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ABSTRACT

Network Alignment In Heterogeneous Social Networks

by Priyanka Kasbekar

Online Social Networks (OSN) have numerous applications and an ever growing user

base. This has led to users being a part of multiple social networks at the same time.

Identifying a similar user from one social network on another social network will give in-

formation about a user’s behavior on different platforms. It further helps in community

detection and link prediction tasks. The process of identifying or aligning users in multiple

networks is called Network Alignment. More the information we have about the nodes /

users better the results of Network Alignment. Unlike other related work in this field that

use features like location, timestamp, bag of words, our proposed solution to the Network

Alignment problem primarily uses information that is easily available which is the topology

of the given network. We look to improve the alignment results by using more information

on users like username and profile image features. Experiments are performed to compare

the proposed solution in both unsupervised and supervised setting.

Keywords: Online Social Networks, Network Alignment, Supervised learning, Unsu-

pervised learning
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CHAPTER 1

Introduction

The availability and ease of access to the internet have made Online Social Networks

(OSN) an integral part of our lives. OSN are used for many purposes ranging from sharing

media, reviews, news, opinions to finding job opportunities, cabs, dates, asking questions

and more applications added every day. The multifaceted role of OSN have led them to

have a huge user base. Users are often members of multiple social networks as a single

social network may not offer everything a user wants. For example, Facebook is used to

share media, make new friends, Yelp is used to review restaurants, LinkedIn is used to

search jobs, Twitter is used to voice opinions [2].

1.1 Network Alignment

Given a node in one network, the problem of identifying the same node or a similar

node in another network is called Network Alignment. The same process when applied to

social networks will help identify a user on different social networks. The users identified

in the process of Network Alignment are called anchor nodes and the edges between them

across the networks are called anchor links/edges. If all the nodes/users of one network are

aligned with nodes/users of other network, then the networks are said to be fully aligned.

Fully aligned social networks are unlikely. For example, it is not mandatory that a person

who is a Facebook user will be a Twitter user too. Social networks are partially aligned

where every user from one network is not necessarily an anchor node. Some users can be

unaligned [3].
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1.2 Heterogeneous Social Networks

Due to the diverse services OSN offer, they contain different types of nodes apart from

user nodes. For example, Facebook, apart from user nodes, contains locations, posts nodes.

Edges are formed between user node and user node, user node and a post node, user node

and a location node etc. These other type of nodes are also called information entities [4].

Hence, each of such OSN can be considered as a Heterogeneous network.

Figure 1: Depiction Of Heterogeneous Social Networks And Anchor Links [2].

The question marks in Figure 1 represent the anchor links that are to be determined

and the dashed lines represent the already known anchor links. Each user node in a network

is connected to different kinds of nodes. For example, as seen in Figure 1, each user node

in a foursquare network is connected to another user node, a tip node or a location node. A

tip in foursquare network is a small note that a user can leave on a place describing their

2



experience at that location. Hence a user node can be connected to many tips that he/she

have left on many locations. Location nodes are the foursquare check-ins made by a user

node.

1.3 Applications of the Network Alignment Problem

The problem of Network Alignment in social networks has generated a lot of interest

as it helps researchers study the social behavioral pattern of the same user in different social

networks [4]. Aligning social networks have more applications like

∙ Community Detection - When a well established social network is aligned with a

fairly new social network, the communities from the first network can be used to

detect communities on the new social network [4].

∙ Information from multiple aligned networks can give better indication of the social

relations and choices of users which can be used to enhance link prediction effective-

ness [4].

∙ Viral Marketing - Learning preferences of a user from one network can be used to

display related, useful ads for the similar user/users in another network [4].

∙ Information Diffusion - Network Alignment enables the researchers to study the in-

formation diffusion patterns in both the networks [4]. This will enhance the informa-

tion required for identifying influential nodes in a network.

∙ Friend Recommendations - If a given user uses the source network frequently and

is fairly new on the target network, Network Alignment can give insights for friend

recommendation for the user on the target network. This is possible only if Network

Alignment of the source and target network is done on the basis of features which

are not dependent on friendship/topology information.
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1.4 Challenges in extracting Information Entities

To solve the problem of Network Alignment, generally topology based features like

friendships as well as temporal activities like check-ins, contents of tweets/tips are used.

For most OSN, accessing user specific information like check-ins, tips through their pub-

licly available APIs is challenging. This is due to the restrictive nature of the APIs. Most

of the methods provided by the APIs require private authentication tokens which is not

available. Hence, to solve the problem of Network Alignment, we can’t completely rely

on these features. In this project, we compare various supervised and unsupervised ap-

proaches to Network Alignment using features based on the topology of the networks. We

additionally use some features like username embedding similarity, profile image feature

vector similarity to train our models. We perform experiments on two pairs of social net-

works, Facebook-Twitter, Foursquare-Twitter from which we extract features like common

neighbors, jaccard coefficient, adamic/adar measure. These topology based features are

independently used in unsupervised training. The same features combined are used to train

a supervised model. We observe the effects of using these features separately and in a

combined manner.
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CHAPTER 2

Related Work

The Network Alignment problem bears a lot of similarity with the maximum sub graph

or the bipartite graph matching problem [5] [6]. Apart from the field of OSN, network

alignment has been applied to other fields of study like Bio-informatics on networks like

protein-protein interaction network which are mostly homogeneous networks [7] [8]. Two

main approaches have been followed in aligning social networks.

∙ Matrix operations based methods

∙ Supervised Learning methods

One of the related work in this field takes an Unsupervised approach to Network Alignment

using a special kind of embedding called factoid embedding.

2.1 Matrix based approaches

This approach involves utilizing the topology based information through adjacency

matrices and degree matrices of the networks. This information combined with some sim-

ple matrix operations like dot product, transpose, normalization, Kronecker product, matrix

addition or subtraction is used to perform Network Alignment. Following are some related

work using this approach

∙ Fast Attributed Network Alignment - FINAL (Authors - Si Zhang,Hanghang

Tong) [9] - In this paper, Network Alignment is done using topology information

and network and edge attributes from the network. In a network like DBLP co-

authorship, node attributes can be the most recent conference attended by an author
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and an edge attribute can be the papers in which both authors have co-authored pre-

sented in the same conference. Network Alignment is done using Alignment Con-

sistency Principle which states that the alignment between two pairs of nodes across

networks should be similar if the pairs of nodes are similar to each other [9]. For

Alignment Consistency Principle to hold the following three principles should hold

good.

– Topology Consistency - If two nodes are close neighbors in one network, the

respective aligned nodes should also be close neighbors in the other network

[9].

– Node Attribute Consistency - Two nodes aligned with each other should have

similar node attributes [9].

– Edge Attribute Consistency - If two nodes in the given network have an edge

attribute, the respective aligned nodes in the second network should have similar

edge attribute between them [9].

The Network Alignment principle begins with a initial similarity matrix H of size

𝑛2 *𝑛1, where 𝑛2 is the number of nodes in the second network and 𝑛1 is the number

of nodes in the first network. After performing operations like matrix normalization,

element wise multiplication, transpose operations for few iterations on the similar-

ity matrix, adjacency matrices, node attribute matrices and edge attribute matrices,

the similarity matrix will converge with values where each value 𝐻𝑖,𝑗 represents the

similarity between node i in network 1 and node j in network 2.

