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ABSTRACT

Graph Classification using Machine Learning Algorithms

by Monica Golahalli Seenappa

In the Graph classification problem, given is a family of graphs and a group of different

categories, and we aim to classify all the graphs (of the family) into the given categories.

Earlier approaches, such as graph kernels and graph embedding techniques have focused on

extracting certain features by processing the entire graph. However, real world graphs are

complex and noisy and these traditional approaches are computationally intensive. With

the introduction of the deep learning framework, there have been numerous attempts to

create more efficient classification approaches.

For this project, we will be focusing on modifying an existing kernel graph convo-

lutional neural network approach. Moreover, subgraphs (patches) are extracted from the

graph using a community detection algorithm. These patches are provided as input to a

graph kernel and max pooling is applied. We will be experimenting with different commu-

nity detection algorithms and graph kernels and compare their efficiency and performance.

For the experiments, we use eight publicly available real world datasets, ranging from bi-

ological to social networks. Additionally, for these datasets we provide results using a

baseline algorithm and a spectral decomposition of Laplacian graph for comparison pur-

poses.

Keywords - Graph Kernels, Convolutional Neural Network, Community detec-

tion, Spectral decomposition
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CHAPTER 1

Introduction

Graphs can be used to represent most real-world data. Objects can be denoted as

nodes of the graph and edges can be used to represent relationship between them. Graphs

are used almost in every field. In social networks, graphs are used to provide online recom-

mendations, implement newsfeed and calculate page rank [2]. In the field of neuroscience,

neurons are denoted by nodes and connections between them as edges. These graphs are

then used to analyse the functionality of brain networks [3]. In chemical engineering, co-

valent structures are represented as graphs [4]. Hydrocarbon structure, protein structure

are represented in the form of graphs in bioinformatics field [5]. There are many more

applications in other fields. These prove the importance of working with graphs.

Graph mining involves various tasks such as node classification, graph classification,

link prediction, graph embedding, community detection. Since the introduction of machine

learning approaches, there have been many attempts to discover useful information present

within a graph. For applying such algorithms to graph domain, there should exist mean-

ingful ways to compute similarity measures between graphs. Graph problems are not easy

to solve. For example, the problem of finding maximum number of common subgraphs

is computationally intractable. But graph similarity can be computed in various ways and

the similarity measures need not be exact [6]. Approximate similarity measures are suffi-

cient to work on graph related tasks. Even though there is significant progress in the field

of graph mining, extracting graph features that truly represent the underlying graph struc-

ture still remains a challenge. In this project, we are focusing on the problem of graph

classification.
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1.1 Problem Statement

Graph classification is the problem of determining the category or target label of the

graph. If we have a dataset consisting of many input graphs, the problem is to classify

each of the graphs to their correct category or target label. For example, in the case of

chemical compounds, nodes represent the atoms and edges represent bonds between the

atoms. The classification problem might be to determine if the chemical compound is toxic

or non-toxic by looking at its structure. The model would be trained with known examples

of toxic and non-toxic compounds as indicated by Figure 1. When the model encounters

an unknown or new sample, it should predict whether it is toxic or non-toxic as indicated

by Figure 2.

Figure 1: Known examples of toxic and non-toxic compounds [1]

Real world graphs are large and complex. They are known to contain lot of noise

elements as well. These noise elements do not add any valuable information. It is crucial

to eliminate them, else they might introduce wrong insights. The classifier model should

be capable of handling large graphs as well has eliminate insights obtained from noise

elements. The model should be robust, efficient to compute and not consume too much

space.
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Figure 2: Unknown samples yet to be classified as toxic or non-toxic compounds [1]

Given a dataset of input graphs 𝐺 = {𝐺1, 𝐺2, 𝐺3, ..., 𝐺𝑁}, and their corresponding

labels, the task is to build a model that learns from these graphs and predicts the label of

new, unseen graphs. Graph features are computed and compared to make prediction for

these new graphs. A popular approach is the usage of graph kernels, which focuses on

calculating occurrences of different patterns in the input graphs. These include counting

shortest-paths, performing random walks on the graphs, etc. Graphs which share lot of

features are considered as similar and are placed in the same category [7].

Following are few of the challenges encountered during dataset processing:

∙ If the dataset is partially labeled, learning from the input graphs might lead to inac-

curate information.

∙ If dataset is collected from multiple sources, then aggregation can cause information

inconsistency.
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∙ If the dataset is collected using some hardware instruments, care must be taken to

ensure these instruments are not faulty [8].

∙ Dataset collected might be huge. Processing it efficiently by eliminating noisy fea-

tures might be difficult.

1.2 Applications of the Graph Classification problem

There is lot of ongoing research in the field of graph theory. There has been continuous

efforts to develop new methods to improve performance. Since graphs can be used to model

complex structures, we look at few of their applications.

1. Bioinformatics and Chemoinformatics: Some applications include predicting the

function of a protein structure, predicting if the cells are cancerous or not, predicting

if a protein is enzyme or not, checking the toxicity of a chemical compound.

2. Neuroscience: Graphs are used to analyse brain networks. Neurons are represented

using nodes and the connection between neurons are represented by edges [3].

3. Natural Language Processing: It is used to categorize different documents based on

the structure of the texts [9].

4. Social Network analysis: Users on social networking sites such as Facebook or

LinkedIn are represented as nodes and the interaction between them is captured using

edges. Such networks help in providing recommendations for a page or user account

to follow [2].

In this project, we have performed experiments focusing on improving the graph spec-

trum algorithm as well as kernel graph convolutional neural networks. We compare our

results with a baseline algorithm using Weisfeiler-Lehman kernel.
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CHAPTER 2

Related Work

Graphs have been of great interest for a long time. Most earlier approaches dealt

with identifying if two graphs are identical or not. This problem is hard to solve and until

recently it was not known to be either tractable or intractable. In 2016, the author of [10],

showed that graph isomorphism can be solved in (𝑒𝑥𝑝((𝑙𝑜𝑔𝑛)𝑂(1))) time. That is, we can

compute if graphs are identical or not in quasipolynomial time. In our problem, we are

not interested in knowing if two graphs have same structure or not. We want to explore if

two graphs are similar. This paves path for finding a more faster, efficient approach for our

classification.

There are many approaches proposed for the task. Initial approaches would make lot

of assumptions about the dataset. Most of them lacked a proper embedding technique.

