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Abstract  
  
 There has been research around the idea of representing words in text as vectors and many 

models proposed that vary in performance as well as applications. Text processing is used for 

content recommendation, sentiment analysis, plagiarism detection, content creation, language 

translation, etc. to name a few. Specifically, we want to look at the problem of topic detection in 

text content of articles/blogs/summaries. With the humungous amount of text content published 

each and every minute on the internet, it is imperative that we have very good algorithms and 

approaches to analyze all the content and be able to classify most of it with high confidence for 

further use.  

   

The project aims to work with unsupervised and supervised machine learning algorithms 

in an effort to tackle the topic detection problem. The project will target various unsupervised 

learning algorithms like Word2vec, doc2vec and LDA for corpus and language dictionary learning 

to have a trained model which understand the semantic of texts. The objective of the project is to 

combine this unsupervised learning with supervised learning algorithms like Support Vector 

Machine and deep learning methods to analyze and hopefully better the performance in terms of 

accuracy of topic detection. The project also aims at performing user interest-based modelling, 

which is orthogonal to topics modeling. The idea is to make sure the model is free of predefined 

categories.  

 

The project results show that hybrid models are comfortably accurate when classifying text 

in a particular topic category. The project also concludes that user interest modelling can also be 

accurately achieved along with topic detection. The project successfully determines these results 

without any meta information about the input text and purely based on the corpus of the input text. 

This makes the project framework really robust as it has no dependency on source of text, length 

of text or any other meta information about the text content. 

 
Index Terms – topic detection, topic modelling, hybrid, topic mixtures, SVM, neural network, doc2vec, 

LDA.  
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I. Introduction 
 

Some of the conventional models used for topic detection are text to vector models like 

LDA, LSA, PLSA, doc2vec, etc. Latent Dirichlet Allocation is one of the first models to create 

topics out of word vector models and understand the thematic patterns within the text. It builds a 

mixture of topics per document and words per topic in the training phase. Some other approaches 

which are used for classification problems singularly or in combination with other techniques are 

Support Vector Machines, K-Means, Random Forest, etc. When used in ensemble approach, the 

applications of these classification techniques range from classifying parts of face in face 

detection, text and hypertext categorization, bioinformatics, protein fold and remote homology 

detection, handwriting recognition, etc. 

 

In this project, the primary objective is to create a model which uses unsupervised and 

supervised learning in conjunction for modelling topic detection, user interest, content 

flagging/prohibition, etc. This project will use an unsupervised model to create a learning corpus 

and generate vector which could act as input to the supervised models and validate if this setup 

can give results which help us model the previously mentioned ideas. 

 

 We take a look at a few researches done previously in the “Related Work” section which 

will help us form a strong foundation for this project which will aim at combining supervised and 

unsupervised learning algorithms to model topic detection solution for various datasets. 

  
 

  



Topic Classification Using Hybrid of Unsupervised and Supervised Learning 

 

 2 

A. Background 
 

 Across the internet, there is tons of user content that is generated every day in the form of 

audio, video, images, text, etc. Content curation as well as recommendations is one of the core 

problems for today’s online content providers. If we look at the text data, there are many cases 

where users subscribe to newsletters, blogs, promotions, updates, etc. to stay on top of a certain 

field or area of their interest. One other case is search engines using user search patterns and history 

to give more relevant and suitable suggestions for articles/blogs that might suit their interest or 

what the user is looking for specifically. Some other cases of content curation are when users mark 

a set of topic categories as their ‘interests’ for recommendation engines and these engines then 

provide them with the relevant content. All these cases show that content curation, topic modelling 

and text recommendation are things that are really crucial in today’s world. 

 

 However, there are some issues with the current topic modelling and recommendation 

systems such as – 

- Content whose topics are not known or newly added topics. 

- Topics of the content is not present in the explicitly curated topic categories. 

- Topic categories are modelled based on a specific set of sources. 

- Inter topic or intermingling topic interests are not modelled well. 

- Topic categories are named to be either too broad or too specific causing problem of too 

strict or very loose boundaries for content recommendation. 

 

These issues cause the users to lose trust on the recommendation or finding of the search engine 

since they might end up eyeballing articles which end up being of no interest or remote interest to 

them. One of the common cases where this happens a lot is with mingling interests.  

For example. If a user has marked 2 topics of interest in a certain recommendation system, 

namely Sports and Machine Learning. When there is an article which talks about the use of 

machine learning tools to improve the facial features of the players in the console game FIFA, this 

article is missed because it is neither primarily tagged as ‘Machine Learning’ nor as ‘Sports’ but 

as ‘Console Games’. This is marginal side track from the user’s marked interests but it is still a 

combination of both the interests and so should be recommended to the user and not missed out. 

Such inter mingling interest categories are a problem for the topic modelled systems in place today 

and there needs to be a better way to handle this. 

Another issue with the same example could be thought of. Suppose the article was 

published by the company which manufactures ‘console games’ and it was tagged as a gaming 

article based on the source of the article. The user has no mention of games in his topics of interest, 

but a core topic of interest is ‘Machine Learning’. Since the article talks about the use of machine 

learning in improvising facial features of the graphically animated players, the user should be 

recommended this article as a topic of interest, however, this is missed since the topic of interest 

is tightly coupled in deriving meaning from the source of the article rather than the content. 

 

Topic categories can also be broad or too narrow. A topic category like ‘Global news’ is 

too wide and will recommend anything and everything, whereas, a topic category like ‘Nvidia GE 

Force 4500’ is too specific and will hardly curate any results or will keep showing the stale results 

again and again. This is why topic categorization is a critical problem and designing topic 

categories is very crucial in having a good content curation strategy in place. The topics should be 
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designed in a way that leave some room for gaining breadth around the topic content and not be 

so broad that the area of surface for the topic overlaps with many other topics. 

