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ABSTRACT

Benchmarking Optimization Algorithms for Capacitated Vehicle Routing Problems

by Pratik Surana

The Vehicle Routing Problem (VRP) originated in the 1950s when algorithms

and mathematical approaches were applied to find solutions for routing vehicles. Since

then, there has been extensive research in the field of VRPs to solve real-life problems.

The process of generating an optimal routing schedule for a VRP is complex due to

two reasons. First, VRP is considered to be an NP-Hard problem. Second, there are

several constraints involved, such as the number of available vehicles, the vehicle

capacities, time-windows for pickup or delivery etc.

The main goal for this project was to compare different optimization algorithms

for solving Capacitated Vehicle Routing Problems (CVRP). The three specific aims

for this project were to (1) survey existing research and identify suitable optimization

algorithms for CVRP and (2) implement a work-flow in the Python programming lan-

guage, to evaluate their performance, (3) perform different computational experiments

on existing CVRP benchmarks.

Experiments were conducted by leveraging Google’s OR-Tools library on the

well-known benchmarks. Different strategies were evaluated to see if there exists a

solution or a better solution than the best-known solutions for these benchmarks.

The results show that almost 60% of the problems in the benchmarks have a better

solution than the current best-known solution. The second finding of this project is

that there is not one strategy which can provide the best solution for all types of

CVRPs.
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CHAPTER 1

Introduction
1.1 Background and Significance

There are several types of problems based on transportation routing and scheduling

that involve assigning vehicles to delivery or pickup jobs which aims at minimizing

the assignment cost and overall routing cost. These problems are important to

manufacturing industries, service and transportation companies, such as courier mail,

on-demand transportation and taxi services. Below, I describe some of the applications

of these problems.

In a Dynamic Travelling Repairman problem, the total traveled distance is

minimized and/or the urgency of the call is prioritized to determine the route for the

repairman. Scheduling a route to repair broken bank teller machines in urban and

remote areas is an example of such problems.

In a Dynamic Dial-a-Ride problem, one or more commodity kinds or clients

must be picked up at one place and delivered to another location. Transport facilities

for the elderly and disabled are instances of these issues where clients call for service

one day before the desired journey takes place.

In a Courier Mail service problem, mail and/or packages are picked up from

one location and delivered to some other location in a certain time limit. The mail /

packages to be supplied are often not local, but they are shipped from other towns or

countries. The shipments are therefore delivered to a centre first and then circulated

to other locations from this centre. Before cars leave the facility, all receiving places

are known to the driver and the dispatcher. But, the dispatcher and the drivers are

uncertain about the pick-ups to be handled during the deliveries.

In Taxi Cab applications, the number of dynamic customers is quite large.

Hence the planner does not know all customers before the taxi cab leaves the taxi hub.

1



To get the most number of customers the driver chooses to get back to the centrally

located taxi stand rather than waiting at the last customer location as there are more

chances of the taxi being requested from the central location. The central location

and the dispatch center is shared by all the contractors. Then, based on the number

of taxi cabs owned by each contractor, customers are then assigned to the taxi.

All mentioned applications belong to special type of optimization problems,called

the Vehicle Routing Problems.

1.2 Vehicle Routing Problems

Vehicle Routing Problem (VRP) is a class of planning problems, which include

Static Vehicle Routing Problem (SRP) and Dynamic Vehicle Routing Problem (DVRP)

[1]. Inputs to VRP are either deterministic or known with certainty or known with

uncertainty, or probabilistic, i.e. follow some probability distribution.

In the classical VRP a set of routes are found, the costs of which are aimed to be

minimal. The starting location and ending locations of the route are the same, called

depot, to fulfill the demands at each node. The capacity of the vehicles is limited and

each node is visited only once by one vehicle. There also exists come constraints on

the maximum travelling time in some types of VRPs [2, 3]. The Travelling Salesman

Problem (TSP) is an example of VRP. Recall that for the TSP, we are given a set

of cities and the cost of travel between each pair. The goal of TSP is to find the

cheapest route to visit and return to the starting point. Each city needs to be visited

exactly once. A route consists in the order in which the cities are visited [4].

The VRP can be defined more formally as follows:

Input:

• A set of locations C.

• K vehicles available in a depot.
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• The cost of a travel from location i to location j.

Assumptions:

• The fleet of vehicles is homogeneous, i.e. all vehicles are of the same size and

capacity.

• Depot is denoted by two nodes, node 0 and node n+1.

Constraints:

• The starting node of each route should be a depot and after visiting a subset of

nodes the route should end at the depot.

• Each node can be visited exactly once in any given route

• Each vehicle has a maximum capacity Q, which limits the number of nodes it

can visit before returning to the depot. Each node has a demand qi , such that

qi > 0 for each i 𝜖 C and q0 = qn+1 = 0.

Output:

• A route scheduled for the entire time period with the locations to be visited, the

order in which they need to be visited and the vehicles assigned to visit each

location.

Optimization:

• Minimization of the total cost of the route.

Next, I will review a few differences between static VRP and dynamic VRP. The

assumption in SVRP is that all data appropriate to route scheduling is known to the

planner before the routing process starts. In addition, routing-related data will not

alter after the paths have been generated. The included attributes of the customers

may be predetermined, such as time of service, their geographic location and the

duration of the trip. For example, in Courier Mail Service companies, packages are

shipped to various locations from a central hub and all the recipients are known by

the dispatcher before the vehicles leave the hub.
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In DVRP, the planner does not have all the information when the routing process

is done. Also, there can be additional changes in the information even after the initial

routes have been generated. For example, in Taxi Cab services, very few customers

are pre-planned and known before the departure of the vehicle. Most of the customers

are added dynamically after the vehicle has been dispatched from the depot. And thus,

the DVRP is much more of a complex problem than SVRP. It can be said that SVRP

is a subset of DVRP and is denoted as P(SVRP) ⊂ P(DVRP) where the problem

class of SVRP is denoted by P(SVRP) and the problem class of DVRP is denoted by

P(DVRP) [1].

In comparison with SVRP, DVRP presents several additional challenges, such

as abiding by time window constraints, managing addition of new customers at real

time, managing additional assumptions and constraints at real time, handling different

geographical locations, calculating shortest paths each time a new customer is added,

updating real-time locations of the vehicles and the customers, working with missing

data items, optimizing the costs involved, and so on (Table 1). Applications of DVRP

typically involve near term events and not long-term events. The real time information

can be available locally (e.g. Only with the dispatcher) or globally (e.g. With the

driver along with the dispatcher) and information processing can be centralized or

decentralized [1].

