominently for collecting and preprocessing 

the raw sensor signal. The data can also be sent to a remote application server with the use of 

networking protocols such as TCP/IP or UDP, for real-time analysis and visualization [2], [20]. 

Not all the components are required and implemented in each data acquisition system. In [4]-

[6], the sensors are integrated within a device itself and carry out the analytical processing on 

it. Other systems require an external wearable device which communicates with an integration 

device such as a laptop, cellphone, etc. Different applications and requirements reflect on these 

differences in the general architecture. 

Activity recognition component relies heavily on machine learning models and is built 

on the training and testing stages. As described in [11], the training stage requires a large dataset 

of the collected features to train the model. Varied processes such as data cleaning, feature 

extraction, dimensionality reduction, and feature selection take place in the training stage. 

Similarly, the authors in [11] describe the testing stage. This stage has a smaller dataset and 

undergoes the same data processing. It is then used to test the machine’s predictions and evaluate 
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the training. 

 

Fig 1. Data acquisition structure for HAR system 

3.2 Sensor Modality 
 

According to [27], sensor modalities are classified into three basic types: 

• Body-worn sensors 

• Object sensors 

• Ambient sensors 

3.2.1 Body-Worn Sensors: 

 

Sensors such as an accelerometer, gyroscope, and GPS which are embedded within 

devices such as smartphones, watches, glasses, caps, etc. come under the category of body-worn 

sensors. These sensors are attached at various positions to the human body to trace and recognize 

different activities. Among the work surveyed, the accelerometer is the highly adopted sensor, 

due to its capabilities of recording change in acceleration of the human body. A gyroscope or a 

magnetometer is paired with the accelerometer recognize daily physical activities or sports 

activities.   

3.2.2 Object Sensors: 

 

Object sensors are sensors which are placed in an environment or on certain objects to 

detect motion of a specific object. RFID, WIFI, Bluetooth can record information on a deeper 
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level to recognize complex activities. Such sensors are not worn on the body of the person but 

are placed in the environment to detect movement from a different perspective. Use of such 

sensors is very rare as they are expensive and difficult to install. The pairing of object sensors 

with body-worn sensors in controlled environments can help advance the research of deeper 

ontological level human activity recognition. 

3.2.3 Ambient Sensors:  

 

Ambient sensors capture the variables of the environment such as temperature, sound, 

pressure, humidity, etc. They do not specifically capture the change in movement of a human 

but capture data related to change in the environment. They provide knowledge holistically 

about a person’s surrounding and the environment in which the action is being carried out. 

Such sensors are found in smart home environments. 

  

3.3 Design Issues 

 

There are various design issues which need to be taken into account to develop an 

efficient HAR system. The design issues impact heavily on the usage of the system and the 

accuracy of the prediction.  

 

3.3.1 Selection of Sensor Attributes  

 

A variety of sensors are present and can be broadly classified into the following four 

groups:  

3.3.1.1 Acceleration Signal: 

 

Triaxial accelerometers are low energy consuming, cheap sensors which are extensively 

used to recognize activities such as walking, sleeping, sitting, etc. Most of the ambulatory 

activities can be recognized with the use of a triaxial accelerometer [7] – [9]. The position and 
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placement of the accelerometer play a significant role in the prediction of the activity and 

accuracy achieved. According to He et al. [9], the best place to keep the accelerometer is in the 

pant pocket, but this conclusion varies with the type of activity to be recognized. Accelerometers 

are also not useful to deduce more meaningful activities such as working at the desk or eating 

at the dinner table. The same body motion for multiple activities is confusing to recognize from 

the accelerometer’s point of view [15].  

3.3.1.2 Location Signals: 

  

Global Positioning Systems provide location data with the use of satellites. All current 

smartphones are equipped with GPS sensors and the data can be used to provide context-aware 

recognition or infer activity based on ontological reasoning [5]. However, Reddy et al. [19] 

report that the biggest issues faced in GPS sensors are that they perform poorly indoors, are high 

energy consuming sensors and are associated with privacy issues. This puts a limit on the usage 

of GPS data for real-time applications. Riboni et al. [5] suggests that to overcome the poor 

performance indoors, GPS sensors should be paired with accelerometers.  

3.3.1.3 Environmental Attributes and Physiological Signals: 

 

For better contextual information, attributes like audio, temperature, light intensity, time, 

microphones, etc. are used. They provide information about the environmental setting of an 

individual to infer activities. The authors in [15] and [17] analyze that individually, the 

environmental sensors do not contribute sufficiently towards the recognition, and are also easily 

affected due to weather conditions, external artificial illumination and loud noise levels. 

Physiological signals such as heart or respiration rate, ECG, body temperature can be considered 

as vital signs and have been used in a few HAR systems. Tapia et al. [16] combined data 

collected from a heart monitor and accelerometer for activity recognition and concluded that the 
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heart rate signal is not useful. It misclassified activities while increasing cost and energy with 

the use of additional obtrusive sensors. 

 

3.3.2 Energy Consumption 

 

Individual sensors and sensors embedded within mobile devices are heavily constrained 

by battery life. Many applications require critical data to be delivered from the sensors which 

make efficient energy consuming sensors highly desirable. Battery life can be extended by 

limiting the communication with the sensors as it is a very expensive operation. Short-range 

communication, data filtering, and compression techniques should also be utilized to save 

energy. Riboni et al. in [5] discuss how analytics and classification should be performed over 

the integrated device itself to lower the communication with an external server.   

