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ABSTRACT

Multifamily Malware Models

by Samanvitha Basole

When training a machine learning model, there is likely to be a tradeoff between

the accuracy of the model and the generality of the dataset. Previous research has

shown that if we train a model to detect one specific malware family, we obtain

stronger results as compared to a case where we train a single model on multiple

diverse families. During the detection phase, it would be more efficient to have a

single model that could detect multiple families, rather than having to score each

sample against multiple models. In this research, we conduct experiments to quantify

the relationship between the generality of the training dataset and the accuracy of

the resulting model within the context of the malware detection problem.
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CHAPTER 1

Introduction

Machine learning (ML) has been successfully applied in the malware domain,

especially in detecting malware [1, 2]. Previous research has shown that ML approaches

are better at detecting malware than traditional signature-based ones. For example, [3]

and [4] have achieved high detection rates and very low false positive rates using

machine learning techniques.

Machine learning can be applied to large datasets. In this paper, we consider

the malware detection problem based on ‘‘big data’’ to quantify the effect of an

increasingly generic dataset. Our goal is to examine the effectiveness of n-grams and

the robustness of various machine learning techniques for detecting malware.

Our experiments are based on an extremely large and diverse malware dataset [5].

A significant part of this work involves efficiently collecting and analyzing features

from a dataset that is on the order of half a terabyte.

We consider bigram features and employ a variety of machine learning techniques.

Specifically, the machine learning techniques that we apply are k-nearest neighbors

(k-NN), support vector machines (SVM), random forests, and deep learning [6, 7, 8, 9].

We deal with issues such as under-fitting and over-fitting by training on a large

number of malware samples and by using cross-validation [8].

A complete set of experiments is conducted by first training and testing models for

individual families, then we consider models designed to detect pairs of families, triples

of families, and so on, up to a single model for all 20 families under consideration. In

this way, we produce models that are progressively more generic [10].

We measure the accuracy of these models, which enables us to quantify the

tradeoff between these important aspects of the problem. This analysis also enables

us to determine which of the machine learning techniques under consideration is best
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able to generalize to the case where multiple diverse families are modeled.

The remainder of this paper is organized as follows. Chapter 2 discusses previous

work related to this research problem. Chapter 3 outlines the methodology of our

experiments. Chapter 4 describes the malware families used in the experiments, the

workings of the machine learning techniques considered, and the implementation

details involved in this research. In Chapter 5, we present and analyze the results

of our experiments. Finally, in Chapter 6, we summarize this research and discuss

possible avenues for future work.
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CHAPTER 2

Background

In this chapter, we first discuss the effectiveness of using machine learning

techniques for classifying malware. We also discuss the motivation and the previous

work done in the domain of malware classification using n-grams, and we then give

an overview of how our research compares with and builds upon the previous work.

Signature-based malware detection techniques have been very popular in detecting

malware. Such techniques rely on pattern matching. Due to this, signature-based

techniques are good for known malware, but as malware creators turn around to defeat

such techniques and create new malware, signature-based methods cannot detect

unknown malware.

In recent years, machine learning has become a successful method in detecting

unknown malware with low false positives. Additionally, machine learning has been

useful in detecting malware efficiently as it can scale up to handle big data.

Supervised machine learning involves training a model using known data and

then validating the predictions of the model. In the malware domain, this process can

be used to detect malware or to classify a sample into its malware family.

Machine learning requires features or attributes to be used in order to form the

basis for classification. A few examples of features include opcodes, file headers, API

calls, and n-grams.

2.1 Previous Work

An n-gram is a continuous sequence of n strings extracted from a text. In the

malware domain, n-grams have been successfully and widely used as features for

malware detection.

In [11], the authors use n-grams as file signatures to detect unknown malware with

a low false positive ratio. They use the k-nearest neighbor algorithm to experiment
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with different values of n for n-grams. Their results reveal that 4-grams are best for

low false positives and a maximum detection rate.

In [12], the authors achieve an accuracy of 96.64% with 4-grams and SVM. They

experiment using decision tree, artificial neural network, and support vector machines

to classify malware into 10 families. Their dataset consists of 12,199 files in total.