∙ Multiple Anonymized Social Networks Alignment [10] - (Authors - Jiawei Zhang,

Philip S. Yu) - This paper also uses topology of the input networks to perform Net-

work Alignment. The method used in this paper assumes there are no existing known
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anchor links. The input networks have no information about user attributes and hence

the Network Alignment is completely based on topology. Start with a binary transi-

tional matrix T where rows correspond to users from input network 1 and columns

correspond to users from input network 2. Use an iterative approach to finally ar-

rive at a point where 𝑇 𝑖,𝑗 == 𝑇 𝑗,𝑖. This represents the matrix that has anchor links

between the input graphs.

This paper uses the concept of social links. A social links exists between two users in

a given network if they are connected to each other. To perform Network Alignment

the social links from one network are projected on to another network. The rule

of friendship consistency is used to measure the correctness of Network Alignment.

Friendship consistency is the number of shared social links between the mapped links

from 1st input network onto the second input network and the number of social links

originally in the second input network [10].

The method used in this paper can be used to align multiple networks at once. At

the end of Network Alignment, transitive property should hold. Transitive property

states that when anchor links are identified between network 1 and network 2 and

network 2 and network 3, the same links can be identified as anchor links between

network 1 and network 3 [10].

∙ Network Similarity Decomposition (NSD) [11]: A Fast and Scalable Approach to

Network Alignment - (Authors - Giorgos Kollias, Ananth Y. Grama, Shahin Mo-

hammadi) - This paper uses the concept of page rank to determine the anchor links

between two networks. In a single network setting, to find the most important node

a page rank algorithm is used. A node is important if it is linked by other important

nodes. In a multiple network setting, a tensor product of two input adjacency matri-

ces is calculated. Page rank algorithm is applied on this new matrix. This process
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works with the principle that a node with a high page rank will be aligned with an-

other node with a high page rank. Hence, obtaining a high page rank on the tensor

product of two input graphs would mean that the respective nodes are aligned. This

would also mean that similarity should also be preserved over the neighbors.

The tensor product 𝐺𝑐 between two matrices 𝐺𝑎 and 𝐺𝑏 is calculated such that an

edge between two nodes 𝑐𝑖 and 𝑐𝑗 exists in 𝐺𝑐 only if there is a edge between 𝑎𝑖 and

𝑎𝑗 in 𝐺𝑎 and there is an edge between 𝑏𝑖 and 𝑏𝑗 in 𝐺𝑏 [11].

Two approaches are used to calculate the page rank of the nodes:

– HITS algorithm - Start with a initial similarity matrix X containing all 1s. It-

eratively use the following equation until X converges to a fixed set of val-

ues.Normalize X after every step.

𝑋 = 𝐵𝑋𝐴𝑇 + 𝐵𝑇𝑋𝐴

– PageRank algorithm - Start with an initial similarity matrix X and iteratively

apply the following formula until X converges.

𝑥 = 𝛼𝐴⊗ �̃�𝑥 + (1− 𝛼)ℎ

. Here x = vec(X) and h = vec(H). The vec operation stacks columns of the

matrix. Here the matrix H can be considered as the elemental similarity matrix.

This idea is based on the IsoRank algorithm used to align protein - protein in-

teraction networks [7].In the IsoRank algorithm, H is a matrix with blast scores

that represent elemental similarity between proteins. In this paper, Single Value

Decomposition(SVD) is used to construct H.

8



2.2 Supervised Learning approaches

These approaches use feature vectors constructed from node attributes. The feature

vectors are used to train models and obtain similarity scores. Based on the similarity scores

the anchor links can be inferred using different matching techniques.

∙ Inferring anchor links across multiple heterogeneous social networks (Authors

- X. Kong, J. Zhang, P. Yu) [2] - This paper first assumes that there are some ex-

isting anchor links between the input networks which are used for training. Social

features like common neighbors, jaccard coefficient, adamic measure are extracted.

Users usually tend to post at the same time and at similar locations. The similarity

between location vectors can be used as features. Users tend to post similar contents

on multiple social networks. The similarity between content vectors can be used as

features. The similarity between time slots of when the user’s post their content can

also be used as features [2].

These extracted features are used to train a binary classifier to get similarity scores

between nodes. The paper uses stable matching to infer anchor links from the sim-

ilarity scores. Each node in the given graph is matched to the best possible node

in the second graph [2]. As stable matching is used, we can assume that the align-

ment is performed on input networks where for each node in the first graph, there

is a matching node in the second graph. This means that the input graphs are fully

aligned.

∙ Partial Network Alignment with Generic Stable Matching [3] (Authors - Jiawei

Zhang, Weixiang Shao, Senzhang Wang, Xiangnan Kong, Philip S. Yu) This paper

uses the concept of Anchor Meta Paths for Network Alignment. It assumes that the

input networks are partially aligned which means that for every node in the given
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network the matching node in the other network may or may not be present. As we

are working with heterogeneous networks, different types of nodes like user, location,

timestamp are present and various types of relation exists between nodes like follow,

create, checkin. Using the nodes and relations, anchor meta paths are created. For

example, intra network meta paths can be of the form

Φ = 𝑇1
𝑅1−→ 𝑇2

𝑅2−→ ...𝑇𝑘
𝑅𝑘−1−−−→

where 𝑇𝑖 ∈ 𝑇𝐺 and 𝑖 ∈ {1, 2, 3...𝑘} and 𝑅𝑖 ∈ 𝑅𝐺 and 𝑖 ∈ {1, 2, 3...𝑘−1}. 𝑇𝐺𝑎𝑛𝑑𝑅𝐺

are set of node types and link types respectively [3]. Anchor meta paths between two

different networks is of the form

𝑈𝑠𝑒𝑟𝑖
𝑓𝑜𝑙𝑙𝑜𝑤𝑠−−−−→ 𝑈𝑠𝑒𝑟𝑖 ↔ 𝑎𝑛𝑐ℎ𝑜𝑟𝑈𝑠𝑒𝑟𝑗

𝑓𝑜𝑙𝑙𝑜𝑤𝑠−−−−→ 𝑈𝑠𝑒𝑟𝑗

The anchor links needn’t be only between user node types but they always begin and

end with user node types. For example,

𝑈𝑠𝑒𝑟𝑖
𝑤𝑟𝑖𝑡𝑒𝑠−−−→ 𝑃𝑜𝑠𝑡𝑖

𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑎𝑡−−−−−→ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛
𝑐ℎ𝑒𝑐𝑘−𝑖𝑛𝑎𝑡←−−−−−− 𝑃𝑜𝑠𝑡𝑗

𝑤𝑟𝑖𝑡𝑒𝑠←−−− 𝑈𝑠𝑒𝑟𝑗

Anchor adjacency scores is the number of anchor meta paths between different set

of users. Using these scores a supervised link prediction model is built. The link

prediction can be +1 when anchor link is present and -1 otherwise [3]. To infer the

anchor links between the networks, generic stable matching is used. This method is

different from the traditional stable matching as it doesn’t require every unmatched

node to be matched for the matching process to be complete. This is useful as the

input networks used in the paper are partially aligned. With this process, a node with

no matching node in the other network is matched to itself(self matched with a high

score) [3].
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∙ Exploring Identical Users on GitHub and Stack Overflow [12] (Authors -

Takahiro Komamizu, Yasuhiro Hayase, Toshiyuki Amagasa, Hiroyuki Kitagawa)

This paper illustrates a method of identifying common users between two of the

technical and programming related platforms of Github and Stackoverflow. To find

the known common users, they use the email addresses of the users. These are con-

sidered as known anchor links. Similar attributes like username, words from project

description and questions, account creation date are extracted from both the net-

works. Two types of similarity functions are used one to measure the text features

and other to measure the date and time features. Words are considered to follow a

bag of words and cosine similarity function is applied on them. Date and time are

compared using inverse of difference between the dates [12]. The paper also experi-

ments with various learning mechanisms like linear regression, k-nearest neighbors,

random forests and logistic regression.