 

Some other cases of topic modelling can be used in bizarre cases where there may be objectionable 

content on the internet being subscribed and shared which is brought down once the topic category 

is noticed. However, the menace can still continue if the same content is posted with misleading 

topic categories since the topic categories could be derived based on the source or a manual curator 

who is also of the same objectionable view. This can only be solved if we have a way of detecting 

topics of an article based on the content itself. 

 

One other issue occurs if the topic recommended to the user does contain the area of interest, but 

it is relatively very less compared to the whole content of the article making it a bad choice for 

recommendation. A good example would be an article about launch of a new ‘Dominos’ store, the 

pizza chain, which talks about its new recipes and ingredients and gets recommended to the user 

since his topic of interest was ‘San Francisco’.  

 

These are some of the issues that we have around topic modelling or user interest modelling for 

textual data. 

 

B. Problem Definition 
  

Topic modelling and classification being a really integral part of content curation and 

content recommendation needs to be orthogonal to the parameters that are surrounding the content. 

Topic modelling based on meta features about the content like length of the text, language of the 

text, source of the text, etc. should be avoided since they give rise to all the issues that we saw in 

the previous sections. 

 

To be able to evolve from these problems, we suggest the basic rules that our proposed 

topic/user interest modelling framework should follow. We should propose a framework: 

 

- that is combined result of supervised and unsupervised algorithm. 

- that works well with intermingling categories of interests 

- that is not rigid and strongly coupled to predefined categories 

- that predicts a set of topics for the given content 

- that predicts the contribution of each predicted topic to the article 

- that generalizes well for unseen categories. 

- that does not depend on the source of information for context 

- that purely predicts based on the text content and not based on meta features like size, 

length, headline, etc. 

 

We propose a framework that a combination of supervised and unsupervised machine learning 

techniques that will follow all the above-mentioned rules for topic modelling. This will help us 

eliminate the problems with previous topic modelling techniques and create a better version of 

content curation and recommendation engines. 
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Some of the previous work done around content topic modelling can be seen in the next section 

‘Related Work’. 
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II. Related Work 
 

LDA has been used with HMM [4] and genetic algorithms [12] to approach topic modelling 

in innovative ways.  One other approach to topic modelling was proposed in [5] where no topic 

labels were previously known, and the model performed really well for articles from Wikipedia. 

The topic word clusters that were created in this approach were very similar to what was mentioned 

in the Wikipedia topic categories. One other novel approach including LDA was [6] which used 

online stream processing model on top of LDA which gave better results in terms of adapting to 

change in topic vectors with time over the course of the stream. 

 

Blei et. al [1] proposed the base Latent Dirichlet allocation model which is so widely used. 

It is a probability generated model which uses Dirichlet allocation to project a document into vector 

space with many topics where each topic consists of many words representing the topic. LDA is 

an extension to Probability Latent Semantic Analysis [PLSA] proposed by Hoffman [2].  

 

LDA model’s [3] understanding of topics is implicit and so AlSumait et.al [6] proposed to 

model a genetic algorithm on top of LDA to help with the topic classification in a more meaningful 

way. [6] proposed to model the genetic algorithm in a way that it optimizes the weights of the 

topics which are stored in the θ matrix of the LDA model. It was seen that results for the individual 

topic classification out of the identified 8 categories of topics as compared to the previous studies 

were improved by LDA-GA.  

 

One other variation of a topic model is the generative type. In this approach, the model is 

able to uncover the different themes within a topic and different topics within a topic. An 

innovative use of this generative behavior was proposed by Kaur et. al [4] where Hidden Markov 

Model [HMM] was used on top of plain LDA to spotlight on extricate words from the topic with 

length of more than one word. This used a level 4 Bayesian model and was proposed by the name 

of Latent Dirichlet Markov Allocation [LDMA]. The core functionality which forms the basis of 

LDMA is the extraction of unigrams from LDA and then creating a markov chain process which 

will generate further topic links. The topic links could be unigrams/bigrams which in turn allows 

for multiword topic generation capturing the idea in a more robust way. This could also help with 

the problem of having labelling generated topic vectors since it is easier to get more meaningful 

topics for ideas which are expressed in the data text itself and not latent in expression. 

SentiNetWord was used to analyze the sentiment of the text and give a stochastic probability value 

for 3 parameters - positive, negative, and neutral/objective. These values were also used as a 

feature to decide on the final topic selection from the generated list of unigram/bigram topics by 

looking at the synonyms of the lexical tokens given by SentiWordNet.  

 

Wartena et. al. [5] had proposed one of the first clustering approach based on keywords in 

alignment with the distribution of co-occurring keywords of a text. In this research, they did not 

use any labels of topic classifications for training the dataset which was created from a host of 

Wikipedia articles. Instead, the documents were used to create word frequencies and then a 

similarity measure was developed based on the cosine similarity between the keyword. It was also 

observed that the Jensen-Shannon divergence of probability distribution performs better than the 

cosine similarity measure for keyword similarity. This research defines likelihood of words 

defined as distributions associated with words by measuring the co-occurrences in documents. It 
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must be noted that this paper treats bag of words or terms as a word which means that similarity 

between words could means similarity between a window of bag of words. While evaluating the 

performance of different distance measures for similarity - 4 main types of distances are 

considered: 

- Cosine similarity for document distributions 

- Cosine similarity of vectors of tf-idf values of words 

- Jensen-Shannon divergence between document distributions 

- Jensen-Shannon divergence between term/word distributions 

The clustering mechanism used is pretty straight forward. Start by selecting 2 farthest of the data 

points. Assign each of the points based on proximity of the first 2 points as seeds for the clustering. 

Once all points are clustered and if the radius of individual clusters is more than a predefined 

threshold value, we repeat this process within that radius for the inner points. This gives a binary 

tree of clusters. The paper also looks at agglomerative hierarchical clustering. 