Both, SVRP and DVRP are NP-hard problems, i.e. not solvable in polynomial

time [5]. Therefore, several heuristic solutions to SVRP and DVRP have been

proposed.

1.3 Problem Definition

The main objective of this project is to research the process of transportation

scheduling and to evaluate several scheduling algorithms. The process of creation a

4



Table 1: Comparison of Static and Dynamic Vehicle Routing Problems [1]

SVRP DVRP
All information known is complete and
unchangeable prior to planning the route

Little or no information is known
prior to planning the route

No updates of information are needed Information needs to be up to date
at any given point of time

The start and end positions in a route
are known

No specific start and end locations are
defined making it an unbounded and
continuous process

Focus of the planner is well defined and
all events carry the same weight

Planner focuses more on near-future
and short-term events

There are no updates at real time,
so it does not require an update
mechanism to be in place

Information update mechanism
should be in place to be able to change
the solution at real time

The dispatcher must evaluate and
assign decisions just once at the beginning

The dispatcher must re-evaluate and
re-assign the decisions according to the
changes being updated at real time

It may be possible for the dispatcher
to spend more time to compute and find
the optimal solution for the problem

It may not be possible for dispatcher to
provide optimal or even a feasible solution
to the problem considering the changing
nature of the information

Wait times are irrelevant
Indefinite wait times cannot be afforded
in a dynamic setting as the objective
would not be met at that point of time

The objective function can be well
defined at the time of dispatch

The objective function set at the time of
dispatch can be meaningless if there are
changes made at real time which would
keep changing the objective function
each time

The time gap between planning and
implementation allows for adjusting
the vehicle fleet

There might be a situation where a customer
cannot be serviced with existing vehicles
and may receive a lower quality service

near perfect or an efficient schedule is complex due to two reasons. First, scheduling

is an NP-Hard problem [5, 6]. Second, there are several constraints involved, such

as for example, the amount of time customers should be asked to wait for their ride

to arrive, the number of days to be scheduled, the number of days window prior to

running the scheduling or the maximum number of rides a driver can serve in a day.
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1.4 Report Organization

The report is organized as follows: Chapter 2 covers the literature review, briefly

describing different algorithms which can be used to solve Vehicle Routing Problems.

I go into more specific details for two algorithms which can be used to solve VRP,

namely, Greedy algorithms and Genetic algorithms. Each algorithm has a section

dedicated to it, which give an overview of the algorithms along with their pseudo-

codes. Chapter 3 describes the benchmarks and a computational framework, Google’s

OR-Tools, which were used to evaluate the performance of several algorithms. It also

illustrates the interpretation of the problem and the solution using a toy example.

Chapter 4 describes the experiments performed on the benchmarks and how the results

were generated and analyzed. Chapter 5 then covers the results of the experiments

that were performed using Google’s OR-Tools. Finally, Chapter 6 concludes with

analyzing the results and major findings along with their shortcomings and future

work.
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CHAPTER 2

Literature Review

Only a handful of algorithms can solve VRP. These algorithms can be grouped

into five different categories [7].

Branch and bound algorithms

A divide-and-conquer strategy is used in the branch and bound algorithm which

divides the solution space into local sub-problems and then tries to optimize each

sub-problem individually to get the lower and upper bounds to the local sub-problems

with the overall ultimate goal of finding a global optimal solution [8].

Heuristic algorithms

The heuristic algorithms explore a limited search space to produce good quality

solutions in efficient run times [9]. Genetic Algorithms, Simulated Annealing, Con-

straint Programming, Ant-Colony and Tabu Search are some of the heuristics that

have been applied to solve VRPs [10, 11, 12, 13, 14].

Constructive Methods

In constructive heuristics methods, there exists a minimization function using

which, the customers are selected. The routes are then generated using this function

along with the capacity and the time constraints [15, 16, 17, 18].

Phase Algorithms

Phase algorithms are divided into two main classes: Cluster-First, Route-Second

algorithms [19] and Route-First, Cluster-Second algorithms [20]. In the Cluster-First,

Route-Second approach, the customers are initially clustered together and then for

every cluster a route is generated. In Route-First, Cluster-Second approach, all the

customers are initially considered for generating a tour and then the tour is segmented

into smaller feasible routes.

7



2.1 Greedy Algorithms

A greedy algorithm follows an approach of problem-solving heuristic of approxi-

mating a local solution and in an iterative way trying to find an optimal solution to the

global problem. In most of the cases a greedy algorithm would not product a globally

optimal solution, but it tries to produce a locally optimal solution using reasonable

time. For example, in the case of a travelling salesman problem (which is NP-hard

[4]) is of the following heuristic: "At each stage visit an unvisited city to the current

city with the shortest distance". The algorithm terminates in a reasonable number of

steps which may or may not find the optimal solution as it takes unreasonably many

steps to find the optimal solution for an NP-hard problem [21].

Greedy Algorithm can optimally solve certain problems and for others, the Greedy

Algorithm is just used as a heuristic. [4, 7].

Algorithm 1 Pseudo-code for a general Greedy Algorithm
Result: Feasible Solution

while Stop condition is not reached | All Items are visited; do
Item will be added in a solution set by using some selection function

if the set would no longer be feasible then
Reject items under consideration (and never consider the item again)

else
Add the current item;

end
end

2.2 Genetic Algorithms

In nature, organisms tend to evolve to adapt to the environment. The theory

of natural evolution is the inspiration behind the heuristic optimization method of

Genetic Algorithm (GA) [22]. The algorithm works similar to the process of natural

selection in which the fittest individuals are selected for reproduction to produce

the offspring of the next generation. Researchers have used GAs in the context of
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optimization problems. The idea is to effectively search large complex solutions even

when the problems consist of high-dimensionality, multimodality, discontinuity and

noise [23].

GAs tend to produce better approximations over several iterations on a population

of individuals. A new population is generated through the selection process for

individuals based on their fitness value. Inspired by natural selection, crossover and

mutation are used in GAs. The mutation process may also be applicable to the

offspring. This approach generates a population of evolved individuals which are

better adapted to the environment than their parents.

There are five steps involved in a general GA, namely initialization, fitness

assignment, selection, crossover and mutation Figure 1 .