 

3.3.3 Processing Techniques 

 

Processing the data on the server or within the integrated device itself is an important 

design decision. Lara et al. in [11] deduce that the design aspect depends on the application, 

whether fast real-time results or passive results are required. A HAR system deployed over a 

mobile device is a more scalable design as it reduces the communication and alleviates the server 

load by locally computing the classification. It would also help overcome unreliable 

communication systems and become a highly responsive application. However, mobile devices 

fall short on high processing power and large storage needs. In [12] - [14] the researchers discuss 

the shortcomings of a mobile HAR system in terms of storage, energy consumption, and 

computational power. In [13], Williams and Matthew describe a scenario where the application 

requires data from a group of users, and how it is beneficial to compute the classification over 

a central server rather than on individual mobile devices. This trade-off needs to be carefully 



SENSOR-BASED HUMAN ACTIVITY RECOGNITION USING SMARTPHONES 

10 
 

analyzed with the needs of the application. 

 

3.3.4 Obtrusiveness 

 

Many HAR systems require data to be collected from many sensors for a deeper 

inference. This requires individuals to wear or carry more sensors which can become 

uncomfortable, expensive and also invasive. Unobtrusive systems are highly desirable and the 

authors in [4], [15] and [19] propose systems which collect data from embedded sensors within 

a smartphone or a watch. 

 

3.3.5 Flexibility 

 

The design of an activity recognition model is under heavy scrutiny and debate as some 

studies suggest that the recognition model should be specific to an individual [23] and some 

emphasize the model should be flexible enough for a generalized group [20]. The analysis shows 

that it is not suitable nor efficient to train the same model for different users if there are too 

many activities to train the model for or if the individual is unable to perform certain activities 

(e.g. swimming). However, recognizing activities without considering the individual 

characteristics would lead to a decrease in accuracy and in the training efficiency. 
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4 Related Work 
 

In this section, we analyze previous HAR systems that rely on supervised learning and 

sensor data and separate them into online and offline systems. Supervised learning required 

labeled data to learn from and give an output. Online systems provide immediate feedback while 

offline systems need more time to recognize activities due to high computational demands. 

4.1 Online Systems:  

 

Vigilante is a mobile application built by the authors of [24] for real-time human activity 

recognition. The authors measured the acceleration and physiological signals such as heart and 

respiration rate, breath waveform and skin temperature through external sensors. Using the 

Mobile Evaluation of Classification Algorithms (MECLA) library, the authors implemented the 

C4.5 decision tree classifier to recognize three ambulation activities. The classifier achieved an 

overall accuracy of 92.6%. The application has a fast response time and is trained with different 

users with diverse characteristics to ensure a more flexible system is built. This reduced the need 

to retrain the model for new users and was considered a moderate energy efficient system.  

Berchtold et al. in [4] proposed the ActiServ platform which used a cellphone to capture 

the acceleration signal. The authors developed an efficient and portable fuzzy inference system 

to classify ambulation activities. The accuracy achieved varied between 71% and 97%. If the 

algorithm is meant to meet a real-time response then the accuracy drops down to 71%, and if 

the algorithm is allowed to train to its full capacity, which takes an order of days, it reaches an 

improved accuracy of 97%. A subject dependent analysis boosted the accuracy to 90%.  

Riboni et al. [5] presented COSAR, a framework for context-aware activity recognition. 

Through COSAR, it was possible to recognize activities such as brushing, writing on a 

blackboard, strolling, etc. The authors used the combination of two accelerometers and a GPS 
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sensor within a cellphone to collect data. The authors introduced the concepts of potential 

activity matrix and statistical historic classification to filter out activity prediction which was 

not suitable. The overall accuracy achieved was 93%. 

4.2 Offline Systems: 

 

Parkka et al. [17] utilized twenty-two signals which include acceleration, vital signs and 

environmental variables to classify seven ambulatory activities. Sensors were positioned at 

different points over the body and the individual required to carry along a compact computer in 

a bag pack to collect the sensor data. This system was considered highly obtrusive and had high 

privacy concerns as well. The authors built three classification models like the auto-generated 

decision tree, custom decision tree, and an artificial neural network. The researchers achieved 

the highest accuracy of 86 % from the first classifier. These models required high computational 

capabilities and hence were classified as offline systems. 

Zhu and Sheng [25] proposed a system which utilized the combination of two classifiers 

to recognize activities. The system architecture was highly obtrusive as sensor data were 

collected on to a PDA device and then the signals were transferred to a computer. Classification 

made use of the acceleration signals and worked in 2 phases. The first phase required an artificial 

neural network to classify the activity as stationary or non-stationary. The output is then inputted 

to a Hidden Markov Model (HMM) model for a specific activity prediction. 