The results of the research clearly state that the Jensen-Shannon term distribution provides 

the best results with document distributions of same flavor a close second. Thus, it was clear that 

for clustering purposes, Jensen-Shannon distribution as a distance measure was a better choice as 

compare to the cosine similarity for word topic detection using keyword clustering. 

 

L. AlSumait et. al [6] published a research working on a stream processing online model 

of LDA for adaptive topic modelling of text content. This main motive of making LDA topic 

modelling online was to detect different thematic patterns and identifying the different changes 

and emerging patterns in topics over time. This would provide as a useful insight in understand 

the topic transition behavior. The model does not need information from the previously 

viewed/processed articles and can easily update the new information presented by the stream with 

latent vectors. Since it is a stream processing model, this LDA variant also has the ability to 

magnify and look at the relevant topics in a particular instance of time. The ability to work in an 

online mode is based on the assumption that the documents are arriving as part of a time slice and 

OLDA considers the temporal ordering information. A topic model with n components is used to 

model the newly arrived document. This generated model is then used as a prior for the new 

documents that are processed from the stream. The OLDA model is efficient in complexity and 

memory usage since the inference problem in static LDA is solved using chunks of document for 

inference. This makes it really useful for genuine applications. OLDA uses Gibbs sampling as an 

approximate inference method for topic-word assignments. The OLDA approach takes text 

streams, confidence levels, weight vectors and Dirichlet values as inputs which are used to 

initialize the α and β priors. One of the important features of OLDA is to detect emerging topics 

which is a good indicator of knowing when something is novel, interesting and catching up pace. 

W. Xei et. al [7] published a ‘TopicSketch’ model which will can be used for topic 

detection in a ‘bursty’ fashion. Twitter with its popularity in the micro-blogging domain deals with 

millions of tweets per day. There are often times when a certain topic or event triggers a huge 

surge of relevant tweets about that topic within a really short period of time. This generally marks 

that topic as a topic of user interest for that specific time period. This research was focused on 

detecting such ‘bursty’ topics. All researches previous to this tried capturing bursty words but not 

topics and this failed to represent sufficient information about the burst of tweets. TopicSketch is 

mainly based on 2 techniques: 

- Sketch-based topic model 

- Hashing-based dimension reduction technique 
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The algorithms are divided in two steps. The first step consists of creating pairs and triples of 

words. These values are updated based on the surge of tweets about these pairs which helps 

understand the popularity rate of the topic and in turn increase the acceleration factor. The 

acceleration is calculated based on the number of tweets about that tweet in a small duration of 

time slice. This time slice helps guide the omission of more common/popular topics that are 

trending but are not bursts. Essentially most of the bursty topic turns into a trend topic, however, 

the main purpose of this research was to look at how to detect bursts in topics based on the word 

pair or triples and their mentions. This forms the first step of the sketch-topic model. The second 

step is about learning the topic from the words by using hashing-based dimension reduction which 

is base of tensor decomposition technique. The main idea behind decomposition is calculating the 

acceleration of the word vector representing a particular topic using attention matrices to point out 

the inner details of a particular topic and understand what constitutes the acceleration and 

determine the trigger. One major advantages of this approach is the topic inference part which was 

using the tensor decomposition logic can be parallelized and thus executed efficiently. After the 

final bursty topics are determined a heuristic approach to filter the trivial, noisy, spam topics and 

rare words is used. The bursty topic accuracy was measured with variants of tensor decomposition 

and SVD. The results of this research showed that the topic modelling with bursty topics was a 

good idea for streaming content with high volume of data and the characteristic of accelerating 

rapidly towards a topic. 

 Q. He [8] et. al wrote an insightful paper about various techniques used in topic detection 

tracking and the comparisons between them. [8] proposed a discriminative probabilistic model 

which is relatively simple compared to the complicated generative models like von-Misses Fisher 

or LDA. The proposed DPM was equivalent in clustering to a variation of TF-iDF where only 

discriminative words were considered. The experiment results showed, for the datasets in 

consideration, that DPM was good in assigning multiple topics to a document in offline mode and 

was good at not raising false alarms for online mode. vMF and LDA do shine when the training 

data is substantial, however, a model as simple as DPM is well performant with less data. 

 Ibrahim et. al [9] also presented a comprehensive study on topic detection tools from twitter 

stream. This study revolved around 5 categories of topic detection techniques. Exemplar-based, 

matrix factorization, frequent pattern mining, clustering and probabilistic models. Each of these 5 

categories were looked under the microscope with evaluation results and comparisons for all of 

them. Some of the common algorithms used in these categories were variations of k-means, 

DBSCAN, spectral clustering, stochastic LSI, Alternating Least Squares, Rank-One 

DownDate(R1D), Soft Frequent Pattern mining and Bngrams. Results on three twitter datasets 

showed that SFM and Bngrams achieve the best term precision while CSS achieves the best term 

recall and topic recall. 

 L. Chen et. al [10] recently published a paper addressing the problems that were involved 

in topic overlaps while modelling topic detection on online stream of topics. Topic overlaps happen 

in some cases depending on the data encountered by the model. This is also an evolving problem 

faced by many models which call for sanitization and normalization of topic vectors on a periodic 

basis to clean up the overlap. This paper proposes a hierarchical topic modelling approach which 

is a knowledge based semi-supervised approach and reduces the overlap between the nested or 

intermingling topics and helps with topic distinction that could otherwise be overlapped. The 

results of this research show that the use of external knowledge to discern categories that are 

partially overlapping or concentric is very helpful for better results. 
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 Qian Zhou et. al [11] have recently proposed a single pass clustering algorithm which can 

be very useful in optimizing the implementation of this project’s clustering analysis. This 

optimized approach is proposed for topic detection and so it would be interesting to see if this 

optimization could be incorporated in our implementation. 
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III. Machine Learning - Algorithms & Architecture 
 
Types of Machine Learning Algorithms: 

- Supervised 

- Unsupervised  

 

A. Unsupervised Algorithms 
 There are many unsupervised learning models that are used to great extents in production 

environments when dealing with data that is unstructured to be labelled or labels are not available. 

