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ABSTRACT

Detecting CRISPR Arrays Using Long-Short Term Memory Network

by Shantanu Deshmukh

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) is a se-

quence found in the DNA sequence of an organism. It provides provides immunity to

the organism. Recently, it was found that the CRISPR-based immunity mechanism

can be manipulated to perform genome editing. The problem is, it is hard to know the

specificity of this system and in turn, making it highly specific is difficult. More re-

search is required to improve this CRISPR-based genome editing. Detecting CRISPR

arrays in the DNA sequence is the first step towards this research. In this work, a

CRISPR array detection pipeline, CRISPRLstm, is proposed. CRISPRLstm leverages

the power of artificial intelligence to improve its performance over existing CRISPR

array detection programs. Why and how artificial intelligence, or specifically, Long-

Short Term Memory (LSTM) models, can be used to tackle this problem effectively is

explained in this report. The CRSIPR arrays detected by CRISPRLstm are in good

agreement with other widely used and freely available CRISPR array detection tools.

CRISPRLstm is available in form of a web-tool. It visualizes the detected CRISPR

arrays in a highly interactive interface with options to view secondary structure of the

repeat and spacer sequences, blast them, create sequence logos of repeat sequences,

and more.
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CHAPTER 1

Introduction
1.1 Background

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a special

nucleotide sequence in the DNA sequence which contains a short subsequence that is

repeated at regular intervals. This short subsequence is called repeat sequence(repeats).

The sequence between the repeats is called the spacer sequence. As an example,

consider a DNA sequence ‘XXXXRSRSRSRXXX’ where X is a random sequence

of nucleotides, R is the repeat sequence and S is the spacer sequence. The repeat

sequences appear after regular intervals and in between them is the spacer sequence.

Figure 1 shows the structure of the CRISPR sequence. Moreover, the repeat sequences

are palindromic in nature. Thus, this special sequence ‘RSRSRSR’ has the name

Clustered Regularly Interspaced Short Palindromic Repeats or CRISPR.

CRISPR and its associated system (Cas) is part of an organism’s defense mech-

anism [3]. The spacer sequences in the CRISPR array are usually a part of a viral

DNA. An organism uses these spacer sequences as templates to identify similar viral

sequences in its DNA. When a similar sequence is found, the Cas system degenerates

it, thus protecting the organism from the viral attack. Recently, the CRISPR system

is gaining popularity as it can be engineered to perform low-cost genome editing [1]. It

is important that this genome editing is precise and happens at the intended locations

otherwise the consequences will be fatal for an organism. To improve the accuracy

Figure 1: Structure of a CRISPR Sequence
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of the CRISPR system more research needs to be conducted. The prerequisite for

this analysis is the detection of CRISPR arrays in an organism’s DNA sequence [4].

Detecting CRISPR arrays in the DNA sequence is the focus of this report.

1.2 Problem Definition

The key problem that is being tackled in this report is, given a DNA sequence,

finding the number of CRISPR arrays present in the sequence, if any. And, for each

CRISPR array, find its exact starting and ending positions along with the exact

boundary of each of its spacer and repeat sequences.

Detecting CRISPR arrays in the DNA sequence is important because it will allow

researchers to design efficient genome editing mechanisms [1]. It will also help them

better understand the evolution of an organism within the species since organisms

with shared ancestry will have identical spacer sequences [1]. Using CRISPR arrays,

researchers can study spacer sequences and the viral DNAs to which the spacer

sequences belong [5]. Moreover, the Cas genes are near the CRISPR array, and can

be studied as well [3].

1.3 Report Organization

The report is organized as follows: Chapter 2 covers the literature survey, mainly,

four existing articles, that focus on CRISPR Array detection, namely, CRISPR

Random Forest [1], CRISPRDetect [4], CRISPRFinder [4] and CRT [6]. Each

article has a section dedicated to it, which covers the performance analysis and

the strengths and weaknesses of the detection methods proposed. Chapter 3 explains

the Long short-term memory (LSTM) model and why it can be effective in detecting

CRISPR sequences. Chapter 4 describes the proposed CRISPR Detection method

(CRISPRLstm) along with an architecture diagram and a simple toy example to

clearly understand the detection process. Chapter 5 then covers the results of the

2



experiments that were performed using CRISPRLstm. Finally, Chapter 6 concludes

with a comparison of CRISPRLstm to the existing approaches and future work.
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CHAPTER 2

Literature Survey

A lot of work is being done targeting this specific problem. Table 1 mentions

six articles that suggest various ways to find CRISPR arrays in a genome sequence.

Later in this chapter, some CRISPR detection techniques are explained in details.

Table 1: Published articles on CRISPR array detection

Published
Year Method Validation Dataset Software

available as Reference

2007 PILER-CR Jensen et al. [7] and Godde & Bickerton [8] Stand-alone app [9]

2007 CRT

5 Organisms with accession numbers:
AE015450, AE004439, AE017282,
AP006627, BX470251
27 randomly selected species from 101 species
of Godde and Bickerton [8] documented CRISPRs

Stand-alone and
Web-service

app
[6]

2007 CRISPRFinder Godde & Bickerton [8] Web-service app [3]

2016 CRISPRDetect
Bacterial and archaeal genomes from
GenBank/genomes (5262 sequences)
CRISPRDb [10]

Stand-alone and
Web-service

app
[4]

2016 CRISPRDigger Clostridium genus (bacterium)
& Methanocaldococcus genus (archeal) Stand-alone app [5]

2017 CRF CRISPRDb [10] Web-service app [1]

2.1 CRF: Detection of CRISPR arrays using random forest classifier

Wang and Liang [1] have applied a random forest classifier to identify the valid

CRISPR arrays based on the repeat sequence and the structural features of CRISPR.