GA terminology and steps are described below in greater detail.

Encoding

Before a genetic algorithm can be put to work on any problem, a potential solution

for that problem should be encoded in a form amiable to processing by a computer.

In GA terminology, a solution is encoded in a Chromosome consisting of a set of

Genes or a string of values. Usually, binary values are used for encoding the genes in

a chromosome.

Step 1: Initialization

In this step, a set of individuals is generated called a Population. A solution to the

problem which needs to be solved is given by each individual. At the beginning, the

initial population is formed by randomly generating many individual solutions. The

given string length should be of an optimal value that is not too small which would

hinder effective exploration of the search space, and not too large which would result

in reduction of the efficiency of the overall algorithm to find a solution in reasonable

amount of computation [24].

9



Figure 1: Steps in a Generic Genetic Algorithm

Step 2: Fitness assignment

A fitness value is assigned to every individual in the population which decides

its ability of competing with other individuals in the population. The fitness score of

every individual helps to determine the probability of being selected or not for the

next steps in the algorithm or reproduction.

Step 3: Selection

In this step the fittest individuals are selected to pass their genes to the next

generation. Based on their fitness scores, two pairs of individuals or parents are

selected. The roulette wheel selection, also known as the stochastic sampling with

replacement is one of the most used selection methods [23]. All individuals are placed
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on a roulette in which the areas are proportional to their fitness scores.

Algorithm 2 Pseudo-code for roulette wheel selection
Result: Selected pair of individuals

while number of desired individuals are selected; do
r <- random number in the range (0,1)

sumOfProb <- 0

while Iterate over all individuals i in the population: do
if r is in the range of (sumOfProb, sumOfProb + P(X = i)) then

individual i has been selected
end

end
sumOfProb + P(X = i)

end

Step 4: Crossover

In this step the crossover operator will recombine the chosen parents to generate

two offspring. This operator picks two individuals at random with a user-defined

probability and re-combines their chromosomes using a predefined recombination

scheme. .

For example, bit strings of two parent chromosomes are exchanged at random

positions between 1 and L - 1 in one-point crossover operation, where L is the

chromosome’s length. The chromosomes are then split at the selected position and

two offspring are created by exchanging their end parts as shown in Figure 2.

Parent 1 : 1 1 0 | 0 0 1
Parent 2 : 0 1 0 | 1 1 1

Offspring 1 : 1 1 0 | 1 1 1
Offspring 2 : 0 1 0 | 0 0 1

Figure 2: One-point Crossover at position 3

There are other crossover operators, which may be used for non-binary encoding

of chromosomes, such as Partially Mapped crossover, Cycle crossover, Edge recombi-

nation, and so on [25]. For instance, in Partially Mapped Crossover (PMX) swapping
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operations between two cut points are determined which preserve the absolute posi-

tions of elements in the parents. The portions of both parents are mapped with each

other and then there is an exchange of the remaining information. The interchange

mapping is determined by the section between these two positions as shown in Figure

3.

Parent 1 - 0 | 1 0 | 0
Parent 2 - 1 | 0 1 | 1

Selecting cut points at positions before 2 and after 3 gives the mapping 1 <-> 0 and
0 <-> 1.

Offspring 1 - x | 0 1 | x
Offspring 2 - x | 1 0 | x

The corresponding section of the i th parent is copied and filled in the offspring i (i =
1, 2). In case of the same section being already present in the offspring, it is then

replaced as per the mappings.
Offspring 1 - 0 | 0 1 | 0
Offspring 2 - 1 | 1 0 | 1

Figure 3: Partially Mapped Crossover at position 2 and 3

Step 5: Mutation

In this step, the mutation operator processes the bits of the two offspring which

were generated in the crossover step. Random perturbations are introduced in the

search process by the mutation operator to maintain diversity within the population.

A small probability (such as 0.001 for example) is used to apply this operator to each

position. For example, the new bit value changes from 0 to 1 or 1 to 0 when this

operator is applied at a determined position in a binary chromosome as shown in

Figure 4.

Parent : 1 1 0 0 0 1
Offspring : 1 1 0 1 0 1

Figure 4: Simple Mutation at position 4 of the parent

Step 5: Termination

12



The entire population is replaced by a new population whenever a new generation

is created in a simple genetic algorithm. The fitness function is then used to evaluate

the produced offspring again. When the population converges, the algorithm terminates

which means that it no longer produces significantly different offspring in the newer

generations. Evaluation of convergence can be done in different ways. For example,

the algorithm will terminate if any of the following conditions is satisfied.

• No improvement is observed for over a predefined number of iterations

• A predefined number of generations has been reached.

• Fitness function has reached a predefined value.

Illustrated below is how GA can be applied to find a solution to the TSP.

2.2.1 Genetic Algorithms for the Traveling Salesman Problem

Genetic Algorithms have been used to solve TSP [26]. The general framework is

as follows.

Encoding

Given a set of cities, each city is given a unique integer in the range of 0, 1,...,N-1.

Thus, a possible solution is a permutation of the set {0,1,..., N-1}, where the order of

the cities traversed is specified from left to right.

For example: Let us consider a set of 4 cities {1, 2, 3, 4}.

The encoding 3124 encodes the following tour:

City 3 -> City 1 -> City 2 -> City 4

Step 1: Initialization

In the example for TSP initial population is generated in the size of 6 as follows:

• Tour Chromosome 1 - 1 2 3 4

• Tour Chromosome 2 - 2 1 3 4

• Tour Chromosome 3 - 4 3 2 1

13



• Tour Chromosome 4 - 3 4 2 1

• Tour Chromosome 5 - 3 2 1 4

• Tour Chromosome 6 - 1 2 4 3

Step 2: Fitness

The fitness function used for TSP evaluates the cost of completing the entire

tour, which can be measured by the total traveled distance, for example. Thus, given

a tour C1 ,...,CN , the length of a tour is defined as:

𝑙 = dist (𝐶𝑁 , 𝐶1) +
𝑁−1∑︁
𝑖=1

𝑑𝑖𝑠𝑡 (𝑐𝑖, 𝑐𝑖+1) (1)

where dist (C𝑖,C𝑖+1) = distance between the cities i and i + 1,

dist (C𝑛,C1) = total distance of the complete tour.