They processed only few nodes which they assumed to be important and also had certain

assumptions about the graph data like its labeled or unlabeled, weighted or unweighted.

Embedding techniques should be good enough to capture the relationship between nodes

and retain the structure of the graph [8].

Initial techniques focused on developing a greedy algorithm for comparison between

the two graphs. To compare two graphs G and G’, all we had to do is search each subgraph

from G in G’. If all the subgraphs are present, we would declare they are similar else they

are not similar. With the advancements in machine learning, many attempts were made to

incorporate them to the field of graphs. The most famous among these approaches is the

use of graph kernel [9]. The kernel approach computes a similarity matrix internally and

passes this to a classification algorithm. There are several kernels proposed over the past

5



few years. We have wide range of kernels ranging from Random walks, Shortest-path to

Weisfeiler-Lehman kernels [11].

2.1 Graph Kernel methods

Until recently, graph kernels dominated the graph classification. All graph kernels

are developed with the same generic idea. They are represented in the form of a matrix

which can then be passed onto a kernel-based classifier. The challenge is to develop a

kernel function which can be computed relatively faster. The similarity function need to be

symmetric and positive semidefinite.

Random walks kernels are one of the oldest graph kernels proposed. The basic idea

is to count the common walks in the graphs and compare them [12]. Product is computed

between the two graphs called as direct product graph. But this method is too slow and

its complexity amounts to 𝑂(𝑛6). The walks may iterate over the same nodes again and

leads to tottering effect. Many approaches were later proposed to improve the random-

walk kernel. Notable among them is the cyclic-pattern kernel [13]. In this method, a graph

is decomposed into many cyclic patterns. We compare the two graphs by comparing the

number of cyclic patterns which appear in both the graphs. Computation power involved

is low, but it does not work well for all the graphs. It works good only in the presence of

simple cycles.

Instead of focusing on walks, focus shifted to paths [14]. Label enrichment techniques

were developed to improve runtime for especially graphs will simple labels [15]. Also, op-

timizations were performed using Singluar Value Decomposition (SVD) to generate lower

rank matrices. Linear-algebra concepts were applied along with Kronecker product to re-

duce complexity to 𝑂(𝑛3). Another major graph kernel developed was the shortest-path

kernel. Computing all-path is not tractable, but shortest path between all pair of vertices
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can be computed in 𝑂(𝑛3). For a given graph, its all-pair shortest path matrix is computed.

Another improvement made was to compute only 𝑘-shortest paths instead. Though the

runtime was improved, it was still not fast enough.

The Weisfeiler-Lehman kernel by [16], outperformed all the graph kernels developed

till then on most standard datasets. Specifically, the subtree variant, compared each label

of the graph by using a compressed form. Computation was low since the labels were

compressed and hashing was done. Desiging the kernel function dictates how fast the

method will perform. It’s crucial to develop a function which can computed easily. Many

other kernels where developed later like the optimal assignment kernel and graphlet kernels.

2.2 Deep learning approaches

Though the runtime efficiency of graph kernels have been improved over time, it

has not improved considerably for the past few years. With the rise of deep learning ap-

proaches, many models are built with Convolutional Neural Networks (CNN) and Recur-

rent Neural Networks (RNN) for graphs. These models are applied to the area of graphs.

In the case of graph kernels, deriving features at a lower runtimes is a challenge

[17]. Real-world data contains noise and plenty of information which might not be useful

for classification purposes. The model developed must be capable of extracting relevant

features and filtering out the noise and redundant information. With the advancement in

deep learning approaches, deep learning models have been applied to every field. There

are various form of CNNs been developed for classification purposes. CNNs developed for

graphs are addresses as Graph CNNs or GCNNs. In GCNNs, the graphs are transformed

by applying a graph laplacian [18]. The idea is taken from signal processing domain [19].

For this purpose, the authors make use of fourier transformation and apply it to graphs.

7



The above model is extended by authors in [20]. The authors extract spectral features

and apply CNNs. Also, in [21], the graph features are hashed and the node information is

fed into a one-dimensional neural network. Molecular biology can also help to visualise the

graph contents. For example, in [22], the graph represents the structre within a molecule. in

[17], graphs are classified using histograms. The challenge with using a GCNN is defining

the convolution operation. There might be loss of information. Since graphs are non-linear,

care must be taken with convolving and pooling operations.

RNNs are useful when the network needs to remember a decision being made pre-

viously. If the current decision take, affects the future decision, then the current decision

must be fed into the network. Specifically, a variant of RNN called the Long-Short term

memory (LSTM) can be used to retain information for a longer period of time [23]. At-

tention models are good approaches to work with RNNs. They can be used to focus on a

set of nodes and make a decision using only these important nodes. Attention-guided walk

will help to choose these important nodes. Especially, when the graph is large and contains

lot of noise, the walk can be trained to not traverse through these nodes. The explorer can

be given a high probability transition to the important nodes in the graph.

8



CHAPTER 3

Methodology

Given a collection of graphs 𝐺 = {𝐺1, 𝐺2, 𝐺3, ..., 𝐺𝑁} where each 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) has

𝑉𝑖 vertices and 𝐸𝑖 edges, and their target labels, the graph classification problem aims to

classify unknown graphs into appropriate categories. We begin each of our approach by

building a model trained on the input dataset. The model should capture the relationship

between the structure of a graph and its target label. When the model is given an unlabeled

graph as input, it should determine the correct category of the graph.

3.1 Weisfeiler-Lehman Subtree Kernel

Graph kernels are one of the most important approaches used for graph classification.

There are several kernels available, but we will be using the WL Subtree kernel for our

experiments. Graph kernels make use of the kernel trick to reduce dimensionality. In

each step of the algorithm, labels of the node are renamed with a set of labels formed by

combining the immediate neighbors. The labels are renamed to a compressed version. The

steps are repeated until the two graph’s labels vary.

Graphs kernels are a supervised approach to perform classification. Typically, a kernel

matrix is computed upon applying a graph kernel. This matrix is passed to a kernel-based

machine algorithm like Support Vector Machines (SVM) to perform classification. The WL

Subtree kernel is based on WL test for isomorphism between two graphs. The algorithm

for WL isomorphism test is given in Algorithm 1.