In [13], the authors describe a feature selection method using class-wise document

frequency. They explain the steps in selecting relevant n-grams:

• n-grams are extracted and class-wise document frequencies are computed from

virus files as well as benign files

• n-grams are sorted in descending order

• Top k n-grams are selected

• Top n-grams from virus and benign are combined to form the relevant set of

n-grams

We follow a similar approach but do not consider the top n-grams from the benign

dataset.

The authors in [14] claim that n-grams overestimate classification and promote

overfitting. They implemented elastic-net regularized logistic regression [15] where

they used a regularization path to examine the accuracy and other properties as a

function of the regularized parameter. Elastic-net, a regularized method, was used with

a logistic regression model. The authors achieved low weighted accuracy scores using

their dataset. They used orders of magnitude more data than other n-gram-related

works, but the dataset is undisclosed and comes from an industry partner which makes

the study hard to replicate and compare results.

In [10], the authors performed experiments using n-grams as features for different

machine learning models. Their techniques included SVM, a chi-square test, k-NN,

and random forest. Their feature extraction step involved selecting the 10 most-

4



frequent n-grams from the benign set and the malware set, resulting in a feature

vector of size 20. They found that a random forest classifier is more robust than other

techniques and determined the tradeoff between the generality of a model and the

accuracy of its classification. They concluded that as the model becomes more generic,

the accuracy goes down.

Our research uses a similar approach as described in [10] by using n-grams to

determine the tradeoff between the generality and the accuracy of a model. In contrast,

we use 20 families instead of 8, a different feature selection method, and different

machine learning techniques, as discussed in more detail in Chapter 4.

5



CHAPTER 3

Methodology

In this chapter, we explain the feature extraction step, the pattern of classification

experiments, and the machine learning pipeline used for each experiment. We begin

by gathering a benign dataset of 1000 files and a malware dataset of 20 malware

families, each family consisting of 1000 files. Chapter 4 discusses the details of this

process. Once the dataset is collected, n-grams are extracted.

3.1 Feature Extraction

The top 100 bigrams from each malware file are stored as a dictionary consisting

of the bigram and its frequency. Bigrams are formed by extracting bytes from the

executable files. We perform the same procedure for all benign files, but we store the

top 500 bigrams and their frequencies instead of the top 100. This approach of storing

the dictionary worked efficiently for handling big data and extracting bigrams.

3.2 Classification Experiments

We conduct several experiments to test our hypothesis of how accuracy is affected

as the model becomes more generic. Our first experiment is using five-fold cross-

validation to perform a binary classification of 1000 malware files (from one specific

family) and 1000 benign files. We perform such binary classification using 20 different

malware families. This step involves detecting a specific malware family.

In the second step (or level), we combine two different malware families to form

the malware class and classify files as benign or malware. At the Nth level, there

are
(

20
N

)
possible combinations of malware families, and hence,

(
20
N

)
experiments. We

experiment with min(100,
(

20
N

)
) combinations at each step, where the combinations are

selected at random. Figure 1 shows two of the many experiments at level 5. The last

experiment involves combining 20 families to form the malware class, which results in

a generalized dataset. Figure 2 shows the final experiment using 20 malware families.

6



Figure 1: Two of
(

20
5

)
possible experiments at level 5

The top diagram combines families 6, 8, 10, 12, and 14 into the malware class while the
bottom diagram combines families 1, 2, 18, 19, and 20.

3.3 Machine Learning Pipeline

In this section, we discuss the step-by-step machine learning process for each

experiment, which includes selecting a subset of features, transforming data for

modeling, training and testing, and evaluating the model performance using metrics.

Figure 3 illustrates the experiment pipeline consisting of the setup and the machine

learning process.
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Figure 2: Experiment at level 20 (all 20 families combined as the malware class)

3.3.1 Feature Selection

From the malware class, the top 20 bigrams are selected based on their frequencies.

When multiple families are combined in order to make the model generic, these multiple

families belong to one class—the malware class. In this case, all families are treated

equally, and the top bigrams are chosen from among these combined files.

3.3.2 Data Transformation for Modeling

Each file from the benign and the malware class is transformed into a vector of

frequencies corresponding to the top 20 bigrams. We normalize the frequency vectors

to make it row stochastic. These vectors form the training and the testing set. This set

of vectors changes every time a family is added or removed causing the top bigrams to

change. Therefore, for every experiment, we restart from the feature selection process.