Lara et al. [20] used a single smartphone and a sensor device to collect acceleration and 

vital sign information and create a portable and unobtrusive real-time platform, named 

Centinela. Signals acquired from the sensors were processed to extract time and frequency 

features. Centinela programmed to recognize five ambulatory activities and achieved an 

accuracy of 95.7% after being evaluated over eight different classifiers. Certain activities 
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achieved an accuracy of 100 %. As the proposed system depended on an ensemble of classifiers, 

it carried a high computational cost, and hence considered as an offline system. To overcome 

the issues faced in this system, the authors proposed Vigilante. 
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5 Data, Algorithms, and Framework 
 

5.1 Data: 

 

“Activity Recognition Using Smartphone” dataset was prepared and made publicly 

available by Davide Anguita et al. [26] and can be freely downloaded from the UCI Machine 

Learning repository. The raw data is not available, but the preprocessed version of the dataset 

is made publicly available to carry out experiments. The smartphone sensor data was collected 

from the experiments conducted on a group of 30 volunteers who were within the age bracket 

of 19 - 48 years. The set of physical activities focused by the authors are walking, sitting, 

standing, laying, walking upstairs and walking downstairs. The authors attached a Samsung 

Galaxy SII smartphone to each subject to capture sensor data. Each subject was instructed to 

perform each of the six activities twice. On the first trial, the smartphone was firmly attached 

on the left side of the waist of the subject but in the second trial, the subject was given the 

opportunity to place the smartphone as they preferred. This insured there is variation in data 

based on the position of the phone for the same activity. The authors video recorded the action 

performed by each subject which assisted them to manually label the signals captured by the 

sensors. 

Signals produced by the accelerometer and gyroscope, embedded within the Samsung 

Galaxy SII, are captured through a smartphone app. An accelerometer, as the name suggests, is 

used to measure the acceleration of the device. Values along the X, Y and Z axis are utilized to 

detect motions such as swinging, tilting, vibration, etc. Figure 2 shows the orientation of the 

axis of a triaxial accelerometer with respect to the device. Values provided over the three axes 

also include the gravitational acceleration of the earth (g = 9.81 m/s2). If the mobile device is at 

rest, it would only show the gravitational acceleration over one of the axes based on the 
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orientation. A gyroscope, on the other hand, makes use of angular velocity to calculate the 

rotation or twist in a smartphone device. The rate of rotation is measured in rad/s along the three 

axes. While an accelerometer detects directional movement, a gyroscope detects the lateral 

orientation of the device. Both the sensors are used to measure the rate of change, but for 

different things.  

 

Fig 2. Axis orientation of a smartphone device 

Anguita et al. captured the sensor signals at a constant rate of 50Hz and were subsequently 

preprocessed to reduce noise. The signals were preprocessed for noise reduction with a median 

filter and a 3rd order low-pass Butterworth filter with a 20Hz cutoff frequency. The Butterworth 

filter was used to separate the acceleration signal into body acceleration and gravitational 

acceleration. The processed signals were sampled into a fixed window of length 2.56 seconds 

with a 50% overlap. Each window had 128 data points for each of the original features recorded, 

which are body acceleration, body gyroscope and gravity acceleration over X, Y and Z axis. 

The windowed inertial signals were feature engineered and several, time and frequency, features 

were extracted from each window. Feature engineering resulted in a feature vector of 561 

elements. The authors randomly split the dataset in a 70:30 ratio which created a distribution of 
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21 subjects for training and 9 subjects for testing. The training dataset has a total of 7352 

windows of data while the testing data set has 2947 windows of data. The HAR process becomes 

clear where a window of activity, specifically 2.56 seconds of activity, is predicted for a new 

user by a model trained over a trace of activity from known subjects. 

 

5.2 Feature Selection 
 

Feature selection is an important concept in machine learning which is applied as part of 

the pipeline. It is the concept of automatically or manually selecting a set of features which 

contribute to improving the model and the prediction output. This step is undertaken as it 

immensely impacts the performance of the model in terms of the build time as well as the 

accuracy. Irrelevant features in the dataset can negatively influence the training as it makes the 

model train on data which do not contribute to reaching the predictive output. The impact is 

quite often seen on the accuracy as the irrelevant data acts just as noise. Feature selection 

provides benefits by reducing overfitting, improving accuracy and reducing training time. By 

applying feature selection, we reduce the dimensions of the dataset. This is often misunderstood 

as dimensionality reduction which is not the case. Dimensionality reduction techniques often 

combine features together to reduce the dimensions, while feature selection techniques eliminate 

attributes without affecting the rest. Two techniques of feature selection are discussed in the 

following sections.  

 

5.2.1 Tree-Based Feature Selection: 

 

Feature importance is an important property which comes along with tree-based 

classifiers such as decision trees or random forests. The property of the model gives you the 

importance of each feature with the dataset and enables us to determine the influence of the 
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feature on the prediction. Higher the score of the feature relates to a greater influence on the 

positive output. The unimportant features are discarded based on a threshold value.  

5.2.2 L1 Based Feature Selection: 

 

L1 based feature selection utilizes the coefficients of regression models for the selection 

and interpretation of features. The idea behind this technique is that features which are 

uncorrelated to the prediction variable will have their coefficients close to or equal to zero and 

important features would high coefficients. Linear models which are penalized with the L1 norm 

produce sparse solutions. As each non-zero coefficient contributes to the penalty, the L1 

regularization forces weak features to zero and are discarded. For classification Logistic 

Regression or LinearSVC models are used while for regression Lasso model is used. The 

parameters C or alpha control the sparsity or the number of features selected. 

 

5.3 Machine Learning Algorithms: 
 

The following section discusses the various machine learning used in the experiments. 

