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ABSTRACT 

 

Speaker recognition is a technique of identifying the person talking to a machine using the 

voice features and acoustics. It has multiple applications ranging in the fields of Human Computer 

Interaction (HCI), biometrics, security, and Internet of Things (IoT). With the advancements in 

technology, hardware is getting powerful and software is becoming smarter. Subsequently, the 

utilization of devices to interact effectively with humans and performing complex calculations is 

also increasing. This is where speaker recognition is important as it facilitates a seamless 

communication between humans and computers. Additionally, the field of security has seen a rise 

in biometrics. At present, multiple biometric techniques co-exist with each other, for instance, iris, 

fingerprint, voice, facial, and more. Voice is one metric which apart from being natural to the 

users, provides comparable and sometimes even higher levels of security when compared to some 

traditional biometric approaches. Hence, it is a widely accepted form of biometric technique and 

is constantly being studied by scientists for further improvements. This study aims to evaluate 

different pre-processing, feature extraction, and machine learning techniques on audios recorded 

in unconstrained and natural environments to determine which combination of these works well 

for speaker recognition and classification. Thus, the report presents several methods of audio pre-

processing like trimming, split and merge, noise reduction, and vocal enhancements to enhance 

the audios obtained from real-world situations. Additionally, a text-independent approach is used 

in this research which makes the model flexible to multiple languages. Mel Frequency Cepstral 

Coefficients (MFCC) are extracted for each audio, along with their differentials and accelerations 

to evaluate machine learning classification techniques such as kNN, Support Vector Machines, 

and Random Forest Classifiers. Lastly, the approaches are evaluated against existing research to 

study which techniques performs well on these sets of audio recordings. 

Key terms: Speaker recognition, human computer interaction, biometrics, internet of things, 

mel frequency cepstral coefficients 
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1. Introduction 

Speaker recognition, also known as voice recognition or speech-based person recognition 

is the ability to distinguish between the human voice and identifying or verifying the identity of a 

person based on the voiceprints and acoustic features. It should not be confused with speech 

recognition which deals with converting audio to text. Both are a part of the same domain but serve 

very different purposes. Speech recognition provides more accessibility to the users by giving them 

an easier way of communicating with the system, whereas speaker recognition deals with verifying 

the identity of the person so that the system knows the person being conversed with. Before diving 

deep into the concept of speaker recognition, it is crucial to clearly understand the differences in 

speech and speaker recognition, their respective applications, and how machine learning can be 

used to achieve the goal of speaker recognition. As speech recognition deals with converting audio 

to text, it is heavily dependent on the language and corpus. However, speaker recognition 

disregards the language in most cases and focuses more on the raw audio percepts and its related 

data to identify uniqueness in the way people speak. The model for speaker identification is trained 

in a way which is able to understand the unique patterns and features of voiceprints and is able to 

differentiate it from the rest. This is where Artificial Intelligence (AI) and Machine Learning (ML) 

are useful, and researchers have started using these techniques to train their speaker recognition 

models for better results. A high-level approach to this is to gather samples of a person’s speech, 

extract features from the audio suitable for the classifier, train the classifier to build the model, and 

perform classification for recognition and/or identification. In this research, we will study how this 

approach is currently employed in different ways to achieve the eventual goal of speaker 

recognition and how can it be improved further in more challenging scenarios. 

 

Figure 1: High-level flow of speaker recognition systems 
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1.1. Importance 

Speaker recognition is the process of identifying the person based on an audio containing 

the person’s voice. It is the ability of a machine to receive audio or voice as an input, perform 

computations on it, and determine who the speaker is. Researchers have been working on speaker 

recognition for many years, almost four decades, however, with the rapid advancements in 

technology and Internet of Things (IoT) booming unprecedentedly, smart devices, voice assistants, 

and home assistants have become increasingly popular. Speech, as discussed earlier, is the most 

basic method of communication for humans. Hence, it is safe to say that the most seamless 

integration of human-to-machine communication can also be achieved through speech. 

Additionally, speaker recognition provides more ease-of-use in an environment with multiple 

speakers. In the current IoT era, when multiple people talk to a smart device or a voice assistant, 

it is important for the assistant to not just understand what is being told to it, but also to know who 

the speaker is - so that relevant and customized information can be provided to the user. Thus, 

speaker recognition plays a vital role in the present world and the future technology. Active 

research is conducted by scientists working in the field of Human Computer Interaction (HCI) to 

infer the audio received by a machine [1]. The two primary areas of interests for HCI experts 

working on audio are speech recognition and speaker recognition. As discussed earlier, speech 

recognition is the art of training a machine to understand what a person is speaking, whereas 

speaker recognition is the art of identifying who is speaking. Together these two are of utmost 

importance in achieving a seamless voice-based communication and thus play a key role in human-

to-machine interaction in the present world. 

Speaker recognition is an active area of research in the field of biometrics too. Security 

researchers are constantly searching for new techniques to improve security, and biometrics is a 

key area of research for them. Passwords are commonly assumed to be unsafe and have several 

problems associated with them. As users usually keep passwords which are easier for them to 

remember, it is often seen that passwords are easy to crack using high performing machines and 

brute force techniques. Two-factor authorization was introduced as an attempt to resolve this issue 

and was implemented several years ago where the second factor usually was a physical card or 

hardware tokens such as an RSA token. They are good, but not convenient, as people are required 

to carry an extra piece of hardware along with them. Biometrics tries to reduce this inconvenience 

by authenticating and identifying people using the features that they already possess, such as face, 
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iris, voice, fingerprint recognition, and many more. This is the primary reason why a study on 

improving biometrics is crucial and demands extensive research to achieve higher accuracies.  

 

1.2. Motivation 

The interaction of humans with computers is ever increasing, and in the present world, 

most devices are becoming ‘smart’ to interact with humans effectively. The concept of biometrics 

thus becomes crucial to study and research in order to verify if the human is indeed the claimed 

identity. Several techniques of biometrics are being used since time immemorial. The most recent 

advancements, however, in this field have been recognition using face, fingerprint, iris, hand-

geometry, voice, and a few more. While using smart devices myself, I often feel that voice is the 

most non-intrusive way of communicating with the machine and authenticating myself. Face and 

iris scanning are convenient too, but for that, the person needs to constantly be in front of the 

camera, whereas iris and hand-geometry require the user to hold the device physically. Voice does 

not have such limitations. A simple example of this could be unlocking the smartphone. Face, iris, 

or fingerprint - all require the user to be physically close to the hardware. However, the same is 

not true for voice-based unlocking. Due to the convenience it adds, companies and R&D 

departments are heavily studying this technique to stay relevant in the present face-paced tech 

world. Hence, voice identification and speaker recognition are widely accepted methods in 

biometrics for authentication and/or identification due to convenience, flexibility, and practicality 

they offer.  

Also, several devices currently use voice as their primary mode of interaction, especially 

voice assistants such as Google Home, Amazon Echo (Alexa), Apple’s Siri, Microsoft’s Cortana, 

Samsung’s Bixby, and many more. These devices are often used in households where multiple 

people are expected to interact with them. With such devices and technology gaining immense 

popularity in the last few years, it is important for them to effectively distinguish between multiple 

speakers that could be talking to them. This is precisely why a research on speaker recognition is 

significant and thus we will discuss and study more about it. 
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2. Existing Work 

Automatic Speech Recognition (ASR) can be broadly divided into two parts: speech 

recognition and speaker recognition. From the perspective of real-life applications and use-cases, 

it was logical for researchers to first build systems that understood the speech before trying to 

identify who the speaker was. Hence, research for speech recognition started almost a decade 

before the first known study in speaker recognition was performed. Davis et. al in 1952 at Bell 

Laboratories developed a system that was capable of recognizing the digits spoken by a speaker 

[2]. It used the formant frequencies measured in the vowels of spoken digits for recognition. It was 

a major breakthrough in ASR as it was the first successful attempt in speech recognition, however, 

it was limited to just digits. Words, sentences, or even numbers were not possible to detect using 

this approach. Also, due to the lack of computing resources at that time, the detection was relatively 

slow and limited. 

Subsequently, a group of researchers started studying about speaker recognition, and in 

1960, Pruzansky initiated a research in this domain at Bell Labs [3]. His theory was to correlate 

digital spectrograms for a similarity measurement to determine if the speaker is indeed the person 

he/she is claiming to be. This study kickstarted the research in speaker recognition, and several 

methodologies for feature extraction and similarity measurement have been studied and proposed 

since then. The first patent in this field was filed by Cavazza et al. from ‘Centro Studi e Laboratori 

Telecomunicazioni SpA’ (CSELT) in 1983 [4]. Their study focused on speaker verification and 

did not perform well in identification. They built a device that obtained multiple features from a 

sentence spoken by a speaker and then compared it with the average parametric values stored in 

the system for the same speaker. Based on this calculation, they obtained a probability score for 

the given input matching to the identity and compared this score to a threshold value. It was a 

simplistic approach but focused heavily on sentence segmentation to identify the start and end of 

a sentence using a noise-adaptive approach. This patent is regarded highly in speaker recognition 

history as this was the first of its kind study that could achieve automatic sentence segmentation. 

As research in the field of speaker recognition increased, the area got divided into two 

further parts: text-dependent speaker recognition and text-independent speaker recognition. Text-

dependent speaker recognition is a hybrid of speech recognition and speaker recognition. During 

the training phase of text-dependent speaker recognition, the user is expected to utter a fixed set 
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of values based on which the model is trained. Later, during the recognition phase, the model first 

performs speech recognition to identify the spoken value, and if that matches, proceeds it to 

speaker recognition to identify the speaker. This kind of model is quicker to train as it has a fixed 

set of inputs to validate. However, it is not convenient for the users as they are expected to utter 

the same thing each time. This limitation does not exist in text-independent speaker recognition; 

it is more convenient for the users as they are not required to speak the same set of digits, words, 

or sentences for verification and/or identification. However, the training phase for text-

independent speaker recognition is relatively long and the verification phase is more challenging. 

This is because the model does not take into account ‘what’ is being spoken, instead it tries to 

convert the audio to relevant feature vectors that would be able to identify the speaker correctly 

without knowing the context of the speech.  

As the desire to achieve higher accuracy rates in speaker recognition kept increasing along 

with the hardware and software capabilities, researchers started using several computer science 

techniques in ASR. Apart from classifying and/or clustering feature vectors or audio signals, an 

equally crucial step is to generate these feature vectors from the audio files. Thus, active research 

is conducted in feature extraction for ASR which leads to effective recognition and identification. 

Following are a few feature extraction and classification techniques researched upon in the field 

of ASR. 