The WL isomorphism test has a time complexity of 𝑂(ℎ𝑚), where ℎ is the number of

iterations specified by the user. 𝑂(𝑚) is the time required to determine the labels for com-
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Algorithm 1 One iteration of the 1-dimensional Weisfeiler-Lehman test of graph isomor-
phism

1: Multiset-label determination

∙ For i=0, set 𝑀𝑖(𝑣) := 𝑙0(𝑣) = 𝑙(𝑣)2.

∙ For i>0, assign a multiset-label 𝑀𝑖(𝑣) to each node 𝑣 in G and G’ which consists
of the multiset {𝑙𝑖−1(𝑢)|𝑢 ∈ 𝑁(𝑣)}.

2: Sorting each multiset

∙ Sort elements in 𝑀𝑖(𝑣) in ascending order and concatenate them into a string
𝑠𝑖(𝑣).

∙ Add 𝑙𝑖1(𝑣) as a prefix 𝑠𝑖(𝑣) and call the resulting string 𝑠𝑖(𝑣).

3: Label compression

∙ Sort all of the strings 𝑠𝑖(𝑣) for all v from G and G’ in ascending order.

∙ Map each string 𝑠𝑖(𝑣) to a new compressed label, using a function 𝑓 : Σ* → Σ
such that 𝑓(𝑠𝑖(𝑣)) = 𝑓(𝑠𝑖(𝑤)) if and only if 𝑠𝑖(𝑣) = 𝑠𝑖(𝑤).

4: Relabeling

∙ Set 𝑙𝑖(𝑣) := 𝑓(𝑠𝑖(𝑣)) for all nodes in G and G’.

pressed sets. For sorting each of the label, 𝑂(𝑚) operations are required. To compress the

lables, further 𝑂(𝑚) operations are required. Therefore, a total of 𝑂(ℎ𝑚) operations are re-

quired. From Algorithm 1, we see that there are four crucial steps involved in isomorphism

test. Based on these steps, a WL Subtree kernel is formulated.

3.1.1 Model

WL Subtree kernel is an extension of the idea in Algorithm 1. We start with all the

input graphs in the dataset. Algorithm 2 is used to compute the kernel.

In this case, the algorithm runs in 𝑂(ℎ𝑚) time. In the first step, we compute the

multiset label 𝑙𝑖 for all the 𝑁 graphs within the dataset. All the graphs are processed

simultaneously and operations are performed in parallel in all the ℎ iterations. We obtain

the neighborhood set for a given node and concatenate all their names into a single string in

10



Algorithm 2 One iteration of the Weisfeiler-Lehman subtree kernel computation on 𝑁
graphs

1: Multiset-label determination

∙ Assign a multiset-label 𝑀𝑖(𝑣) to each node 𝑣 in G which consists of the multiset
{𝑙𝑖−1(𝑢)|𝑢 ∈ 𝑁(𝑣)}.

2: Sorting each multiset

∙ Sort elements in 𝑀𝑖(𝑣) in ascending order and concatenate them into a string
𝑠𝑖(𝑣).

∙ Add 𝑙𝑖−1(𝑣) as a prefix to 𝑠𝑖(𝑣).

3: Label compression

∙ Map each string 𝑠𝑖(𝑣) to a compressed label, using a hash function 𝑓 : Σ* → Σ
such that 𝑓(𝑠𝑖(𝑣)) = 𝑓(𝑠𝑖(𝑤)) if and only if 𝑠𝑖(𝑣) = 𝑠𝑖(𝑤).

4: Relabeling

∙ Set 𝑙𝑖(𝑣) := 𝑓(𝑠𝑖(𝑣)) for all nodes in G.

the second step. The neighbors of a node are sorted before adding to the multiset using radix

sort. 𝑓 is the function that represents the mapping of neighborhood strings to a compressed

label. 𝑓 can also be implemented using a perfect hash function. The time complexity would

be linear and is equal to 𝑂(𝑁𝑛 + 𝑁𝑚) = 𝑂(𝑁𝑚). This denotes the sum of the length of

the string an the current alphabet. In the third and fourth step, we are compressing the label

and renaming it.

Figure 3: Weisfeiler-Lehman Subtree kernel for ℎ=1. Step 1 and Step 2 of Algorithm 2.

Consider Figure 3. We can see the two graphs being compared are G and G’. Initially,

11



both the graphs will have their own labels. We get a sorted list of neighbor for each node

𝑣𝑖 in the graph and replace the node’s label with this. This can be visualized in step 2. At

the end of this iteration, both the graphs will have new long labels for each of their nodes.

Figure 4: Weisfeiler-Lehman Subtree kernel for ℎ=1. Step 3 and Step 4 of Algorithm 2.

Since each node can have multiple neighbors, the string with which it is relabeled can

be quite long. Therefore, in step 3, we focus on label compression. For each label in the

graph, we replace it with a shorter label. This can be visualized in Figure 4.

Figure 5: Weisfeiler-Lehman Subtree kernel for ℎ=1. After the completion of all steps.

With this, we complete the first iteration in our ℎ iterations. So at the end of each

iteration, we would be computing a new feature vector for both the graphs. We compare

the original graph with the new graph. We count the labels newly formed. We initially set a

12



threshold for the labels. If the labels vary more than the given threshold, then the algorithm

terminates and we say that the graphs are not identical. If not, we continue our iterations

till we reach ℎ iterations.

3.2 Graph Embedding using Laplacian Decomposition

Since graph is non-linear, we need to extract features from the graph that captures

information within it. There are several graph embedding techniques for the same purpose.

Using these embeddings, the graphs are represented in the form of a vector or group of

vectors. Working on vectors are convenient and easier than processing the entire graph.

Also, most programming languages support several packages to transform vectors. There

are several approches like DeepWalk and Node2Vec [24] that perform random walks on the

graph to capture information about their neighborhood. The embeddings should capture

meaningful information from the graphs such as the interaction between subgraphs and

neighborhood information for a node.

There are mainly two kind of graph embeddings. One focuses on embedding the entire

graph and the other embeds nodes. We will be working with the entire graph embedding

to perform classifications. We perform experiments using the spectral features of a graph

as descibed in [25]. We derive features from the graph spectrum and pass it as input to

a classifier. We have experimented with various classifiers ranging from Support Vector

Machines to Multi-layer Perceptrons.

3.2.1 Model

Assume we have a set of undirected and unlabeled collection of graphs 𝐺 = (𝑉,𝐸).