5.3.1 Decision Tree Classifier: 

 

A popular machine learning model, decision trees uses a tree-like structure to represent 

decisions. They are constructed in a top-down structure with the use of metrics such as Gini 

impurity and information. It calculates the importance of each feature and uses it to split the 

elements into homogenous subsets. The nodes represent the condition of the split and the leaf 

nodes represent the decision or the predicted output. The branches or the edges of the tree direct 

to one of the output variables. Decision trees are modeled for both, classification and regression 

problems. Though the decision tree is easy to understand it tends to overfit as it continues to 

split on attributes and trains critically on the training data. To avoid overfitting the decision tree 

is generally pruned to stop it from growing too deep.  
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Fig 3. General decision tree structure for classification 

 

5.3.2 Random Forrest Classifier: 

 

Random Forest Classifier builds a forest which is an ensemble of decision trees. It 

creates a set of decision trees from a randomly selected subset of the training data and 

aggregates the decision from all the trees to decide the final output. This technique is robust as 

it prevents the noisy output of some trees affecting the final decision and avoids overfitting. It 

cancels out the bias by averaging all the predictions. Random forest is differentiated from 

decision trees as it does not search for the best feature while splitting the node. It instead 

searches for the most appropriate feature from a subset of features. This provides diversity and 

randomness to the algorithm. The algorithm can be easily modeled to both, classification and 

regression problems.  
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Fig 4. General random forest structure for classification 

 

5.3.3 Artificial Neural Network: 

 

Artificial Neural Network is a system inspired by the biological neuron structure of the 

brain. The structure can be defined as a set of connected neurons organized in consecutive 

layers. The input layer acts as the first layer which brings in the data into the network. The 

hidden layer consists of artificial neurons which take in a set of weighted inputs and apply an 

activation function to produce an output. There could be multiple hidden layers in a network 

which makes it capable to solve complex problems. The output of a layer of neurons is passed 

on as the input to the successive layer and is termed as a feed forward network. The output layer 

provides the final predictive output.  
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Fig 5. General Structure of Artificial Neural Network 

Activation functions core logic of the neural networks and defines the output of the 

neuron given an input or a set of inputs. Following are the different activation functions: 

• Sigmoid: 

The sigmoid function has a characteristic ‘S’ shaped curved and is widely used in binary 

classification. The function generates a probability output between 0 and 1 for a set of input. 

 

 

Fig 6. Sigmoid Curve 
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• ReLU: 

Rectified Linear Units are most commonly used in the hidden layers of the artificial 

neural networks. The function is such that if the input is less than zero the output is 0 and if 

the input is greater than zero it gives the input itself as the output.  

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) 

 

Fig 7. ReLU Curve 

 

• Softmax: 

The softmax activation function is used for multi-class classification. It calculates the 

probability distribution of each class over all possible target classes. Based on the calculated 

probabilities it determines the output for a given set of inputs.  

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) =
𝑒𝑗

∑ 𝑒𝑖𝑖

 

 



SENSOR-BASED HUMAN ACTIVITY RECOGNITION USING SMARTPHONES 

22 
 

5.3.4 Recurrent Neural Network: 

 

Recurrent Neural Networks are the only networks with internal memory which makes 

them robust and powerful. The network can be precise about the next prediction as they have 

the ability to remember significant bits of the input due to the internal memory. This makes the 

model highly preferable to train sequential data like text, audio, video and time series. A feed-

forward network does have any memory of the previous input and works only on the current 

input. In a recurrent neural network, the current is considered along with the past learnings. 

Weights are applied to both the current input and the looping back output and are adjusted 

through gradient descent or backpropagation. 

 

Fig 8. General Structure for Recurrent Neural Network 

• Long Short Term Memory (LSTM): 

Recurrent Neural Networks usually have a short memory and are extended by LSTM 

units to extend the memory of the network. It enables the network to remember input over a 

longer period of time which makes it an essential unit in the layers of the recurrent neural 

network. It provides the capabilities to absorb more information from even longer sequences of 

data. This helps to boost the precision of the prediction by taking into account more data. 
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5.4 Frameworks 
 

5.4.1 Pandas:  

 

Pandas, an open source Python library, provides a framework to construct data into a 

tabular form and perform a row, column and cell transformations. It is a useful tool load, analyze 

and mine data for insights and also structure it in a form to be consumed by machine learning 

algorithms. 

5.4.2 NumPy:  

 

NumPy, an open source Python library, is used along with the pandas library to handle 

multidimensional data and perform complex scientific and mathematical operations on the data. 

5.4.3 Scikit-learn:  

 

Scikit – learn is Pythons open source machine learning library. It provides the 

capabilities to easily build various regression, classification and clustering algorithms. It allows 

to create pipelines and validate output with a variety of evaluation metrics. The library also 

always to customize the algorithms by hyper tuning the parameters of the models. It also 

contains algorithms which are used to preprocess data, extract features and reduce dimensions. 

5.4.4 Keras: 

 

Keras is an open source neural network API in Python which can run on top Theano, 

CNTK, and TensorFlow. It provides a layer of abstraction to the complexities of creating a 

neural network and which augments the process of fast experimentation. It is well suited to 

create recurrent networks and convolutional networks. 
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6 Experiments and Results 
 

6.1 Data Analysis: 

 

The dataset was converted in a CSV file and imported into a pandas data frame. The only 

preprocessing required was to combine the subjects and activity columns to their respective 

windowed features. Upon exploration, it was found that the dataset did not have any missing 

values. The data set was explored further to understand the various features and their effects on 

the activities. The training dataset has a total of 7352 observations or windows of data. It has a 

total of 561 time and frequency features where each observation corresponds to one of the 6 

ambulatory class activities. The 6 activities are as follows: 