Their method has 3 major steps:

1. Search CRISPR candidates

2. Identify valid CRISPR arrays from the candidates

3. Remove tandem repeats

In the first step, they search for candidate CRISPR arrays. For that, they use an

existing tool, called CRISPR recognition tool (CRT) proposed by Bland et al. [6], with

lenient default parameters. CRT recognizes CRISPR by first detecting a repeating
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Figure 2: Stem loop structure of the repeat sequence [1].

seed region and then expanding it one base pair at a time ensuring a certain matching

threshold is met after each expansion. To detect all the CRISPR candidates, the

authors modified 2 parameters. They reduced the default length requirement of the

seed region and reduced the matching threshold. This resulted in the detection of all

the probable CRISPR arrays.

For the second step, Wang and Liang trained a random forest classifier to detect

valid repeat sequences. The main idea behind the algorithm is that, if a candidate

CRISPR array has a valid repeat sequence, it is a valid CRISPR array. Since a repeat

sequence is palindromic in nature, it forms a stable stem loop, as shown in Figure

2 [1]. This structural information of the repeat sequence is cleverly extracted with

the help of triplets and is used for training. Once the random forest classifier model

is trained, it is used to detect valid repeat sequences among the candidate CRISPR

arrays detected in the first step.

Finally, in the third step, the valid CRISPR arrays are further analyzed, this time

as a complete sequence. The similarity between spacers is calculated using Hamming

distance and if two spacers are found to be more than 50% similar in a sequence, then
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it is discarded as an invalid CRISPR. Each valid sequence is also checked for being a

tandem repeat. A tandem repeat occurs when a pattern of nucleotides is repeated,

and the repetitions are directly adjacent to each other.

2.1.1 Performance analysis

Wang and Liang [1] claim that the proposed random forest classifier can differ-

entiate real CRISPR repeats from invalid CRISPR repeats. They compared it with

three other programs: PILER-CR by Edgar and Myers [9], CRISPRDetect by Biswas

et. al. [4] and CRT by Bland et. al. [6], against the authentic CRISPR arrays found

in CRISPRdb [10]. PILER-CR detected more CRISPR arrays which began or ended

at wrong positions. CRISPRDetect performed better but missed certain portions of

CRISPR arrays. CRT was better than the other two tools, but it was not able to

filter out tandem repeat sequences. Furthermore, the results also showed that this

method was effective in excluding non authentic CRISPR arrays compared to other

programs.

To further analyze the results, Wang and Liang [1] compared the length distribu-

tion of repeat sequences detected by all the four programs. CRT, CRISPRDetect, and

CRF had similar distribution patterns, whereas PILER-CR had a different pattern

supporting the earlier finding that PILER-CR detected wrong start and end positions.

2.1.2 Strengths and weaknesses

CRISPR random forest uses structural information of the repeats. Since the

repeats are palindromic in nature, using structural information of the repeat sequences

strengthens CRF’s performance. Furthermore, it filters out tandem or adjacent repeats.

This results in the repeat length distribution of the CRISPRs detected using CRF

being very similar to the experimentally verified CRISPRs in CRISPRDb.

Besides these strengths, CRF has certain weaknesses. First, it relies only on the
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similarity of repeats and does not consider certain CRISPR properties. Secondly, since

the random forest models are inherently difficult to interpret, the CRF’s detection

model is not interpretable. Finally, CRF does not assign direction to the CRISPR

arrays.

2.2 CRISPRDetect: A flexible algorithm to define CRISPR arrays

Biswas et. al. [4] claim that the existing CRISPR detection techniques do not

utilize the recently discovered CRISPR loci features. In CRISPRDetect, they have

proposed to leverage these features to improve the detection accuracy. CRISPRDetect

detects CRISPR arrays by performing the following five steps:

1. Repeat detection to give putative CRISPRs

2. Removal of CRISPR-like tandem repeats

3. Refinement

4. Determination of direction and similarity to characterized repeat families

5. Quality scoring

In the first step, candidate CRISPR arrays are detected using repeat sequences.

Two short similar sequences (repeat sequences) separated by a dissimilar sequence

are identified. CRISPRDetect uses the default size of the repeat sequence (re-

peat_word_length) as 11. The length of the dissimilar sequence i.e. the spacer

length, should be in the range (min_spacer_length, max_spacer_length), calculated

as follows:
𝑚𝑖𝑛_𝑠𝑝𝑎𝑐𝑒𝑟_𝑙𝑒𝑛𝑔𝑡ℎ = 30− 𝑟𝑒𝑝𝑒𝑎𝑡𝑖𝑛𝑔_𝑤𝑜𝑟𝑑_𝑙𝑒𝑛𝑔𝑡ℎ

𝑚𝑎𝑥_𝑠𝑝𝑎𝑐𝑒𝑟_𝑙𝑒𝑛𝑔𝑡ℎ = 125 + 𝑟𝑒𝑝𝑒𝑎𝑡𝑖𝑛𝑔_𝑤𝑜𝑟𝑑_𝑙𝑒𝑛𝑔𝑡ℎ

Experimentally, it has been verified that the spacer length is greater than 20nt and

the repeat length is greater than 23nt [4]. The range equations ensure that, given the
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repeat sequence length, the spacer sequence length is appropriately being considered

and also reduces the user input to just the repeat sequence length.