2.3 Unsupervised Approach

∙ Unsupervised User Identity Linkage via Factoid Embedding [1](Authors - Wei

Xie, Xin Mu, Roy Ka-Wei Lee, Feida Zhu and Ee-Peng Lim) This paper takes the

unsupervised approach to Network Alignment. The idea of the paper is to use every

piece of information available on the users which can help in identifying the users.

The available information like username, profile image is represented using factoids.

Each factoid is in the form of a triplet which can take two forms.

1. user_identity − predicate− user_identity

2. user_identity − predicate− object

The objects are properties associated with the users like user name, screen

name, profile image. Every user is associated with a unique id. An exam-

11



ple of a user_identity − predicate− object factoid is 1− has_name− Ann.

This means that a user with unique_id 1 has name Ann. An example of

user_identity − predicate− user_identity factoid is 1− follows− 3. This means that

a user with unique_id 1 follows another user with unique_id 3. The embedding of

user objects involves finding the similarity between the objects. For every predicate,

a similarity matrix is created. For example, for the predicate ’has_name’, a similarity

matrix is created where the similarity of each user with other users is measured.

For name predicate, Jaro-Winkler distance is used to measure similarity. For image

predicate, deep learning techniques are used to generate image embedding vectors.

The users who are similar will be close in the embedding space. To learn the object

embeddings, following objective function is used.

𝑒𝑟𝑟𝑜𝑟𝑝𝑟𝑒𝑑 =
∑︀

𝑖,𝑗((𝑣𝑜𝑖)
𝑇 (𝑣𝑜𝑗)− 𝑆𝑝𝑟𝑒𝑑

𝑖,𝑗 )2

where 𝑣𝑜 is object embedding vector like username embedding vector. The object

embedding vector is learnt through minimizing the errorpred
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CHAPTER 3

Methodology

3.1 Problem Definition

Given two heterogeneous social networks, source network 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠) and target

network 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡) where 𝑉𝑠, 𝑉𝑡 are users/nodes and 𝐸𝑠, 𝐸𝑡 are friendships/edges of 𝐺𝑠

and 𝐺𝑡 respectively. A small proportion of anchor links 𝐴 = {(𝑢𝑠
𝑖 , 𝑣

𝑡
𝑗), 𝑢

𝑠
𝑖 ∈ 𝑉𝑠, 𝑣

𝑡
𝑗 ∈ 𝑉𝑡}

are given. The Network Alignment problem is to predict if a pair of users 𝑢𝑠
𝑖 and 𝑣𝑡𝑗 where

𝑢𝑠
𝑖 ∈ 𝑉𝑠 and 𝑣𝑡𝑗 ∈ 𝑉𝑡 have an anchor link between them. There is a one-one matching

between the user accounts. The solution to the problem can be divided into two phases -

Feature extraction and Anchor link prediction. This problem is similar to the link prediction

task where we predict if there is a possibility of link formation between two users of a

network based on the information from the existing edges. The difference in the Network

Alignment problem is that we predict links between users of two different networks instead

of a single network. In this project, the solution assumes presence of some already known

anchor links between the source and target network.

3.1.1 Feature Extraction

As we will be using topological features, we choose the commonly used measures for

link prediction such as Common Neighbors, Jaccard Coefficient, Adamic-Adar measure.

For the anchor link prediction task, these features have to be adapted to a two network

setting. Apart from the topology based features, we use two other features namely the

Username Embedding Similarity and the Profile Image Embedding Similarity.

∙ Extended Common Neighbors In a single network, the common neighbors are the
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number of neighbors/friends shared by a pair of users. This measure has to be adapted

for the Network Alignment task and hence the name Extended Common Neighbors.

Extended Common Neighbors between a pair of users from two different networks is

the number of neighbors/pairs of neighbors who already have anchor links between

them [2]. If Γ(𝑢𝑠
𝑖 ) and Γ(𝑣𝑡𝑗) represent the set of neighbors of 𝑢𝑠

𝑖 and 𝑣𝑡𝑗 respectively,

then Extended Common Neighbors is defined by the equation

𝐸𝐶𝑁(𝑢𝑠
𝑖 , 𝑣

𝑡
𝑗) = |(𝑢𝑠

𝑚, 𝑣
𝑡
𝑛) ∈ 𝐴, 𝑢𝑠

𝑚 ∈ Γ(𝑢𝑠
𝑖 ), 𝑣

𝑡
𝑛 ∈ Γ(𝑣𝑡𝑗)|

Figure 2: Illustration - Common Neighbors

Consider the network in Figure 2, there are four neighbors of 𝑢𝑠𝑒𝑟1 in source network

and there are five neighbors of 𝑢𝑠𝑒𝑟7 in target network. Out of these neighbors, there

are four anchor users with two anchor links between them. As these four users are

essentially two unique users, the number of extended common neighbors between

𝑢𝑠𝑒𝑟1 and 𝑢𝑠𝑒𝑟7 is measured as 2.
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∙ Extended Jaccard Coefficient - Jaccard Coefficient in terms of a single network is

the normalized form of common neighbors. When we calculate the Jaccard Coeffi-

cient between users of two networks, we divide the extended common neighbors by

distinct neighbors of the user pair. When distinct neighbors are considered we have

to leave out the anchor users [2]. Jaccard Coefficient is defined by the equation.

𝐽𝐶(𝑢𝑠
𝑖 , 𝑣

𝑡
𝑗) =

|𝐸𝐶𝑁(𝑢𝑠
𝑖 ,𝑣

𝑡
𝑗)|

|Γ(𝑢𝑠
𝑖 )∪Γ(𝑣𝑡𝑗)|

where |Γ(𝑢𝑠
𝑖 ) ∪ Γ(𝑣𝑡𝑗)| = |Γ(𝑢𝑠

𝑖 )|+ |Γ(𝑣𝑡𝑗)| − |Γ(𝑢𝑠
𝑖 ) ∩ Γ(𝑣𝑡𝑗)|

From Figure 2, the Extended Jaccard Coefficient of 𝑢𝑠𝑒𝑟1 from source network and

𝑢𝑠𝑒𝑟7 from target network is obtained by dividing the extended common neighbors

by distinct neighbors of the user pair. In this case the distinct neighbors would be

𝑢𝑠𝑒𝑟3, 𝑢𝑠𝑒𝑟4, 𝑢𝑠𝑒𝑟6, 𝑢𝑠𝑒𝑟11, 𝑢𝑠𝑒𝑟10. Hence the Extended Jaccard Coefficient will

be calculated as 2/5 which is 0.2.