In order to describe the shorter tours with higher fitness, the inverse of the total

cost of the tour can be chosen as the fitness function:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑙
(2)

Step 3: Selection

With the roulette wheel selection for the TSP problem, the probability for

individual i to be selected:

𝑃 (𝑋 = 𝑖) =
fitness(𝑖)∑︀𝑁
𝑗=0 fitness(𝑗)

(3)

Step 4: Crossover

In the case of TSP, the classical one-point crossover operator cannot be easily

applied. Consider, for example the following two parents.

Parent 1 - 1 2 | 3 4

Parent 2 - 2 1 | 4 3

Suppose these two ordinal tours are crossed in the third and fourth positions the
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following two offspring are created:

Offspring 1 - 1 2 4 3

Offspring 2 - 2 1 3 4

The sub-tours corresponding to the genes in the tours to the left of the crossover

point do not change. However, the sub-tours corresponding to genes to the right of

the crossover points are disrupted. The closer the crossover point is to the front of

the tour, the greater the disruption of the sub-tour in the offspring. Thus, an invalid

solution may be generated. For example:

Parent 1 - 1 2 | 3 4

Parent 2 - 4 3 | 2 1

Offspring 1 - 1 2 2 1

Offspring 2 - 4 3 3 4

Using Partially Matched Crossover (PMX) on the above invalid solution example-

Parent 1 - 1 | 2 3 | 4

Parent 2 - 4 | 3 2 | 1

Selecting cut points at positions before 2 and after 3 generates the mapping 2

<-> 3 and 3 <-> 2.

Offspring 1 - x | 3 2 | x

Offspring 2 - x | 2 3 | x

Then offspring i (i = 1, 2) is filled up by copying the respective section of the ith

parent. In case, it is already present in the offspring it is replaced according to the

mappings.

Offspring 1 - 1 | 3 2 | 4

Offspring 2 - 4 | 2 3 | 1

Mutation

Since the encoding of chromosomes is not binary, a classical swap mutation cannot
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be applied because it will produce invalid solutions. Therefore, mutation operators

have been devised to preserve the uniqueness of the tour [26].

• Random swap mutation operator chooses 2 random points in the chromosome

and swaps them.

Original chromosome - 1 2 3 4

Mutated chromosome - 3 2 1 4

• Adjacent swap mutation operator chooses 1 random point in the chromosome

and swaps it with the gene to its right

Original chromosome - 1 2 3 4

Mutated chromosome - 2 3 4 1

• Inverted exchange mutation operator selects 2 random points in the chromosome

and inverts the order of the genes.

If sub tour 2 3 is selected at random using 2 points, then the result would be

Original chromosome - 1 2 3 4

Mutated chromosome - 1 3 2 4

Next, a GA-based solution to a general VRP is described below.

2.2.2 Genetic Algorithms for Vehicle Routing Problem

A heterogeneous representation of vehicle fleet, passenger loading and vehicle

route information is difficult to encode into a single genetic code and formulate and

evaluate it, a two-level encoding can be used [10].

The problem is addressed independently in both levels after it is split in two

levels.

The allocation of the passengers to the vehicles is done in the upper level and the

shortest route for a given set of passengers in a single vehicle is found in the lower level.

The variety in the size, distribution and number of vehicles is considered in the upper
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level. In the lower level, the selection of fleet and passenger allocation optimization

problem is solved. The lower level GA can be used to solve a single vehicle VRP but

upper and lower level GA are required for solving VRP with multiple vehicles [27].

GA for Lower Level

• Encoding of Vehicle Routes

It is non-trivial to encode the vehicle routes genetically which is done by the GA

in the lower level. A permutation of integers from 1 to 2n is used to represent

the vehicle routes, where n is the number of passengers. The pickup of passenger

n has the value Pn = 2n - 1 and the drop-off of passenger n has value Dn = 2n.

The passengers must be picked up before they are dropped off, which leads to

a subset of the permutations of a set of numbers that are valid vehicle routes.

There exists a fix for this problem which is done by applying a repair algorithm

to each chromosome in the initial population as also to every offspring generated

by the crossover. The fix includes exchanging the pickup and drop-off positions

of the passengers which cause the chromosome to be invalid [25].

• Crossover Operator

For chromosomes which are permutations, the application of traditional simple

crossover operator may result in the production of offspring which are not

permutations. Partially Mapped Crossover (PMX) is the method which is used

in this case to ensure valid offspring generation [10]. The optimal method is

not yet determined as there have been no comparisons made between PMX and

other permutation crossover operators.

• The Fitness Function

In this genetic algorithm, a linear combination of vector of waiting time, w, and

travel time (distance), d, for all passengers on the route is defined as the fitness
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function, F. In the lower level GA, therefore, an objective function is defined as :

𝐹 (𝑤, 𝑑) = min

[︃
𝑛∑︁

𝑖=1

(𝐶1𝑤𝑖 + 𝐶2𝑑𝑖)

]︃
(4)

GA for Upper Level

• Allocating Passengers to Vehicles

Alleles are used to represent vehicles in the upper level in the GA. The encoding

used for this allocates passengers to multiple vehicles. A simulation can be

done for multiple scenarios including heterogeneous fleet of vehicles by storing

historical information for each taxi number [25].

• The Fitness Function

The sum of the fitness values for each single vehicle in case of multiple vehicles

is considered as their respective fitness values in the upper level GA.

In the next chapter 3, materials used (benchmarks) and proposed methods to

solve VRPs is described along with the implementation of the methods.
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CHAPTER 3

Materials and Methods

3.1 Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) is a vehicle routing problem

with constraints on the capacities of the vehicles. In a CVRP, each location has a

demand for items to be picked up or delivered there. Each time a vehicle visits a

location, the total amount of items the vehicle is carrying increases (for a pickup) or

decreases (for a delivery) by the demand at that location [28].

A graph can be used to represent a CVRP in which the edge corresponds to

distances and the nodes correspond to the demands.

3.1.1 Sample CVRP Problem and Solution

Objective : To find the shortest total distance for all vehicles such that the

vehicle capacities serving customers demands are not exceeded and the items are

picked up / delivered starting and ending at a common depot node.

Expected Output : A route for each vehicle with the total distance traveled.

Given :

Number of locations (n) = 5

Number of vehicles (k) = 2

Capacities of vehicles (c) = (100, 100)

The input files for this example as shown in Figure 3.1.1, derived from the

benchmarks used in the experiments section, would be as follows [29]. The example

file below describes the problem in sections format. NAME of the file states the

values for n and the k. In the COMMENT section the minimum vehicles being

used for this problem can be seen (here, 2). Then the TYPE of the problem is

given (here, CVRP). DIMENSION would give the number of locations(n) again

(here, 5). EDGE_WEIGHT_TYPE states the distance metric being used for this
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input (here, EUC_2D). CAPACITY gives the capacities of each vehicle (here, 100).