The genomic regions containing the above putative CRISPRs are, in the second

step, divided into segments, beginning with the repeated sequence. Each of the

segments is then aligned using ClustalW [11]. The initial repeat length is increased if

the alignment is similar. If spacers between the repeats of these putative CRISPRs

are found to have <5 unaligned columns, it is marked as a tandem repeat and is

discarded.

The third step, refinement, is an important step and is further divided into eight

subroutines as follows:

(a) Extending the repeat end: Mutations at the end of the repeats may result in

a repeat being included in the spacer. CRISPRDetect progressively extends

the repeat on both sides, comparing the bases from adjacent columns and

maintaining a ‘minimum column identity’ of 75%. ‘Alternate column identity’

is permitted for one column; by default it is 50% for arrays with less than 7

repeats and is 40% for longer arrays.

(b) Selecting the representative repeats: The most common repeat is being consid-

ered as the ‘representative’ repeat and the second most common repeat is the

‘alternate’ repeat.

(c) Extend the array: Each candidate CRISPR array is extended by progressively

checking its flanking region within the distance of its representative repeat length

+ 1.33 times the median length of its spacers. The checking is done using the

Smith-Waterman algorithm and it is extended if the ‘minimum repeat identity’

(default is >=67%) is met.
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(d) Refine the repeats: The predicted repeats may contain bases at the end that

correctly belong to the spacers. CRISPRDetect corrects the spacer/repeat

boundary by comparing the repeats with a library of known repeats, with known

motifs found in the end of repeats and with repeat end region degeneracy.

(e) Trim the array: Degenerated repeats can be falsely included after dynamically

extending the CRISPRs. In this step, the terminal repeats that poorly match

the representative repeats are removed.

(f) Correct gaps at repeat ends: CRISPRDetect uses matching bases from initially

predicted spacers to refine repeat ends.

(g) Representation of insertions in a small number of repeats of an array.

(h) Identify mutated repeats initially predicted to be long spacers: Substantial

portion of a repeat and/or repeat-spacer junction may be deleted. In such cases,

the ‘minimum percentage identity’ is not retained and step (a) could erroneously

consider it as a spacer, making it an unusually long spacer. In this step, spacers

longer than the median spacer length and having high percentage identity are

labelled and then present in the output.

2.2.1 Performance Analysis

CRISPRDetect algorithm was run on 2,806 complete bacterial and archaeal

genomes. A total of 3,901 CRISPR arrays were found out of which 3,870 had good

scores and were labeled as ‘good’ arrays. In the ‘good’ arrays, 12% were not identical

to their representative repeats, with 50 repeats less than 70% identical and 399 less

than 80% identical. About half of the ‘good’ arrays were corrected for direction and

160 were flagged as likely direct repeats.

The same genomes were also run for prediction on three other programs: PILER-
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CR [9], CRT [6] and CRISPRFinder [3]. CRISPRDetect has high concordance with

PILER-CR and CRT. It predicted 345 additional CRISPR arrays compared to all the

others. Only 10 arrays that were predicted by all the others were not predicted by

CRISPRDetect.

2.2.2 Strengths and weaknesses

CRISPRDetect uses recently discovered biological features of CRISPR arrays.

Furthermore, since it uses traditional computer science algorithms, it is easily inter-

pretable. Biswas et. al. [4] have also incorporated a direction determination algorithm

in the detection pipeline. CRISPRDetect is able to assign directions to the detected

CRISPRs. Another important strength of CRISPRDetect is, it can identify mutations

at the 3’ end and thus can detect short or degenerate CRISPRs. The only weakness

of CRISPRDetect is it misses certain portions of CRISPR arrays, that is because it

does not consider structural information of repeats.

2.3 CRISPRFinder: A web tool identify CRISPRs

Grissa et. al. [3] released one of the earliest tools for finding CRISPR arrays in a

genome sequence called CRISPRFinder. In the paper, they have compared their tool

with certain generic pattern matching tools that were not CRISPR specific but were

widely in use. They claim that the generic tools are not good at CRISPR detection

because they miss out on certain CRISPR properties and require certain pre-processing

and post processing steps after the detection is complete to filter out valid CRISPRs.

Also, CRISPRFinder provided a very intuitive web-based interface that none of the

tools provided back when the tool was released. Like CRISPRDetect, Grissa et. al.[1]

have mostly relied on CRISPR properties to improve CRISPR detection. They use

properties like repeat and spacer length, the similarity between repeats and spacers and

CRISPR evolution rules. Moreover, they use a linear time suffix tree-based algorithm
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to find patterns. The exact steps that CRISPRFinder uses to detect CRISPR arrays

are as follows:

1. Browsing the maximal repeats

(a) Repeats of 23-55 bp interspaced by 25-60 bp sequence

2. Select the DR consensus

(a) Number of occurrences of the DR sequence in the whole genome

(b) Privilege internal mismatches between DRs rather than mismatch in first

or last nucleotide

3. Defining candidate CRISPRs by checking if they fit the CRISPR definition

4. Eliminating residual tandem repeats

2.3.1 Performance Analysis

CRISPRFinder is efficient at finding most of the CRISPR-like sequences in

a genome, specifically short CRISPRs and the ones with a degenerate repeat.