Compute a boolean adjacency matrix 𝐴 ∈ {0, 1} which indicates 1 if there exists an edge

between two nodes or 0 otherwise. Similarly a degree matrix 𝐷 is constructed which
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contains degrees for each node. We assume the graph is connected. If it is not, then we

extract the largest connected component from the graph.

In [25], the authors define the normalized laplacian of a graph by

𝐿 = 𝐼 −𝐷−1/2𝐴𝐷−1/2,

where 𝐴 is the adjacency matrix and 𝐷 is the degree matrix. The pseudocode for the model

is given in Algorithm 3. There are three steps involved to obtain the spectral features.

Algorithm 3 Spectral decomposition of graph Laplacian

1: For graph 𝐺 = (𝑉,𝐸) with 𝑉 vertices and 𝐸 edges, derive the following:

∙ A boolean adjacency matrix 𝐴 ∈ {0, 1}|𝑉 |×|𝑉 |.

∙ A degree matrix 𝐷 = 𝑑𝑖𝑎𝑔(𝐴1) of node degrees.

2: Derive normalized laplacian for the graph

∙ If 𝐺 is not connected, then extract the largest connected component.

∙ Compute laplacian of 𝐺 as: 𝐿 = 𝐼 −𝐷−1/2𝐴𝐷−1/2

3: Derive spectral features of the graph

∙ Perform eigenvector decomposition on the graph and obtain 𝑘 smallest positive
eigenvalues of 𝐿.

∙ If graph has less than 𝑘 nodes, pad zeroes to the right end of the vector.

4: Provide the spectral features as input to the classifier.

The Laplacian matrix computed might be huge for large graphs. Instead of considering

the entire L matrix, we can focus only on the relevant elements which give us information

about the graph. For this, we perform eigen decomposition of the matrix. The L matrix is

now split into eigenvectors and eigenvalues. We chose the eigenvector which is the largest

and its corresponding eigenvalue. The spectral features are defined by the eigenvlaues.

These form the basis for comparison between two graphs. If the graphs are similar, then

their corresponding eigenvectors are similar. They might just be a permutation of one

another.
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The spectral features are crucial for detecting similarity between graphs. From the

eigenvalue decomposition performed earlier, we will choose only the 𝑘 smallest eigenval-

ues. These eigenvalues need to be positive as well. If there are less than 𝑘 eigenvalues, we

append required number of zeroes to the vector. Finally, we sort the values. This vector

represents the information in the graph. This is provided as input to a chosen classifier.

Figure 6: Schematic view of the model

Figure 6 demonstrates the above mentioned process. The method is fast and compara-

ble with benchmark algorithms. Since the eigenvalues of the laplacian matrix lies between

0 and 2, preprocessing of the graph wouldn’t take much time and therefore the model is

fast.

3.3 Kernel Graph Convolutional Neural Network (CNN) Approach

Deep learning has rose to prominence in the recent years. CNNs have been very

successful for working with images and grid-like structures. For using CNNs, graphs need

to be represented in the form of a vector or group of vectors. The KG-CNN approach works

on the idea similar to CNNs.

There are three stages in KG-CNN. The first one involves feature extraction. For this
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we make use of a community detection algorithm. In the second stage, we have to normal-

ize the communities. We make use of graph kernels here. After performing normalization,

in the third stage, we pass the obtained vector through a CNN to predict label of the graph.

3.3.1 Model

Neural network models are efficient in extracting implicit features from data. But they

accept inputs in the form of images or grids. They are mostly used in the areas of image

recognition and image processing. If we have to use CNNs in our experiments, then we

need to represent them in a form accepted by the CNNs. This embedding is done using

graph kernels.

The approach used is described in Algorithm 4.

Algorithm 4 Kernel Graph CNN approach

1: Patch extraction on input Graph 𝐺 = {𝐺1, 𝐺2, 𝐺3, ..., 𝐺𝑁}
∙ Apply community detection algorithm to extract patches.

∙ Subgraphs obtained form the set 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑁}.

2: Patch Normalization

∙ Apply the Nystrom method to obtain low-dimensional representations of the sub-
graphs.

3: 1D Convolution

∙ Perform inner-product between the graph and the normalized patch.

∙ Convolving 𝑤 with all the normalized patches, feature map

𝑐 = [𝑐1, 𝑐2, ....𝑐𝑃𝑚𝑎𝑥 ]𝑇 is produced.

4: Pooling

∙ Perform a max-pooling operation over the feature map.
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3.3.1.1 Patch Extraction

We refer to the subgraphs extracted from the graph as patches. We make use of several

community detection algorithms to generate these subgraphs or patches. Before passing the

graph to a CNN, we need to represent it in the form of a vector.

There are several ways to embed a graph. One could extract information from neigh-

bors of a node and use it to form a vector. A random walk could be performed on the graph

to extract relevant information. Care must be taken to make these approaches tractable.

With random walk we need to be careful not to loop within the same set of nodes. In

our approach, we make use of community detection algorithms to identify the subgraphs.

Nodes which are densely connected to one another are considered to interact with each

other a lot and produce good partitions within the graph. Based on the algorithm chosen,

outliers maybe eliminated from the partition process.

Figure 7: Overview of the Kernel graph CNN approach
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3.3.1.2 Patch Normalization

We have a set of subgraphs 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑁} obtained from the previous stage. To

pass these patches to a CNN, we need to normalize them. For this purpose, we make use

of the well-known graph kernels.

Suppose, if

𝐺 = 𝐺1, 𝐺2, 𝐺3, ..., 𝐺𝑁

are the input graphs within a dataset, and

𝑆 = 𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑀

are the communities derived from the input graph G. Based on the community detection

algorithm used, the number of subgraphs obtained will vary.

Let 𝑆𝑗
𝑖 be the 𝑗𝑡ℎ subgraph extracted from 𝐺𝑖. Let the total number of subgraphs

extracted from 𝐺𝑖 be 𝑃𝑖. Let P be the cardinality and 𝐾 ∈ 𝑅𝑃*𝑃 be the symmetric positive

semidefinite kernel matrix constructed from S using a graph kernel 𝑘.

The kernel matrix to be populated can be very huge. In order to obtain low-

dimensional representations, the Nystrom method is used. We work with a small subset

of the graph at a time, rather than using the entire input collection of graphs.