2.1. Feature Extraction Techniques for Speaker Recognition 

Feature extraction has been a major issue in the area of text-independent speaker 

recognition systems. It is fairly challenging and often ignored, especially in text-dependent 

systems. But, considering how important audio percepts and vocals can be in recognition, it is 

critical not to overlook the feature extraction and selection phase and make it as effective as 

possible. Wanli et al. in October 2013 researched on how the Mel Frequency Cepstral Coefficients 

(MFCC) could be used more effectively in speaker recognition [5]. They studied the MFCC 

derived parameters and the MFCC obtained with Hidden Markov Models (HMM) and compared 

the results. They also studied a traditional feature extraction technique consisting of the following 

phases, namely, digitization, frequency promotion, framing, and silence removal. However, the 

research was primarily focused on MFCC and how the MFCC model represents a human ear model 

and can be very effective in speaker recognition when a large number of coefficients are extracted. 



12 
 

They also applied the techniques of weighted MFCC to increase the significance of important 

coefficients and to reduce the significance of the non-compelling coefficients.  

 

Figure 2: MFCC feature extraction procedure from voice audio 

Their experiment consisted of 20 male and 20 female speakers with 10 sentences for each 

speaker. The MFCC was derived at a frame rate of 10 milliseconds, where the length of each frame 

was 25 milliseconds and was windowed using a Hamming function. Their experiments concluded 

that using weighted MFCC increased the average accuracy by nearly 1%, and that was impressive 

considering their dataset was small and saturated but still showed a notable improvement. 

2.2. Vectorization Techniques in Speaker Recognition 

As discussed earlier, speaker recognition can be text-dependent, text-independent, or a 

hybrid of both. Text-independent recognition is currently considered to be the most widely 

accepted approach for speaker recognition, however, before this approach existed, extensive 

research was conducted on improving the text-dependent systems. Kekre et al. proposed that text-

dependent speaker recognition can yield higher accuracies with a few limitations [6]. They 

proposed the identification using spectrograms and row mean vectors. For feature extraction, they 

convert the raw speech into a spectrogram and the distributional features of this spectrogram 

represent the speaking pattern. The spectrograms are formed using the logic of Short Time Fourier 

Transforms. Kekre et al. divided the sampled data into four chunks and applied Fourier transform 

on each chunk. Every chunk then shows up as a single line measuring the magnitude versus 

frequency. This spectrogram is then cut into half from the middle and row mean is calculated for 

it. The row mean vector is then composed as an array of the average values for every row. The 

same concept is then applied to the test audio, which is converted to an image of spectrograms and 
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the row mean vector is calculated. They then calculate the Euclidean distance with the row mean 

vector for each speaker, and the sample having the least difference is declared as the identified 

speaker. They performed their experiments on three sentences for multiple vector sizes, and the 

average accuracies they got were 87.5%, 91.30% and 91.30% per sentence respectively. This paper 

proposed a unique approach enabling image processing and statistical analysis for speaker 

recognition systems. However, a drawback of this study was that the sample set was too small and 

is not tested on a larger dataset. Also, because it is text-dependent, it works only for known words 

and sentences and would not work for new sentences.  

Later, in 2014, Schmidt et al. conducted a research in MIT and Google to study how i-

vectors and locality sensitive hashing can be used in large-scale speaker identification [7]. Similar 

to the previous studies in speaker identification, they selected cosine similarity as a metric. Apart 

from cosine similarity being a tried and tested metric for such a study, it was also the choice of 

metric due to its applications with i-vectors and locality sensitive hashing, namely, comparisons 

and approximations. A major challenge in speaker recognition systems has been eliminating the 

background noise or miscellaneous interruptions. Schmidt et al. attempt to tackle this problem 

using i-vectors by dividing the acoustic space into multiple subspaces. The i-vectors are the lower 

dimensionality vectors in the Total Variability Model [8] and are sufficient enough to contain a 

significant difference between various utterances. In this way, the speaker information needed by 

the model is separated from external noise. This is still not a foolproof method of doing so, but 

proved to be a good stepping-stone in the area of noise removal for speaker recognition. Once the 

i-vectors generated, Schmidt et al. used locality sensitive hashing for fast speaker retrieval. As 

discussed earlier, cosine distance was used as the distance function for retrieval. The hash function 

for the locality hashing used was x.r where r is a random Gaussian vector. For a negative value of 

x.r the hash value assigned is 0, and for a positive value it is assigned 1. Using this hash function 

and the cosine distances, and overall distance is calculated and the speaker’s vector with the 

minimum distance is the model’s predicted speaker. The dataset used for this evaluation was a 

collection of videos from Google Tech Talk’s channel on YouTube containing more than 1800 

speakers. This dataset was cleaned in the interest of this research and eventually consisted of 998 

speakers. The researchers conducted two types of experiments on this dataset, the first experiment 

was conducted by taking snippets from videos to form the query set, and the second experiment 

was conducted by taking one random video for every speaker to form the i-vector query, and the 
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other videos for the training set. The accuracies achieved on these experiments were 91% and 

50.1% respectively. The second experiment has understandably lower accuracy as this approach 

had a significant challenge of ignoring multiple channels or channel-mismatches in multiple 

videos. This is a challenge still being explored actively by researchers worldwide. 

Building up on the research by Schmidt et al., Campos et al. in 2016 studied vector 

quantization and unsupervised learning for speaker recognition [9]. Vector quantization is defined 

as generating a set of multiple clusters to represent a huge set of data. Their approach extracts 

feature using MFCC and a model of vector quantization to calculate the distance between multiple 

audio objects. Depending upon these distances, they generated a ranked list of the audio objects. 

Further, they used an unsupervised learning approach to enhance the output of the results. This 

generated another ranked list based on the RL-Sim algorithm, and a third new ranked list was 

generated based on the two lists created earlier. The RL-Sim algorithm is an unsupervised distance 

learning method that was originally proposed for image retrieval using the approach of re-ranking. 

The same technique was used in re-ranking the correlation measures in this study. The experiments 

were conducted on multiple datasets, one of which was a dataset based on a collection of YouTube 

videos of the Google Tech Talk series. This was the same dataset used in the previous study by 

Schmidt et al. Using the techniques of MFCC and Vector Quantization, they got an accuracy of 

70.12%, however, on using the RL-Sim algorithm with it, the accuracy jumped up by 22.11% to 

become 85.62%. This research proposed a novel idea of using unsupervised distance measurement 

along with the traditional approaches in speaker recognition, and the rise in accuracy was 

significant. As the datasets of this and the previously discussed research are same, it is sensible to 

make a direct comparison of both results and unsupervised learning ended up performing better 

than locality sensitive hashing using a single channel. However, unlike locality sensitive hashing, 

this study by Campos et al. did not focus on noise elimination for speaker recognition. Noise 

elimination or removal still remains a major hurdle for voice-based person identification. 

2.3. Genetic Algorithms in Speaker Recognition 

One limitation that existed in most speaker identification studies was that those studies 

were done on closed-set systems. A closed-set system assumes that there are a fixed number of 

speakers, whereas an open-set system does not have such an assumption. An open-set system is 

able to add new speakers to its model dynamically. Park et al. researched on implementing an 
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open-set speaker recognition system using a Genetic Learning Classifier System (LCS) [10]. They 

also claim it to be the first open-set system study in speaker recognition. They used the LPC model 

for feature extraction sampling the speakers for 4 seconds before sending it to the LPC algorithm. 

The LPC algorithm generates a 14-number long vector representing the feature vector per speaker. 

To achieve the open-set concept, they sorted the values in the prediction array at each classification 

phase and the action of the top-ranked entry in the array was chosen as the next step. They 

performed these experiments on DARPA’s TIMIT voice dataset that provides 20 feature vectors 

per speaker [11]. For their open-set testing, they trained the model on 10 randomly chosen males, 

and tested it on twenty speakers, ten out of which speakers were newly introduced to the model. 

Using their approach, they got an average false reject value of 14% and an average false acceptance 

rate of 28.125%. 

 

 False Reject False Acceptance 

Set 1 29 (14.5%) 48 (24.0%) 

Set 2 25 (14.5%) 65 (32.5%) 

Set 3 25 (12.5%) 59 (29.5%) 

Set 4 29 (14.5%) 53 (26.5%) 

 

 

2.4. SVM and Naïve Bayes Machine Learning Techniques for Speaker Recognition  

Support Vector Machine (SVM) is an important classification technique in statistical 

learning. As speaker recognition is primarily a classification problem, researchers have studied 

SVM as a potential classifier in this domain. Fenglei et al. in 2001 experimented on how SVM can 

be applied effectively as a training method and classifier on large-scale samples [12]. Their 

approach is text-independent which makes the training phase more challenging as the model is 

expected to identify the speaker without relying on the spoken corpus. They claimed that most 

studies in speaker recognition were based on Bayes decision or neural network classifiers which 

require cross-validation to limit over-training the model. Hence, to avoid this issue, they 

researched using SVM for speaker recognition. 
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Their methodology involves training the SVM by optimizing the Quadratic Lagrangian and 

thus most techniques of Quadratic Programming (QP) are applicable in their study. One drawback 

they had with this approach is that the kernel matrix Q is stored in memory, and that is not suitable 

for larger datasets. As training samples are in large numbers for speaker recognition, it is important 

to find techniques that optimize the training phase of the SVM. Hence, they split QP into two parts, 

an active part B and an inactive part N, where B is called the working set. This is analogous to the 

classical divide and conquer technique in algorithms; here, the bigger QP problem is solved by 

solving the smaller QP sub-problems. Also, as SVMs are optimal but not limited to binary 

classifications, every SVM in the study was trained to classify between two speakers to maximize 

the efficiency. Thus, for N speakers, a total of N*(N-1)/2 SVMs are required altogether for 

classification. All N speakers are arranged in pairs and a winner is determined from those pairs, 

which then forms a pair with the winner of the next pair. This process continues until the algorithm 

reaches a single winner, and this is considered as the identification result. 

Based on this technique, they conducted several experiments on 8kHz, 16-bit digital signals 

that contained audio for 30 speakers consisting of 23 males and 7 females, and each audio being 

of about 15 seconds. The test utterances were of about 2 seconds in length. Using their proposed 

approach on this dataset, they got an accuracy of 91.4% using SVM, which was higher than their 

baseline of 90.8% which was achieved using an MLP neural network approach. 