• Class 1 - Walking  

• Class 2 - Walking Upstairs 

• Class 3 - Walking Downstairs 

• Class 4 - Sitting 

• Class 5 - Standing 

• Class 6 – Laying 

 

The dataset was investigated to check the balance between the activity’s observations 

performed by the 30 subjects. The count and graph analysis showed that the distribution of the 

classes ranged 13% and 19% for both, the training and test data. Though the data distribution is 

not equal for all activities, they are closely balanced. Table 1 gives us the distribution of each 

class activity for the training and test data. Figure 9. plots the count of activities for the training 

data set and Figure 10. displays the count of activities recorded for the test data. The graphs 

clearly indicate that the activity ‘laying’ has the maximum number of observations recorded and 

‘walking downstairs’ has the minimum. This observation can similarly be seen in the training 

dataset too. 
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Training Data 

Class Count Percentage 

Walking 1226 16.676 

Walking Upstairs 1073 14.595 

Walking Downstairs 986 13.411 

Sitting 1286 17.492 

Standing 1374 18.689 

Laying 1407 19.138 

  

Testing Data 

Class Count Percentage 

Walking 496 16.831 

Walking Upstairs 471 15.982 

Walking Downstairs 420 14.252 

Sitting 491 16.661 

Standing 532 18.052 

Laying 537 18.222 

 

Training and Testing Data 

Class Count Percentage 

Walking 1722 16.72 

Walking Upstairs 1544 14.992 

Walking Downstairs 1406 13.652 

Sitting 1777 17.254 

Standing 1906 18.507 

Laying 1944 18.876 

 

Table 1. Percentage Distribution of Activities 

 

Though the observations for each activity are not exactly equal the data set overall 

provides a well-balanced distribution of the activity observations. Even after the separation of 

the data into the training and testing dataset, the balance in observation holds true. The count of 

observations for certain activities such as walking up the stairs or downstairs helps us understand 

that the subjects did not carry out the task for a specific time but instead for a fixed distance. 

Different walking styles has lead to a recording a different count of observations for each 

subject. 
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Fig 9. Frequency of Activities in Training Dataset 

 
Fig 10. Frequency of Activities in Testing Dataset 
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The next set of analysis is carried out to understand the variation in data for each activity. 

The experiments were carried out on the data recorded only for subject 15. The feature of ‘Mean 

Body Acceleration’ along the X, Y, Z axis was documented as a scatter graph. The graph in 

Figure 11 and Figure 12 indicates that the mean value of the body acceleration is more variable 

for the activities of walking, walking upstairs and walking downstairs than the passive activities 

of sitting, standing and laying.   

 

 
Fig 11. Mean Body Acceleration – X Axis Scatter Plot 
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Fig 12. Mean Body Acceleration – Y Axis Scatter Plot 

 

The maximum acceleration feature along the X, Y and Z axis for subject 15 is plotted 

and analyzed next. Analysis indicates that there is a clear distinction in the maximum values 

between the passive and active activities as all the passive activities fall below the active ones. 

The analysis from Figure 13 reveals that values along the X-axis can help us differentiate 

between walking, walking upstairs and walking downstairs but does not provide any insights 

into the passive activities. This provides a certain indication that the acceleration alone is not 

sufficient enough for ambulatory activity recognition but data from a different sensor such as a 

gyroscope would help in differentiating among the passive activities. Figure 14 is the graph 

plotted for feature ‘Angle(X, GravityMean)’. The plot shows a clear distinction for the ‘Laying’ 

activity from the other classes. In a similar way, other features engineered provide important 

insights into recognizing human activities. 
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Fig 13. Max Body Acceleration – X Axis Scatter Plot 

 

 
Fig 14. Angle (X, GravityMean) Scatter Plot  
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6.2 Machine Learning Model Evaluation 
 

6.2.1 Feature Selection and Classification Model Evaluation 

  

A comparative analysis was carried on four classifiers to understand the improvement in 

the model after the feature selection. The four classification algorithms experimented on are the 

Decision Tree Classifier, Random Forrest Classifier, Gradient Boosting Classifier, and the 

Artificial Neural Network. The results were compared to the metric of the time taken to build 

and train the model and the accuracy of the model. We use the tree-based feature selection and 

L1 based feature selection methods to reduce the dimensions of the feature dataset. From the 

561 features from the original dataset, 91 features were selected by the Tree-Based feature 

selection method and 108 features were selected by the L1 based feature selection method. Table 

2 lists the method of feature selection and the resulting feature dimensions. 

Feature Selection Method Features Selected 

Tree-Based Feature Selection Dataset shape (7352, 91) 

L1 - Based Feature Selection Dataset shape (7352, 108) 

Table 2. Feature Selection Method and Resulting Dimensions 

 

The L1 - Based feature selection keeps more features than the tree-based method and the 

execution time is far less than the tree-based feature selection method. For the L1 based feature 

selection, variable C had a value of 0.01. Tuning this parameter further could have enabled to 

select more distinct and important features.  

To build the models of the Random Forrest Classifier and Gradient Boosting Classifier 

a value of 200 was set for the variable ‘n_estimators’. Upon experimenting with values of 100, 

200, 300, 400 and 500 for the variable ‘n_estimators’ it was noticed that the accuracy did not 

increase after the value of 200 and hence it was considered as the base case for a set of 
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experiments.  The artificial neural network was built using the Keras library using Tensorflow 

as its backend. The network was configured to have two hidden layers with 40 hidden units in 

each with the “ReLU” activation function for each neuron. The output layer was configured to 

utilize a ‘Softmax’ activation and the ‘Adam’ optimizer was used to boost accuracy. The model 

was compiled to run over 500 epochs with a batch size of 20 using ‘Categorical Cross Entropy’ 

as its loss function. Table 3 summarizes the accuracy of each model and Table 4 summarizes 

the build and prediction time for each classification model. 