CRISPRFinder can also detect direct repeat boundaries accurately to a base pair reso-

lution. Furthermore, the interface of the CRISPRFinder tool is easy to understand and

it has an option to easily extract and blast spacers against different databases. Grissa

et. al. [3] compared their tool with other available tools, to verify if CRISPRFinder

could efficiently recover all the CRISPRs from a genome. The data was generally in

good agreement with the other tools. There were a few discrepancies though, that

were found in the DR boundaries’ identification (CRISPRFinder was more accurate)

and the number of motifs (spacer+repeat) found. Truncated DRs and short CRISPRs

are sometimes neglected by other tools.
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2.3.2 Strengths and weaknesses

CRISPRFinder, being one of the oldest CRISPR array detection tools, is still

very efficient in finding CRISPR arrays. The algorithm is very interpretable and

easy to understand. It relies mostly on CRISPR properties and uses suffix tree-

based pattern algorithm which makes it linear in time and space complexities. Since

CRISPRFinder considers CRISPR evolution rules during the detection, it is usually

good at detecting any CRISPR-like structures as a candidate CRISPR and can filter

any invalid candidates. Also, like CRF, CRISPRFinder filters out tandem or adjacent

repeats. But there are few weaknesses with CRISPRFinder. The most important one

is, like CRISPRDetect, it does not consider the structural properties of the repeats

and thus misses certain portions of CRISPR arrays. Secondly, unlike CRISPRDetect,

CRISPRFinder does not assign direction to the detected CRISPRs. Grissa et. al. [3]

have compared their tools with generic pattern matching tools and as expected,

CRISPRFinder performs very well compared to others. Generic pattern matching

tools ignore CRISPRs containing less than three spacers. The users need to define

specific pattern before using those tools and the output of these tools contains large

quantities of noised data which needs further filtering.

2.4 CRISPR Recognition Tool (CRT): a tool for detection of CRISPRs

Bland et. al. [6] developed a simple but very effective method for detecting

CRISPR arrays. It is based on finding exact k-mer repeats that are separated by a

similar distance and then extending each repeat, maintaining certain threshold, till an

approximate repeat length [6]. Their method involves three steps:

1. Find short exact repeats of length k: In the first step, the algorithm looks out

for an exact matching repeat sequence of length k which is separated by some

distance. This sequence of length k, is called the seed region. This value k is one
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of the input parameters of the algorithm. Having a large k, means less chances

of finding an exact match, whereas having a very small k will make the sequence

almost always an exact match. The default value of k used by the algorithm is

8, which is not too large nor too small.

2. Extend the k-mer exact repeats: Once the k-mer repeats are recoginized, each

of the k-mer is extended from the 3’ and the 5’ ends. The base occurrence

percentage of each of the bases to the 3’ and the 5’ ends of all the k-mer repeats

is computed. If a certain base has occurred more than a set threshold (input

parameter) then the k-mer is extended to a k+1-mer. The default extension

threshold is 75% on both 3’ and 5’ ends.

3. Filter repeats that do not meet CRISPR specific requirements: Finally, each

of candidate CRISPRs are validated for CRISPR specific requirements and the

invalid CRSIPR arrays are filtered out.

2.4.1 Performance Analysis

Like CRISPRFinder, CRT was one of the earliest CRISPR array detection tools.

The authors, have compared its performance to Patscan, which was one of the pattern

detection tools available then. The authors claim that CRT is very fast and memory

efficient. CRT, since it just uses string-matching algorithm, has a linear running time.

The algorithm is also linear in space, since no major structures are required [6]. The

authors also claim that CRT has a very high recall i.e. ratio of the number instances

of correctly identified to the total number of instances that are CRISPRs [6].

2.4.2 Strengths and Weaknesses

In CRT one can explain what exactly is happening at each step, since it mostly

relies on traditional string matching techniques. Furthermore, as the authors claim,

it has a very high recall and a descent precision, which means CRT can be followed
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by robust filtering steps to give a very good CRISPR detection algorithm. Also, it is

fast compared to pilerCR and Patscan. But besides these strengths, there are a few

weaknesses. CRT does not consider the structural properties of the repeats. It also,

does not assign direction to the detected CRISPR arrays.

In the next chapter, the Long short-term memory (LSTM) model and why it can

be effective in detecting CRISPR sequences is explained.
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CHAPTER 3

Long-Short Term Memory models

3.1 What is a Long-Short Term Memory model?

Long-Short Term Memory (LSTM) models are a type of Recurrent Neural Network

(RNN) models. These models are good at recognizing patterns in sequential data such

as text since they take into account the time and order of the data while processing

it. A simple RNN model looks like the left-hand side of Figure 3 [2]. An input xt,

is given as input to the Neural Network A, to get an output ht, the t here signifies

the time. For the ease of understanding, the right-hand side of Figure 3 shows the

same model in an unwrapped fashion. The input x0,x1,x2,...,xt is each character of the

input sequence whereas the output h0,h1,h2,...,ht is the output for each input sequence.

The horizontal arrows from one A to other signifies that the output of one input time

stamp is forwarded as the next input along with xt at that timestamp.

Thus, RNNs are good while working on the sequential data. RNNs have one

problem though, they are bad at learning long-term dependencies. For example [2], if

we want the RNN model to predict the next word in the sentence ‘Trees are ____’,

it can easily predict ‘green’. But if the sentence is long, like ‘I live in France... I speak

fluent ____’, here, for the model to answer ‘French’ it needs to remember the word

France that had occurred long back. Theoretically, RNNs should be able to remember

Figure 3: Recurrent Neural Network [2]
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encountered words and answer correctly, but practically, they tend to forget long

term context. This is where the special type of RNN model, a LSTM model, comes

into play. LSTMs are designed to tackle the long-term dependency problem [2].