3.3.1.3 Graph processing

After the patches are normalized, the vectors can now be processed by a 1D CNN.

There are mainly two steps involved when we use a CNN:

∙ Convolution: It is mainly used to extract features from the input. In traditional image

processing scenario, an image pixel with multiplied with a filter, to obtain a single

feature. Convolution is basically convolving two data, that is trying to merge two sets
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of information in a way as to obtain meaningful information. In our experiments, we

perform convolution between the extracted patches and the input graph dataset. This

product is computed by the use of a graph kernel. By performing this convolution,

we obtain a feature map. This feature map represents information of the patches in

the graph.

∙ Pooling: To reduce the computation, we define a pooling layer. This layer performs

computation on each feature vector. We apply specifically a max-pooling function

over the obtained feature map. The function retains only the maximum value. This

reduces computation and additional storage, since we are only interested in the max-

imum value.
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CHAPTER 4

Experimental Evaluation

4.1 Datasets

We will be working with eight publicly available real-world datasets. The description

of these datasets are as follows:

∙ NCI-1: Lung Cancer data with 1793 positives, 37349 total graphs for non-small cell

lung. Data made publicly available by NCI [26].

∙ MUTAG: 188 mutagenic aromatic and heteroaromatic nitro compounds with 7 dis-

crete labels.

∙ PTC: (Predictive toxicology Challenge) 344 chemical compounds that reports the

carcinogenicity for male and female rats and has 19 discrete labels.

∙ ENZYMES: Balanced dataset of 600 proteins tertiary structures and has three dis-

crete lables (helix, sheet or turn).

∙ PROTEINS: Classifiable as enzymes or non-enzymes. Proteins are represented as

graphs with nodes as secondary structure elements (SSEs), which are connected

whenever they have neighbors either in the amino acid sequence or in 3D space.

∙ IMDB-BINARY: 1000 graphs of movie collaboration ego-networks. The task is to

classify an actor to his genre. The genres are comedy and action. The ego-network

is built by placing each actor as node. Edges exist if two actors have worked in the

same movie. If a movie can be classified into more than one genre, then we give

priority to action.

20



∙ IMDB-MULTI: This dataset is generated in the same way as IMDB-BINARY. The

only difference is it has multiple labels. The genre includes sci-fi along with comedy

and romance. The dataset contains 1500 graphs [11].

∙ DD: Contains two types of graphs. One represents enzyme structure and the other

represents non-enzyme structure. It contains close to 1200 graphs and each graph is

very large containing close to 241 nodes per graph.

The above benchmark datasets for graph kernels are collected from [27]. If 𝑛 is the

number of nodes, 𝑚 is the number of edges, and 𝑁 is the number of graphs, then the dataset

contains files with the following format:

∙ DS_A.txt: Contains 𝑚 lines corresponding to entries of edge. Since the graph is

undirected, it contains two entries for each edge.

∙ DS_graph_indicator.txt: 𝑛 lines where the value in 𝑖-th line is the graph_id of the

node with node_id i.

∙ DS_graph_labels.txt: 𝑁 lines where the 𝑖-th line is the class label of the graph with

graph_id 𝑖.

∙ DS_node_labels.txt: 𝑛 lines where the value in 𝑖-th line corresponds to the node with

node_id 𝑖.

4.2 Weisfeiler-Lehman Subtree Graph Kernel

The graph kernel approach is used as a baseline for our experiments. There are many

graph kernels available: Random Walk, Shortest-Path, Weisfeiler-Lehman, Optimal As-

signment, Weighted Decomposition and many more. Among these kernels, Weisfeiler-

Lehman subtree kernel provides competitive results. It’s accuracy levels are comparable to
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Table 1: Dataset statistics and properties.

Dataset Graphs Avg. Nodes Graph labels
NCI-1 4110 29.8 2
MUTAG 188 17.9 2
PTC 344 25.5 2
ENZYMES 600 32.6 6
PROTEINS 1113 39.1 2
IMDB-BINARY 1000 19.77 2
IMDB-MULTI 1500 13 3
DD 1178 241 2

benchmark models and its runtime is faster for smaller datasets. For the above reasons, we

have used Weisfeiler-Lehman (WL) subtree kernel as our baseline algorithm.

For implementing this kernel, I have made use of the popular Python package "graphk-

ernels". The package contains an interface to a C++ code that provides an implementation

of the WL-subtree kernel. All we need to do was set the maximum number of iterations ℎ,

and specify the dataset. Internally, the package constructs a kernel matrix for the collection

of input graphs. The kernel matrix is constructed using the WL subtree kernel and later

passed as input to SVM classifier to train the model.

Table 2: Experimental accuracy with Weisfeiler-Lehman subtree Kernel.

Dataset Accuracy
NCI-1 80.13
MUTAG 82.05
PTC 56.97
ENZYMES 52.22
PROTEINS 72.92
IMDB-BINARY 68.6
IMDB-MULTI 48.13
DD 71.3

Table 2 provides a summary of accuracies achieved with the WL subtree kernel. These

results will be used as a baseline for our graph embedding and kernel graph convolutional
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neural network method.

4.3 Graph Embedding using Laplacian Decomposition

We have used the eight datasets described previously for our experiments. For building

the classifiers, we make use of the machine learning library scikit-learn in Python. The

classifiers used for obtaining the results are as follows:

1. AdaBoost (AB) Classifier - A boosting algorithm attempts to improve performance

of several weak classifiers by combining them. It tries to create a strong classifier.

AdaBoost is one the most successful boosting algorithm. Usually, decision tree with

one level is used with AdaBoost to enhance the model performance.

2. Multilayer Perceptron (MLP) Classifier - MLP is a feedforward deep artificial neural

network model. It consists of an input layer to receive the inputs, output layer which

predicts the result and an arbitrary number of hidden layers that maps inputs to out-

puts. In our experiments, we have used limited-memory BFGS (Broyden-Fletcher-

Goldfarb-Shanno) algorithm for parameter estimation since it is an optimization al-

gorithm and consumes less memory.

3. 𝑘-Nearest Neighbors (𝑘-NN) Classifier - An entity is classified by the number of

votes received from its neighbors. Based on the category of majority of its neighbors,

the entity or object is classified. Here, 𝑘 denotes the number of neighbors to take into

account.