∙ Extended Adamic/Adar Measure - This measure considers the average degree of

the common neighbors in the network. We calculate this measure in the two network

setting as the average degree of the extended common neighbors and taking the in-

verse log of it [2]. Adamic/Adar measure can be defined by the equation

𝐴𝐴(𝑢𝑠
𝑖 , 𝑢

𝑡
𝑗) =

∑︀
log−1 |Γ(𝑢𝑠

𝑚)|+|Γ(𝑣𝑡𝑛)|
2

where the measure is calculated over every pair (𝑢𝑠
𝑚, 𝑣

𝑡
𝑛) ∈ |Γ(𝑢𝑠

𝑖 ) ∩ Γ(𝑢𝑡
𝑗)|

∙ Username Embedding Similarity - This feature measures the closeness of user-

name embedding of the user pair under consideration. In a heterogeneous social

network, information like username, profile image can be treated as separate enti-

ties called objects/ information nodes [1]. These objects are associated with users

through predicates. For example, {user_123, has_name,Andrew}. This representa-

tion is called factoid embedding of user and object. For a predicate like has_name,
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let Ohas_name = {Andrew,Yang,Martha,Andrewg,Yangl,MarthaS....} be a set of ob-

jects. This set has users from both the networks. A username embedding is generated

as a vector containing similarity of a given username to every other username object

in both source and target network. The embedding vectors of users with similar

names will be close to each other in the embedding space. Jaro-Winkler distance is

used to measure the similarity of each username to other username objects. Jaro-

Winkler distance is similar to measuring edit distance between two sequences. Xie,

et al in their work on Network Alignment through factoid embeddings generate these

username embeddings [1]. In this project, we use the dataset created by Xie, et al and

hence we didn’t calculate the username embeddings. We directly use the username

embeddings to calculate the cosine distance between these embedding vectors and

use it as a feature in our model. If two users have similar embedding vectors, the co-

sine distance between them should be low which provides an indication of similarity.

Cosine similarity between two vectors 𝑥 and 𝑦 is defined as

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑︀

𝑖=1,𝑛 𝑥𝑖𝑦𝑖√∑︀
𝑖=1,𝑛𝑥

2
𝑖

√∑︀
𝑖=1,𝑛𝑦

2
𝑖

𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1− 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

∙ Profile Image Embedding Similarity - A user may have similar profile pictures on

two different social networks. Extracting the facial features of a person’s image can

help in finding similarity between users. A Deep Learning framework VGG16 is

used to extract features from profile images of users. The VGG16 is used with pre-

trained weights on ImageNet [1]. The VGG16 emits a feature vector for each profile

image. This is used as the profile image embedding vector. These embeddings are

already present in the dataset. We use the cosine distance to measure the distance

between the profile image embedding vectors. This distance is an indicator of user

similarity too.
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Using Page Rank as a feature Related work in the field of Network Alignment such as

S.Zhang, et al [9], Y.Zhang, et al [13] suggest that page rank can be used to measure

similarity between users on two different networks. The basis for the argument here is that

if a user has a high page rank(user is a leader) in one network, he/she should have a similar

page rank in another network too. This may not be true always. For example, there might be

a user who is very active on Facebook but not very active on Twitter. We experimented with

the page rank values by extracting page rank values for each user in both the networks. We

labelled the top 1% of users as opinion leaders, next 10% as medium users and remaining

users as others [9] [13]. For each user pair we measured the number of neighbors who

are anchor users and fall in the same category as the user in the user pair who is being

evaluated. For example, based on the page rank score, if 𝑢𝑠
𝑖 from the source network is

categorized as opinion leader, we look for the neighbors of 𝑢𝑠
𝑖 who are anchor users and

characterized as opinion leaders too. The same is done for 𝑣𝑡𝑗 in the target network. This

measure didn’t prove to be beneficial for our results. From our experiments, page rank

didn’t prove to be a good measure of user similarity.

3.1.2 Algorithms for the Network Alignment problem

The integral part of the whole methodology is the method we use to extract the features

and then use them in supervised learning models in order to predict anchor links between

user pairs. Algorithms use procedures like getFeatures, compareUsernameEmbed-

dings, and compareImageEmbeddings to fetch the features required for the training.

Below the algorithms for extracting individual features followed by construction of the

dataset is described.
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3.1.2.1 Algorithm 1 - Network Alignment - Using topology based features.

In the first step of the Procedure NETWORK_ALIGN_TOPOL of Algorithm 1 as

we go through every known anchor link pair we create a dictionary that stores a user

from the source network 𝐺𝑠 as key and the corresponding anchor user from the target

network 𝐺𝑡 as value, i.e., ground_truth[source_user] = target_user. In the next step we

construct a list, source_anchors of users who are anchor users from 𝐺𝑠. Similarly construct

a list, target_anchors of anchor users from 𝐺𝑡. After that, call the GETTOPOLOGYFEA-

TURES procedure to extract the required topology based features. The extracted features

are used to construct the training and test set. A training and test sample of a user pair

(𝑢𝑠
𝑖 , 𝑣

𝑡
𝑗) where 𝑢𝑠

𝑖 ∈ 𝐺𝑠 and 𝑣𝑡𝑗 ∈ 𝐺𝑡 is labelled as positive(1) if the user pair is present in

ground truth file otherwise it is labelled negative(0).
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Algorithm 1 Network Alignment with Topology Based Features
1: procedure GETTOPOLOGYFEATURES(source_user, target_user)
2: extended_common_neighbor← 0
3: extended_jaccard_coefficient← 0
4: extended_adamic_adar← 0
5: for each edge 𝑒 = (𝑣𝑠, 𝑢𝑠) ∈ 𝐺𝑠, where 𝑣𝑠 = source_user do
6: neighbor← 𝑢𝑠

7: if neighbor in source_anchors then
8: Add neighbor into possible_src_neighbors
9: else

10: Add neighbor into non_anchor_users
11: end if
12: end for
13: Repeat steps of lines 5 − 12 for the target_user using target_anchors and add the

possible common neighbors to possible_target_neighbors
14: for each source_anchor in possible_src_neighbors do
15: if ground_truth[source_anchor] is present in possible_target_neighbors then
16: Increment extended_common_neighbor
17: extended_adamic_adar = extended_adamic_adar +

(degree(source_anchor) + degree(ground_truth[source_anchor]))/2
18: end if
19: end for
20: extended_jaccard_coefficient = (extended_common_neighbor)/(non_anchor_users)
21: return extended_common_neighbor, extended_jaccard_coefficient, extended_adamic_adar
22: end procedure
23:
24: procedure NETWORK_ALIGN_TOPOL(𝐺𝑠, 𝐺𝑡)
25: for (source_user, target_user) in ground_truth file do
26: ground_truth[source_user] = target_user
27: add source_user into source_anchors
28: add target_user into target_anchors
29: end for
30: for each each 𝑣 ∈ 𝐺𝑠 and each 𝑢 ∈ 𝐺𝑡 of the training set do
31: call Procedure GETTOPOLOGYFEATURES(𝑣, 𝑢)
32: end for
33: end procedure
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3.1.2.2 Algorithm 2 - Network Alignment - Using topology based features, username
and profile image embedding

This algorithm outlines the process of Network Alignment using embedding sim-

ilarity as features. It uses the topology based features from Algortihm 1 as well. In

the first step of the Procedure Network_Align_Topo_Emb we create the ground_truth

dictionary similar to Algorithm 1. In the next step we create more dictionaries

username_source_embedding, username_target_embedding, image_source_embedding,

image_target_embedding. username_source_embedding contains users from

𝐺𝑠 as key and corresponding username embedding as value. i.e.

username_source_embedding[source_user] = source_user_name_embedding.

Similarly, image_source_embedding contains users from 𝐺𝑠

as key and corresponding image embedding as value. i.e.

image_source_embedding[source_user] = source_user_image_embedding. We fill the

username_target_embedding and image_target_embedding dictionary in the same way for

users in 𝐺𝑡

In the next step, for every pair 𝑢𝑠
𝑖 , 𝑣

𝑡
𝑗 in the training set, we call the procedure GET-

TOPOLOGYFEATURES to get the topology based features. Next we call the procedure

compareUsernameEmbeddings and procedure compareProfileimageEmbeddings to

get username and profile image embedding similarity. In the next step training and test sam-

ple of every pair of users (𝑢𝑠
𝑖 , 𝑣

𝑡
𝑗) where 𝑢𝑠

𝑖 ∈ 𝐺𝑠 and 𝑣𝑡𝑗 ∈ 𝐺𝑡, are labelled positive(1) if

the user pair is found in the ground truth file otherwise labelled negative(0).