NODE_COORD_SECTION lists all the node locations in the form of x and y

coordinates (here, {0,0}, {2,1}, {1,2}, {3,3}, {0,4}). DEMAND_SECTION gives the

demand of each location (here, {0, 20, 35, 30, 45}). DEPOT_SECTION gives the

node which wouold be used as the depot for the problem (here, 1). -1 denotes the end

of the previous section and EOF denotes the end of the input file.

Here, EUC_2D or Euclidean distance in 2D 𝐷𝑖𝑗 between two points i and j is

defined as :

𝐷𝑖𝑗 =

√︁
(𝑋𝑖 −𝑋𝑗)

2 + (𝑌𝑖 − 𝑌𝑗)
2 (5)

NAME : A-n5-k2
COMMENT : (Min no of trucks: 2)
TYPE : CVRP
DIMENSION : 5
EDGE_WEIGHT_TYPE : EUC_2D
CAPACITY : 100
NODE_COORD_SECTION
1 0 0
2 2 1
3 1 2
4 3 3
5 0 4
DEMAND_SECTION
1 0
2 20
3 35
4 30
5 45
DEPOT_SECTION
1
-1
EOF

Figure 3.1.1: A Sample Input File
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Figure 5: Visual Representation of the sample CVRP problem

Visual representation of this CVRP problem can be depicted as a grid showing

the locations to visit in blue and the depot location in black as shown in Figure 5.

The demands are shown at the lower right of each location

This example is executed with Google’s OR-Tools library using the script given

in Appendix ??, resulting in the solution output given in Figure 3.1.1 [28]

Route for vehicle 1:
0 Load(0) -> 2 Load(35) -> 0 Load(35)
Distance of the route: 4
Load of the route: 35

Route for vehicle 2:
0 Load(0) -> 1 Load(20) -> 3 Load(50) -> 4 Load(95) -> 0 Load(95)
Distance of the route: 11
Load of the route: 95

Total Distance of all routes: 15

Figure 3.1.1: Solution to the Sample Problem

For each location on a route, the output shows:
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Figure 6: Visual Representation of the solution to sample CVRP problem

• The index of the location.

• The total load carried by the vehicle when it departs the location.

In a visual representation, the solution routes can are as shown in the Figure 6

3.1.2 Program for solving the CVRP (Python Implementation)

The following Python program accepts two command line arguments : [input

files directory path] [output files directory path]

To recognize the path correctly an extra \ is added to escape it in the path :

python cvrp.py "F:\CS298\A-VRP\\" "F:\CS298\A-VRP-sol\\"

The python program given in Appendix ?? is illustrated using Flowchart 7 :

I have uses the three sets of Benchmarks Set A, Set B and Set P by Augerat

et al [30]. The input settings information is extracted from these .vrp files from the

benchmarks and is fed further to the program. The input settings include number of

locations, number of vehicles, depot location, demands at each node, vehicle capacities,

generated distance matrix from each location to all other locations and the best-known

solution value. For all the three sets of benchmarks, the distance metric used is
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Euc_2D.

Each benchmark file is then used with the solver from the OR-Tools with 12

different strategies, each strategy being able to combine with 6 different heuristics. So,

I ccould find 72 possible unique solutions using these combinations for each problem

in the benchmarks using nested loops. All the 72 possible solutions for each problem

in the benchmark sets are written iteratively to a csv file along with the runtime it

required to solve. The best OR-Tools solution value out of the 72 solutions is written

to a separate csv file for each problem in the benchmarks. This best OR-Tools solution

value is then compared with the best-known solution value from the benchmarks

to check which strategy-heuristics combination worked for the corresponding input

problem and if it is better than the best-known from the benchmarks or not.

3.1.3 Benchmarks for CVRP

The benchmarks used for this experiment are acquired from a repository main-

tained by the NEO Research group at the Department of LCC from the University of

Malaga (Spain) [29]. The benchmarks consist of input and output files. The optimal

solutions are determined using the branch-and-cut algorithm which is based on the

partial polyhedral description of the corresponding polytope [30]. The input files are

given in the similar format as described in the example problem. The output files

contain the best-known solutions for the benchmarks as illustrated in Figure 3.1.3 :

[htb]

Route #1: 21 31 19 17 13 7 26
Route #2: 12 1 16 30
Route #3: 27 24
Route #4: 29 18 8 9 22 15 10 25 5 20
Route #5: 14 28 11 4 23 3 2 6
cost 784

Figure 3.1.3: A Sample Solution File
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Figure 7: Flowchart of Python Implementation
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The next chapter 4 describes the experiments performed on the benchmarks and

how the results were generated and analyzed.
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CHAPTER 4

Computational Experiments

Experiments were completed on Intel Core i7-7500U processor (2.70 GHz) running

Windows 10 with 16.0 GB memory. The following packages and libraries were installed:

Python 3.7.2, Google’s OR-Tools v7.0 package, json library, re library, math library,

os library, sys library, datetime library. Visualization of the results have been done

using Tableau.

Google’s OR-Tools (v7.0) have been leveraged to test the benchmarks. OR-

Tools is an open source tool, developed by Google, to solve optimization problems

in vehicle routing, network flows, integer and linear programming, and constraint

programming. OR-Tools solver for Vehicle Routing Problems include 12 different

optimization strategies, such as PATH_CHEAPEST_ARC, BEST_INSERTION,

GLOBAL_CHEAPEST_ARC etc. each of which can be incorporated into 6 different

heuristics, such as gradient descent, simulated annealing, tabu search, etc. [28].

4.1 Strategies

More specifically, I used following strategies [28]:

• AUTOMATIC - The solver automatically decides on which strategy to use

depending on the model of the problem.

• PATH_CHEAPEST_ARC - It starts from the route "start" node and using

a greedy approach it connects each node after that iteratively which produces

the cheapest route.

• PATH_MOST_CONSTRAINED_ARC - This is similar to the

PATH_CHEAPEST_ARC strategy, but in this it will favor the most con-

strained arc first using a comparison-based selector function.

26



• SAVINGS - This strategy is based on the algorithm given by Clarke and Write

[31].