4. Gaussian Naive Bayes (GNB) Classifier - This classifier assumes that all features

are independent of each other and is based on the popular "Bayes theorem". The

Gaussian form is used when features follow normal distribution and have continuous

values.
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5. Decision Tree (DT) Classifier - It constructs a model by learning certain "decision

rules". It is constructed using a tree representation where the internal nodes indicate

features and the leaves indicate a class label. At the root of the model, the best

attribute of the dataset is placed.

6. Random Forest (RF) classifier - It is an ensemble algorithm that combines many de-

cision trees. It is trained using the bagging method, where a combination of decision

trees is used to increase the accuracy. Each decision tree votes and the final class of

the graph is determined using the majority vote.

7. Support Vector Machine (SVM) Classifier - SVM tries to find a hyperplane which

separates input graphs belonging to separate classes. It is a non probabilistic linear

classifier which employs kernel trick to map input features into high dimensional

spaces.

8. Logistic Regression (LR) - It is most widely used for binary classification problems.

Logistic function is the core of this method. Logistic regression transforms its output

using the logistic sigmoid function to return a probability value which can then be

mapped to two or more discrete classes [28].

Hyperparameters were tuned to obtain better results with each classifier. The

embedding dimension is set to the average number of nodes for each dataset. To compute

accuracy of the model, 𝑘-fold cross validation is used. We have set 𝑘=10 for our experi-

ments. This means the dataset is divided into ten folds. Nine of the folds act as training set,

while the remining one is the test set. This is repeated for all the 10 folds and the accuracy

of the model is the average value across all the folds. The results for each of the classifier

is tabulated in Table 3.
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Table 3: Experimental accuracy of different models.

Model NCI1 MT PTC EZ PF BIN MUL DD Time
AB 75.29 75.29 75.72 75.97 74.7 75.88 74.36 75.29 325.31
MLP 67.29 85.66 55.49 31.83 71.88 67.2 45 72.4 36.5
K-NN 67.05 84.17 55.17 32.5 69.53 67.8 40.06 71.29 1.49
GNB 60.21 83.59 60.19 22 68.29 56.8 40.6 75.72 0.34
DT 68.12 86.72 59.90 33 66.03 69.4 47.2 68.49 5.04
RF 75.23 88.39 62.79 43.67 73.59 72.6 48.33 75.37 217.97
SVM 62.48 84.2 59.93 26 72.41 62.5 45.2 75.97 20.95
LR 62.6 85.75 58.12 26.33 71.16 61.4 44.2 73.93 6.41

We can notice that Random Forest classifier gives very good results. AdaBoost classi-

fier was first constructed with decision trees. But upon replacing it with Random Forest as

weak learner, we get better results. For getting the right parameters, we focus on Random

Forest classifier and vary the depth, number of observations and estimators. We can choose

the exact value of each hyperparameter and pass this to our AdaBoost classifier.

Random forest is an ensemble method that makes use of lot of decision trees to make

classification. We start with increasing the number of trees in our model. With increase

in number of trees, we can get better accuracy until a point, after which the model tends

towards overfitting and the computation speed also declines. This is supported by our

observations in Table 4. We have performed experiments using the n_estimators parameter.

After n_estimators = 500, we do not obtain increase in performance. Infact, the accuracy

of the model begins to slide downward due to overfitting.

Also, we have varied the leaf size, that is the number of cases or observations in the

leaf node. A fully-grown tree is a deep tree in a Random Forest that has only one data

point in the leaf. Deep trees generally overfit the model since they have low bias and high
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Table 4: Accuracy with varying number of estimators in Random Forest model

Estimators NCI1 MT PTC EZ PF BIN MUL DD
1 65.03 83.67 59.06 30 61.9 67.4 46.6 67.23

10 72.79 84.67 61.66 37.16 70.08 70.5 48.06 73.51
50 74.37 86.28 62.23 42.33 72.24 72.7 47.46 75.21

100 74.18 87.33 63.07 41.16 72.6 72.9 48 75.89
250 75.01 87.86 62.5 42.5 72.87 72.9 48.06 75.63
500 75.23 88.39 62.22 42.16 73.5 73.1 48.06 75.63
750 75.01 87.89 61.37 42.67 73.5 72.9 47.73 75.8

1000 74.98 87.36 61.07 42.16 73.41 72.8 47.73 75.8

Figure 8: Interquartile range for different estimators in Random Forest model

variance. But when we combine several deep trees, the variance is reduced [29]. From table

5, we can notice that when the leaf sample is 1, high accuracy is obtained for five out of

seven datasets.

The depth of the tree is varied using the max_depth parameter and the corresponding

accuracy’s are documented in Table 6 and interquartile ranges in Figure 10. When we

increase the number of splits in a tree, it can capture the information well. We fit the trees

with depth varying from 1 to 1000. The model attains it’s maximum accuracy at depth 50.
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Table 5: Accuracy with varying number of leaf samples in Random Forest model

Leaf Samples NCI1 MT PTC EZ PF BIN MUL DD
1 75.23 88.39 62.22 42.16 73.5 73.1 48.06 75.8
2 74.67 87.89 60.52 41 73.77 73.3 47.66 75.8
3 74.57 88.39 60.8 39.33 74.13 72.8 47.86 75.97
4 74.47 87.89 61.37 38.5 74.22 72.5 48.26 75.46
5 73.6 87.33 61.66 37.83 73.95 72.7 49 75.89
6 73.55 85.16 61.97 36.5 73.95 72.7 48.4 75.29

Figure 9: Interquartile range for different leaf samples in Random Forest model

The results do not show improved accuracy even when we increase depth to 1000.

Next, we experiment with bootstrapping. Many classifier models are sensitive to the

data they are trained on. Speficially, decision tree model generates different trees with

different data. To avoid this high variance, we use a technique called bootstrapping. There

is no need to generate additional training data. The dataset we have is randomly sampled.

We chose different segments within the data and replace it for experiments. Each of the

model generated with different segments of dataset are not correlated.