3.1.2.3 Algorithm 3 - Unsupervised Network Alignment - Using topology based fea-
tures independently

Procedure NETWORK_ALIGN_UNSUP first creates the dictionary ground_truth as

described in Algorithm 1 for the user pairs in training set along with the source_anchors
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Algorithm 2 Network Alignment with Topology Based Features + User name Embedding
and Profile Image Embedding

procedure COMPAREUSERNAMEEMBEDDINGS(𝑢𝑠
𝑖 ,𝑣

𝑡
𝑗)

Fetch the embedding of 𝑢𝑠
𝑖 from username_source_embedding

Fetch the embedding of 𝑣𝑡𝑗 from username_target_embedding
Compare the embeddings using scipy.spatial.distance.cosine method
return the cosinedistance

end procedure

procedure COMPAREPROFILEIMAGEEMBEDDINGS(𝑢𝑠
𝑖 ,𝑣

𝑡
𝑗)

Fetch the embedding of 𝑢𝑠
𝑖 from image_source_embedding

Fetch the embedding of 𝑣𝑡𝑗 from image_target_embedding
Compare the embeddings using scipy.spatial.distance.cosine method
return the cosinedistance

end procedure

Procedure NETWORK_ALIGN_TOPO_EMB(𝐺𝑠,𝐺𝑡)
Initialize ground_truth_dict, username_source_embedding, username_target_embedding,

image_source_embedding, image_target_embedding to empty dictionaries/hashmap
for each anchor_link in the ground_truth_file do

Repeat Step 27-30 from Algorithm 1
end for
for each user in source_anchors do

fetch the username embedding of the user and add user as key and username
embedding as value into username_source_embedding

fetch the profile image embedding of the user and add user as key and image
embedding as value into image_source_embedding

end for
Repeat step 22 - 25 for every user in target_anchors
for each user pair in training set do

call Procedure (getTopologyFeatures)
call Procedure (compareUsernameEmbeddings)
call Procedure (compareProfileimageEmbeddings)

end for
end Procedure

and target_anchors list. Three other lists scores_ecn, scores_jaccard, scores_adam are also

initialized.For every user pair (𝑢𝑠
𝑖 , 𝑣

𝑡
𝑗) where 𝑢𝑠

𝑖 ∈ 𝐺𝑠 and 𝑣𝑡𝑗 ∈ 𝐺𝑡 ,in the test set which

are treated as missing links, the following measures are calculated - Extended Common
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Neighbors, Extended Jaccard Coefficient and Extended Adamic/Adar measure. The scores

obtained from each of the methods are added to their respective lists. i.e Extended Common

Neighbors are added to source_ecn, Extended Jaccard Coefficient is added to sourcejaccard

and Extended Adamic/Adar measure is added to source_adam. In the next step, the scores

are then sorted in descending order along with the predictions. The true and false positives

are calculated at various thresholds and an AUC_Score for every method is calculated using

sklearn.metrics.auc.

Algorithm 3 Unsupervised Network Alignment with Topology Based Features one at a
time

1: procedure GETAUCSCORE(𝑠𝑐𝑜𝑟𝑒𝑠,𝑡𝑎𝑟𝑔𝑒𝑡𝑠)
2: Use the sklearn.metrics.auc method to calculate the AUC scores.
3: end procedure
4:
5: Procedure NETWORK_ALIGN_UNSUP(𝑚𝑖𝑠𝑠𝑖𝑛𝑔_𝑙𝑖𝑛𝑘𝑠)
6: Initialize scores_ecn, scores_jaccard, scores_adam to empty arrays
7: for each anchor_link in training set do
8: Repeat Step 27-30 from Algorithm 1
9: end for

10: for each user_pair in missing_links do
11: call 1 (getTopologyFeatures)
12: call Add the features to scores_ecn, scores_jaccard, scores_adam respectively.
13: end for
14: Sort the scores in scores_ecn, scores_jaccard, scores_adam along with the predic-

tions in descending order
15: Call 1 (getAUCScore) with scores_ecn and sorted predictions
16: Repeat the step 15 for scores_jaccard, scores_adam
17: return AUC_Score for each method.
18: end Procedure
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CHAPTER 4

Experimental Evaluation

4.1 Datasets

For our experiments, we are using the User Identity Linkage dataset used in [1]. It contains

information on two pairs of social networks: Foursquare-Twitter and Facebook-Twitter.

Table 1 describes the number of users and the number of edges in each sub-network.

Table 1: Dataset Overview

Dataset Foursquare-Twitter Facebook-Twitter
Network Foursquare | Twitter Facebook | Twitter

Users 21668 25772 17359 20024
Links 312740 405590 224762 165406

The dataset also comes with a set of known anchor links.

Foursquare - Twitter has 3602 known anchor links.

Facebook - Twitter has 1998 known anchor links.

Apart from this topological information, the username and profile image embedding vectors

for users are available.

The experiments involves three phases- data preparation, training using supervised learning

and unsupervised learning and comparing the supervised and unsupervised approaches to

network alignment. Some of the unsupervised methods are Extended Jaccard coefficient,

Extended Common Neighbors, Extended Adamic-Adar measure. We intend to use the

scores obtained from the unsupervised methods as features for supervised learning. The

output of the supervised learning model is binary where the output of 0 indicates that anchor

link cannot exist between the user pair and an output of 1 indicates the presence of anchor

link between the user pair.
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4.2 Data Preparation

For anchor link prediction, we have to label the data so that it can be used for

supervised learning. To prepare the training and test data, we use the ground truth file.

Every user pair that appears in the ground truth file are labelled as positive. For negative

training samples, a user from the source network is paired with any other user from the

target network apart from the one with which it is paired in the ground truth file. We can

mark this pair as negative as we definitely know that there can be no anchor link between

this pair as they have been paired with their respective anchor pair in the ground truth file.

For example, consider a user pair foursquare_user_14628 and twitter_user_15915 in

the ground truth file. The training sample with this pair is labelled as positive(1) as

we definitely know they are anchor users. We pair foursquare_user_14628 with any

other twitter user for example twitter_user_2841 and label the corresponding sample as

negative(0) as we definitely know there is no anchor link between them. We can be sure of

that due to the fact that anchor links have a one-one constraint. This implies that a given

user pair can belong to only one user.

Table 2: Supervised Learning Training Sample.

User-Pair ECN JC Adam Usr_Emb_Sim Img_Emb_Sim label
𝑓𝑞14628#𝑡𝑤15915 6 0.090909 -33.7733 0.9016 1 1
𝑓𝑞14628#𝑡𝑤2841 0 0.0 0 1 0.916 0

Table 2 shows a positive and negative training sample. Each column other than the User-

Pair is a feature. The ground truth user pairs are divided into two separate folders called

training and testing to ensure that the data used for training is never used for prediction.

For the user pair in the test set, the features are constructed in the same way but the label

field is stripped off during prediction. We experimented with varied number of training

samples. We used two approaches to create the training samples. One approach creates
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the positive and negative samples in a balanced manner. Another approach creates more

negative samples and then we use Upsampling to balance out the data.