3.2 LSTMs on DNA Sequences

In our case, for the DNA sequence, the input x0,x1,x2,...,xt will be the sequence

of nucleotides in the DNA sequence and there will only be one output at the end of

the complete sequence. That output will tell if the given sequence is a valid repeat

sequence or not.

H. Hassanzadeh and M. Wang [12], report that LSTM is highly effective in finding

patterns in the DNA which is simply a long sequence of 4 alphabets (nucleotides).

The power of LSTMs can be leveraged to find the CRISPR sequences in the DNA.

An LSTM model can be trained on the repeat sequences in the valid CRISPR arrays

present in CRISPRDb. This way the model could learn the patterns found in the

valid repeat sequences. Later, building upon the existing tools, CRT with very lenient

default parameters, can be used to extract candidate CRISPRS. On the candidate

CRISPRs, the trained LSTM model can be used to filter out valid CRISPRs. These

valid CRISPRs can then further be checked for CRISPR properties as done with

CRISPRDetect and CRISPRFinder.

The next chapter describes the proposed CRISPR Detection method (CRISPRL-

stm) along with an architecture diagram and a simple example to clearly understand

the detection process.
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CHAPTER 4

CRISPR array detection using CRISPRLstm

4.1 Dataset description

Three datasets were used in the project: the self-curated dataset, the publicly

available CRF’s [1] dataset and the dataset made available by Godde and Bickerton

in [8]. The self-curated dataset is partially acquired from CRISPRDb. CRISPRDb is a

publicly available dataset with known CRISPR sequences. It is regularly updated and

can be queried to fetch CRISPR sequences. At the time of writing this report, 3254

CRISPR sequences were present in CRISPRDb. From each of those CRISPR sequences,

a consensus repeat sequence is provided in CRISPRDb and can be downloaded. Thus,

3254 repeat sequences were downloaded. These repeat sequences were labelled as valid

repeats because they belonged to valid CRISPR arrays. An equal number of DNA

sequences with the same length distribution were randomly created. These sequences

were labelled as invalid repeat sequences, since they do not belong to any CRISPR

array. The second dataset, used and made publicly available by CRF [1], contains

11,407 valid repeat sequences and 12,000 invalid repeat sequences. Tables 2 and 3

show the details of the first and second datasets respectively.

Table 2: Curated Dataset’s Statistics

Sequence Count

Valid repeats 3,254
Invalid repeats 3,254

Total 7,508

Table 3: CRF [1] Dataset’s Statistics

Sequence Count

Valid repeats 11,407
Invalid repeats 12,000

Total 23,407

Lastly, the Godde and Bickerton’s dataset, consists of around 400 repeat sequences

found in around 160 organisms, along with the name of the organism, number of

times that repeat has appeared in the organism and the size of the repeat sequence.

First two datasets were used to train and assess the performance of the LSTM model,
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Figure 4: Implementation pipeline of CRISPRLstm.

where as the third datase was used to validate the complete CRISPRLstm detection

pipeline.

4.2 CRISPR array detection pipeline

The proposed method, CRISPRLstm, is inspired from CRF [1]. Instead of using

the random forest classifier as in CRF [1], CRISPRLstm uses Long-Short Term

Memory model as mentioned in Chapter 3. CRISPRLstm is divided in three main

parts, as shown in Figure 4.

1. Finding candidate CRISPR Arrays

CRISPR Recoginition Tool is a widely used tool for finding CRISPR Arrays [1].

The authors of CRT [6] claim that it has high recall but not so high precision.
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High recall means that it does not miss any of the valid CRISPR array in a

given sequence, on the other hand, low precision means the CRISPR arrays

detected as valid by CRT are often false positives. This means, the arrays

detected by CRT need further filtering to increase the precision and in turn the

accuracy of detection. Having a high recall, makes CRT a perfect candidate

to find candidate CRISPR arrays. Thus, in the first step, CRT uses a lenient

default parameters to get a list of candidate CRISPR arrays. Making the default

parameters lenient, ensures that none of the probable CRISPR arrays are missed.

As discussed in Chapter 2, CRT accepts the seed region length (k) and the base

occurrence percent threshold as the input parameters. As in CRF, both these

parameters are modified to make the CRISPR detection lenient. The length of

the seed region (k) is changed from 8 nt to 5 nt. The base occurrence percent

threshold, which is used to extend the seed region, is reduced to 0.6 for the 3’

end, whereas on the 5’ end it is kept the same (0.75). This is because the 3’ end

of the repeats appear to have more variations than the 5’ end [1, 13].

2. Scoring repeat sequence of each candidate CRISPR Array

In this step, each of the repeat sequences of the candidate CRISPR arrays, found

in the first step, are extracted and scored for being a valid repeat. The scoring

is done using a LSTM model with a sigmoid activation function as the last layer.

The model, thus, gives out a score between 0 and 1. Higher the score, the higher

the likelihood of the repeat being valid. The architecture of the LSTM model is

shown in Figure 5. Keras library [14] was used to build and train the LSTM

model.

The first input layer in the model accepts a vector of length 45. The vector

should only consist of positive integers. So, as a prepossessing step, all the input
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Figure 5: Architecture of the LSTM model used for scoring.

repeat sequences were first tokenized i.e. each nucleotide was assigned an integer

value and then the whole input sequence was converted to an integer vector.

For example, consider ‘AAGTCGT’ it is converted to a vector [1123423]. If the

length of the vector is greater than 45, only the first 45 integers were considered

and the rest were discarded. On the other hand, if the length of the vector is

less than 45, then the vector was left-padded with 0s to make it 45 integers long.