3.3.3 Classification and Evaluation

For the classification step, we use cross-validation to remove any bias in accuracy

caused by over-fitting. We use stratified k-fold technique where each fold maintains

8



Figure 3: Experiment Pipeline

the class ratio from the dataset. Five-fold cross-validation was used to split the dataset

in five parts, and to train using four parts and test on one part. The final step is

evaluating the results using the metrics discussed in Chapter 4

9



CHAPTER 4

Implementation

In this chapter, we give a broad summary of the malware families and the datasets

used in the research. Also, we briefly discuss the machine learning techniques that

were used in the experiments.

4.1 Dataset and Malware Families Used

The experiments consist of a malware dataset and a benign dataset. The benign

dataset contains 1000 .exe files that came pre-installed in a Windows 10 laptop.

Three malware families (Winwebsec, Zeroaccess, and Zbot) are used from the Malicia

dataset [16], and the remaining seventeen families are used from a big dataset collected

using VirusShare [5]. The big dataset is more than half a terabyte consisting of more

than 500,000 executable files, but we used only a few families consisting of at least 1000

files. Table 1 lists the 20 families and the type of each malware family, and the family

descriptions for the same type are mentioned in the same paragraph. Figure 4 shows

a list of the families with a unique color label for the malware type column.

Table 1: Type of each malware family

Malware Family Type Malware Family Type
Adload [17] Trojan Downloader Obfuscator [18] VirTool
Agent [19] Trojan OnLineGames [20] Password Stealer

Alureon [21] Trojan Rbot [22] Backdoor
BHO [23] Trojan Renos Trojan Downloader
CeeInject VirTool Startpage [24] Trojan

Cycbot.G [25] Backdoor Vobfus [26] Worm
DelfInject [27] VirTool Vundo [28] Trojan Downloader
FakeRean [29] Rogue Winwebsec [30] Rogue

Hotbar [31] Adware Zbot [32] Password Stealer
Lolyda.BF [33] Password Stealer Zeroaccess [34] Trojan Horse

10



Figure 4: Colored malware types indicate the use of generic data

Adload downloads an executable file, stores it remotely, runs the file, and disables

proxy settings [17]. Renos downloads software that claims the system has a spyware

and asks for a payment to remove the spyware [35]. Vundo displays pop-up ads and

may download files. It uses advanced techniques to defeat detection [28].

Agent downloads trojans or other software from a remote server [19]. Alureon

sends usernames, passwords, credit card data, and other confidential data from the

system to hackers [21]. BHO performs actions guided by a hacker [23]. Startpage

changes the browser homepage and may perform malicious activities [24].

CeeInject obfuscates to avoid being detected by the anti-virus software [36].

DelfInject sends usernames, passwords, and other personal information to hackers [27].

Obfuscator tries to obfuscate or hide itself to defeat malware detectors [18].

Cycbot.G connects to a remote server, exploits vulnerabilities, and spreads

through backdoor ports [25]. Rbot gives control to hackers through a channel that

11



allows them access to information, helps them launch attacks, and serves as a gate to

spread infection [22].

FakeRean pretends to scan the system, notifies the user of issues, and asks the

user to pay in order to clean the system [29]. Winwebsec runs programs that display

alerts and ask the user for money to fix those issues [30].

Lolyda.BF sends information from and monitors an infected system. It can share

user credentials and network activity with hackers [33]. OnLineGames steals login

information of online games and tracks user keystroke activity [20]. Zbot is installed

through emails, shares users’ personal information with hackers, and can turn off the

firewall [32].

Hotbar is an adware that shows ads on webpages and installs adware [31]. Vobfus

is a worm that downloads malware and spreads through USB drives or other removable

drives [26]. Zeroaccess is a trojan horse that downloads applications to click on ads to

make money for malware creators [34].

4.2 Background of Classification Techniques and Metrics

In this section, we include the machine learning concepts used in the experiments.

We cover k-nearest neighbors, support vector machines, random forest, and multi-layer

perceptron.

4.2.1 Support Vector Machines

Support vector machines (SVM) is a supervised learning method that is based

on four major ideas: generating a separating hyperplane, maximizing the margin or

separation between classes, working in a higher dimensional space, and using the

kernel trick. The technique uses a hyperplane to separate the labeled data into

two classes. A hyperplane is one dimension less than the dimensions of the given

data. Such a hyperplane tries to maximize the margin in order to generalize and

12



reduce classification error. The algorithm works in a high-dimensional space, finds

the hyperplane, and transforms the data using a kernel function [8].