Bao et al. further researched using SVM for speaker recognition alongside the Gaussian 

Mixture Model (GMM) in 2012 [13]. One of their primary objectives was to tackle the issue of 

reducing accuracies with more speech data in SVM. GMM was a commonly used model in the 

area of speaker recognition, however, it performed poorly when the training or testing data was 

not enough. SVM, on the other hand, can solve the issue. But, as discussed above, even SVM tends 

to perform poorly with a large amount of data. Bao et al. attempted to use the advantages of SVM 

and GMM to build their speaker recognition system. They trained and built the GMM using the 

Expectation Maximization (EM) algorithm on a large dataset. The resultant model is claimed to 

have a decently accurate representation of the distribution of voice in a compressed form which 

will be suitable for SVM. The experiments were done on a dataset consisting of 23 people with 

the length of audio samples being 15 seconds and the GMM being of the order of 32. For training 

durations ranging between 5 and 18 seconds, they got accuracy rates between 73.2 and 96.7%. 
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This was a novel approach as they used GMM with SVM to restrict the limitations of SVM noticed 

in previous works. However, the training data was relatively smaller, and it would have been 

interesting to see how well the approach scales with a larger dataset. 

A few months later in December 2012, Kundu et al. explored a completely text-dependent 

approach for speaker recognition [14]. Their approach was to extract unique features using the 

parts-of-speech (POS) information from a set of film dialogues and apply classifiers to identify the 

speaker from a given text dialogue. Unlike most text-dependent speaker identification systems 

which are a mixture of audio feature extraction, data cleaning, and natural language processing 

(NLP), this approach was entirely based on NLP. They used Naïve Bayes, k-Nearest Neighbors 

(kNN) and conditional random field (CRF) classifiers for their study. For their dataset, extracted 

a corpus from Internet Movie Script Database (IMSDb) and use a subset of it to have around 135 

movies for their study. As their study focused entirely on text-based recognition, they extracted 

features like ratios of words per sentence, punctuations per word, adjectives per word, emotion 

words per sentence, and a few more. In sum, they extracted a total of 9 features labeled from f1 to 

f9. Post feature extraction, they ran their three classifiers, namely kNN, Naïve Bayes, and CRF. 

For kNN, they chose normalized cosine distance as the similarity metric as that is widely used for 

text similarity measurement. For Naïve Bayes, the calculated the prior probabilities for speakers 

as the ratio of the number of turns spoken by the speaker and the number of turns in the training 

set. Based on their experiments, they got average accuracies of 30.39%, 23.59%, and 27.14% using 

kNN (k=15), Naïve Bayes, and CRF. This approach was new as it only considered POS for feature 

extraction, however, it was not as comprehensive as it totally ignored the acoustics and speech 

percepts. An implementation of the text-based identification found in this paper when combined 

with feature extraction from audios can give a better text-dependent speaker recognition model.  

The most recent work in speaker recognition using Support Vector Machines was done by 

Chakroun et al. in 2015 [15]. Most speaker recognition techniques leveraging SVMs were studied 

using the linear kernel. Although this is a relatively good approach, unstructured data like audio is 

more likely to be comprehended better using a SVM kernel trick. Thus, they focused on other 

complicated kernels beyond the linear kernel for their research. However, before beginning their 

classification phase, they initially explored different feature extraction techniques for speaker 

recognition and concluded that MFCCs along with their second order derivatives (delta-delta 
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coefficients) were ideal to extract features from constrained audio recordings. Hence, leveraging 

the MFCC + delta-delta coefficients, they designed a SVM model to perform the classification 

task. Additionally, as their research was to study how effective a non-linear SVM kernel is in 

speaker recognition, they first applied a linear SVM on their dataset to get the baseline. Later, they 

used SVM’s Radial Basis Function (RBF) kernel for the classifications. Although they used the 

TIMIT dataset, they did not use the entire dataset for their research but a subset of it. Their dataset 

is not public, and thus we do not know the split of genders, languages, and other related 

components of their audios. However, their approach of using the RBF kernel showed great 

improvements as they were able to reduce equal error rate by almost half as compared to the linear 

kernel. This study was thus a major breakthrough in terms of how SVMs can be used for speaker 

recognition and most speaker recognition activities in the present are done using a non-linear SVM 

kernel such as RBF or Polynomial.  

 

2.5. Neural Network in Speaker Recognition 

Deep Learning has risen heavily in the past few years, and Tirumala et al. in 2016 

researched the applications of deep learning in speaker recognition [16]. They believed that deep 

learning is extensively used in several areas such as natural language processing, image 

recognition, and computer vision, however, its applications are limited in the areas of speaker 

recognition due to the knowledge gap. With this research, they have tried to reduce the knowledge 

gap between deep learning and the group of researchers using traditional approaches for speaker 

recognition. Artificial Neural Networks (ANNs) are effective for such research, however, as the 

training mechanism is dependent on multiple layers, it can often be time-consuming. In order to 

resolve this issue, Tirumala et al. used deep learning, a greedy-wise layer for training and reduce 

the training time.  

For this study, Tirumala et al. considered a simple classification of speaker identification 

techniques. The first level is divided into two parts – based on voiceprints and based on a new 

speaker with no voiceprints in the database. As shown in the fig 3, they are further divided into 

closed/open sets and text-dependent/independent approaches. 
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Figure 3: Types of speaker recognition 

Along with classification, one major field of research in speaker recognition has always 

been the feature extraction phase. This is the phase where the enrollment of a speaker takes place 

and a copy of all data related to the speaker’s voiceprint is stored. As this can often be limited, the 

feature extraction phase becomes crucial in the overall speaker recognition model. Tirumala et al. 

have focused heavily on how deep learning can be used to overcome the difficulties faced in this 

phase. They designed a deep neural network (DNN) topology where every level works at the 

acoustic level. The training audio is fetched frame-by-frame and is fed to the DNN. Using this, the 

previous layer’s output is used as a representation for the particular speaker, called as the d-vector. 

These d-vectors are further used in DNN classifiers for speaker identification. Tirumala et al. 

proposed an architecture of using two DNNs with d-vectors and multiple hidden layers. This 

research does not showcase concrete results to compare their approach with traditional approaches, 

however, it serves as an initial stepping stone towards utilizing neural networks for feature 

extraction and classification in speaker identification. 

Building upon the deep learning techniques discussed above for speaker recognition, Ge et 

al. researched further on how a feed-forward neural network could be effectively sued for text-

independent speaker recognition [17]. They focused on using a unique technique of Voice Active 

Detection for feature extraction instead of the traditional techniques as this helps in eliminating 

the discrepancies that may be present in different audio samples for the same speaker. 

Additionally, they used MFCC on the preprocessed speech for normalization and concatenation. 
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They normalized the features using the mean and variance of the speaker with itself instead of 

using the values obtained on the entire dataset. This is known as Speaker Level MVN. For 

classification, they used the features comprising nearly 400-dimension vectors as inputs to the 

neural network and used Andrew Ng’s famous approach of considering a multi-class classification 

as n different binary classification, where n is the number of classes [11]. They ran their 

experiments on the TIMIT dataset using the first 200 male speakers for the training phase and used 

thresholding and ROC plots for verification. With this approach, they obtained decent accuracy 

rates and an Equal Error Rate of less than 6% which is impressive. The research marks a key 

progress in the usage of neural networks for speaker recognition, however, it is not evaluated on 

real-work natural environment sounds. Also, the training process is much slower as it requires 

more processing power and trains the model individually instead of considering a group of 

speakers as a whole. 
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3. Feature Extraction 

As discussed earlier, speaker recognition is the process of recognizing who the person is 

using the person’s voiceprint. Thus, this research revolves heavily around sound processing and 

sampling of audio files. Any sound is composed of different frequencies, amplitude, wavelength, 

and many such related features - and it is important to quantify these characteristics of sound to 

perform experiments on them. However, it is also crucial to understand different sound features 

and the impact they have on the audio generated out from them.  

In order to determine the sound features relevant to speech processing for speaker recognition, 

we first need to understand the different type of audio features. Audio features can be broadly 

classified into three types: 

• Rhythmic features 

• Temporal features 

• Spectral features 

Rhythmic features primarily deal with features related to musical notes and are heavily used 

in applications related to music information retrieval (MIR). Temporal features describe an audio 

signal over a sampled period of time.  Few examples of temporal features are zero-crossing rate, 

minimum amplitude, or maximum frequency. These features are generally used in applications 

which deal with understanding the continuity of the audio signal – for instance, detecting a sudden 

change in oceanic wave sounds. Temporal features are sometimes also used in MIR while 

performing genre classification.  

For speech processing, spectral features are considered to be most effective. Spectral 

features are based on the frequencies of the audio waves and are used for converting temporal 

features to equivalents domain of frequency [18]. This is very similar to how the human ear treats 

audio signals. The human ear receives the temporal signals, which are then converted to their 

frequency domains resulting in corresponding vibrations in the human ear giving us the ability to 

hear and comprehend an audio signal. Precisely for this reason of being very similar to how 

humans perceive audio, spectral features are the most widely used features in speech and speaker 

recognition systems.  

There are several methods used for generating frequency domains for spectral features. 

Few of the notable ones used in speaker recognition are Linear Predictive Coding (LPC), 

Rastafilter, and Mel Frequency Cepstral Coefficients (MFCC). Studies suggest that MFCCs 
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represent the closest relation to the human earing model and are becoming increasingly popular in 

speech recognition. We shall thus have a look at MFCC in a bit more detail to understand know 

more about them and their respective variations. However, before studying about MFCCs, we first 

need to understand what framing an audio file means and why it is useful in feature extraction. 

 

3.1. Audio Framing 

As discussed earlier, an audio signal is a continuously changing collection of different 

frequencies bounded together. Hence, it is impractical to generalize the entire band of changing 

signal as one entity and to perform calculations on it. Instead, it is assumed that an audio signal 

does not change much over small intervals of 20 – 40 milliseconds. Thus, in an ideal scenario, the 

number of frames of an audio with frame length 20 milliseconds would be n = L / 20 where L is 

the length of audio in milliseconds and n is the number of frames. However, this is usually not the 

case. When an audio signal is framed, the edges become sharp and lose their true and harmonic 

nature. This is acceptable in learning about the short-term features and the frequencies of the 

frames, but we lose the continuity between adjacent frames which can misrepresent the audio 

frequencies. Thus, a concept of overlapping is used while framing audios. The overlapping length 

is usually defined by the hop size of the framing function. For instance, if a framing length of 25ms 

and hop length of 10ms is selected, the first frame would contain information about the frequencies 

between 0 – 25ms, the second frame would contain information about 10 – 35ms, the third will 

contain between 20 – 45ms and so on. Thus, as illustrated in the figure below, each frame has 

information about the latter half of the previous frame and the initial half of the next frame [19]. 