The embedding layer turns positive integers (indexes) into dense vectors of fixed

size. Then LSTM outputs a vector of length 32 (see Chapter 3 for details). The

LSTM layer is connected to a fully connected layer followed by an activation

layer which gives an output vector of length 128. An activation layer applies an

activation function to the output of it’s initial layer. An activation function is

a non-linear function which defines the output of a specific index for a given

input at that index. The activation layer is then followed by a dropout layer.
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A dropout layer is used to avoid over-fitting during training the model. The

output vector is then passed to a fully connected layer with an activation layer

which outputs a single value between 0 and 1. For training the model, curated

data-set defined in Table 2 was used.

3. Filtering candidate CRISPR Arrays

For each repeat sequence of a candidate CRISPR array, the LSTM model, in

step 2, gives a score from 0 to 1. In this step, the score of a CRISPR array is

calculated as the average score of each of its repeats. A threshold of 0.5 is then

used to filter out invalid CRISPR candidates i.e. if a candidate CRISPR has a

score >0.5 it is considered as a valid CRISPR array otherwise it is filtered out.

The threshold is an input parameter and can be changed if required.

4.3 An Example

Consider a sample genomic sequence:

𝑁𝑁𝑅′𝑁𝑅′𝑁𝑅′𝑁𝑁𝑅𝑆𝑅𝑆𝑅𝑆𝑅𝑆𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑆𝑅𝑆𝑅𝑆𝑅𝑁𝑁

𝑤ℎ𝑒𝑟𝑒,

𝑁 : 𝐴𝑛𝑦 𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 𝑏𝑎𝑠𝑒 𝑆 : 𝑆𝑝𝑎𝑐𝑒𝑟 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑅 : 𝑅𝑒𝑝𝑒𝑎𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑅′ : 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑟𝑒𝑝𝑒𝑎𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

In the sequence, let’s assume, there are 2 valid CRISPR arrays one in the center of

the sequence with 5 repeat sequences and one at the right end with 4 repeat sequences,

and 1 invalid CRISPR array just at the beginning with 3 invalid repeats.

Now, assume the sequence is given as input to the proposed pipeline shown in

Figure 4. In the first step, CRT with lenient default parameter; will output 3 CRISPR

candidates, each with 3, 4 and 5 repeat sequences. In the second step, each of 12

candidate repeats will be passed through the trained LSTM model which will give a
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score, between 0 and 1, to each of the repeats. Let’s assume the scores to be 0.31,

0.42, 0.56, 0.83, 0,77, 0.90, 0.92, 0.69, 0.75, 0.79, 0.97, 0.87 for each of the repeat

sequences starting from the 5’ end.

In the final step, for each candidate CRISPR array, an average of all its repeat’s

score will be calculated. If that score is less than the empirically determined threshold

of 0.7, the array will be considered invalid. In our case, the scores of the candidate

CRISPR arrays will be 0.43, 0.79 and 0.81, respectively, starting from the 5’ end.

Since, the score of the first candidate array is less than 0.5, it will be filtered out and

the rest of the two will be considered as valid. Thus, the output of the pipeline will

be the two valid CRISPR arrays with 4 and 5 repeat sequences each.

In the next chapter, the experiments that were performed using CRISPRLstm

and their results are discussed.
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CHAPTER 5

Experiments and Results

5.1 Comparison with CRF

As mentioned in Chapter 4, CRISPRLstm is inspired from CRF, so it was

important to compare its results with CRF. The authors of CRF claim that the

random forest classifier achieved an accuracy of 94.42% and sensitivity of 93.99% [1].

They have used the dataset defined by Table 3 to train a random forest classifier. It is

worth noting that the results achieved by CRF were on a 80:20 training:testing split

of the dataset and not a cross validation results. So, to compare the CRISPRLstm’s

classifier with the random forest classifier, two sets of 10-fold cross validation tests

were performed, one using the curated dataset mentioned in Table 2 and the other

with the CRF’s dataset mentioned in Table 3.

Table 4: Fold-wise classification accuracy of random forest and LSTM on the CRF’s
dataset

Fold 1 2 3 4 5 6 7 8 9 10
CRF 0.937 0.963 0.952 0.965 0.938 0.946 0.961 0.946 0.949 0.963
LSTM 0.930 0.927 0.926 0.924 0.927 0.931 0.931 0.933 0.927 0.927

Table 5: Fold-wise classification accuracy of random forest and LSTM on the
self-curated dataset

Fold 1 2 3 4 5 6 7 8 9 10
CRF 0.862 0.876 0.874 0.885 0.873 0.876 0.874 0.877 0.868 0.882
LSTM 0.911 0.880 0.883 0.912 0.900 0.891 0.900 0.888 0.912 0.892

Table 6: Performance comparison between random forest and LSTM classifier

CRF dataset Self-curated dataset
AUC Sensitivity Specificity AUC Sensitivity Specificity

random forest classifier 0.925 0.923 0.933 0.874 0.881 0.867
LSTM classifier 0.989 0.933 0.979 0.969 0.946 0.845

Tables 4 and 5 show the fold-wise classification accuracy of both the random

forest and the CRISPRLstm’s LSTM model on the CRF’s dataset (Table 3) and the
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(a) On CRF’s dataset
(b) On self-curated dataset

Figure 6: Fold-wise classification accuracy graphs

curated dataset (Table 2) respectively. Besides accuracy, average sensitivity and

specificity was computed for each of the dataset. Table 6 shows the values of each

of the performance metric for both the datasets. For all the metrics and both the

datasets, except for the specificity of self-curated dataset, CRISPRLstm’s LSTM

outperforms the random forest classifier. Figure 6a and 6b are the fold-wise line charts

of the accuracies. It can clearly be seen that the LSTM model performs better than

the random forest classifier, with an approximate 3-4% increase on an average, for

each fold. To ensure that this does not happen by chance, 100 10-fold cross validations

were performed using the CRF’s dataset on both the LSTM and the random forest

classifier. For each fold, accuracy, sensitivity and specificity metrics were computed.