This can also be the case when the model is looking for clustering analysis and not really looking 

forward to making predictions. Clustering is basically segregation of data points into affinity 

regions where all points within a specific region have similar properties. Some common 

unsupervised learning algorithms are k-means, KNN, autoencoders, PCA, etc. 

  

Some of the unsupervised methods that will be used in this project are specifically related to text 

processing. Here is a short description about each of them. 

 

1. Word2Vec 
One of the core models that started out with a novel approach to text processing using word 

embeddings is Word2Vec. Mikolov et al. [12] published this model which showed great promise 

in understanding and modelling the hidden meaning of natural languages. An example of vector 

operations that were possible on the word embeddings is as follows. 
 W("woman")−W("man") ≃ W("queen")−W("king") 

 
                Figure 1: Gender Vectors [14] 

 

This provides for a unique way of performing arithmetic operations on textual data. Word2Vec 

using negative sampling approach to derive word embeddings. This model proved super useful in 

learning semantic relationships that are very hard to model via programming models or other 

machine learning models. 

 

 

Before we move on to Doc2Vec, it is imperative that we look at 2 algorithms which are core to 

Word2Vec.  

- Continuous of Bag of Words 

- Skip Gram  
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In CBOW, a sliding window of surrounding word vectors is used to predict the current word. The 

prediction is based on the context. This context is created from the surrounding words which are 

nothing but feature vectors for each surrounding word in the window. Feature vectors which 

represent words that are similar or have more affinity to be seen together are closer to each other 

based on a metric distance between the vectors. A simple diagram showing this can be seen below: 

 

 
Figure 2: CBOW -- Surrounding words used to predict the current word [15] 

 

This is the basic reason why Word2Vec is able to model arithmetic operation like the one seen in 

the Figure 1 since the floating-point vectors represent closeness for similar text content. 

 

In Skipgram, the algorithm works completely opposite to CBOW. This algorithm predicts the 

surrounding words over a window based on the current word. This also means that the algorithm 

is computationally more intensive. The CBOW model is not great for infrequent words, however, 

Skipgram model does really well with infrequent words. The below diagram shows a basic idea of 

how the word window slides and what is used as training sample or each word in Skipgram 

training. 

 

 
Figure 3: Skipgram – Training samples to learn surrounding word probabilities 

 

2. Doc2Vec 
 This is another unsupervised text learning model based on textual data. This model is an 

extension to Word2Vec where the floating-point continuous vectors represent documents instead 

of words. This is especially useful when trying to determine similarity of content of articles based 

on the entire content and not only the hot spot words. In Doc2Vec, there is an addition of 

information to the training set so that we also learn the corresponding document features. For every 

word that is trained in the Word2Vec model, we add a paragraph vector along with it. As the model 
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trains itself to understand the semantic relationships between words, it also trains itself to 

understand the semantics of each document based on this paragraph vector. This vector is crucial 

in determining the affinity or correlation between similar documents. There are variations to this 

approach by adding tagging vectors for meta information or by using topic vectors along with 

paragraph vectors. They all follow the same learning model though which can be seen in the 

diagrams below:  

 
Figure 4: Doc2Vec model with paragraph vectors added to word 

model [15] 

 
Figure 5: Doc2Vec model with document and tag vectors 

added to word model [15] 

 

3. LDA 
 LDA is a machine learning model that is built on the idea of Latent Dirichlet Allocation. 

The idea is basically to generate topics from each document that give a cogent representation of 

the content of the document. LDA uses the information from word2vec and doc2vec vector to 

build its own distribution vector where each item in the vector represents a topic contained in the 

document. It is a model that can be termed as “distribution over a distribution”. The base 

distribution is words per topic and the outer distribution is topics per document. 

 

Topic models are defined around the idea that the human understanding and semantics of 

a document are governed by some hidden/latent variables that are not directly observable. The 

main goal of all topic modelling is to uncover/model these latent variables that shape the meaning 

of our document. In LDA, each document is constituted by a set of topics and each topic is 

constituted by a set of words. A trained LDA model should output a vector of topics along with 

their presence measurement vector values.  

Example topic mixture output for a document: 

 

Topic1: 39%, Topic2: 23%, Topic3: 13%, Topic4: 4%, ...  

 

The parameters of LDA can be seen as follows: 
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Figure 6: Plate Diagram for parameters of LDA [16] 

 

Parameters: 

 α – Number of topics per document 

 β – Number of words per topic 

θ – Topic distribution for particular document M 

φ – Distribution of words for particular topic K 

Z – Topic for Nth word in document M 

W – Specific Word 

 

B. Supervised Algorithms 
 Supervised machine learning models follow the idea of having a labelled training dataset 

which acts as a reference point for learning a function which can predict the correct output. The 

model learns this function with the expectation that it should be able to predict the correct or 

relatively correct output for unseen data samples. Two most broad categories of supervised models 

are regression models and classification models. SVC, SVM, Neural Networks are among the most 

common classification models. Some brief details about them are as follows. 

 

1. Support Vector Machines 
 Support vector machines are a type of machine learning algorithms that are used for 

classification problems – binary or multiclass. The intuition states that when we have a set of 

points, we should be able to separate those points into classification based on a separating 

hyperplane. This hyperplane should ideally be able to classify with complete confidence and no 

errors. A hyperplane is defined as a plane which separates the data points into required classes. 