 

 

Figure 4: Audio frames and overlaps 
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3.2. Mel Frequency Cepstral Coefficients (MFCC) 

Mel Frequency Cepstral Coefficients are a set of spectral audio features which are effective in 

speaker recognition systems. P. Mermelstein, J.S. Bridle, and M.D. Brown are primarily credited 

for coming up with the idea of MFCCs [20]. MFCCs are a list of coefficients that in totality 

represent a Mel Frequency Cepstrum (MFC) [20]. The steps to identify the MFCCs are as follows: 

 

1. Frame or window the signal into blocks that usually range between 20 - 40ms. 

As discussed earlier, framing is essential before extracting features from the audios. 

However, unlike most application where a frame length of 20-40ms is considered fine, for 

speaker recognition systems, scientists have studied the frame length of up to 250ms can 

yield good results. Taking wider frames makes the frames less specific but also greatly 

reduces the total number of frames, thereby speeding up the overall process of feature 

extraction.  

 

2. Perform a Discrete Fourier Transform (DFT) on this framed signal and calculate the powers 

of the spectrum. 

Fourier transform is used to split the time-signal function into the multiple frequencies it 

is composed of. This step is motivated by the fact that the cochlea in human ear vibrates in 

different patterns and in multiple spots depending on the incoming frequency [21]. 

Assuming Si (k) denotes the DFT for the framed signal i and k denotes the DFT length, then 

the formula is: 

Si (k) = ∑  𝑵
𝒏=𝟏 si (n)h(n)e-j2πkn/N 

Where h(n) is an analysis window for the Nth sample. 

Further, the spectrum power is calculated as Pi (k) = (1/N) | Si (k) |2 

 

3. Map the above calculated power spectrums to the mel-scale. 

The mel-scale represents the multiple pitch scales that an audio receiver or listener 

interprets. The formula to convert the hertz to mels is given as: 

m = 2595 log10 (1 + 
𝒇

𝟕𝟎𝟎
 ) = 1127 ln (1 + 

𝒇

𝟕𝟎𝟎
 )   
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Additionally, triangular overlapping filters are also used for the mapping. These are a set 

of 26 vectors and each is 257 in length. Every value of this filterbank is multiplied with the 

spectrum power calculated in the previous step followed by adding up the coefficients [21]. 

The mapping of these values is commonly called as the mel-scale as represented in the 

figure below [22]. 

 

 

Figure 5: Mel Scale 

 

4. Compute the logarithm of energies 

This step gives us the values of the filterbanks. It is obtained by taking the logarithms of 

the energies obtained in the previous step. 

 

5. Finally, compute the discrete cosine transform (DCT) of the filterbank energies to get the 

MFCCs. 

 

 

3.3 MFCC Delta: Differentials 

Apart from the standard set of coefficients known as the MFCCs, there are variations of it 

that exist too. The most prominent ones are those which are obtained by calculating the deltas of 

the coefficients. They represent the path that the MFCCs encounter, which is known to increase 
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the accuracy of speech recognition researches in general. The first order MFCC deltas are 

sometimes also referred to as differentials. 

The formula for calculating the MFCC delta coefficients is: dt = 
∑  𝑵

𝒏=𝟏 𝒏(𝒄𝒕+𝒏− 𝒄𝒕−𝒏 )  

𝟐 ∑ 𝒏𝟐𝑵
𝒏=𝟏

 

where, dt is the delta value coefficient for the window t, and c represents the MFCC coefficients. 

 

 

3.4. MFCC Delta-Delta: Accelerations 

Similarly, the MFCC delta-delta coefficients are calculated when the formula is applied on 

the MFCC delta coefficients. These are called as MFCC Delta-Delta coefficients, sometimes also 

referred to as accelerations. The formula for calculating the MFCC delta-delta coefficients is the 

same as MFCC delta coefficients with the only change being that here we use the delta coefficients 

instead of the original MFCC coefficients. Thus, the formula is ddt = 
∑  𝑵

𝒏=𝟏  𝒏(𝒅𝒕+𝒏− 𝒅𝒕−𝒏 )  

𝟐 ∑ 𝒏𝟐𝑵
𝒏=𝟏

 

where ddt is the delta-delta coefficient for window t, and dt represents the MFCC delta coefficients. 

For simplicity, the MFCC delta-delta calculation can also be represented as follows: 

MFCC delta-delta = Δ (MFCC delta) = Δ (Δ (MFCC))) where Δ represents the delta function. 

 

 

3.5. Edge Trimming 

As discussed earlier, MFCCs and their derivates are obtained by dividing an audio into 

small frames ranging from 20ms – 250ms. While this approach sounds effective, it presents one 

major problem of calculating coefficients of unwanted frames. Unwanted frames are simply the 

frames, often at the beginning and at the end of a sentence which do not contain any useful 

information. This usually happens due to the delay in the time taken to stop the recording after a 

speaker completes his sentence. To compensate for this, the concept of audio edge trimming is 

adopted by researchers. Edge of an audio is defined as the starting and the ending part of it, similar 

to trailing and leading spaces in textual data. There are different ways to remove the unwanted 

trailing, but usually a threshold value in decibel is set and a value below that is considered silence. 

The average decibel value for each frame is calculated and if the value is below the threshold, the 
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edge is trimmed. Fig 6 represents a sample waveform containing the silent edges and Fig 7 shows 

the waveform after edge trimming. 

 

 

 

Figure 6: Waveform before trimming 

 

Figure 7: Waveform after trimming 
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4. Machine Learning Classifiers 

 Similar to the feature extraction techniques, the machine learning classifiers also play a 

vital role in determining the overall effectiveness of speaker recognition model. As we have an 

intention to classify audios and determine the speaker in them, this is a classification problem and 

hence we shall discuss about some effective supervised classification machine learning algorithms. 

 

4.1. Support Vector Machine (SVM) 

Support Vector Machine, sometimes abbreviated as SVM or SVC (Support Vector 

Classifier) is a well-known supervised machine learning classification technique. The objective of 

a SVM algorithm is to construct an n-dimensional hyperplane which can be used for classification 

or regression. Ideally, a good hyperplane is the one that achieves the largest distance to the closest 

data point of a particular class [23]. This can be better explained with the help of fig 8 [24]. 

 

 

Figure 8: Sample hyperplane for binary classification 

 

Here, the red and green dots represent two different classes of the dataset. The support 

vectors are the points which help in identifying the hyperplane, and in this scatterplot, the green 

class provides two support vectors and the red class provides one. Using these support vectors, we 

draw lines passing through them that would distinguish the data from the other class.  
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Figure 9: Generation of the hyperplane using support vectors 

 

Doing this, we get the two lines w*x + b=1 and w*x + b=-1. Additionally, these two 

classes are linearly separable and plotting the hyperplane is straightforward in this case. A 

hyperplane is simply a straight line which divides the two classes with a maximum distance from 

the points closest to the line, also known as the support vector. However, the essential part of a 

SVM is to define an optimal hyperplane that would maximize the margin width (w). In an ideal 

scenario, the maximum width is obtained by the formula 
2

∥𝑤∥
 . 

 

However, for most scenarios, the data is not scattered in a manner that would be linearly 

separable. Also, a line might not be used for always defining the hyperplane. A plane can be used 

as the hyperplane in spaces with higher dimensions. Additionally, the data might not always be 

linearly separable. For a non-linear distribution of data, SVM has a concept of kernel trick which 

is used for defining the optimal hyperplane. The kernel trick converts the given data into a higher 

dimensionality space to achieve a linear separation between the points. Fig 10 shows how the 

hyperplane changes from a line (x,y) to a plane (x, y, xy) depending on the dimensionality space. 
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Figure 10: Linear hyperplane vs hyperplane generated using a kernel trick 

 

 

Fig 10 represents a simple kernel function which used the formula x,y,x*y to obtain a linear 

separation of data. This is a simple representation of how kernel tricks work. The Gaussian Radial 

Basis Function (RBF) is the most widely used kernel trick in SVM and it is defined by the 

following equation: 

 

 

 SVMs were primarily used for binary classification problems, however, the recent 

developments in kernel tricks have made them efficient for multiclass classifications too. They use 

the ‘One vs All’ (OvA) technique while performing the classification on each class during a 

multiclass classification. For instance, let us assume there are three classes – A, B, and C and an 

input x is to be determined. The SVM will first check x for class A as ‘A vs non-A’ and calculate a 

score. Similarly, it does the same for ‘B vs non-B’ and ‘C vs non-C’ to get multiple scores. These 

scores are then ranked to determine the classification of the input x.  
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4.2. Random Forest Classifier 

Random Forest Classification (RFC) is another supervised classification technique based 

on decision trees used in machine learning. A decision tree algorithm builds a tree-like model of 

the dataset where each node is split further based on several customizable criterion [25]. A Random 

Forest is a collection of unbiased, unrelated, and de-correlated decision trees and hence are named 

as a ‘random forest’. Before we discuss about random forests, we first need to understand what a 

decision tree and how it works. 

 A decision tree is a collection of connected nodes where each node is reachable from the 

previous node depending on certain criteria. For instance, assuming a person wants to go for a 

picnic but is unable to determine if the day is suitable for it, then a decision tree might look like 

Fig 11 [26]. 

 

Figure 11: A simple decision tree illustration 

The first node ‘Outlook’ is split into three conditions, namely ‘Sunny’, ‘Overcast’, and 

‘Rain’ followed by more nodes below them. This is a very simple representation of the decision 

tree. Once a decision tree is created, it is fairly straightforward for the algorithm to classify the 

provided input sample by simply traversing the tree. However, there is no perfect decision tree that 

exists for a dataset. There are different methods using which the splits at every node can be mode 

and that largely affect the decision tree formation. For instance, the decision tree would look very 

different if the first node was ‘Wind’, instead of ‘Outlook’. The performance of the decision tree 

would also change significantly based on this design change. Hence, it is imperative to know the 

factors that affect determining the current node and the splitting criteria. 
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The two most significant concepts that are widely used for this determination are Gini and 

Entropy values. Gini is used to calculate the impurity and Entropy is used for calculating the 

information gain of the node. Hence, while calculating the Gini impurity, the node that provides 

the least Gini impurity is selected for the split. The formula for calculating the impurity from the 

Gini value is defined as 1 minus the square of the probability of each class. Symbolically, it can 

be represented as: . A perfect split would result in the Gini score of 0, which would 

always be the case at the leaf nodes. 

Similarly, while using Entropy, the goal is to split at the node which provides the maximum 

information gain. At the leaf node of three, Entropy gain is 1 which means full information gain 

and is thus is a perfect split. Entropy is calculated using the formula E(S) = ∑ −𝑐
𝑖=1  pi log2 pi. Based 

on this value, we calculate information gain as the difference between the other classes and the 

calculated entropy. The information gain for each is then compared the split providing the 

maximum gain is selected as the splitting criteria. 