Similar to 𝑘-fold cross validation, in bootstrapping we separate the dataset into multi-
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Table 6: Accuracy with varying maximum depth in Random Forest model

Depth NCI1 MT PTC EZ PF BIN MUL DD
1 61.75 84.61 59.33 25.16 72.06 64 44.53 75.29
5 68.7 87.89 61.06 35.16 73.23 70.9 48.33 74.87

10 73.42 88.39 60.49 43 73.68 73.6 48.53 75.63
50 75.23 88.39 62.22 42.16 73.5 73.1 48.06 75.8

100 75.23 88.39 62.22 42.16 73.5 73.1 48.06 75.8
250 75.23 88.39 62.22 42.16 73.5 73.1 48.06 75.8
500 75.23 88.39 62.22 42.16 73.5 73.1 48.06 75.8
750 75.23 88.39 62.22 42.16 73.5 73.1 48.06 75.8

1000 75.23 88.39 62.22 42.16 73.5 73.1 48.06 75.8

Figure 10: Interquartile range for varying depth in Random Forest model

ple datasets. Therefore, we create an illusion that the model is trained on multiple datasets.

Random forest is built so that each decision tree within the forest reduces the variance of

the model and improves performance.

When we choose the data to run our model on, the remaining samples form the OOB

(Out-of-Bag samples). Each model’s performance is evaluated on these OOBs. The overall

performance is the average result obtained. Each of these performance measure is obtained
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Figure 11: Interquartile range for bootstrapping in Random Forest model

using 𝑘-fold cross validation. The accuracy of the model with and without bootstrapping is

tabulated in Table 7.

Table 7: Accuracy with bootstrap parameter in Random Forest model

Bootstrap NCI1 MT PTC EZ PF BINARY MULTI
False 75.1 86.8 62.22 42.5 72.78 71.4 47.6
True 75.23 88.39 62.22 42.16 73.5 73.1 48.06

By performing the above experiments, we set the following hyperparamters for the

Random forest classifier within AdaBoost: Number of estimators is 500, number of leaf

samples is 1 and maximum depth is 50. In Table 3, we can notice that the AdaBoost

classifier outperforms other classifiers on six datasets.

4.4 Kernel Graph Convolutional Neural Network (KG-CNN)

The first step in any machine learning algorithm is to extract features from the input

dataset. In KG-CNN method, the feature extraction is done using community-detection
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algorithms. We extract only the nodes which contain high information. These subgraphs or

communities can be extracted using any community detection algorithm. In the paper [9],

the authors have made use of the louvain clustering algorithm for experiments. We experi-

ment with other well known community detection algorithms from the well-known igraph

package.

1. Louvain algorithm: It is a well-known bottom-up approach algorithm. It is based

on greedy paradigm and works well for larger datasets. The algorithm proceeds

by forming communities unless it can no longer increase the modularity of the net-

work formed. It was developed by the University of Louvain. Nodes are assigned

to different communities and the algorithm checks if it a right choice by computing

modularity. If modularity has increased, the it continues otherwise it stops.

2. Spinglass algorithm: If the network contains overlapping communities, then it is

quite difficult to separate them. Spinglass works well with networks that contain lot

of noise. It can distinguish structures well even when there are overlapping com-

munities. It is a semi-supervised model. The noise is filtered out during formation

of communities. Guidance parameter is added to speedup the performance of the

model.

3. Walktrap algorithm: This algorithm is based on random walks. We start from an intial

node and perform random walks to its neighbors. These walks are helpful to capture

the similarities between nodes, if it exists. Communities are formed between similar

nodes. During the walk, a distance parameter is computed which helps in forming

the clusters. It is an agglomerative approach which uses the distance parameter for

building clusters. The distance is easy to compute, which makes the algorithm fast

for usage.
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4. Fast greedy algorithm: It works similarly to Louvain clustering algorithm. It tries to

maximize the modularity score achieved. This algorithm basically works on the idea

to eliminate outliers present with a cluster. It forms strongly connected components

at the end of its iteration by achieving a maximum entropy. If the user mentions

paramter 𝑘, the number of outliers to eliminate from the network, then it elimiates 𝑘

nodes from the communities formed.

5. Eigen vector algorithm: For the given input dataset, containing a collection of graphs,

the algorithm begins by constructing a modularity matrix, 𝑀 = 𝐴 − 𝑃 , where 𝐴 is

the boolean adjacency matrix. 𝑃 denotes a probability matrix which indicates the

probability with which each pair of edges are commected. For these matrices, eigen-

vector is computed. The number of clusters is determined by this eigenvector. If the

eigenvector contains all elements with same sign, then it indicates that communities

cannot be formed. Each community is formed by distinguishing the different signs

present between neighbors in the eigenvector.

6. Infomap algorithm: This algorithm tries to reduce runtime by making use of

compression labels similar to Huffman code. The information is compressed before

passing it to a random walk explorer. This explorer is responsible for forming the

partitions in the graph. The information obtained by this explorer is also compressed.

The movement of explorer to each node within the graph can be represented by

a Markov transition matrix. At each step in the algorithm, the node labels are

compressed. If there are spider-traps within a network, that is, if the random walk

explorer cannot come out of a group of nodes, then we can substitute this group with

a compressed label. At each step of the algorithm, we find this group of nodes and

relabel them with a unique code.
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7. Label propagation algorithm: It is a semi-supervised algorithm. The algorithm be-

gins with a small set of nodes in the graph. It relabels all these nodes. The labels are

then propagated along other nodes during different iterations in the algorithm. The

algorithm runs pretty fast. The number of labels to provide initially can be deter-

mined by the user. These labels indicate the number of communities to be formed at

the end. Since in each iteration, we do not add additional labels, we only have the

initial set of labels to consider for the entire graph.

8. Multilevel algorithm: This algorithm works in multiple stages. In each stage, the

number of nodes in the graph to work with, is reduced. It continuously refines the

nodes and edges and creates clusters, then maps them back to the original graph.

There are various refinement approaches available. Based on the approach chosen,

the results achieved could be quite high and also the algorithm works pretty fast.

9. Optimal modularity algorithm: This algorithm is very slow when compared to the

above mentioned algorithms. It again works on the principle of a modularity mea-

sure. It tries to maximize this measure in the current iteration. The way this is

handled is representing the problem as an integer programming problem.

After we form communities by using any of the above mentioned community detection al-

gorithms, we have to normalize them. We denote the communities as patches or subgraphs.

We use graph kernels for this purpose. As we discussed earlier, there are multiple graph

kernels available. For our experiments, we have used two different types of kernels. First

one is the shortest path kernel and the second is the WL subtree kernel discussed in Section

3.2.