The hyperplane could be line if the input dimension is 2 or a plane if the input dimension is 3. It 

becomes difficult to imagine the plane with higher dimensions. 
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Figure 7: SVM model for classification [17] 

 

 
Figure 8: SVM separating hyperplane in 2D and 3D spaces [17] 

 

2. Neural Networks 
 Neural networks are probably one of the most discussed machine learning topics in today’s 

world. In its most simple form, a neural network is a set of hidden layers of neurons which are 

modelled just like the neurons in a human brain. There are activation functions which decide 

whether a neuron fires or not based on the input to that function which is a weighted sum from the 

previous layer. There are various activation functions like relu, sigmoid, tanh, softmax, etc. The 

final consolidated output passing through all hidden layers is then given to the output layer where 

predictions are made. These predictions are measured against the labelled output values and an 

error is calculated. The major difference between other machine learning models learning 

capabilities as opposed to neural networks comes from the way it treats the error/loss along with 

the numbers of neurons it can propagate the error/loss to. This step is known as Back Propagation 

and is crucial for any learning to happen in the model. The error function could be any distance 

metric like root mean squared error, etc. A simple form of Neural Network is as shown below. 
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Figure 9: Fully connected simple neural network 

 

C. Dimensionality Reduction 
 

 We may have a set of input features which are recorded in a given dataset but not all of 

them are necessary for the model to learn a function. Thus, dimensionality reduction offers a way 

of considering only the input features which are minimally required to learn the required regression 

or classification function. Some of the advantages of dimensionality reduction are improved 

training time, performance efficiency of the model, clarity of contributing factors, etc. These 

factors make dimensionality reduction a very crucial part of input feature engineering for machine 

learning models. One of the most common dimension reduction techniques is Principal Component 

Analysis. 

 

 

1. Principal Component Analysis 
 PCA is basically a method to calculate the eigen values and eigen vectors of a covariance 

matrix after applying normalization to the data in the matrix. The data points in the scoring matrix 

can be looked up as the contributing factors to decide on the features for the model. PCA is the 

simplest of the eigenvector based multivariate analyses. PCA is specially known to expose the 

internal structure of the data in a way that best explains the variance of the data. 

 

 

D. Framework Architecture 
  

 The framework architecture is the plan of action / rule outline which will be followed by 

the project. A high-level diagram of the framework is described below: 
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Figure 10: Proposed Framework Architecture 

 

The architecture specifies that we will have 2 datasets for checking the accuracy of our 

model. The third dataset which is mentioned in the datasets but is not a part of the architecture is 

basically just used to create the corpus understanding for the LDA model. Corpus understanding 

can be thought of as the model trying to learn most of the vocabulary that it will encounter in these 

articles. The bigger the size of the corpus, generally, it is better for the model performance. 

 

1. Setup 
As per the architecture diagram, the user interest and BBC dataset will be used to train as 

well as test the doc2vec and LDA models.  

- Dataset of 1.4 million articles is provided to unsupervised learning models in their 

respective experiments for corpus learning. 

- Dataset BBC is only provided to LDA while dataset user interest is provided to 

both the unsupervised models. 

- Then for each document from the same dataset, we infer output weight vectors / 

topic vectors based on the respective models. 

- These vectors are made fixed length vectors of length 100 for processing power 

ease. 

- These vectors are provided are input features to the supervised classifier models 

which are SVC, SVM and NN. 

- The classification results are noted, and accuracy is calculated. 

 

The train and test split will be a ratio of 80:20 and we will see results with cross validation as well 

as without cross validation. The output vectors generated by the doc2vec and LDA models will be 

fed individually to classifiers with different parametric architectures and the classification results 

will be captured.  
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IV. Datasets and Model Engineering 
A. Datasets 
 

There are three primary datasets for this project. 

1. One-week global news feed dataset 
Kaggle dataset [19] of 1.4 million news article URLs published between August 24,2018 

to August 31, 2018. The features of the dataset are – ‘publish_time’, ‘feed_code’, ‘source_url’, 

‘headline_text’. After data transformation the actual corpus of the unsupervised models was 

created from about 400,000 articles. 

 

2. BBC news Dataset 
Kaggle dataset [20] of 2225 news article texts with labels as ‘’business’, ‘entertainment’. 

‘politics’, ‘sport’, ‘tech’ 

 

3. User Interest Dataset 
This dataset [21] is manually created as part of a class project from one of my machine 

learning classes. The dataset consists of article texts mined from newsletter archives of a blog. All 

articles from one blog were labelled as ‘Interested’ while all articles downloaded from other blog 

newsletter archives were termed as ‘Not Interested’. The idea here was to model user interests and 

not topic to see if modelling user interests completely orthogonal to topic categories is possible. 

This was a small set of approximately 200 articles. 

 

B. Data Engineering 
 

The data engineering efforts are distributed across following parts: 

 

- Data Gathering 

- Data Cleaning 

- Data Transformation 

- Feature Engineering 

- Parameter Tuning 

 

1. Data Gathering 
Dataset 1 was a dataset of 1.4 million news article URLs. A custom downloader/scraper 

application was written to download content from these URLs. Each URL was visited, and the 

entire HTML content was parsed. Python’s ‘newspaper3k’ library was used to parse the main text 

of the article from the HTML payload. All these texts along with the URLs were saved to a MySQL 

relational database for later use of training the machine learning models. 

  

 Dataset 3 was a dataset of newsletter archives that was created by manually curating and 

downloading the articles from a newsletter archive [21]. This dataset was created as part of a 

project in a graduate course along with my project partner in that project. It is reused here since it 

is a perfect fit for the user interest modelling problem. 
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 Dataset 2 was downloaded as it is from Kaggle. This is a labelled dataset with 5 specific 

categories of data namely, business, entertainment, politics, sport, tech. 

 

 

2. Data Cleaning 
 Cleaning data does not seem like but is an iterative process. This is solely because every 

time the model fails at something or categorizes something wrong, you go back and try to find the 

sample that went wrong. While looking at such samples, I realized all the different types of 

cleaning that I need to do on the original downloaded texts. 