Model Accuracy Summarization 

  
No Feature 

Selection 

Tree-Based 

Feature Selection 

L1-Based Feature 

Selection 

Decision Tree 

Classifier 
85.78% 82.91% 84.08% 

Random Forrest 

Classifier 
92.80% 89.71% 90.22% 

Gradient Boosting 

Classifier 
94.06% 92.29% 92.60% 

Artificial Neural 

Network 
94.77% 92.63% 93.41% 

 

Table 3. Model and Accuracy Summarization 

 

Model Build Time Summarization 

  
No Feature 

Selection 

Tree-Based 

Feature Selection 

L1-Based Feature 

Selection 

Decision Tree 

Classifier 
4.279s 0.724s 0.759s 

Random Forrest 

Classifier 
21.44s 8.019s 8.733s 

Gradient Boosting 

Classifier 
252.89s 51.39s 56.10s 

Artificial Neural 

Network 
33.74s 22.79s 16.65s 

 

Table 4. Build and Predict Time Summarization 
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Fig 15. Accuracy by Models and Selection Process  

 
 

The graph in Figure 15 indicates that with feature selection, the accuracy does not reduce 

considerably. This indicates that the overall accuracy of the model is not compromised by 

shrinking the size of the data set. The feature selection methods are sound techniques for 

selecting impactful features and also preventing overfitting. Improving and tuning the 

parameters of the feature selection techniques should provide the capabilities to improve 

performance too. 

The graph in Figure 16 shows a decrease in time for building the model and predicting 

the values with the use of feature selection. This indicates an increase in efficiency, without 

endangering the accuracy of the model. For classifiers such as Decision Trees, there is not a 

drastic change in execution time. But for more complex models such as Gradient Boosting 
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Classifiers and Artificial Neural Network, there is a significant time difference with and without 

feature selection. Gradient Boosting Classifier works in a forward additive fashion with the 

features being randomly permuted and split at each stage. It continues the process till it improves 

on the loss function. The classifier build time reduces considerably when smaller set of the data 

containing the important features are inputted to the model. The model builds faster as it requires 

less iterations to improve accuracy. Similarly, for the artificial neural network, less misleading 

data would help improve on the loss function faster and a smaller input vector would require a 

smaller number of computations at each neuron. We do not see a critical time difference for 

Decision Trees as the model first calculates the information gain of each feature and splits the 

tree on those features where the information gain is the maximum. It carries out the same process 

for the feature selected dataset and hence we do not see a substantial improvement in build time. 

 
Fig 16. Time by Models and Selection Process 
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6.2.2 Long Short-Term Memory Network (RNN - LSTM): 

 

An LSTM network model is developed to recognize human activity from the raw inertial 

signals instead of using feature engineered data. This experiment was carried out to test the 

ability of the network to learn features from a sequence of time series data and validate if it can 

recognize human activities from the features it extracts. The raw inertial signals are made of 

three main signals, body acceleration, total acceleration and body gyroscope with each attribute 

recording data over the three axes’ (X, Y and Z). For a window of 2.56 seconds or 128 timesteps, 

9 variables are recorded to give a total of 1152 elements (9*128) for each row of data. RNN-

LSTM’s are suitable for time series data as they have the ability to learn and remember over 

long sequences of data. The ‘Smartphone Human Activity Recognition’ dataset is a good fit for 

an LSTM network because it is intended to be used with sequences of data, up to 400 timesteps. 

Instead of manually engineering features, the RNN-LSTM learns from the time series signals 

directly and can achieve comparable results to models which are built on feature engineered 

data.  

Each axis of each signal is stored in a different file, with a total of 9 files each for training 

and testing data. The training and testing data are loaded in a separate single three-dimensional 

NumPy array (samples, timesteps, features). The functionality of the NumPy library allows to 

stack features and create a single 3D array. The output variable, which is an integer representing 

one of the 6 activities, is one hot encoded to make it suitable to fit a multi-class neural network 

model.  

The RNN-LSTM model is built using the Keras library and is defined as a Sequential 

Keras model. The model first has a single hidden LSTM layer which is used to extract features 

from the sequence of input data. A dropout layer is added to the model to reduce overfitting on 
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the training data. Next, a fully connected dense layer is added to the model which interprets the 

features followed by an output layer which gives out the final predictions of the human activity. 

‘Categorical Cross Entropy’ is used as a loss function along with an ‘Adam’ optimizer to boost 

accuracy and optimize the network. ‘Categorical Cross Entropy’ is a commonly used loss 

function for classification tasks while the ‘Adam’ optimizer is well suited for large datasets as 

they are computationally efficient and require less memory. The ‘ReLU’ activation function is 

used in the dense layer with a ‘Softmax’ activation function for the output. The ReLU activation 

function overcomes the trouble of vanishing gradients and is hence preferred over Sigmoid and 

Tanh activation functions. The ‘Softmax’ activation function provides a probability distribution 

over all the classes and reacts well to low and high simulation. The model is run for a total of 

15 epochs with a batch size of 64 samples. Generally, sequence data is not shuffled for an LSTM 

neural network, but for this particular experiment, the windows of time series data are shuffled. 