• CHRISTOFIDES - This strategy works on the basis of the algorithm given

by Nicos Christofides in which it extends the route for the vehicle routing model

until no nodes can be inserted further [32].

• ALL_UNPERFORMED - In this strategy, all nodes are made inactive and

a solution is found only when optional nodes exist.

• BEST_INSERTION - In this strategy a solution is built by inserting the

cheapest node iteratively, at its cheapest position where the value of the insertion

function corresponds to the globally evaluated cost. This strategy only works

with optional nodes.

• PARALLEL_CHEAPEST_INSERTION - It is similar to the

BEST_INSERTION strategy. The only difference is the insertion func-

tion which corresponds to the arc cost function.

• LOCAL_CHEAPEST_INSERTION - In this strategy, a solution is built

by inserting each node iteratively at its cheapest position where the value of the

insertion function corresponds to the arc cost function.

• GLOBAL_CHEAPEST_ARC - In this strategy two nodes are iteratively

connected resulting in the cheapest route segment.

• LOCAL_CHEAPEST_ARC - In this strategy the first node with an un-

bound successor is selected and connected iteratively to nodes which produce

cheapest route segment.

• FIRST_UNBOUND_MIN_VALUE - In this strategy, the first available

node is selected and connected iteratively to the first unbound successor.
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4.2 Heuristics

I evaluated the following heuristics, all of which were readily available in OR-Tools

[28].

• AUTOMATIC - The solver decides which heuristic to use depending on the

model

• GREEDY_DESCENT - A local minima is reached by accepting and reduc-

ing the cost of local search neighbors.

• GUIDED_LOCAL_SEARCH - Guided local search is used for escaping

local minima which is generally said to be the most used metaheuristic for VRPs.

• SIMULATED_ANNEALING - Uses simulated annealing for escaping local

minima.

• TABU_SEARCH - Uses tabu search for escaping local minima.

• OBJECTIVE_TABU_SEARCH - Uses tabu search on objective value of

the function for escaping local minima.

4.3 Description of Specific Experiments

There were three specific experiments that were performed on the sample input

file and the benchmarks described in the Materials and Methods section:

1. All benchmarks in set A, set B, and set P were tested using OR-Tools solver.

Each problem from the benchmarks is evaluated with 12 different strategies

from Google’s OR-Tools and combining each strategy with 6 different heuristics.

This way I can possibly get 72 different solutions for each problem and find the

best solution out of the 72 unique solutions. 7.

2. Vehicle capacities were modified such that they were not the same for all vehicles

in a sample benchmark file.

3. Node demands were modified such that some exceeded vehicle capacities in the

28



sample input file.

Next in Chapter 5, the results of the experiments that were performed using

Google’s OR-Tools are described.
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CHAPTER 5

Results

5.1 Capacitated Vehicle Routing Problem

The program was implemented using the OR-Tools package and tested for the

benchmark data sets [29, 30]. In the three results tables for the respective benchmarks,

the best Or-Tools column contains the best solution out of the 72 solutions generated

using distinct combinations of 12 different strategies and 6 different heuristics and

the best-known column contains the solution from the benchmarks.

5.1.1 Benchmarks Set A

For each problem instance, a CVRP solution was found; the running time for

computing the solution ranged from 2ms to 2100ms. Out of 28 different input files in

Set A, 14 solutions generated by the program are better than the best-known solutions

from the benchmarks which are marked green in Table 2. Figure 8 visualizes the

comparisons of best-known solution from the benchmarks vs best generated solution

using OR-Tools. Figure 9 represents the distribution of the strategies which generated

the best OR-Tools solution for each input file in Set A. It can be seen that there is

not one algorithm which always gives the best solution for each problem.

5.1.2 Benchmarks Set B

For each problem instance in Set B of benchmarks, a CVRP solution was found;

the running time for computing the solution ranged from 12ms to 2040ms. The best

Or-Tools Solution column contains the best solution out of the 72 solutions generated

using distinct combinations of 12 different strategies and 6 different heuristics. Out

of 22 different input files in Set B, 15 solutions generated by the program are better

than the best-known solutions from the benchmarks which are marked green in Table

3. Figure 10 visualizes the comparisons of best-known solution from the benchmarks

vs best generated solution using OR-Tools. Figure 11 represents the distribution of
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Table 2: Results from Benchmarks Set A

FILE NAME N K C BEST
KNOWN

BEST
ORTOOLS USING STRATEGY HEURISTICS RUNTIME

(ms)