- Language filter: For all the downloaded articles, there were many articles which 

were not English. They were in Spanish or Dutch languages. It is important to 

understand that the models used do not really have a problem with different 

languages as far as it has the necessary corpus. However, it is my limitation of not 

understanding these languages, that I had to filter them out for making correct sense 

of the results. This filter was developed manually but with some use of Python’s 

‘nltk’ library. 

 

- Blank / useless articles filter: For all the downloaded articles, there were some 

articles which were either blank because they contained all images for that article 

content or were gibberish because they only had tweets etc. in them and no texts 

that could be extracted from the payload. 

 

3. Data Transformation 
 Data transformation is an activity which generally involves molding the data into formats 

which are useful to be fed to the machine learning models. It also involves filtering out content 

that is specifically not useful based on the type of machine learning model being used. Some of 

the data transformations that were done on the base datasets after data cleaning are as follows: 

 

- Filter stop words: 

Remove the words like ‘is’, ‘and’, ‘the’, etc. which are common to all topics and 

don’t add or remove any meaning from the latent variables of those topics. These 

words are good at digressing the meaning of the latent variables and so removing 

them helps a lot with the accuracy of the model. These words can also be treated as 

fillers which are cogent for language understanding flow but act against the purpose 

of model learning. 

 

- Filter extremely infrequent words: 

Words which occur either once or twice in the entire corpus are contributing no 

meaning to the understanding of the model. Hence, they are removed to avoid 

digression from the latent variables. 

 

- Filter punctuation: 

Punctuation marks like ‘?’, ‘,’, ‘!’, etc. do add meaning for a human reading the 

articles and provide a context to the way a sentence of the article is meant to be 

read. However, as far as the model is concerned, these add no value to the model 

understanding and only confuse the model’s understanding at best. 
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- Filter non-standard English words: 

Many articles are news articles which have sentences which are quotes about 

someone speaking a particular way or people quoted as saying something. Thus, 

there are many words which, though never seen in written communications, occur 

in these datasets that are of no value. Ex: ‘gotcha’, ‘lol’, ‘attaboy’, ‘asap’, etc.  

 

4. Feature Engineering 
 When both the unsupervised machine learning models were trained with the corpus of text 

articles from datasets, id->token pairs were created, and a dictionary of such pairs was stored for 

the model understanding of both doc2vec and LDA. After training the unsupervised models, output 

weight / topic vectors were deduced from these models and converted to a matric format. The 

matrix definition was as follows: 

- Each row represented a document in the dataset 

- Each column represented a topic that the model learned 

- Each [row, col] floating point value represented the contribution of that topic in the 

document 

 

This matrix of features, where each row acted as an input, was given to the classifier with output 

labels from the dataset for classification. 

 
Figure 11: Feature Handholding - Unsupervised to supervised – LDA 

C. Model Parameter Tuning 
 

 After trying various parameters for different models, the final hyper parameters for each of 

the machine learning models used in this project as follows: 

 

1. Output Vector length for Doc2Vec 
The output of doc2vec inferred vector was a fixed length vector of length 100. This was 

decided after trying other values like 10, 50, 200 and 350. 
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2. Topic Vector length for LDA 
The output of LDA inferred vector was a fixed length vector of length 1000. This was 

decided after trying other values like 10, 50, 200, 350, 2500, 5000 and 31000. 

 

3. Neural Network Hyper Parameters 

 
Figure 12: Neural Network Hyper Parameters 

 

4. LDA Parameters 
 There are 2 main parameters which can crucially direct the performance of an LDA model. 

 α – Number of topics per document 

 β – Number of words representing / contributing to a topic 

 

It is necessary to tune α since a less value of alpha can result in the model learning very 

less. This happens because it is not allowed to be specific about the understanding of the context 

and is made to limit it to a very small set of topics. This makes the topic categories very broad, 

thus, making them so intermingled that a clear classification is very difficult.  

 On the contrary, if α is chosen too large, the number of topics learned by the model is too 

many and it makes the model too picky or strict about classifying a certain text as an article even 

if it pretty relevant to or may be well described by aa broader category. This causes the problem 

of classifications that are too strict and don’t generalize well. 

 

 β on the other hand is a less trickier parameter to tune. This mostly depends on the amount 

of corpus that you have as base learning for the model. If the corpus is really large, we could have 

more words and still be okay with the results. However, if the corpus is not that big, β should be 

kept not too high or else each word essentially ends up contributing to each topic in some way or 

the other, thus disrupting the classification. 
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V. Experiments and Results 
 

A. Working Environment 
 

Each of the experiments described below was run on the following machine. 

 

Operating System: MacOS Mojave 10.14.4 

Processor: 2.3 GHz Intel Core i5 

Memory: 8 GB 2133 MHz LPDDR3 

Code Editors: VS Code, Jupyter Notebooks 

Programming Language: Python 3.6+ 

Database: PostgreSQL 

 

This hardware is not the optimal choice for this project since it takes a lot of time to train the corpus 

of the unsupervised models with huge text content (about 40 hours). Thus, the model corpus 

understanding was built in parts by running the model over chunks of text from the entire dataset 

because of the time required to train the entire corpus. An environment with GPU or at least 16 

GB memory should be more preferable. The processing was also divided in parts to avoid the 

degradation in performance of the machine along increasing time in the training causing the system 

to freeze on a few occasions. Text chunks of 50,000 articles were used to train the model in each 

part completing the overall dataset after data transformations in about 15 iterations. 