This is carried out as the focus is to learn features across time steps in a window and not across 

multiple windows.  

As neural networks are stochastic, it is difficult to judge the evaluation from a single 

execution and hence the LSTM network is evaluated a total of 10 times. The results are 

summarized in Table 5. The model runs well, achieving an aggregate accuracy of 90.19% with 

a standard deviation of 0.994. The accuracy shows us the single-layered LSTM model evaluated 

over raw signal inputs is at par with other classification models which are built over feature 

engineered data. Table 6 provides a comparison chart of the accuracy achieved by different 

models built over the feature engineered dataset and accuracy achieved by the LSTM network 

over the raw inertial signal data. The LSTM model achieves greater accuracy than the original 

paper [26] which published an accuracy of 86% using a modified SVM classification algorithm.  
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RNN - LSTM Model Evaluation 

Evaluation Run Accuracy 

1 90.13% 

2 88.70% 

3 90.09% 

4 91.42% 

5 91.65% 

6 89.41% 

7 89.79% 

8 89.72% 

9 91.69% 

10 89.31% 

Aggregate 90.19% 

 

Table 5. RNN-LSTM Model Evaluation over 10 runs. 

 

Accuracy Comparison Chart 

Feature Engineered Dataset Raw Inertial 

Signals Dataset 

Decision Tree Random Forrest Gradient Boosting 

Classifier 

ANN LSTM – RNN 

Network 

85.78% 92.80% 94.06% 94.77% 90.19% 

 

Table 6. Accuracy Comparison Chart 
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7 Conclusion and Future Work 
 

7.1 Conclusion: 

 

In this research paper, we have presented the general architecture utilized to build human 

activity recognition systems and emphasized the design issues such as selection of sensors, 

obtrusiveness, flexibility, etc. which are independently evaluated based on the kind of system 

which is being developed. The paper further focuses on the importance of selecting important 

features from the data and provides a quantitative analysis of the metrics of execution time and 

accuracy. Tree-based and L1-based feature selection methods were utilized to select important 

features and were evaluated over four classification models. The results indicate that without a 

compromise in accuracy, the execution time and computational cost are greatly reduced with 

the use of feature selection methods. Better feature selection methods and improvement in 

tuning the parameters can assist further to improve accuracy and decrease computational cost. 

The research paper also provides a solution to reduce and eliminate the dependency of the 

requirement of domain knowledge to create hand-crafted features from the raw signals obtained 

from the sensor data. We have successfully shown that with the use of the LSTM network model, 

built to train on the sequences of raw inertial signals, features can be learned automatically by 

the network, and a significant accuracy is achieved. The accuracy achieved through the use of a 

recurrent neural network on raw signal data is at par with other classification models which are 

built on handcrafted features. Adding further layers to the network or increasing the complexity 

would further boost the recognition accuracy of the deep learning algorithm.  
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7.2 Future Work 
 

For HAR systems to reach their full potential, more research is required. Comparison 

between HAR systems is hindered and becomes unquantifiable as each researcher uses a 

different dataset for activity recognition. A common public dataset would help researchers 

benchmark their systems and evolve the system altogether. Activities recognized in existing 

systems have been simple and atomic, which could be a part of more complex composite 

behaviors. Recognition of composite activities can enrich context awareness. There is also a 

great research opportunity to recognize overlapping and concurrent activities. Expanding on the 

work carried out on deep learning algorithms, one dimensional and two-dimensional 

convolutional neural networks, hybrids of convolutional networks and LSTMs should be further 

studied to determine their suitability to solve the problem of human activity recognition from 

raw signal data. Existing HAR systems are mainly focused on individual activities but could be 

extended further towards recognizing patterns and activity trends for a group of people with the 

use of social networks. Finally, recognition systems which could predict actions before they 

take place by the user could be a revolutionary development in certain applications. 

  



SENSOR-BASED HUMAN ACTIVITY RECOGNITION USING SMARTPHONES 

39 
 

References 
 

[1] A. Perez, M. Labrador, and S. Barbeau, “G-Sense: A Scalable Architecture for Global 

Sensing and Monitoring,” IEEE Network, vol. 24, no. 4, pp. 57–64, 2010. 

[2] L. C. Jatoba, U. Grossmann, C. Kunze, J. Ottenbacher, and W. Stork, “Context-aware 

mobile health monitoring: Evaluation of different pattern recognition methods for 

classification of physical activity,” in 30th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, pp. 5250–5253, 2008. 

[3] G. Tanaka, M. Okada, and H. Minemo, “GPS-Based Daily Context Recognition for 

Lifelog Generation Using Smartphone,” in (IJACSA) Int. Journal of Advanced Computer 

Science and Applications, vol. 6, no. 2, 2015. 

[4] M. Berchtold, M. Budde, D. Gordon, H. Schmidtke, and M. Beigl, “Actiserv: Activity 

recognition service for mobile phones,” in International Symposium on Wearable 

Computers, pp. 1–8, 2010. 

[5] D. Riboni and C. Bettini, “Cosar: Hybrid Reasoning for Context-Aware Activity 

Recognition,” Personal and Ubiquitous Computing, vol. 15, pp. 271–289, 2011. 