The primary difference between Gini and Entropy is that Gini is usually used to minimize 

misclassifications whereas Entropy is used more for exploratory purposes. Hence, Gini is usually 

considered a good measure for classification problems. Another difference is that Entropy is 

usually slower to compute due to logarithmic operations. 

Furthermore, all these computations are performed to determine just one decision tree. As 

discussed earlier, Random Forest is a collection of unrelated decision trees which can be created 

either by using the Gini or the Entropy values. Based on these specifics, the algorithm builds a 

forest of n trees. Assuming there are 3 classes – A, B, and C in a dataset and the forest contains 10 

trees. Let us assume three trees predict the class as A, five trees predict the class as B, and 

remaining two trees predict the class C. In this case, the overall prediction of the Random Forest 

would be class B as that has the highest number of votes - five. 

However, this problem can also sometimes lead to overfitting as those five trees might be 

biased towards class B, resulting in most predictions of the forest in B. Thus, increasing the number 

of trees greatly reduces the problem of overfitting in Random Forest Classification. 

Thus, Random Forests are considered one of the best supervised classification algorithms 

as they make use of multiple decision trees that not only provides better classification but also 

avoid overfitting.  
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4.3. k Nearest Neighbors 

 

The k Nearest Neighbors (kNN) algorithm for classification is one of the simplest machine 

learning classification algorithms. As opposed to most techniques, kNN is a lazy technique which 

means that it does the evaluations only when needed. This makes this algorithm fast at the cost of 

some accuracy. When an input is provided, kNN computes its distance with each vector in the 

dataset and then determines k vectors with the smallest distances. The classes of these k vectors 

are then compared and the class that was is predicted the most is returned. Although this approach 

sounds simple, it is effective in a lot of machine learning algorithms. The two most important 

decisions in this algorithm are the k value estimation and the distance metric.  

 

The k value estimation is usually done using the elbow method which tries to find that value 

of k after which the accuracy does not increase much. The elbow method k value estimation thus 

gives a good k value with respect to time vs accuracy. Additionally, the two most widely used 

distance metrics for kNN are Euclidean Distance and Cosine Similarity. Usually, with continuous 

numbers such as the MFCC coefficients, the Euclidean distance is a more effective metric to 

choose as that compares the magnitude of difference between the vectors. Cosine similarity also 

calculates the difference in the vector direction which is not required for most studies. 

Mathematically, Euclidean distance is calculated as: 
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5. Dataset 

When working on a speaker recognition study, the dataset is of utmost importance as the audios 

must be of a certain quality in order to perform experiments. Thus, most publicly available audio 

datasets are usually recorded in constraint sound-proof environments to maximize the 

effectiveness of the study. However, this is not the case in real life, especially when people use 

handheld devices such as mobile phones or tablet PCs to interact with the computer. Real life 

scenarios would often have background noise in the background. Noise need not always be a 

different sound, but just the ambient noise in the background is sufficient enough to reduce the 

effectiveness of feature extraction and subsequent classification techniques. However, although 

the ambient noises are a major hurdle in sound related studies, they are an inevitable reality and 

thus we wanted to focus on such scenarios for this research purpose. The primary motivation 

behind this is to simulate real life-like audio samples for the training and testing phases. 

 

5.1 VoxCeleb Dataset 

VoxCeleb is a recently published publicly available dataset which serves this purpose 

appropriately [27]. J.S. Chung, A. Nagrani, and A. Zisserman from the University of Oxford in 

UK published the dataset in 2017. As the dataset is not even more than 2 years old, it remains 

pretty unexplored and thus makes this research more interest. Moreover, the fact that it does not 

try to simulate an unconstrained environment but instead uses actual real-life footage makes this 

dataset more practical to work on. Thus, to summarize, the two primary reasons we believe that 

this is an appropriate dataset for this study are its freshness and its closeness to real-world 

scenarios. 

The two most common audio formats that exist presently are WAV and MP3. For most 

researches, WAV files are considered more useful as they cover the entire range of frequencies 

that are audible to the human ear. On the other hand, MP3 files are compressed and hence do not 

contain all the information that is usually encompassed in a WAV file of the corresponding audio. 

Additionally, feature extraction from these WAV files is extremely crucial. This phase essentially 

forms the basis of the machine learning algorithms to be used for classification. Thus, WAV files 

are largely preferred audio studies, and VoxCeleb does a great job of providing WAV files at 

constant sampling rates. Sampling rate is defined as the absolute number of audio samples present 

in one second [28]. Consistency in sampling rate is very important in an audio study to ensure that 
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the extracted coefficients represent the same underlying calculations. Hence, this is another reason 

why VoxCeleb dataset is apt for this study as it has sampled all audios to a constant sampling rate 

of 16000 Hz. 

 

5.2. Dataset Diversity 

For the purpose of this study, we have selected 40 speakers to evaluate our models on. The 

primary factors behind the selection of these 40 speakers were: 

1. To have an equal number of male and female speakers: This avoids overfitting the training 

and testing techniques for a particular gender. 

2. To have different accents: We have selected people from different nationalities to obtain a 

variation in the accents they speak in. 

3. To have multiple languages: As the research is based on text-independent approach, we 

can not only have people with different accents but can have people speaking altogether 

different languages. This simulates a more real-life scenario as the model will not be 

evaluated on just one specific language. 

Keeping these factors in mind, we obtained more than 4300 audio files to train the model on. 

Each audio file ranges between 5 seconds to 20 seconds, with approximately 100 audios per 

speaker. However, when a speaker recognition system is developed in real-life, the case may not 

be so perfect. It is common to have more samples of audios for one speaker and lesser number of 

samples for another. Hence, to simulate this real-life imbalance which is extremely common, we 

have ensured that we have a slightly varying number of audio samples for each person to train the 

model on. This not only enables us to test the flexibility of the models but also gives us an idea if 

the true positive rate for a speaker changes with the number of samples, and if yes, then by what 

extent. 

Fig 12 shows the number of audio files used per speaker for the study. 

 

Figure 12: Number of audio files per speaker 
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Figure 13: Nationality distribution of speakers 

 

Below is a brief overview of the diversity of the dataset: 

1. Genders: 50% Male, 50% Female 

2. Nationalities: Australia, Austria, Canada, China, Germany, India, Italy, Mexico, 

Netherlands, New Zealand, Norway, Philippines, Poland, Russia, South Africa, Spain, 

Sweden, United Kingdom, United States of America 

3. Languages: English, French, German, Hindi, Russian, Serbian, Spanish, Tamil 

 

Additionally, the dataset also contains several types of background noise in the collected 4300 

audio files. Ambient noise is the most common of them all, however, there are cases of motor-

vehicle sounds, speeches of other people, music, applause, vehicle honking sounds also present in 

the audio files. This makes up for an interesting study as the ambient noise removal algorithm that 

we have implemented will be evaluated on different kinds of background noises. 
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6.  Tools and Libraries 

 

6.1. LibROSA 

LibROSA is a Python library built for sound analysis [29]. It is considered as one of the 

most versatile libraries for audio processing in Python. It provides a plethora of useful sound 

processing features as waveform visualization, feature extractions, math operations, and a few 

more. It also has in-built IPython sound widgets which make it easier to debug the sound 

processing phase. 

6.2. python_speech_features 

Similar to LibROSA, even python_speech_features is a library having multiple built-in 

audio processing methods related to feature engineering [30]. It provides methods to extract the 

MFCCs, filterbank energies, spectral centroids, and also logarithmic filterbank energies. The 

spectral centroids computing method is very effective in the approach we have taken to eliminate 

ambient noise during the audio pre-processing phase. 

 

6.3. Scikit-learn 

Scikit-learn (also known as sklearn) is an efficient and well-known library built for 

Machine Learning in Python. It provides methods for several machine learning and data mining 

tasks such as regression, classification, clustering, modelling, and several other machine learning 

activities. We have used sklearn for several tasks such as normalization, scaling the data, building 

classification models, generating cross-validations, evaluating the model performance, and 

visualizing the results.  

 

6.4. Other Python libraries: 

Apart from the libraries mentioned above, few other third-party Python libraries used for 

the implementation are: Scipy, NumPy, Pandas, Matplotlib, Seaborn, and Pysndfx. 
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7. Implementation 

 As discussed in the feature extraction part of the report earlier, the phases related to audio 

pre-processing and feature extraction are critical in designing a good speaker classification model. 

Also, as discussed in the dataset part of the report earlier, the audio files used for this dataset are 

not recorded in a constrained environment and contain some noise, usually ambient, and some 

abrupt pauses between words sentences which are not useful for the feature engineering of audio. 

Hence, we first pre-process the audio and do the MFCC feature extraction in order to ensure that 

our extracted features represent the audios with higher accuracy. 

Fig 14 represents the steps we have taken during the feature extraction phase. They include 

processes such as: 

• Ambient noise reduction 

• Vocal enhancements 

• Audio trimming 

• Audio splitting 

• MFCC Feature Extraction 

 

 

 

Figure 14: Audio pre-processing and feature extraction 

 

7.1. Ambient Noise Reduction 

Ambient noise is defined as any noise which exists in the background of the environment. 

Although present in the background, these ambient noises can have severe ill effects in 

understanding the features of the audio. Hence, it is essential to reduce the ambient noise as much 

as possible to ensure better feature engineering.  

Following are the steps we have taken to reduce the effect of ambient noise in our audios: 
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1. Divide the audio in frames of 25ms with hop length of 10ms. 

2. Calculate the spectral centroids for each window. This is achieved by using the method 

features.spectral_centroid() of LibROSA. 

3. Determine the maximum and minimum centroid value from the values calculated in the 

previous step. Let us call them the upper and lower thresholds respectively. 

4. Apply a lowshelf filter for gain=-30 and frequency as the lower threshold. The lower 

threshold points towards the noisy part of the audio, and setting the gain to -30 significantly 

reduces those volumes which eventually helps in reducing those signals in the audio. Lesser 

gain reduces volume, eliminates insignificant noises. 

5. Now, apply a highshelf filter for gain=-30 and higher threshold. This step is practically 

useful in reducing the foreground noises that might exist in the audio. For example, a 

person clapping close the mic between the speech of a person can be classified as a 

foreground noise.  

6. To compensate for the volume loss in steps 4 and step 5, we apply limiter with a gain of 

+10 to increase the volume. 

 

7.2. Vocal Enhancement 

Unlike ambient noise, vocal and voice signals are the features that we want our feature 

extraction phase to focus more on. These are the significant parts of the audio that we wish to use 

to extract features from and build machine learning classifiers. Hence, enhancing these parts of the 

audio can greatly increase our accuracies. We can do this by using the concepts of MFCCs again. 

Following are the steps we took to enhance the vocal enhancements.  