 

B. Experiment Steps 
 

For every experiment that we perform, the basic steps remain the same as below: 

- Train the model with respective dataset 

- Make a test set out of the dataset 

- Infer vectors for each of the test articles from model 

- Classify these output vectors with the help of a classifier 

- Measure results in terms of prediction accuracy 

 

 

C. Experiment Configurations 
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Table 1: 4 Experiments performed for user interest and topic modelling 

 

D. Results 
 

All the experiments that we perform are based on the latent understanding of the various articles 

from the corpus trained on the models. Thus, before we move on to actual results, it is only 

insightful to visually peek at the understanding of the model after they have been trained on the 

datasets before predictions. 

 

1. Model Learning 

a) Doc2Vec 
Following are the learning representations of the unsupervised models after training them on the 

respective datasets. 
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Figure 13: Doc2vec model learning after training on user Interest Dataset 

 

The diagram above is a dimensionally reduced view of the doc2vec model. The doc2vem model 

was trained to be in 100 dimensions. However, for plotting and understanding purposes, this 

diagram was creating by reducing the dimension to 3 using PCA. These 3 images are of the same 

plot but shown with different angles of the 3 dimensions for visibility of separation between the 

two classes – Interested and Not Interested. 

 

b) LDA 
For a learning representation of the 5 class BBC dataset, we choose to show LDA visualization 

representation since it is a better and more succinct for understanding. Below figure 12 consists of 

2 parts. The quadrant plot represents the distribution of topics from the corpus learning and is the 

InterTopic distance map. The bar plot represents the words that contribute to the selected topic. 

The red bar signifies the number of times that word contributed to this topic. The blue bar signifies 

the frequency of that word in the entire corpus. 
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Figure 14: Topic distribution of 1000 topics of LDA learning on BBC datasets 
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Figure 15: LDA Term distribution for the selected topic 1 from Figure 14 

 

Following are the results of experiment wise results based on the type of modelling to develop a 

clearer understanding. 

 

2. User Interest Modelling 
The results are for each experiment are given in the following table. 

The meaning of the metrics is as follows: 

Accuracy – Mean of accuracies across 5-fold cross validation sets. 

STD - Standard deviation that happened across different cross validation folds. 

Mean Normalization – With/Without Normalization of the input vectors to avoid bias. 
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Table 2: Accuracies for experiments targeted for User Interest modelling 

 

a) Observations 
- Most stability with ANN or nuSVM for binary classification 

- Higher accuracy but really unstable results with strong STD in linear SVM 

- Accuracy generally decreased with mean normalization in SVM variations. This 

could be because the separation margin between the support vectors where the 

hyper plane lies was narrowed due to normalization. Due to this narrowing of 

separation margin, the number of misclassifications could go up since the goal of 

SVM is to maximize the separating margin. 

- Accuracy generally increases with mean normalization in ANNs 

- Best model for User Interest modelling is unsupervised LDA in combination with 

supervised ANN providing best accuracy and with extremely low standard 

deviation. 

- It is possible to model user’s interest without defining predefined categories simply 

on the basis of a binary flag specifying interest. 
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3. Topic Modelling 
The results are for each experiment are given in the following table. 

 

The meaning of the metrics is as follows: 

Accuracy – Mean of accuracies across 5-fold cross validation sets. 

STD - Standard deviation that happened across different cross validation folds. 

Mean Normalization – With/Without Normalization of the input vectors to avoid bias. 

 

 
Table 3: Accuracies for experiments based on BBC dataset targeted for Topic modelling 

 

a) Observations 
- Most stability with ANN for 5 class classification with either unsupervised 

algorithms. 

- Almost equally good accuracies with Linear/nu SVMs but really unstable results 

with strong STD 

- Accuracy co-relation with mean normalization is exactly similar to what we found 

in the previous experiment with NN as opposed to other classifiers and for the same 

reasons 

- Accuracy generally increases with mean normalization in ANNs 

- Best model for topic modelling is unsupervised LDA in combination with 

supervised ANN providing best accuracy and with extremely low standard 

deviation. 

- It is possible to model topics across a range of predefined categories. 
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4. Additional Insight 
After this framework was created and all the results were observed, it was used to see if there was 

a possibility of using this exact same design to work on a problem where the text content does not 

have variations and most of the words in all the content’s individual samples are similar. This test 

was possible using Myers-Briggs personality type dataset [18]. This dataset has 16 distinct 

personality types across 4 different axes. 

• Introversion (I) – Extroversion (E) 

• Intuition (N) – Sensing (S) 

• Thinking (T) – Feeling (F) 

• Judging (J) – Perceiving (P) 

 

The tests performed on this dataset using our framework were to model the different personality 

types. However, the dataset is highly representative of a certain personality type as opposed to all 

the others, thus, having a biased representation as a whole. Also, the text content pertaining to each 

of these personality types and users has very similar vocabulary. The word occurrences in each 

sample are extremely similar to other samples. This is the primary reason for our framework to 

perform really poor on such problem. However, this was a test that was done just to see a possibility 

/ limitation of the framework and was not the primary focus of the project. This test did reveal that 

the hybrid framework is not a good choice for problems where the individual samples of text are 

extremely similar to each other, thus, not allowing any room for the model to learn different word 

correlations contributing to topic semantics. 

 

5. Parameter Tuning Explanations 
Following is a peek at how accuracies changed across the cross-validation folds while training the 

model with 5-fold cross-validation. These cross-fold validation accuracies are not normally output 

by the model and are sourced from the logging outputs of the model while running each epoch and 

cross validation folds across each epoch. After every fold, the model logs the output of that fold 

giving us the accuracy and loss for that fold. 

 

a) Cross Validation: 
Cross validation is crucial for a machine learning model since the learning could be over fitting. 

Over fitting is a case of model learning when the model learns to follow the training dataset in a 

tightly coupled fashion and gives bad results when the testing data digresses even slightly from 

the training data. This is known as over fitting since the model behaves like ‘learning’ rather than  

‘understanding’ the relationship of independent variables with the dependent variables. 

 

By applying cross-validation it can be seen that a batch size of 10 works best as opposed to 50 or 

100 for error correction step. The results with no cross-validation look really good but they might 

cause problems as discussed above. 