A-n32-k5.vrp 32 5 100 784 773 PATH_MOST_
CONSTRAINED_ARC

GUIDED_LOCAL
_SEARCH 999.323

A-n33-k5.vrp 33 5 100 661 650 AUTOMATIC GUIDED_LOCAL
_SEARCH 1004.899

A-n33-k6.vrp 33 6 100 742 726 CHRISTOFIDES GUIDED_LOCAL
_SEARCH 999.729

A-n34-k5.vrp 34 5 100 778 770 SAVINGS GUIDED_LOCAL
_SEARCH 997.85

A-n36-k5.vrp 36 5 100 799 797 AUTOMATIC GUIDED_LOCAL
_SEARCH 999.762

A-n37-k5.vrp 37 5 100 669 656 AUTOMATIC GUIDED_LOCAL
_SEARCH 999.799

A-n37-k6.vrp 37 6 100 949 960 SAVINGS GUIDED_LOCAL
_SEARCH 999.982

A-n38-k5.vrp 38 5 100 730 722 AUTOMATIC GUIDED_LOCAL
_SEARCH 1006.46

A-n39-k5.vrp 39 5 100 822 814 AUTOMATIC GUIDED_LOCAL
_SEARCH 1005.607

A-n39-k6.vrp 39 6 100 831 815 CHRISTOFIDES GUIDED_LOCAL
_SEARCH 1005.477

A-n44-k7.vrp 44 6 100 937 952 PARALLEL_CHEAPEST
_INSERTION TABU_SEARCH 993.901

A-n45-k6.vrp 45 6 100 944 1053 SAVINGS GUIDED_LOCAL
_SEARCH 1003.519

A-n45-k7.vrp 45 7 100 1146 1128 GLOBAL_CHEAPEST
_ARC

GUIDED_LOCAL
_SEARCH 1002.742

A-n46-k7.vrp 46 7 100 914 903 GLOBAL_CHEAPEST
_ARC

SIMULATED_
ANNEALING 1002.205

A-n48-k7.vrp 48 7 100 1073 1072 PARALLEL_CHEAPEST
_INSERTION

GUIDED_LOCAL
_SEARCH 999.798

A-n53-k7.vrp 53 7 100 1010 1037 SAVINGS GUIDED_LOCAL
_SEARCH 1004.589

A-n54-k7.vrp 54 7 100 1167 1173 CHRISTOFIDES GUIDED_LOCAL
_SEARCH 989.424

A-n55-k9.vrp 55 9 100 1073 1048 PARALLEL_CHEAPEST
_INSERTION

GUIDED_LOCAL
_SEARCH 999.326

A-n60-k9.vrp 60 9 100 1408 1394 SAVINGS SIMULATED_
ANNEALING 999.359

A-n61-k9.vrp 61 9 100 1034 1105 CHRISTOFIDES GUIDED_LOCAL
_SEARCH 999.359

A-n62-k8.vrp 62 8 100 1290 1328 PATH_MOST_
CONSTRAINED_ARC

GUIDED_LOCAL
_SEARCH 1000.324

A-n63-k10.vrp 63 10 100 1315 1336 SAVINGS TABU_SEARCH 1001.353

A-n63-k9.vrp 63 9 100 1634 1678 SAVINGS GUIDED_LOCAL
_SEARCH 999.287

A-n64-k9.vrp 64 9 100 1402 1431 FIRST_UNBOUND_
MIN_VALUE

SIMULATED_
ANNEALING 1000.322

A-n65-k9.vrp 65 9 100 1174 1207 SAVINGS GUIDED_LOCAL
_SEARCH 1000.362

A-n69-k9.vrp 69 9 100 1168 1184 PATH_MOST_
CONSTRAINED_ARC

GUIDED_LOCAL
_SEARCH 999.324

A-n80-k10.vrp 80 10 100 1764 1827 PARALLEL_CHEAPEST
_INSERTION

GUIDED_LOCAL
_SEARCH 999.326
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Figure 8: Visualization of Best-Known Solution vs Best OR-Tools Solution for input
files in Set A

Figure 9: Visualization of OR-Tools Solution for each input file in Set A grouped by
strategies

the strategies which generated the best OR-Tools solution for each input file in Set B.

Similarly, as the results of Set A, it can be seen here that there is not one algorithm
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which always gives the best solution for each problem.

Table 3: Results from Benchmarks Set B

FILE NAME N K C BEST
KNOWN

BEST
ORTOOLS USING STRATEGY HEURISTICS RUNTIME

(ms)

B-n34-k5.vrp 34 5 100 788 780 AUTOMATIC GUIDED_LOCAL
_SEARCH 2004.609

B-n35-k5.vrp 35 5 100 955 945 SAVINGS GUIDED_LOCAL
_SEARCH 2003.074

B-n38-k6.vrp 38 6 100 805 796 PATH_MOST_
CONSTRAINED_ARC

GUIDED_LOCAL
_SEARCH 2003.639

B-n39-k5.vrp 39 5 100 549 535 CHRISTOFIDES TABU_SEARCH 2005.638

B-n41-k6.vrp 41 6 100 829 817 PARALLEL_CHEAPEST
_INSERTION

GUIDED_LOCAL
_SEARCH 2003.659

B-n43-k6.vrp 43 6 100 742 734 PARALLEL_CHEAPEST
_INSERTION

GUIDED_LOCAL
_SEARCH 1994.6

B-n44-k7.vrp 44 7 100 909 919 AUTOMATIC TABU_SEARCH 1999.73
B-n45-k5.vrp 45 5 100 751 751 SAVINGS TABU_SEARCH 2013.24

B-n45-k6.vrp 45 6 100 678 765 CHRISTOFIDES SIMULATED_
ANNEALING 2000.617

B-n50-k7.vrp 50 7 100 741 725 PATH_MOST_
CONSTRAINED_ARC

GUIDED_LOCAL
_SEARCH 1993.909

B-n50-k8.vrp 50 8 100 1313 1307 PATH_MOST_
CONSTRAINED_ARC TABU_SEARCH 1993.449

B-n51-k7.vrp 51 7 100 1032 1031 FIRST_UNBOUND
_MIN_VALUE

SIMULATED_
ANNEALING 1999.649

B-n52-k7.vrp 52 7 100 747 734 SAVINGS GUIDED_LOCAL
_SEARCH 2000.649

B-n56-k7.vrp 56 7 100 707 696 CHRISTOFIDES GUIDED_LOCAL
_SEARCH 1999.648

B-n57-k9.vrp 57 9 100 1598 1612 FIRST_UNBOUND
_MIN_VALUE TABU_SEARCH 2000.68

B-n63-k10.vrp 63 10 100 1496 1537 CHRISTOFIDES GUIDED_LOCAL
_SEARCH 1999.613

B-n64-k9.vrp 64 9 100 861 882 SAVINGS GUIDED_LOCAL
_SEARCH 1999.65

B-n66-k9.vrp 66 9 100 1374 1320 PATH_MOST_
CONSTRAINED_ARC TABU_SEARCH 2001.676

B-n67-k10.vrp 67 10 100 1032 1059 PATH_MOST_
CONSTRAINED_ARC

GUIDED_LOCAL
_SEARCH 1998.69

B-n68-k9.vrp 68 9 100 1304 1282 LOCAL_CHEAPEST
_INSERTION

GUIDED_LOCAL
_SEARCH 1998.653

B-n78-k10.vrp 78 10 100 1266 1249 PARALLEL_CHEAPEST
_INSERTION TABU_SEARCH 1999.65

5.1.3 Benchmarks Set P

For each problem instance in Set P of benchmarks, a CVRP solution was found;

the running time for computing the solution ranged from 19ms to 2078ms. The best

Or-Tools Solution column contains the best solution out of the 72 solutions generated

using distinct combinations of 12 different strategies and 6 different heuristics. Out

of 21 different input files in Set P, 11 solutions generated by the program are better
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Figure 10: Visualization of Best-Known Solution vs Best OR-Tools Solution for input
files in Set B

Figure 11: Visualization of OR-Tools Solution for each input file in Set B grouped by
strategies

than the best-known solutions from the benchmarks which are marked green in Table

4. Figure 12 visualizes the comparisons of best-known solution from the benchmarks
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vs best generated solution using OR-Tools. Figure 13 represents the distribution of

the strategies which generated the best OR-Tools solution for each input file in Set P.