1. Divide the audio in frames of 25ms with a hop length of 10ms. 

2. Calculate the MFCC coefficients for each frame. 

3. Take the sum of squares of MFCC. Squaring the coefficients greatly helps in summarizing 

the spread of data. Additionally, MFCCs might not always be positive, squaring makes 

sure that all comparisons are made in the positive space of numbers. Although this can be 

achieved by absolute values too, squaring helps in summarizing the spread in a better way. 

4. Find the strongest frame. The strongest frame is the frame which has the maximum sum of 

squares for its MFCCs. The reason for taking the strongest frame is that would indicate a 

certain vocal utterance. This is because we do this step after ambient noise removal, which 
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reduces the foreground noise too, and hence the strongest frame now will most likely be 

the vocal part of the audio. 

5. Find the minimum hertz value from the strongest frame and apply a lowshelf filter of a 

positive to gain to enhance those vocals. 

 

7.3. Audio Trimming 

Audio trimming is another important pre-processing step to ensure that the audio is clean, 

improved, and more suitable for research. We have discussed in this report earlier that why audio 

trimming is needed and how it affects the quality. For the purpose of this research, we set the 

threshold value of 20 decibels. If a sound is less than this threshold, we consider it as silence and 

trim if it is a part of the edge. Using LibROSA’s lib.effects.trim() method, we achieve this goal of 

trimming the audio edges. We kept the frame length as 2048 and the hop length as 500 which 

signifies the number of samples between neighboring frames.   

 

 

Figure 15: Audio trimming: Before and after waveform 

 

7.4. Audio Splitting 

Similar to audio trimming, audio splitting is a technique used to reduce the unwanted parts 

in an audio. Trimming and splitting follow very similar fundamentals. Audio trimming is the 

process of reducing unwanted or silent parts from the start and end of an audio, whereas audio 

splitting takes this a step ahead and removes silences even from the middle portions of the audio. 

For instance, if an audio file of 10 seconds has a speaker speaking actively for the first 4 seconds 
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and then taking a pause for 2 seconds, following by speaking again for the remaining 4 seconds, 

then are areas of focus are just the first 4 seconds and last 4 seconds of the audio. The intermediate 

silent 2 second portion of the audio can be removed before feature engineering.  

As the process and fundamentals of audio splitting and trimming are similar, we replicate the same 

steps as audio trimming to achieve splitting. However, on conducting several experiments and 

tests, we observed that keeping the frame length to 100, hop length to 25, and threshold to 40 

decibels gave the best results. Figures 16, 17, and 18 show the results this approach gave on an 

audio from our dataset: 

 

 

Figure 16: Audio splitting - Original waveform 

 

 

Figure 17: Split audio waveforms 1 and 2 
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Figure 18: Merged audio waveform 

 

7.5. Feature Extraction 

Feature extraction is the heart of any machine learning classification research, especially 

for our research as the type of files being classified are audio files which usually contain a lot of 

ambiguous looking information. Hence, to reduce this ambiguity, we first pre-process the audio as 

discussed in the steps above followed by the feature extraction. 

Most audio classification studies done till date are performed on audios recorded in 

constraint environments and suggest that MFCCs with deltas are the most suitable features. As 

discussed in detail earlier, MFCCs closely simulate the human auditory system and hence are well 

suited for such a study. However, the use of MFCC delta coefficients is on the rise and it is 

important to research if delta value calculation will practically affect an audio dataset recorded in 

a much more realistic setup. As the delta values are usually used for getting the finer details of the 

audio, they might be greatly beneficial on audios recorded in sound protected rooms, but our 

assumption is that they might not be suitable for an audio dataset containing real-like 

environmental background noise. This is because in such audios we do not want to train our 

classifier on the outlying highs and lows but rather on a consistent middle and prominent 

frequency. 

Thus, we compare all three feature extraction techniques on our audio dataset and run the 

machine learning classifiers on them to determine which feature extraction and machine learning 

combination works best for such a study.  
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The strategy suggested in [15] is to use 13 MFCC coefficients and calculate the delta-delta 

values to have a total of 39 coefficients. Here, 1 to 13 are MFCC coefficients, 14 to 26 are MFCC 

delta coefficients, and 27 to 39 are MFCC delta delta coefficients. Based on these 39 coefficients, 

they later apply the Support Vector Machine (SVM) classifier with a polynomial kernel to classify 

the speakers. We will consider this technique as a baseline for our research and try to determine if 

our assumption of using lesser delta values improves the accuracy on this dataset. 

As we have seen earlier, MFCC calculation is based on the frame length, hop length, and 

number of coefficients. For our experiments, we have set the frame length to 25ms, hop length to 

10ms, and number of coefficients to 13. This is because our audio is sampled at 16KHz, and the 

rule of thumb for number of coefficients says that coefficients upto 
𝑠𝑟 +(

 𝑠𝑟

2
 )

2
 are useful, where sr is 

the sampling rate of the audio in KHz. Hence, we calculate the number of coefficients n as: 

n = 
𝒔𝒓 +(

 𝒔𝒓

𝟐
 )

𝟐
 = 

𝟑 ∗𝒔𝒓

𝟒
 

Thus, for a sampling rate of 16KHz, n = ( 3 * 16 ) / 4 = 12 coefficients. 

As the first value of after applying the DCT for MFCC calculation yields the sum of log – energies, 

we have to take the first 13 coefficients of MFCC to obtain the 12 coefficients. Hence, although 

we get 12 as per the rule of thumb, we take 1 coefficient extra in the beginning to get all the 

required values.  

 For our research, we use Python’s LibROSA library to achieve these coefficients. The 

method lib.feature.mfcc() accepts arguments such as the audio time series data, the sample rate, 

the number of coefficients, frame length, and hop length. Using the parameters discussed in this 

section above, we implement the method as: 

mfcc_features = librosa.feature.mfcc(y, sample_rate, n_mfcc=13, hop_length=int(0.010 * 

sample_rate), n_fft = int(0.025 * sample_rate)) 

 The above functions helps us to get 13 MFCC values (1 energy + 12 coefficients) for each 

audio in the dataset. As the frame size and hop length is 25ms and 10ms respectively, and the 

length of audio files is substantially larger than them, we take the means of the coefficients for 

each audio and store it in a CSV file to form our dataset. 

 Additionally, for the MFCC Delta and MFCC Delta-Delta coefficients, we calculate them 

by using LibROSA’s lib.feature.delta() method and pass the MFCC coefficients we generated 
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above. For Delta coefficients, we set the order as 1, and for Delta-Delta coefficients, we set the 

order as 2. The order simply represents the level of depth we want in our delta calculations. 

 In this way, each audio generates its own unique set of coefficients. Using these 

coefficients generated for each audio file per speaker, we later train our model which is also known 

as the enrollment phase in biometrics. 

 Concurrently, we calculate MFCC coefficients, MFCC delta coefficients, and MFCC delta-

delta coefficients having 13, 26, and 39 columns each. Hence, we have three separate datasets to 

evaluate our machine learning models. 

 

7.6. Machine Learning Classification 

 As discussed earlier, the machine learning classifiers used for this study are SVM, Random 

Forest, and k Nearest Neighbors. All of these were implemented using Python’s sklearn library.  

 

For SVM, we use the class SVC from the package sklearn.svm. As discussed in [15] which 

is the baseline for our study, we will use the RBF kernel trick for the SVM classification on all our 

three datasets extracted using separate coefficients. Additionally, we will also use the Polynomial 

kernel to check if it improves the performance further. 

 

For Random Forest, we use the class RandomForestClassifier from the package 

sklearn.ensemble. We use Gini values to calculate the tree splits as this is a classification problem. 

Additionally, our estimators (number of trees) will be 100 as a higher estimator will give us better 

results and also avoid the problem of overfitting. 

 

Lastly, for k Nearest Neighbours, we use the class KNeighborsClassifier from the package 

sklearn.neighbors. As discussed earlier, Euclidean distance is the most widely accepted form of 

distance metric for kNN, hence we use that by setting the metric as Minkowski and p values as 2. 

This combination tells sklearn that the distance metric to be used is Euclidean. 

 

Additionally, for all the above classifiers, we perform stratified 10-fold validation to ensure 

consistent distribution of classes in the training and testing phase and to also ensure that our model 

does not overfit for a particular split.   



44 
 

8. Evaluation Metrics 

Evaluating the machine learning model is an important part of any machine learning 

research study. A model might give a good score using one metric but may struggle to perform 

well based on another. Thus, it is essential to first identify the evaluation metrics suitable for our 

research and then evaluate the models based on them. 

As our study is fundamentally a multi-class classification, we must first understand the 

evaluation metrics used for such cases. Values of true positives, true negatives, false positives, and 

false negatives are extensively used for calculating these metrics. These can be better understood 

with the help of a confusion matrix [31]. 

 

8.1. Confusion Matrix 

 As the name suggests, a confusion matrix is a 2-D matrix which describes the overall 

performance of the model [31]. The rows and columns of the matrix are marked by classes, and 

the diagonals indicate the correct classifications. These diagonals are thus the true positives in a 

multi-class confusion matrix. Fig 19 shows a sample confusion matrix and how the True Positive 

(TP), True Negative (TN), False Positive (FP), and False Negative (FN) values are derived from 

it. 

 

Figure 19: Analysis of a confusion matrix 
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8.2. Classification Accuracy 

 The formula for accuracy is defined as (TP + TN) / (TP + TN + FN + FP). This is a very 

good measure of evaluation for binary classification. However, for a multi-class classification, this 

metric is not considered correct as the True Negatives are ‘true’ only from the perspective of one 

class. On the whole, a true negative is an incorrectly classified instance and cannot be considered 

as a right correction. 

 Hence, we use the concept of Classification Accuracy. Classification Accuracy is defined 

as TP / (TP + TN + FP + FN). Here, only the true positive values are considered for the calculation 

of accuracy and are thus a more effective evaluation metric than the traditional accuracy. 

 Classification accuracy is a very good metric if we have equal number of audios for each 

class. However, this is rarely the case and even in this study the dataset is not equally balanced. 

Thus, although it is a good evaluation metric, it is not perfect for such a study. 

 

8.3. Precision 

In classification problems, precision is a metric used extensively to evaluate how good a 

model is. It is particularly useful when there are multiple false positives in the dataset that skew 

the overall accuracy [32]. The formula for precision is TP / (TP + FP) and thus it focuses less on 

the false negatives. Thus, the metric is good when used in problems where FNs are not a big 

concern. However, in our study, a false negative can be critical from the perspective of a biometrics 

system as it can potentially compromise a customer’s security. Hence, although it is a good metric 

for such a dataset, it might not be outright appropriate for this scenario. 

 

8.4. Recall 

Unlike Precision, Recall focuses more on the false negatives. It is calculated as TP / (TP + 

FN) and thus is a very good metric for studies where a false negative is absolutely unacceptable. 