4.2.1 Upsampling and Downsampling

To increase the number of training samples, for every positive labelled training data

sample, we created 20 negative labelled training data. This causes the training data to be

skewed towards the negative side [12]. To balance out the data we use the technique of

upsampling to increase the positive samples by randomly duplicating the positive samples

until we balance the positive and negative samples for training. We can also perform the

downsampling of the negative samples but this will lead to data loss also the training sam-

ples decrease in number.

4.2.2 No Upsampling

For every positive labelled training data sample, we created one negative labelled train-

ing data. This will create a balanced training set with equal number of positive and negative

samples. With this approach we have lesser but balanced training set.

4.3 Training

We used only the topology based features for unsupervised learning. The same fea-

tures were combined for supervised learning. The experiments were conducted with train-

ing samples that were unbalanced which were later balanced out through upsampling as

well as a balanced training set.
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4.3.1 Unsupervised Learning Methods

Link prediction tasks lack labelled data. In such scenarios, we can use the unsupervised

approach to predict links. Jaccard coefficient, Common Neighbors, Adamic/Adar scores

are some of the generally used unsupervised link prediction methods on a single network.

These measures have been appropriately modified to suit the link prediction on a two net-

work setting as described in section 3.1.1 and [2]. They give out scores purely based on

topology. We measure the performance of each of these measures separately.

To perform the training, the user pairs in the test set are treated as missing links. The user

pairs in the training set are treated as existing anchor links of the network and the Extended

common neighbors, Jaccard coefficient, Adamic/adar measure is calculated for the missing

anchor links which is equivalent to predicting anchor links between user pairs in the test set

. The scores are then sorted in descending order. A certain threshold is set for the scores

on the basis of which true positives and false positives are calculated. For example, we

set a threshold of 20 for extended common neighbors. The following rules are followed to

calculate true positives, false negatives and false positives.

∙ Any user pair that has extended common neighbors greater than 20 and appears in

the ground truth links, we classify it as true positive.

∙ Any user pair which is not in the ground truth links but has extended common neigh-

bors greater than 20 is treated as false positive.

∙ Any user pair which is not in the ground truth links and has extended common neigh-

bors lesser than 20 is treated as true negative.

∙ Any user pair which is in the ground truth links and has extended common neighbors

lesser than 20 is treated as false negative.
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We use the AUC (Area Under the ROC Curve) score to measure the accuracy. The AUC

score for a single threshold point is calculated as

AUC = (truepositives + (0.5) · falsepositives)/total_sample

We plot a curve with the sorted scores and the targets/predictions. The scores are sorted

in a descending order. To calculate the AUC score of the method, the true positive, false

positives have to be considered at different thresholds. The sklearn.metrics.auc calculates

the false positive rate and true positive rates at different thresholds and gives out an AUC

Score for the prediction method.

4.3.2 Supervised Learning Methods:

We experiment with two models. One with only topology based features and another

with additional features username embedding similarity and profile image embedding sim-

ilarity. The details of these features are discussed in section 3.1.1 and [1]. We experiment

with Logistic Regression, K Nearest Neighbors(KNN) and a simple neural network as train-

ing methods. We experiment with two configurations of the KNN and the neural network.

Both the models are trained on both upsampled and un-sampled data.

∙ Logistic Regression - This is one of the most commonly used method for link pre-

diction. The model trains on the data in the training set and emits a 0 or 1 during

prediction on the test set. The accuracy of the predictions is calculated through com-

paring the predictions against the labels on the test set. The sklearn.metrics module

is used to calculate the accuracy.

∙ K Nearest Neighbors - This is a simple machine learning algorithm used for classi-

fication and regression. Every point is classified based on the K-nearest neighbors.

For example, when k = 3 and if two nearest samples are labelled positive and another

sample is negative, the current sample is classified as positive. We experimented with
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two configuration, K = 3 and K = 5. We have only used odd numbers for K as it can

break ties during classification.

∙ Neural Network - The number of neurons in the input layer depends on the number

of features. If only topological features are used, then the input layer will have 3

neurons. If username and profile image embedding similarity is used, the input layer

will have 5 neurons. We experimented with two types of neural networks. The first

one has a single dense layer of 7 neurons between the input and the output layer. The

second one has two dense layers with 7 and 5 neurons respectively. Sigmoid and

Relu activation functions between the layers. On the output layer, softmax function

followed by categorical crossentropy function is used to measure the loss and accu-

racy. Using categorical crossentropy classifies a given training sample to close to 0

or close to 1. 100 epochs or iterations were used to train the model.
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CHAPTER 5

Results

5.1 Experimental Setup

Python is used as the implementation language to fetch features. Python libraries such

as pandas, numpy sklearn are used to preprocess data and train the models. Keras library

is used for the neural network model. All the experiments were conducted on a MacBook

with OS X version 10.11.6, 4GB internal memory.

5.2 Results

We have performed various network alignment experiments on the two pairs of social

networks Foursquare - Twitter and Facebook - Twitter. The results show the performance

of various models with and without upsampling of the training set.

Table 3: Number Of Training And Testing Samples Without Upsampling.

Foursquare - Twitter Facebook - Twitter
Training 5763 3197
Testing 1439 798

Table 3 shows the number of training and test samples used to train and test the models

without performing any upsampling on the training set to balance the positive and negative

samples in the training set.

Table 4: Number Of Training And Testing Samples With Upsampling.

Foursquare - Twitter Facebook - Twitter
Training 54568 30191
Testing 1439 798

Table 4 shows the number of training and test samples used to train and test the models after

performing upsampling on the training set to balance the positive and negative samples in
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the training set. This will lead to increase in positive samples to balance the negative

samples.

5.2.1 Results - Algorithm 1 -(Models - Topological Features)

Table 5 shows the anchor link prediction accuracy of the model that uses only three topol-

ogy based / social link based features - Extended common neighbors, Extended Jaccard

Coefficient and Extended Adamic/Adar measure. No upsampling/downsampling was per-

formed on the training set. As seen from the Table 5, for the Foursquare-Twitter dataset,

the K-Nearest-Neighbors(KNN) with K=5 did the best. The same KNN did not perform

very well with the Facebook-Twitter dataset. The neural network with a single dense layer

gave the best accuracy for the Facebook-Twitter dataset.

Table 5: Prediction Accuracy With Topological Features And No Upsampling.

Methods Foursquare - Twitter Facebook - Twitter
Logistic Regression 0.8700 0.71016
K-Nearest-Neighbors(K=3) 0.8721 0.5006
K-Nearest-Neighbors(K=5) 0.8769 0.5006
Neural Network(1 Dense Layer) 0.8601 0.7163
Neural Network(2 Dense Layers) 0.8601 0.7160

Figures 3,4,5,6,7 and 8 show the results in the form of ROC curves for the models and

results discussed above. Figure 7 clearly shows that the KNN model couldn’t do a good job

at prediction on the Facebook - Twitter dataset and hence the curve is almost superimposed

on the red line. The KNN model with K=3 and 5 had similar performance on Foursquare

- Twitter dataset and hence the blue(K=3) and green(K=5) line are superimposing on each

other.
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Figure 3: ROC Curve Logistic Re-
gression, Topological Features, No
Upsampling [Foursquare-Twitter]

Figure 4: ROC Curve K-Nearest-
Neighbors, Topological Features,
No Upsampling [Foursquare-
Twitter]

Figure 5: ROC Curve Neural Net-
work, Topological Features, No Up-
sampling [Foursquare-Twitter]

Figure 6: ROC Curve Logistic Re-
gression, Topological Features, No
Upsampling [Facebook-Twitter]

Figure 7: ROC Curve K-Nearest-
Neighbors, Topological Features,
No Upsampling [Facebook-Twitter]

Figure 8: ROC Curve Neural Net-
work, Topological Features, No Up-
sampling [Facebook-Twitter]
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Table 6 shows the anchor link prediction accuracy of the model that uses the three

topology based / social link based features along with upsampling on the training set to

balance out the positive and negative samples. As seen from table 6, Logistic Regression

gave the best results when the upsampled data was used for Foursquare-Twitter dataset.