[6] T. Brezmes, J. Gorricho, and J. Cotrina, “Activity Recognition from Accelerometer Data 

on a Mobile Phone,” in Distributed Computing, Artificial Intell., Bioinformatics, Soft 

Computing, and Ambient Assisted Living, vol. 5518 of Lecture Notes in Computer 

Science, pp. 796–799, Springer Berlin / Heidelberg, 2009. 

[7] L. Bao and S. S. Intille, “Activity Recognition from User-Annotated Acceleration Data,” 

in Pervasive, pp. 1–17, 2004. 

[8] Y. Hanai, J. Nishimura, and T. Kuroda, “Haar-Like Filtering for Human Activity 

Recognition Using 3D Accelerometer,” in IEEE 13th Digital Signal Processing 

Workshop and 5th IEEE Signal Processing Education Workshop, pp. 675–678, 2009. 

[9] Z. He and L. Jin, “Activity Recognition from Acceleration Data Using AR Model 

Representation and SVM,” in Int. Conf. on Machine Learning and Cybernetics, vol. 4, 

pp. 2245–2250, 2008. 

[10] R. Olszewski, C. Faloutsos, and D. Dot, “Generalized Feature Extraction for Structural 

Pattern Recognition,” in Time-Series Data. 2001. 

[11] O. Lara, M. Labrador, "A survey on human activity recognition using wearable 

sensors", IEEE Common. Surveys Tuts., vol. 15, no. 3, pp. 1192-1209, 2013. 

[12] J. Kwapisz, G. Weiss and S. Moore, “Activity Recognition using Cell Phone 

Accelerometers,” in ACM SIGKDD Explorations Newsletter, vol. 12, issue 2, Dec 2010  

[13] C. Williams and J. Mathew, “An Architecture for Mobile Context Services,” in Lect. 

Notes in Electr. Eng., vol 313, Springer, Cham, 2015, pp. 61-68.  



SENSOR-BASED HUMAN ACTIVITY RECOGNITION USING SMARTPHONES 

40 
 

[14] Z. Wei, R.H. Deng, J. Shen, J. Zhu, K. Ouyang, and Y. Wu, “Multidimensional Context-

Awareness in Mobile Devices,” MultiMedia Modeling: 21st Int. Conf. MMM 2015, pp. 

38-49, Jan. 2015.  

[15] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity recognition and 

monitoring using multiple sensors on different body positions,” in Int. Workshop on 

Wearable and Implantable Body Sensor Networks, (Washington, DC, USA), IEEE 

Computer Society, 2006. 

[16] E. Tapia, S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and R. Friedman, “Real-

time recognition of physical activities and their intensities using wireless accelerometers 

and a heart monitor,” in Int. Symposium on Wearable Computers, 2007 

[17] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korhonen, “Activity 

classification using realistic data from wearable sensors,” in IEEE Trans. on Inf. Technol. 

in Biomedicine, vol. 10, no. 1, pp. 119–128, 2006. 

[18] A. Khan, Y.-K. Lee, S. Lee, and T.-S. Kim, “A triaxial accelerometer-based physical-

activity recognition via augmented-signal features and a hierarchical recognizer,” in 

IEEE Trans. on Inf. Technol. in Biomedicine, vol. 14, no. 5, pp. 1166–1172, 2010. 

[19] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, “Using mobile 

phones to determine transportation modes,” ACM Trans. on Sensor Networks, vol. 6, no. 

2, pp. 1–27, 2010. 

[20] O. D. Lara, A. J. Perez, M. A. Labrador, and J. D. Posada, “Centinela: A human activity 

recognition system based on acceleration and vital sign data,” Journal on Pervasive and 

Mobile Computing, 2011. 

[21] K. L. Huang, S. S. Kanhere, and W. Hu, “Preserving privacy in participatory sensing 

systems,” Computer Communications, vol. 33, no. 11, pp. 1266–1280, 2010. 

[22] I. J. Vergara-Laurens and M. A. Labrador, “Preserving privacy while reducing power 

consumption and information loss in lbs and participatory sensing applications,” in IEEE 

GLOBECOM, 2011. 

[23] M. Berchtold, M. Budde, H. Schmidtke, and M. Beigl, “An extensible modular 

recognition concept that makes activity recognition practical,” in Advances in Artificial 

Intelligence, Lecture Notes in Computer Science, pp. 400–409, Springer Berlin / 

Heidelberg, 2010. 

[24] O. D. Lara and M. A. Labrador, “A mobile platform for real-time human activity 

recognition,” in IEEE Conference on Consumer Communications and Networks, 2012. 

[25] C. Zhu and W. Sheng, “Human daily activity recognition in robot-assisted living using 

multi-sensor fusion,” in IEEE International Conference on Robotics and Automation, pp. 

2154–2159, 2009. 



SENSOR-BASED HUMAN ACTIVITY RECOGNITION USING SMARTPHONES 

41 
 

[26] D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz, “Human Activity Recognition 

on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine,” in 

Ambient Assisted Living and Home Care, Lecture Notes in Computer Science, vol 7657. 

Springer, Berlin, Heidelberg, 2012 

[27] J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu, “Deep learning for sensor-based activity 

recognition: A survey,” in Pattern Recognition Letters, vol. 119, pp. 3-11, Mar 2019. 

 


	San Jose State University
	SJSU ScholarWorks
	Spring 5-20-2019

	Sensor - Based Human Activity Recognition Using Smartphones
	Mustafa Badshah
	Recommended Citation


	tmp.1558368111.pdf.k3GZP