The shortest path kernel begins by computing shortest path between two graphs. For

this, we use the all-pair shortest path algorithm by Floyd-Warshall. The kernel is defined
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on this shortest-path matrix.

Table 8: Experimental accuracy with shortest path kernel on KG-CNN.

Dataset Louvain Spinglass Walktrap Fastgreedy
NCI-1 74.52 N/A N/A 73.55
MUTAG 81.9 85.08 82.39 74.59
PTC 53.78 53.2 53.56 57.88
ENZYMES 38 N/A 46.35 39.83
PROTEINS 71.78 unconnected 72.85 73.05
IMDB-BINARY 70.7 69.2 70.3 70.6
IMDB-MULTI 46.2 46.53 47.93 47.8
DD 75.21 unconnected 75.63 75.63

Table 9: Experimental accuracy with shortest path kernel on KG-CNN.

Dataset Eigenvector Infomap Label Prop Multilevel
NCI-1 75.03 75.96 68.04 76.32
MUTAG 79.23 81.4 73.39 83.01
PTC Max. Iter 59.62 52.36 56.66
ENZYMES 37.16 39 31.83 36.66
PROTEINS 72.23 72.14 72.06 72.5
IMDB-BINARY N/A 70.1 69.2 66
IMDB-MULTI 42.93 39.73 33.8 40.66
DD Max. iterations No memory No memory 74.87

Table 8 and Table 9 indicate the accuracy of our method using only shortest path kernel

for patch extraction.

Table 10 and Table 11 indicate the accuracies obtained with WL Subtree kernel. Com-

paring them with the results obtained from the shortest-path kernel, we can see that there

is not much difference between using shortest-path and WL kernel. So for the next phase

of experiments, we have combined both the kernels to see if there is an improvement in the

results.

From Table 12 and Table 13, we can notice that there is slight improvement in accura-

cies when we combine the kernels as compared to using only either the shortest path kernel
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Table 10: Experimental accuracy with WL subtree kernel on KG-CNN.

Dataset Louvain Spinglass Walktrap Fastgreedy
NCI-1 75.83 N/A N/A 74.11
MUTAG 81.46 84.59 79.85 75.61
PTC 57.57 56.12 57.54 56.74
ENZYMES 38 N/A 43.2 39.83
PROTEINS 71.78 unconnected 72.85 73.05
IMDB-BINARY 70.7 69.2 70.3 70.6
IMDB-MULTI 46.2 46.53 47.93 47.8
DD 76.82 unconnected 74.79 75.46

Table 11: Experimental accuracy with WL subtree kernel on KG-CNN.

Dataset Eigenvector Infomap Label Prop Multilevel
NCI-1 74.47 76.86 67.63 76.03
MUTAG 79.32 78.8 79.96 80.35
PTC Max. Iter 57.87 56.07 62.3
ENZYMES 37.16 39 31.83 36.66
PROTEINS 74.03 unconnected 73.48 73.49
IMDB-BINARY 69.6 67.89 72.3 71.3
IMDB-MULTI 47.26 47.53 46.89 27.88
DD Max. iterations No memory No memory 74.44

or WL kernel.

From Table 14, we can notice slight improvements in six out of eight datasets. This is

because we have used a different community detection algorithm and combination of graph

kernels. Multilevel algorithm performs better overall than the louvain clustering algorithm

described in [9].
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Table 12: Experimental accuracy with combination of shortest path and WL subtree kernel
on KG-CNN.

Dataset Louvain Spinglass Walktrap Fastgreedy
NCI-1 74.52 N/A N/A 73.55
MUTAG 81.9 85.08 82.39 74.59
PTC 53.78 53.2 53.56 57.88
ENZYMES 38 N/A 48.12 39.83
PROTEINS 69.72 73.21 71.78 72.05
IMDB-BINARY N/A 70.5 70.7 72.6
IMDB-MULTI 46.39 45.13 48.99 47.13
DD 77.5 unconnected 75.13 76.56

Table 13: Experimental accuracy with combination of shortest path and WL subtree kernel
on KG-CNN.

Dataset Eigenvector Infomap Label Prop Multilevel
NCI-1 75.03 75.96 68.04 76.86
MUTAG 79.23 81.4 73.39 83.01
PTC Max. Iter 59.62 52.36 62.2
ENZYMES 37.16 39 31.83 36.66
PROTEINS 72.23 72.14 72.06 72.5
IMDB-BINARY N/A 71 70.1 71.4
IMDB-MULTI 48 48.13 48 48.13
DD Max. iterations No memory No memory 78.83

Table 14: Comparison of accuracies with shortest path kernel, WL subtree kernel and their
combination.

Dataset Shortest path WL kernel Shortest path + WL Results from related work [9]
NCI-1 76.32 76.86 76.86 77.21
MUTAG 85.08 84.59 85.08 N/A
PTC 59.62 58.42 62.3 62.05
ENZYMES 46.35 43.2 48.12 48.12
PROTEINS 73.05 74.03 73.21 73.79
IMDB-BINARY 70.7 72.3 72.6 71.45
IMDB-MULTI 47.93 47.93 48.99 47.46
DD 75.63 76.82 78.83 78.83
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CHAPTER 5

Conclusions and Future Work

We have performed extensive experiment’s on the graph decomposition using graph

laplacian and kernel graph convolutional neural network (KG-CNN) methods. For the

graph decomposition method, we have made use of several supervised learning algorithms

available in the scikit-learn package. For the KG-CNN method, we performed experiments

with different community-detection algorithms. Upon comparing all the three methods, we

find that graph embedding using laplacian decomposition performs well on five out of eight

datasets. We obtained this result when we used AdaBoost classfier.

Table 15: Comparison of accuracies from all three methods: WL subtree kernel, Graph
embedding using spectral decomposition, Kernel graph convolutional neural network

Dataset WL subtree kernel Graph embedding KG-CNN
NCI-1 80.13 75.29 76.86
MUTAG 82.05 75.29 85.08
PTC 56.97 75.72 62.3
ENZYMES 52.22 75.97 48.12
PROTEINS 72.92 74.7 73.21
IMDB-BINARY 68.6 75.88 72.6
IMDB-MULTI 48.13 74.36 48.99
DD 71.3 75.29 78.83

For future work, we can try to reduce the execution time by introducing parallelism

in the code. Also, we could perform patch normalization using different combination of

graph kernels and try to increase performance of the model.
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