The KNN classifier performed poorly on both the datasets. Neural network did the best for

the Facebook-Twitter dataset.

Table 6: Prediction Accuracy With Topological Features And Upsampling .

Methods Foursquare - Twitter Facebook - Twitter
Logistic Regression 0.8756 0.7101
K-Nearest-Neighbors(K=3) 0.4683 0.4943
K-Nearest-Neighbors(K=5) 0.4808 0.4981
Neural Network(1 Dense Layer) 0.8582 0.7164
Neural Network(2 Dense Layers) 0.8582 0.7164

Figure 9, 10, 11, 12, 13, 14 show the ROC curves for the performance of the models

with upsampled data. The curves for KNN classifiers show that it didn’t perform well with

the upsampled data. The AUC scores for the KNN classifier is in the range of 0.47-0.50

which indicates that it could not predict the links at all and hence almost superimposed on

line for AUC score of 0.5 (red line). The logistic regression and neural network curves show

that they did better for the Foursquare-Twitter, Facebook - Twitter datasets respectively.

32



Figure 9: ROC Curve Logistic
Regression, Topological Features,
With Upsampling [Foursquare-
Twitter]

Figure 10: ROC Curve K-Nearest-
Neighbors, Topological Features,
With Upsampling [Foursquare-
Twitter]

Figure 11: ROC Curve Neural
Network, Topological Features,
With Upsampling [Foursquare-
Twitter]

Figure 12: ROC Curve Logistic
Regression, Topological Features,
With Upsampling [Facebook-
Twitter]

Figure 13: ROC Curve K-Nearest-
Neighbors, Topological Features,
With Upsampling [Facebook-
Twitter]

Figure 14: ROC Curve Neural
Network, Topological Features,
With Upsampling [Facebook-
Twitter]
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5.2.2 Results - Algorithm 2 - (Model - Topological Features + Username and Profile
Image Embedding)

Table 7 shows the anchor link prediction accuracy of the model that uses the three

topology based / social link based features along with username, image embedding simi-

larity as features. No upsampling is performed on the training set . As seen from Table

7, KNN classifier with K = 5 gave the best results on Foursquare-Twitter dataset. Neural

network with two layers did the best for the Facebook-Twitter dataset.

Table 7: Prediction Accuracy With Topological Features, Username And Image Embed-
ding, No Upsampling.

Methods Foursquare - Twitter Facebook - Twitter
Logistic Regression 0.9478 0.8883
K-Nearest-Neighbors(K=3) 0.9444 0.8808
K-Nearest-Neighbors(K=5) 0.9513 0.8858
Neural Network(1 Dense Layer) 0.9375 0.8827
Neural Network(2 Dense Layers) 0.9420 0.8962

Figures 15, 16, 17, 18, 19, 20 show the ROC curves for the models and the results

discussed above. As seen from the curves, and the accuracy from Table 7, the results are

better when username and profile image embedding similarity are used as features. All the

models gave considerable predictions when compared to the models with only topology

based features.
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Figure 15: ROC Curve Logistic
Regression, Topological Features +
Embedding Similarity, No Upsam-
pling [Foursquare-Twitter]

Figure 16: ROC Curve K-Nearest-
Neighbors, Topological Features +
Embedding Similarity, No Upsam-
pling [Foursquare-Twitter]

Figure 17: ROC Curve Neural Net-
work, Topological Features + Em-
bedding Similarity, No Upsampling
[Foursquare-Twitter]

Figure 18: ROC Curve Logistic
Regression, Topological Features +
Embedding Similarity, No Upsam-
pling [Facebook-Twitter]

Figure 19: ROC Curve K-Nearest-
Neighbors, Topological Features +
Embedding Similarity, No Upsam-
pling [Facebook-Twitter]

Figure 20: ROC Curve Neural Net-
work,Topological Features + Em-
bedding Similarity, No Upsampling
[Facebook-Twitter]
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Table 8 shows the anchor link prediction accuracy of the model that uses the three

topology based / social link based features along with username,image embedding simi-

larity as features.Upsampling is performed on the training set to balance the positive and

negative samples . As seen from Table 8, Logistic Regression gave the best results on

Foursquare-Twitter dataset. Neural network with two layers did the best for the Facebook-

Twitter dataset. Compared to the unsampled data, the upsampled data gave slightly higher

results.

Table 8: Prediction Accuracy With Topological Features, Username And Image Embed-
ding, Upsampling.

Methods Foursquare - Twitter Facebook - Twitter
Logistic Regression 0.9513 0.8895
K-Nearest-Neighbors(K=3) 0.9263 0.8695
K-Nearest-Neighbors(K=5) 0.9284 0.8732
Neural Network(1 Dense Layer) 0.9479 0.8981
Neural Network(2 Dense Layers) 0.9481 0.8986

Figures 21, 22, 23, 24, 25,26 show the ROC curves for the models and results dis-

cussed above. As seen from the curves and results in table 8, the performance of the

models are not greatly affected by upsampling of the data during training. All the models

were able to give fair predictions for the data.

Figure 21: ROC Curve Logistic
Regression, Topological Features +
Embedding Similarity, With Up-
sampling [Foursquare-Twitter]

Figure 22: ROC Curve K-Nearest-
Neighbors, Topological Features +
Embedding Similarity, With Up-
sampling [Foursquare-Twitter]
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Figure 23: ROC Curve Neural Net-
work, Topological Features + Em-
bedding Similarity, With Upsam-
pling [Foursquare-Twitter]

Figure 24: ROC Curve Logistic
Regression, Topological Features +
Embedding Similarity, With Up-
sampling [Facebook-Twitter]

Figure 25: ROC Curve K-Nearest-
Neighbors, Topological Features +
Embedding Similarity, With Up-
sampling [Facebook-Twitter]

Figure 26: ROC Curve Neural Net-
work,Topological Features + Em-
bedding Similarity, With Upsam-
pling [Facebook-Twitter]

5.2.3 Results - Unsupervised Model

The results in Table 9 show that when Extended Common Neighbors, Extended Jac-

card Coefficient, Extended Adamic/Adar measure are used as independent methods to solve

the network alignment problem, the AUC score is lower compared to the supervised set-

ting when they are combined together. The AUC Scores for Extended Common Neigh-

bors(ECN) and Extended Jaccard Coefficient (EJC) is similar as EJC is the normalized

form of ECN. When the AUC score is calculated over a range of thresholds, the scores

for both the methods end up being similar. Another important observation here is that the

Extended Adamic/Adar measure performed poorly when used as independent approach to
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the network alignment problem.

Table 9: AUC Scores Of Unsupervised Methods For Network Alignment.

Methods Foursquare - Twitter Facebook - Twitter
Extended Common Neighbors 0.85 0.68
Extended Jaccard coefficient 0.85 0.68
Adamic/Adar Measure 0.15 0.32

Figures 27, 28, 29, 30, 31, 32 show the performance of the unsupervised methods

when used for network alignment independently. The ROC curve suggest that ECN and

EJC performed in a similar way for network alignment on both the datasets. The ROC

curve for Extended Adamic/Adar measure shows that it performed poorly when used inde-

pendently.