Similarly, as the results of Set A and Set B, it can be seen here that there is not one

algorithm which always gives the best solution for each problem.

Table 4: Results from Benchmarks Set P

FILE NAME N K C BEST
KNOWN

BEST
ORTOOLS USING STRATEGY HEURISTICS RUNTIME

(ms)

P-n101-k4.vrp 101 4 400 681 671 CHRISTOFIDES SIMULATED_
ANNEALING 2000.647

P-n16-k8.vrp 16 8 35 435 444 AUTOMATIC GUIDED_LOCAL
_SEARCH 2000.707

P-n19-k2.vrp 19 2 160 212 206 PATH_MOST_
CONSTRAINED_ARC

GUIDED_LOCAL
_SEARCH 1999.652

P-n20-k2.vrp 20 2 160 220 211 AUTOMATIC GUIDED_LOCAL
_SEARCH 1999.652

P-n21-k2.vrp 21 2 160 211 208 AUTOMATIC NO_HEURISTICS 45.875
P-n22-k2.vrp 22 2 160 216 212 AUTOMATIC NO_HEURISTICS 19.222

P-n22-k8.vrp 22 8 3000 603 590 AUTOMATIC GUIDED_LOCAL
_SEARCH 2000.646

P-n40-k5.vrp 40 5 140 458 448 PATH_MOST_
CONSTRAINED_ARC

GUIDED_LOCAL
_SEARCH 1999.65

P-n45-k5.vrp 45 5 150 510 499 PATH_MOST_
CONSTRAINED_ARC

GUIDED_LOCAL
_SEARCH 1999.652

P-n50-k10.vrp 50 10 100 696 703 LOCAL_CHEAPEST
_ARC

GUIDED_LOCAL
_SEARCH 2000.656

P-n50-k7.vrp 50 7 150 554 549 AUTOMATIC GUIDED_LOCAL
_SEARCH 2000.648

P-n51-k10.vrp 51 10 80 745 742 SAVINGS GUIDED_LOCAL
_SEARCH 2000.674

P-n55-k10.vrp 55 10 115 669 693 AUTOMATIC GUIDED_LOCAL
_SEARCH 1999.62

P-n55-k7.vrp 55 7 170 524 553 LOCAL_CHEAPEST
_INSERTION

GUIDED_LOCAL
_SEARCH 1999.688

P-n55-k8.vrp 55 8 160 576 563 LOCAL_CHEAPEST
_ARC

GUIDED_LOCAL
_SEARCH 1999.701

P-n60-k10.vrp 60 10 120 706 756 PARALLEL_CHEAPEST
_INSERTION

GUIDED_LOCAL
_SEARCH 2000.65

P-n60-k15.vrp 60 15 80 905 966 SAVINGS TABU_SEARCH 1999.666

P-n65-k10.vrp 65 10 130 792 793 LOCAL_CHEAPEST
_INSERTION

GUIDED_LOCAL
_SEARCH 1999.714

P-n70-k10.vrp 70 10 135 834 864 PARALLEL_CHEAPEST
_INSERTION

GUIDED_LOCAL
_SEARCH 1999.651

P-n76-k4.vrp 76 4 350 589 606 AUTOMATIC GUIDED_LOCAL
_SEARCH 2000.656

P-n76-k5.vrp 76 5 280 631 645 CHRISTOFIDES GUIDED_LOCAL
_SEARCH 1999.839

5.1.4 Other Experiments

I have next examined how changes in program specification affect the solution

obtained with OR-Tools package by performing two experiments.
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Figure 12: Visualization of Best-Known Solution vs Best OR-Tools Solution for input
files in Set P

Figure 13: Visualization of OR-Tools Solution for each input file in Set P grouped by
strategies

1. Node demands were modified such that they exceeded vehicle capacities:

In this experiment the program did not return a result. Google’s OR-Tools
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solver does not find the solution even one node’s demand exceeds capacity.

2. Modified vehicle capacities to different capacities for each vehicle for the sample

input file :

Keeping everything else the same i.e. number of locations =4, minimum vehicles

being used for this problem = 2, distance metric = Euc_2d, node coordinates =

{0,0}, {2,1}, {1,2}, {3,3}, {0,4}, demands at each nodes = {0, 20, 35, 30, 45},

depot node = 1 and just just varying the capacities of 2 vehicles as 50 and 80,

the following solution was found :

Route for vehicle 1:
0 Load(0) -> 1 Load(20) -> 3 Load(50) -> 0 Load(50)

Distance of the route: 8
Load of the route: 50

Route for vehicle 2:
0 Load(0) -> 2 Load(35) -> 4 Load(80) -> 0 Load(80)

Distance of the route: 8
Load of the route: 80

Total Distance of all routes: 16

In a visual representation, the routes can be shown aa in Figure 14 which

provides a different valid solution for the problem as the constraints on the

capacities of each vehicles were changed.

I have concluded with the analysis of the results and major findings along with

their shortcomings and future work in the next chapter.
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Figure 14: Visual Representation of the solution to experiment 2 problem
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CHAPTER 6

Conclusion

In this project, I reviewed existing research to identify suitable optimization

algorithms for CVRP including greedy and genetic algorithms. I evaluated 12 different

strategies and combined them with 6 different heuristics to potentially be able to pro-

duce 72 different solutions for a problem using Google’s OR-Tools. I used benchmarks

by Augerat et al. and performed different computational experiments like varying

capacities of vehicles, exceeding demands of the nodes more than the capacities of the

vehicles and using different distance metrics.

It can be observed that we have atleast one result for each of the problems in

the benchmarks, produced by the python implementation using OR-Tools. Out of all

the 72 different solutions, the best results produced by OR-Tools for each problem

are generated using different strategies in different problems. When the strategies

which provide the best results using OR-Tools are clustered it can be seen that there

is not one strategy-heuristics combination which can be said to work best for all the

benchmarks. The results show that almost 60% of the problems in the benchmarks

have a better solution produced by OR-Tools than the current best-known solution.

Future extensions of this project would include testing with a large data set as

well as with the live source of data from a real-life application. Moreover, OR-Tools

could be extended to find feasible solutions for problems with varied capacities, for

example. Finally, more extensive testing could be done to find correlation between

the types of benchmarks and the performance of strategy-heuristics combinations.
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