Thus, there were 1000 values for each metrics. This data was then used to perform a

t-test. Scipy library’s [15] stat package was used to compute the tstatistic for each of

the metrics. Table 7 shows the results of the test. t-value measures the size of the

difference relative to the variation in the two sets of data, whereas, the p-value is the

probability of finding extreme results between the two sets of data [16]. For all the

metrics, the t-value is large and the p-value is either very small or 0. This suggests

that the results of cross validation are indeed different and did not occur by chance.
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Table 7: t-test result of 100 10-fold cross validation’s on [1]’s dataset

t-value p-value
Sensitivity 7.8132 8.93E-15
Specificity 113.8492 0
Accuracy 66.5159 0

Table 8: No. of CRISPR arrays detected by different programs on 8 genomic sequences

Accession No. Organism Name CRISPR
Lstm CRT PilerCR CRISPR

Detect
CRISPR
Finder

CP006907.1 Clostridium
botulinum CDC_297 3 4 2 3 4

NC_010628.1 Nostoc punctiforme
PCC 73102 6 7 7 9 7

NC_019771.1 Anabaena cylindrica
PCC 7122 9 9 12 12 8

NC_019682.1 Calothrix sp.
PCC 7507 10 11 15 13 11

NC_003272.1 Nostoc sp. PCC 7120 11 12 11 12 11

CP009149.1 Methanocaldococcus
bathoardescensJH146 11 11 15 12 12

NC_019676.1 Nostoc sp. PCC 7107 12 14 14 15 15

NC_019678.1 Rivularia sp.
PCC 7116 13 14 13 18 13

5.2 rCRISPR metric on 8 known genome sequences

The performance of CRISPRLstm was compared with four other tools, namely,

CRT [6], PilerCR [9], CRISPRDetect [4] and [3]. Eight complete genome sequences

were used for the analysis. Table 8 shows the number of CRISPR arrays detected by

each of the programs on every sequence. The results of CRISPRLstm are generally in

good agreement with the results from other tools. But, these measurement do not

accurately show the detection accuracy of each of the tools. A novel performance

metric, rCRISPR, defined by [5] was used for this purpose. rDR is defined as the ratio

of the number of DR copies detected by a given program with the number of DR

copies in known the CRISPR array. rCRISPR is the average rDR of all the CRISPR

arrays in a given genome. It is possible that the rCRISPR value can be greater than 1,
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since a program can detect more DRs than know number of DRs in a given sequence.

Figure 7: Performance measurement of CRISPR Detection programs

For all the programs and genome sequence in Table 8, rCRISPR value was

computed. Figure 7 shows the box and whisker plot of their rCRISPR values. As it

can be seen, none of the tools has a mean greater than 1, suggesting that for those 6

genome sequences none of the programs detected more DRs than the known number

of DRs. CRISPRDetect, CRISPRLstm and CRT has a mean close to one, inferring

that they usually detect equal to or slightly less than the actual repeat sequences,

although CRISPRLstm does not have a tight distribution. PilerCR, on the other

hand, has a mean well below 1, suggesting that it detects fewer DRs than the known

ones.

5.3 Comparison with CRT, PILER-CR and CRISPRDetect

Stand-alone versions of CRT, PILER-CR and CRISPRDetect with their default

parameters were executed on 81 fasta files of the organisms from the Godde &
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Figure 8: Visualizing the number of CRISPR arrays detected by CRT, PILER-CR,
CRISPRDetect and CRISPRLstm on Godde and Bickerton’s dataset

Bickerton’s dataset [8]. Figure 8 shows the number of CRISPR arrays detected

by each of the programs. Overall, 329 CRISPR arrays were detected of which

7 CRISPR arrays were detected by all the tools. CRT and CRISPRLstm have

most of the overlap since they share 105 CRISPR arrays between them. This was

expected since CRISPRLstm has CRT with lenient parameters as an intermediate step.

CRISPRDetect and PILER-CR shared 10 CRISPR arrays between them. Besides the

7 common CRISPR arrays, CRISPRLstm and CRT shared 0 CRISPR arrays with

CRISPRDetect and PILER-CR. CRISPRLstm, CRT, CRISPRDetect and PILER-CR

detected 21, 13, 81 and 106 CRISPR arrays, respectively, that none of the other tools

detected. Furthermore, each of these CRISPR arrays were compared for validity

with the results of Godde & Bickerton’s dataset [8]. None of the 21 CRISPR arrays

detected only by CRISPRLstm were valid, 1 out of 13 CRISPR arrays detected only

by CRT were valid, 19 out of 81 CRISPR arrays detected only by CRISPRDetect
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were valid and 38 out of 106 CRISPR arrays detected only by pilerCr were valid.

CRISPRLstm’s performance on this dataset was not as good compared to the other

programs.

Besides this visualization, rCRISPR values were computed using the detected

CRISPR arrays and the known arrays available in the dataset. Figure 9 shows the box

and whisker of their rCRISPR values. pilerCr as the earlier observations, in Figure 7,

detects less of the known direct repeats. CRISPRDetect, has slightly higher rCRISPR

mean value. Performance of CRT and CRISPRLstm in this case were very similar.