For instance, while classifying a heart disease, a false negative would mean diagnosing a person 

‘not affected’ when he actually is affected. However, due to this bias towards the false negatives, 

a recall misses out on accurate evaluations of false positives. Although false positives impact this 
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study less, they are still important and using recall entirely to measure the evaluation metric might 

not be the best solution. 

 

8.5. F-1 Score 

 F1 Scores are used to reduce the trade-off effects created due to precision and recall. It 

combines both the metrics to strike a balance between their limitations and is particularly effective 

for imbalanced datasets. F1 Score is obtained by calculating the weighted average of precision and 

recall, thereby giving equal emphasis to false positives and false negatives. The formula for F1 

score is defined as 2 x 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
. Thus, a higher F1 score indicates lower FN and FP without 

considering the bias created due to true negatives in the calculation. This is precisely what an 

imbalanced multi-class classification model tries to achieve and thus F1 Scores are usually 

considered as the most effective metric for evaluating such models. 
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9. Experiments 

Experiment 1: SVM + MFCC Coefficients 

In this experiment, we test our dataset with the MFCC coefficients (13 attributes) using the 

SVM classifier. As discussed in the implementation section, we first perform the experiment using 

the RBF kernel and also using the Polynomial kernel. 

RBF Kernel: 

Based on our implementation, we invoke this method as computeSVMRBF(X_M, y, folds = 10). 

This method performs a stratified 10-fold validation using the RBF kernel and evaluates the model. 

The total number of correctly classified instances are 3392 out of 4304 and the total number of 

incorrectly classified instances are 912 out of 4304.  

 

Overall model summary: SVC - RBF Kernel 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.7881   3392/4304 

Incorrectly classified speakers:  0.2119   912/4304 

Precision:     0.7932 

Recall:      0.7879 

F1 Score     0.7893 

 

Below is the Confusion Matrix Heatmap using the RBF Kernel on MFCC Coefficients: 

 

Figure 20: Confusion Matrix - SVM RBF + MFCC 
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Polynomial Kernel: 

The same experiment is performed using the Polynomial kernel by changing the svc model 

initialization as svc_poly = SVC(gamma = 'scale', kernel = 'poly'). The total number of correctly 

classified instances using the Polynomial kernel are 3350 out of 4304 and the total number of 

incorrectly classified instances are 954 out of 4304. 

Overall model summary: SVC - Poly Kernel 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.7783   3350/4304 

Incorrectly classified speakers:  0.2217   954/4304 

Precision:     0.7796 

Recall:      0.7773 

F1 Score     0.7771 

 

Below is the Confusion Matrix Heatmap using the Polynomial Kernel on MFCC Coefficients: 

 

Figure 21: Confusion Matrix - SVM Poly + MFCC 

Thus, we see that for the dataset generated using the MFCC coefficients, SVM with the RBF kernel 

performs slightly better than SVM with the Polynomial kernel. 

ML Classifier Dataset Correct Classifications Precision Recall F1 Score 

SVM (RBF 

Kernel) 

MFCC 0.7881 (3392/4304) 0.7932 0.7879 0.7893 

SVM (Polynomial 

Kernel) 

MFCC 0.7783 (3350/4304) 0.7796 0.7773 0.7771 
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Experiment 2: SVM + MFCC Delta Coefficients 

In this experiment, we test our dataset with the MFCC Delta coefficients (26 attributes) 

using the SVM classifier. As discussed in the implementation section, we first perform the 

experiment using the RBF kernel and also using the Polynomial kernel. 

RBF Kernel: 

We invoke the method as computeSVMRBF(X_MD, y, folds = 10). 

The code performs a stratified 10-fold validation using the RBF kernel and evaluates the model. 

The total number of correctly classified instances are 3346 out of 4304 and the total number of 

incorrectly classified instances are 958 out of 4304.  

Overall model summary: SVC - RBF Kernel 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.7774   3346/4304 

Incorrectly classified speakers:  0.2226   958/4304 

Precision:     0.7818 

Recall:      0.7774 

F1 Score     0.7780 

 

Below is the Confusion Matrix Heatmap using the RBF Kernel on MFCC Delta coefficients: 

 

Figure 22: Confusion Matrix - SVM RBF + MFCC Delta 

Polynomial Kernel: 

The same experiment is performed using the Polynomial kernel by changing the svc model 

initialization as svc_poly = SVC(gamma = 'scale', kernel = 'poly'). The total number of correctly 

classified instances using the Polynomial kernel are 3324 out of 4304 and the total number of 

incorrectly classified instances are 980 out of 4304. 
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Overall model summary: SVC - Poly Kernel 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.7723   3324/4304 

Incorrectly classified speakers:  0.2277   980/4304 

Precision:     0.7742 

Recall:      0.7717 

F1 Score     0.7716 

 

Below is the Confusion Matrix Heatmap using the Polynomial Kernel on MFCC Delta 

Coefficients: 

 

Figure 23: Confusion Matrix - SVM Poly + MFCC Delta 

 

Thus, we see that for the dataset generated using the MFCC Delta coefficients, SVM with the RBF 

kernel performs slightly better than SVM with the Polynomial kernel. 

 

ML Classifier Dataset Correct Classifications Precision Recall F1 Score 

SVM (RBF 

Kernel) 

MFCC 

Delta 

0.7774 (3346/4304) 0.7818 0.7774 0.7780 

SVM (Polynomial 

Kernel) 

MFCC 

Delta 

0.7723 (3324/4304) 0.7742 0.7717 0.7716 
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Experiment 3: SVM + MFCC Delta Delta Coefficients 

In this experiment, we test our dataset with the MFCC Delta Delta coefficients (39 

attributes) using the SVM classifier. As discussed in the implementation section, we first perform 

the experiment using the RBF kernel and also using the Polynomial kernel. 

RBF Kernel (Baseline): 

We call the method as computeSVMRBF(X_MDD, y, folds = 10). 

It performs a stratified 10-fold validation using the RBF kernel and evaluates the model. The total 

number of correctly classified instances are 3336 out of 4304 and the total number of incorrectly 

classified instances are 968 out of 4304.  

Overall model summary: SVC - RBF Kernel 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.7751   3336/4304 

Incorrectly classified speakers:  0.2249   968/4304 

Precision:     0.7796 

Recall:      0.7750 

F1 Score     0.7756 

 

Below is the Confusion Matrix Heatmap using the RBF Kernel on MFCC Delta Delta coefficients: 

 

 

Figure 24: Confusion Matrix - SVM RBF + MFCC Delta-Delta 
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Polynomial Kernel: 

The same experiment is performed using the Polynomial kernel by changing the svc model 

initialization as svc_poly = SVC(gamma = 'scale', kernel = 'poly'). The total number of correctly 

classified instances using the Polynomial kernel are 3324 out of 4304 and the total number of 

incorrectly classified instances are 980 out of 4304. 

Overall model summary: SVC - Poly Kernel 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.7711   3319/4304 

Incorrectly classified speakers:  0.2289   985/4304 

Precision:     0.7726 

Recall:      0.7706 

F1 Score     0.7703 

 

Below is the Confusion Matrix Heatmap using the Polynomial Kernel on MFCC Delta Delta 

Coefficients: 

 

Figure 25: Confusion Matrix - SVM Poly + MFCC Delta-Delta 

Thus, we see that for the dataset generated using the MFCC Delta Delta coefficients, SVM with 

the RBF kernel performs slightly better than SVM with the Polynomial kernel. 

ML Classifier Dataset Correct Classifications Precision Recall F1 Score 

SVM (RBF 

Kernel) 

MFCC 

Delta Delta 

0.7751 (3336/4304) 0.7796 0.7750 0.7756 

SVM (Polynomial 

Kernel) 

MFCC 

Delta Delta 

0.7711 (3319/4304) 0.7726 0.7706 0.7703 
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Experiment 4: Random Forest + MFCC Coefficients 

In this experiment, we test our dataset with the MFCC coefficients (13 attributes) using the 

Random Forest Classifier.  

Based on our implementation, we invoke this method as computeRFC(X_M, y, folds = 10). 

The code performs a stratified 10-fold validation using the Random Forest Classifier. The total 

number of correctly classified instances are 3638 out of 4304 and the total number of incorrectly 

classified instances are 666 out of 4304.  

Overall model summary: RFC - Trees = 100 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.8453   3638/4304 

Incorrectly classified speakers:  0.1547   666/4304 

Precision:     0.8466 

Recall:      0.8456 

F1 Score     0.8446 

 

Below is the Confusion Matrix Heatmap using RFC on MFCC Coefficients: 

 

Figure 26: Confusion Matrix - Random Forest + MFCC 

 

Thus, we see that for the dataset generated using the MFCC coefficients, Random Forest 

Classifier performs much better than all the SVM techniques discussed till now. 

ML Classifier Dataset Correct Classifications Precision Recall F1 Score 

Random Forest MFCC 0.8453 (3638/4304) 0.8466 0.8456 0.8446 
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Experiment 5: Random Forest + MFCC Delta Coefficients 

In this experiment, we test our dataset with the MFCC Delta coefficients (26 attributes) 

using the Random Forest Classifier. We call this method as computeRFC(X_MD, y, folds = 10). 

The code performs a stratified 10-fold validation using the Random Forest Classifier. The total 

number of correctly classified instances are 3516 out of 4304 and the total number of incorrectly 

classified instances are 788 out of 4304.  

Overall model summary: RFC - Trees = 100 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.8169   3516/4304 

Incorrectly classified speakers:  0.1831   788/4304 

Precision:     0.8185 

Recall:      0.8174 

F1 Score     0.8159 

 

 

Below is the Confusion Matrix Heatmap using the RFC on MFCC Delta Coefficients: 

 

Figure 27: Confusion Matrix - Random Forest + MFCC Delta 

Thus, we see that for the dataset generated using the MFCC Delta coefficients, RFC performs 

better than SVM, however, just the MFCC coefficients give better results than deltas. 

 

ML Classifier Dataset Correct Classifications Precision Recall F1 Score 

Random Forest MFCC 

Delta 

0.8169 (3516/4304) 0.8185 0.8174 0.8159 
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Experiment 6: Random Forest + MFCC Delta Delta Coefficients 

In this experiment, we test our dataset with the MFCC Delta Delta coefficients (39 

attributes) using the Random Forest Classifier. We call this method as computeRFC(X_MDD, y, 

folds = 10). 

The code performs a stratified 10-fold validation using the Random Forest Classifier. The total 

number of correctly classified instances are 3408 out of 4304 and the total number of incorrectly 

classified instances are 896 out of 4304.  