Figure 27: ROC Curve - Extended
Common Neighbors [Foursquare-
Twitter]

Figure 28: ROC Curve - Extended
Jaccard coefficient [Foursquare-
Twitter]

5.2.4 A Comparison Between Supervised And Unsupervised Approaches To Net-
work Alignment

For Foursquare - Twitter network when these unsupervised features were combined

for training, the highest AUC score of 0.88 was obtained with the neural network model

and the KNN model. Among the unsupervised methods, the higest AUC score we obtained

was 0.85 with ECN and EJN. For Facebook - Twitter network, the highest AUC score of
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Figure 29: ROC Curve - Extended
Adamic/Adar Measure [Foursquare-
Twitter]

Figure 30: ROC Curve - Extended
Common Neighbors [Facebook-
Twitter]

Figure 31: ROC Curve - Extended
Jaccard Coefficient [Facebook-
Twitter]

Figure 32: ROC Curve - Extended
Adamic/Adar Measure [Facebook-
Twitter]

0.71 with Logistic Regression and Neural Network model whereas the highest AUC score

obtained with unsupervised methods was 0.68.

Another unsupervised approach to network alignment that we know is used in the

paper by W.Xie, et al [1] through the use of factoid embedding. W.Xie, et al tested their

approach in the unsupervised setting and a semi supervised setting. They measure the

performance using a metric called HitRate@K(𝐻𝑅@𝐾) where a ranking of matching users

is considered to be correct if the correct matched user (𝑣𝑗𝑡 ) from the target network appears

in the top K matched users [1]. In our proposed solution we do not have multiple matchings.

So, we compare our results with 𝐻𝑅@1 which would be similar to evaluating if the user

appearing in the Top 1 matched users is indeed the correct anchor user from the target

39



network. Table 10 shows the comparison of our approach with the factoid embedding

approach used in [1].

Table 10: Comparison With Factoid Embedding Approach(FE).

Methods Foursquare - Twitter Facebook - Twitter
FE 𝐻𝑅@1 Semi-Supervised 0.5541 0.6851
FE 𝐻𝑅@1 Unsupervised 0.5433 0.6781
Network Alignment Unsupervised 0.85 0.68
Network Alignment Supervised 0.88 0.71

The 𝐻𝑅@1 score of both Semi-Supervised and Unsupervised approach of factoid

embedding approach on the Foursquare-Twitter dataset is far below the predictions we

could achieve though our approach. the 𝐻𝑅@1 score on the Facebook-Twitter dataset is

comparable to our unsupervised approach. the predictions through our supervised approach

is slightly higher.
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CHAPTER 6

Conclusions and Future Work

This project primarily looked at solving the network alignment problem using topol-

ogy based features. From the results and related work on the same problem, it is evident

that just topology based features may not be sufficient to make predictions in a supervised

setting. Adding some additional attributes like username similarity and profile image simi-

larity made a huge difference. The availability of more information entities will give better

results with training. The solution proposed in the project also assumed that there are some

already known anchor links. Future direction of this research is to solve the problem with-

out any prior knowledge of anchor links. Another direction for future work would be to

find ways to extract more information entities related to users like location, language (bag

of words) can be used to evaluate their effect on the performance of the models.

41



LIST OF REFERENCES

[1] W. Xie, X. Mu, R. K. Lee, F. Zhu, and E. Lim, “Unsupervised user identity linkage
via factoid embedding,” in IEEE International Conference on Data Mining, ICDM
2018, Singapore, November 17-20, 2018, 2018, pp. 1338–1343.

[2] X. Kong, J. Zhang, and P. S. Yu, “Inferring anchor links across multiple heteroge-
neous social networks,” in 22nd ACM International Conference on Information and
Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27 - Novem-
ber 1, 2013, 2013, pp. 179–188.

[3] J. Zhang, W. Shao, S. Wang, X. Kong, and P. S. Yu, “PNA: partial network alignment
with generic stable matching,” in 2015 IEEE International Conference on Information
Reuse and Integration, 2015, pp. 166–173.

[4] J. Zhang and P. S. Yu, “Broad learning: : An emerging area in social network analy-
sis,” SIGKDD Explorations, vol. 20, no. 1, pp. 24–50.

[5] D. Koutra, H. Tong, and D. Lubensky, “BIG-ALIGN: fast bipartite graph alignment,”
in 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, De-
cember 7-10, 2013, 2013, pp. 389–398.

[6] Z. Liang, M. Xu, M. Teng, and L. Niu, “Netalign: a web-based tool for comparison of
protein interaction networks,” Bioinformatics, vol. 22, no. 17, pp. 2175–2177, 2006.

[7] R. Singh, J. Xu, and B. Berger, “Global alignment of multiple protein interaction
networks with application to functional orthology detection.” Proceedings of the Na-
tional Academy of Sciences of the United States of America, vol. 105 35, pp. 12 763–8,
2008.

[8] M. Heimann, W. Lee, S. Pan, K. Chen, and D. Koutra, “Hashalign: Hash-based align-
ment of multiple graphs,” pp. 726–739, 2018.

[9] S. Zhang and H. Tong, “FINAL: fast attributed network alignment,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 13-17, 2016, 2016, pp. 1345–1354.

[10] J. Zhang and P. S. Yu, “Multiple anonymized social networks alignment,” in 2015
IEEE International Conference on Data Mining, ICDM 2015, Atlantic City, NJ, USA,
November 14-17, 2015, 2015, pp. 599–608.

[11] G. Kollias, S. Mohammadi, and A. Grama, “Network similarity decomposition
(NSD): A fast and scalable approach to network alignment,” IEEE Trans. Knowl.
Data Eng., vol. 24, no. 12, pp. 2232–2243, 2012.

42



[12] T. Komamizu, Y. Hayase, T. Amagasa, and H. Kitagawa, “Exploring identical users
on github and stack overflow,” in The 29th International Conference on Software
Engineering and Knowledge Engineering, Wyndham Pittsburgh University Center,
Pittsburgh, PA, USA, July 5-7, 2017., 2017, pp. 584–589.

[13] Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu, “COSNET: connecting heteroge-
neous social networks with local and global consistency,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Sydney, NSW, Australia, August 10-13, 2015, 2015, pp. 1485–1494.

43


	San Jose State University
	SJSU ScholarWorks
	Spring 5-22-2019

	Network Alignment In Heterogeneous Social Networks
	Priyanka Kasbekar
	Recommended Citation


	Introduction
	Network Alignment
	Heterogeneous Social Networks
	Applications of the Network Alignment Problem
	Challenges in extracting Information Entities 

	Related Work
	Matrix based approaches
	Supervised Learning approaches
	Unsupervised Approach

	Methodology
	Problem Definition
	Feature Extraction
	Algorithms for the Network Alignment problem


	Experimental Evaluation
	Datasets
	Data Preparation
	Upsampling and Downsampling 
	No Upsampling

	Training
	Unsupervised Learning Methods
	Supervised Learning Methods:


	Results
	Experimental Setup
	Results
	Results - Algorithm 1 -(Models - Topological Features)
	Results - Algorithm 2 - (Model - Topological Features + Username and Profile Image Embedding)
	Results - Unsupervised Model
	A Comparison Between Supervised And Unsupervised Approaches To Network Alignment


	Conclusions and Future Work
	LIST OF REFERENCES