Figure 9: rCRISPR plot on Godde & Bickerton’s dataset

5.4 Visualizing CRISPR array distribution detected by various programs

Two complete genomes, Clostridum botulinum CDC297 bacterium and

Methanocaldococcus sp. JH146 archaea, were used to compare the performance

of four CRISPR detection programs: PILER-CR, CRISPRDetect, CRT and the

CRISPRLstm. Figure 10 shows the circos visualizations with the position of each of

the detected CRISPR array by these programs. In general, the results of CRISPRLstm

were in good agreement with all the progrmas. For the bacterium, 3 CRISPR arrays
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(a) Clostridum botulinum CDC297 (b) Methanocaldococcus sp. JH146

Figure 10: Circos plots of detected CRISPR arrays in two genomes. The outermost
circle represents the genome sequence. The gap on the upper-side of each circle is the
start and end positions of the sequence. Each solid circle represents CRISPR arrays
detected by PILER-CR (blue), CRISPRDetect (red), CRT (green) and CRISPRLstm
(black) from the innermost to the outermost circle respectively.

were found by CRISPRLstm. PILER-CR missed 1 CRISPR array. CIRPSRDetect

was the only package to find a CRISPR array at a completely different position which

none other programs found. CRT found 1 extra CRISPR array than CRISPRLstm.

For the archaea, 11 CRISPR arrays were found by CRISPRLstm. PILER-CR found 16.

It basically split long CRISPR arrays into smaller ones because of undetected internal

repeats. CRISPRDetect detected 1 extra CRISPR. CRT was in exact agreement with

CRISPRLstm, detecting 11 CRISPRs.

5.5 Specific Examples

Grissa et al. [3] has specific examples of genome sequences with short and long

CRISPR arrays such as Shigella sp. and Pseudomonas aerginosa respectively. Godde

and colleagues [8] did not find any CRISPR arrays [3]. CRISPRLstm found one

questionable CRISPR array in Shigella sp. and two CRISPR arrays in Pseudomonas
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aerginosa. 6 spacers out of 36 spacers in Pseudomonas aerginosa’s two CRISPR arrays

correspond to a bacteriophage sequence. This could signify that those two CRISPR

arrays are indeed valid. Same was reported by [3].

CRISPRDetect [4] states that mutations at the center of an internal repeat

sequence may cause the program to split a CRISPR array in two or more short

CRISPR sequences. PilerCR for example, splits a CRISPR array in Carboxydothermus

hydrogenoformanas in two short CRISPRS (of 12 and 68 spacers). CRISPRLstm

corrects this error, resulting in a long CRISPR array with 83 spacers (identifying 3

extra spacers), as reported by CRISPRDetect [4].

5.6 User Interface

The user interface [17] of the proposed pipeline has a lot of features besides just

searching for a CRISPR array. It allows to create the web sequence logo of the repeat

sequences, blast any of the repeat or spacer sequence, create secondary structure of

the repeat or spacer sequence and show the structure of the CRISPR array.

Figure 11 shows the result page. It shows the organism name at the top, followed

by 4 statistics, namely, the number of bases in the input sequence, number of valid

CRISPR arrays found by the pipeline, number of questionable CRISPR arrays i.e.

arrays with scores below the threshold at step 3 from the Figure 4 and the time taken

to find the CRISPR arrays (this is just the processing time and excludes any network

delay). These statics are then followed by two dropdown sections, one dropdown

shows valid CRISPR arrays and the other shows the questionable ones. By default,

the valid CRISPR array’s dropdown is expanded. Each dropdown, when expanded,

has a list of all the CRISPR arrays visualized in detail.

Figures 12 and 13 show the repeat web logo and the CRISPR Structure, respec-

tively, in a pop-up. Both pop-ups are triggered by clicking on the buttons at the
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Figure 11: Results page

bottom of the CRISPR table on the result page.

Figure 12: Repeat weblogo popup

31



Figure 13: CRISPR Structure popup

On clicking any of the repeat or spacer sequences on the results page opens a

pop-up as shown in Figure 14. It has the secondary structure of the sequence. There

is a button at the bottom of the pop-up that allows to blast the sequence at NCBI.

The blast page is opened in a new tab.
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Figure 14: Secondary structure of the clicked sequence with an option to BLAST the
sequence
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CHAPTER 6

Conclusion

This work presents a new method to detect CRISPR arrays in a genome se-

quence. It leverages the power of artificial intelligence, specifically, long-short term

memory network model to significantly improve the power of detecting valid repeat

sequences. All packages that can be used to find CRISPR arrays have advantages and

disadvantages. The proposed program, CRISPRLstm, performs at par compared to

these tools. It’s results are, in general, in good agreement with other packages. Using

multiple tools to get the best results is recommended since the results compliment each

other. The CRISPRLstm’s LSTM classifier outperforms the random forest classifier.

The user interface of CRISPRLstm is intuitive, highly interactive and offers varied

functionality such as repeat sequence logo creation, 2D structure creation and blasting

spacer/repeat sequences. Future work to the CRISPRLstm’s pipeline would be to

add direction to the detected CRISPR arrays and filtering out tandem repeats. The

trained CRISPRLstm’s LSTM model could be incorporated in any of the existing

CRISPR Detection pipeline to further improve the precision value of the results,

CRISPRCasFinder [18], an update version of CRISPRFinder [3], is a good fit for the

same with its high recall. CRISPRLstm is available online at http://35.236.94.239/.
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