Overall model summary: RFC - Trees = 100 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.7918   3408/4304 

Incorrectly classified speakers:  0.2082   896/4304 

Precision:     0.7926 

Recall:      0.7923 

F1 Score     0.7905 

 

Below is the Confusion Matrix Heatmap using the RFC on MFCC Delta Delta Coefficients: 

 

Figure 28: Confusion Matrix - Random Forest + MFCC Delta-Delta 

Thus, we see that for the dataset generated using the MFCC Delta Delta coefficients, RFC performs 

better than most SVM techniques. However, RFC with just MFCCs gives better results. 

 

ML Classifier Dataset Correct Classifications Precision Recall F1 Score 

Random Forest MFCC Delta 

Delta 

0.7918 (3408/4304) 0.7926 0.7923 0.7905 
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Experiment 7: kNN + MFCC Coefficients 

In this experiment, we test our dataset with the MFCC coefficients (13 attributes) using the 

k Nearest Neighbors algorithm. As discussed in the implementation phase earlier, we first need to 

determine an optimal value of ‘k’ for our experiments. Thus, we first do the tests for multiple 

values of k and then choose an optimal k value using the elbow method. 

 

 

Figure 29: k-value estimation using Elbow Method 

  

As we see in Fig 28, the accuracy increases for k steadily up to the value of 9. Beyond that, the 

value converges as shows little to no improvement. Hence, we select k=9 as our optimal k value 

for this study. 

Based on our implementation, we invoke this method as computekNN(X_M, y, k = 9, folds 

= 10) 

 

The code performs a stratified 10-fold validation using kNN with k=9. The total number 

of correctly classified instances are 2947 out of 4304 and the total number of incorrectly classified 

instances are 1357 out of 4304.  

 

Overall model summary: kNN: k = 9 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.6847   2947/4304 

Incorrectly classified speakers:  0.3153   1357/4304 

Precision:     0.6867 

Recall:      0.6854 

F1 Score     0.6805 
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Below is the Confusion Matrix Heatmap using kNN (k=9) on MFCC Coefficients: 

 

 

Figure 30: Confusion Matrix - kNN + MFCC 

 

Thus, we see that for the dataset generated using the MFCC coefficients, kNN does not perform 

as well as SVM or Random Forest Classifier. 

 

ML Classifier Dataset Correct Classifications Precision Recall F1 Score 

kNN MFCC 0.6847 (2947/4304) 0.6867 0.6854 0.6805 
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Experiment 8: kNN + MFCC Delta Coefficients 

In this experiment, we test our dataset with the MFCC Delta coefficients (26 attributes) 

using the k Nearest Neighbors algorithm. We call this method as computekNN(X_MD, y, k = 9, 

folds = 10) 

The above code performs a stratified 10-fold validation using kNN with k=9. The total number of 

correctly classified instances are 2926 out of 4304 and the total number of incorrectly classified 

instances are 1378 out of 4304.  

Overall model summary: kNN: k = 9 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.6798   2926/4304 

Incorrectly classified speakers:  0.3202   1378/4304 

Precision:     0.6822 

Recall:      0.6802 

F1 Score     0.6755 

 

Below is the Confusion Matrix Heatmap using kNN (k=9) on MFCC Delta Coefficients: 

 

Figure 31: Confusion Matrix - kNN + MFCC Delta 

 

Thus, we see that for the dataset generated using the MFCC Delta coefficients, kNN does not 

perform as well as SVM or Random Forest Classifier. Also, it performed well when just the MFCC 

coefficients were extracted as its performance has reduced after adding the Delta coefficients. 

ML Classifier Dataset Correct Classifications Precision Recall F1 Score 

kNN MFCC Delta 0.6798 (2926/4304) 0.6822 0.6802 0.6755 
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Experiment 9: kNN + MFCC Delta Delta Coefficients 

In this experiment, we test our dataset with the MFCC Delta Delta coefficients (39 

attributes) using the k Nearest Neighbors algorithm. We call this method as computekNN(X_MDD, 

y, k = 9, folds = 10). The above code performs a stratified 10-fold validation using kNN with k=9. 

The total number of correctly classified instances are 2931 out of 4304 and the total number of 

incorrectly classified instances are 1373 out of 4304.  

Overall model summary: kNN: k = 9 

Total number of speakers tested:  4304 

Correctly classified speakers:  0.681   2931/4304 

Incorrectly classified speakers:  0.319   1373/4304 

Precision:     0.6831 

Recall:      0.6809 

F1 Score     0.677 

 

Below is the Confusion Matrix Heatmap using kNN (k=9) on MFCC Delta Delta Coefficients: 

 

Figure 32: Confusion Matrix - kNN + MFCC Delta-Delta 

Thus, we see that for the dataset generated using the MFCC Delta Delta coefficients, kNN does 

not perform as well as SVM or Random Forest Classifier. Also, it performed well when just the 

MFCC coefficients were extracted and its performance has reduced after adding the Delta Delta 

coefficients. 

ML Classifier Dataset Correct Classifications Precision Recall F1 Score 

kNN MFCC Delta 

Delta 

0.6810 (2931/4304) 0.6831 0.6809 0.6770 
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10. Results 

  

Thus, a total of 9 experiments were performed using three datasets having different number 

of MFCC coefficients - with and without delta coefficients. These three datasets were then loaded 

into three different supervised machine learning classifiers. As this is effectively a multi-class 

classification research, the metrics recall, F1 score, and the classification accuracy are of most 

significance to the study. Below is a summary of how each combination of feature extraction and 

machine learning technique perform when compared with every other technique. 

 

ML Classifier Dataset Classification Accuracy Precision Recall F1 Score 

SVM - RBF M 0.7881 (3392/4304) 0.7932 0.7879 0.7893 

SVM - RBF MD 0.7774 (3346/4304) 0.7818 0.7774 0.7780 

SVM – RBF 

(Baseline) 

MDD 0.7751 (3336/4304) 0.7796 0.7750 0.7756 

Random Forest M 0.8453 (3638/4304) 0.8466 0.8456 0.8446 

Random Forest MD 0.8169 (3516/4304) 0.8185 0.8174 0.8159 

Random Forest MDD 0.7918 (3408/4304) 0.7926 0.7923 0.7905 

kNN M 0.6847 (2947/4304) 0.6867 0.6854 0.6805 

kNN MD 0.6798 (2926/4304) 0.6822 0.6802 0.6755 

kNN MDD 0.6810 (2931/4304) 0.6831 0.6809 0.6770 

 

In the above table, M, MD, and MDD indicate our datasets with MFCC, MFCC Delta, and MFCC Delta-Delta 

coefficients respectively. 

 

 

As discussed earlier, F1 scores are the most useful metric for our research as we are 

performing a multi-class classification. Hence, we compare the F1 Scores of all our approaches 

along with the baseline approach to see if we are able to perform better.  

 

Below is a visualization of the nine feature-extraction and classification combinations 

ranked in an increasing order of F1 scores. 
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Figure 33: Experiments ranked in ascending orders of F1 Scores 

 

As can be seen from Fig 33, Random Forest Classifier works best on any dataset, followed 

by SVM, and kNN in the end. However, this also confirms the assumption that we had at the 

beginning of the study that the delta coefficients may not be useful in audio datasets which are 

recorded in non-constrained environments. Thus, eliminating the delta coefficients in our baseline 

approach also makes our model perform better. Also, the Random Forest Classifier with only the 

MFCC coefficients outperforms every other technique in our set of experiments and gives the most 

optimal true positive rate. 
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11. Conclusion 

 This study is broadly divided into three parts – audio preprocessing, feature extraction, and 

machine learning classification. As the audios used in our study were not recorded in constrained 

environments, audio pre-processing was an extremely crucial part of the research. The two most 

important things we focused on for pre-processing were reducing the ambient noise and 

highlighting the human vocals. We achieved this using shelf filters and MFCCs for noise reduction 

and vocal enhancements respectively. As the entire dataset was sampled at 16KHz, the algorithms 

ran perfectly fine on all audio sets providing with cleaner audio at a consistent sampling rate. 

Feature extraction again was important as this is the heart of the classification. Converting 

the raw audio datasets with meaningful vectors would directly impact how the classification 

algorithms work on this dataset. Hence, we decided to use Mel Frequency Cepstral Coefficients 

(MFCCs) for this phase. Additionally, most speaker recognition studies calculate MFCC deltas up 

to the second order (differentials and accelerations) to improve the accuracy of the model. While 

this is an effective choice, it works best only on audios with no external intervention of sound. For 

our dataset, we did not want to extract the highshelf and the lowshelf features of the audio so that 

the focus on the mids (human vocals) is maximized. Hence, we believed that just using the MFCC 

coefficients could be effective in the study. Our results proved it correct as our F1 scores increased 

by 0.5%, 1.37%, and 5.41% using kNN, SVM, and Random Forest respectively on models trained 

with just the MFCC coefficients instead of the MFCC delta-delta coefficients. 

Lastly, choosing an appropriate machine learning classification technique is important too 

as those techniques determine how the model interprets the data. Thus, leveraging existing 

researches and applying some of our knowledge, we decided to go with SVM, Random Forest, 

and kNN. SVM is widely used in speaker recognition and thus we used that with delta-delta 

coefficients to create a baseline, and then implemented RFCs and kNN to check if they defeat the 

SVM approach. While kNN failed in improving the performance, Random Forest Classifiers 

drastically improved the accuracies of the model and gave us the best results on our dataset. 

Thus, with this study, we can conclude that machine learning techniques can definitely be 

leveraged to build speaker recognition models for audios recorded in unconstrained environments. 

Additionally, the study also suggests that apart from the model, determining what features to 

extract from the audio also play a vital role in determining the performance of the model.  
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12. Future Work 

Apart from the existing audio processing techniques, it will be interesting to see how other 

approaches can impact the feature extraction and classification accuracy of the machine learning 

models. Audios recorded in an unconstrained environment contain a lot of unwanted noise, and it 

is crucial to eliminate them to improve the model accuracy. The current approaches generalize the 

high-shelf and low-shelf frequencies to limit their gain for suppressing the ambient noise and 

enhancing the human vocals. Although this approach performs well, noise continues to exist in 

audios which limits the accuracy. More research in this area to achieve complete elimination or 

almost ‘close to complete’ elimination of noise can greatly improve the subsequent feature 

extraction and classification tasks for speaker recognition.  
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Appendix 

Following are the graphical bar chart visualizations for each set of experiments: 

Experiments 1, 2, and 3: Support Vector Machine (SVM) on all three datasets 

 

 

 

Experiments 4, 5, and 6: Random Forest Classifier (RFC) on all three datasets 
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Experiments 7, 8, and 9: k Nearest Neighbors (kNN) on all three datasets 
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