 

Following are the plots of changes in accuracy and the values that guide the hyperparameter tuning 

for batch size of error correction and cross-validation in the training phase of the models. 
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Figure 16: Accuracies with 10 epochs no CV batch size = 100 

 

 
Figure 17: Accuracies with 10 epochs with 5-fold CV batch size = 100 

 

 
Figure 18: Accuracies with 10 epochs with 5-fold CV batch size = 50 
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Figure 19: Accuracies with 10 epochs with 5-fold CV batch size = 10 

 

 

b) Mean Normalization: 
Following table shows the stability that was achieved after applying mean normalization. After 

every cross-validation fold, the accuracy is shown as below for the LDA-ANN hybrid experiment. 

 

 
Table 4:  Sample 5-fold cross-validation accuracies in LDA-ANN relative to mean normalization 

 

c) Number of Topics 
Following is a plot of the results with LDA hyperparameter tuning of number of topics set to 

31,000, 2000 and 1000. These plots demonstrate how accuracy of the model changed across 

varying topic numbers before finally figuring out the optimal topics to be 1000 and what guided 

the change in hyperparameters. 
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Figure 20: Training loss & accuracy and validation accuracy for LDA with 31,000 topics 

 

 
Figure 21: Training loss & accuracy and validation accuracy for LDA with 2,000 topics 

 

 

 
Figure 22: Training loss & accuracy and validation accuracy for LDA with 1,000 topics 
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6. LDA Effectiveness Plots 
 

Before moving on to final conclusions, the following figures shows the LDA model learning and 

how topic modelling could be used for other purpose than just topic modelling. Also, it must be 

noted that some of the topics are clearly intuitive to humans based on the words representing the 

topic, whereas, some other topics which are rightly classified may not be clearly intuitive. This is 

still a big leap compared to visualizing the understanding of a neural network and so is a great 

advantage of LDA in terms of tuning the model for better performance. 
 

For the following two visualizations, topic number 12 and 7 were selected for visualization of the model 

understanding respectively from the InterTopic distance map showcased in Figure 14. 
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Figure 23: Word contribution of topic 12 from the topic distribution 
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Figure 24: Word contribution of Topic 7 from topic distribution 

It can be seen from the above example; this topic modelling could also be used for curating content 

online which is considered to spread rumor or disdain for a certain act. Such regulations are already 

implemented using various methods, but it is worth noting that the approach using LDA does not 

rely on any information other than the text itself. This is what makes it truly independent and 

powerful. 

 

One other important point to note about content moderation is need of a stimulus – the ‘report 

objectionable’ stimulus is required form a user for something to be flagged and checked by various 
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techniques and humans. However, with an automated scraper, this model could detect 

objectionable content like provocative / offensive / demeaning / derogatory, etc. even without an 

actionable stimulus. Also, it should be able to do that irrespective of the source and for unseen 

content based on the assumption of having learned corpus library. This makes it a potent solution 

even for zero-day problems of this type. 
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VI. Conclusion 
 

According to the problem definition specified in the earlier sections, we have accomplished the 

following. The proposed machine learning framework 

 

- Has more representative and identifying power since it is a combination of 

supervised and unsupervised algorithms. 

 

- Works well with text documents that have topics or interests intermingled and the 

central themes of the document could be argued to be more than 1. 

 

- Does not strictly adhere to predefined categories as it was successfully able to 

model user interests which did not have specific predefined categories other than 

the basic guiding principle of a user’s liking or disliking. However, when given 

predefined categories, the proposed framework performs equally well in categorical 

classification of the documents. 

 

- Has ability to predict a topic mixture for each document. Topic mixture represents 

the presence of each identified topic in the document. 

 

- Has ability to reasonably generalize well to unseen content with respect to user’s 

interest or topic categories. This is based on the assumption that text content is 

present in the corpus brain of the model. A simple analogy could be thought of 

based on human mind. A human can only categorize a topic if it is aware of the 

meaning of the words that it sees. It is for this reason, that this assumption is not 

held as a drawback. 

 

- Has ability to understand and tweak the number of words contributing to a topic. 

This is crucial to tune topic modelling so that neither too less nor too many words 

contribute to form the meaning of a topic, thus, avoiding the problem of too broad 

vs too narrow topics. 

 

- Does not rely on any meta information like the source of the content, medium of 

delivery of the content, authenticity and reliability of the content. This is a vital 

merit of this framework. 

 

- Does not derive meaning or context based on the source, size, length, formatting 

features or headline text of the document. The model learning is completely based 

on the text content irrespective of these meta factors about the text. 

 

 

A. Future Work 
 This model can be used for some purposes which may not seem obvious initially while 

looking at the problem definition.  
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One such case is content moderation. If there is set of topics / articles that are flagged as 

hateful / derogatory / strongly disrespectful, then articles are generally taken down when someone 

on the internet reports those articles as a problem. Also, there are tools in place which can keep a 

watch on such flagged online sources for moderation. However, every time a new source creates 

an article that is offensive / provocative or any other objectionable category, this framework could 

target such articles just based on the latent understanding of topic modelling that it has gained. 

This way, we can solve the zero-day problem for content moderation. Also, we can eliminate the 

need for stimulus of ‘reporting content’ before an action needs to be flagged. 

 

Other future work could be to make the model even better for real time use by creating 

labels for intermediate topic categories. Each document that is being classified, has a set of topic 

mixtures. These topic mixtures are words which give an understanding of a topic. This 

understanding if labelled for all these topic mixture words and labelled 

manually/programmatically, we can achieve much more human like interactions based on this 

topic modelling framework. 

 

One last aspect is trying to test this framework with use of minimal corpus. It would be 

interesting to see if this framework performs equally well when the corpus learning is not thorough 

or is limited in extent. 
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