For example, in Figure 5, it can be noted that there are infinite possibilities to

separate the phishing and the non-phishing points. However, SVM tries to maximize

the margin by selecting the bolded line.

Figure 5: Example classification using SVM

4.2.2 k-Nearest Neighbors

One of the simplest algorithms in machine learning is k-nearest neighbors (k-NN).

The training phase of k-NN consists of calculating distances from one point to all

other points; while the testing phase consists of sorting the distances, choosing the

k-closest distances, and then assigning the majority of class vote from the k-nearest

distances. In general, training a k-NN classifier is computationally expensive for large

datasets. On the other hand, classification is comparatively less complex.

Figure 6 shows an example plot of phishing and non-phishing samples. The

following steps are followed to classify a point with k = 3.

• For k = 3, we choose the 3-closest neighbors as represented by the points that

fall on or in the bigger circle.

• Next, we sort the distances and choose the k-nearest distances.

• We assign the majority of class vote from those 3-nearest neighbors to the test

13



Figure 6: Example classification using k-NN

instance. In this case, we assign the test instance as a phishing sample based on

the 2/3 majority vote.

4.2.3 Random Forest

A random forest generalizes a decision tree algorithm. A decision tree is a simple

machine learning algorithm that is built on the idea of constructing a tree based on

the features from the training data. It is easy to classify once the tree is built, but the

disadvantage is that the tree tends to overfit the input data resulting in a low testing

accuracy. A random forest combines multiple decision trees to generalize the training

data. To do so, random forest uses different subsets of the training data as well as

different subsets of features. Then, a majority vote is used to classify the data [8]. In

decision trees, the best split is chosen using all variables, whereas in random forest,

the best split is chosen using a random subset [37].

4.2.4 Multi-layer Perceptron

Neural networks model the brain’s neurons. MLP is a type of neural network

with fully-connected layers consisting of an input layer and an output layer along

with one or more hidden layers. Back-propagation is used to train an MLP in order

to determine its weights. The back-propagation algorithm modifies weights in such a

14



way that errors are greatly reduced. The optimal weights are determined using partial

derivatives [8].

The main advantage of this algorithm is that it can learn non-linear models using

a set of features and a target. On the other hand, MLP is not robust against feature

scaling and can result in different outcomes because the hidden layers have multiple

local minima [38].

4.2.5 Evaluation Metrics

The final step is evaluating the model. We use balanced accuracy to evaluate

the machine learning model.

4.2.5.1 Balanced Accuracy

Accuracy is defined as the number of correct classifications divided by the total

number of samples and is calculated as

accuracy = TP + TN
P + N . (1)

In Equation 1, TP (true positive) is the number of samples correctly classified as

positive, and TN (true negative) is the number of samples correctly classified as

negative. P is the total number of positive samples, and N is the total number

of negative samples [8]. The positive, or malware, samples in our dataset are of

size 20,000 while negative, or benign, samples are of size 1000. Due to this imbalance,

we use balanced accuracy to weigh both classes equally. It is defined as

balanced accuracy = 1
2

(TP
P + TN

N

)
. (2)

4.3 Programming Details

In this section, we discuss implementation-related details of our experiments. We

used Python to code the experiments and a one TB hard drive to store the dataset.

All experiments were run on a 2014 MacBook Pro laptop.
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Each file is read as bytes, and bigrams are formed using this data. The dictionary

of the top 100 bigrams and frequencies is stored in a file. The cPickle library [39] is

used to store the dictionary representations of the .exe files. It is a module implemented

in C and is used to serialize an object; that is, to store a Python object as a series of

bytes. The same file can later be loaded using cPickle. We used this approach of

storing bigrams in a file instead of opening multiple files at once and forming bigrams

because forming bigrams for thousands of files is an expensive process. By using

dictionaries, we are ignoring bigrams that are not very frequent. Dictionaries have

the following advantages in our experiments.

• Feature selection involves combining a few dictionaries instead of extracting

bytes, forming bigrams, and considering the top bigrams. We have eliminated

repetitive tasks by storing that data as dictionaries.

• Creating the training and testing set involves getting the count of each of the

top bigrams from each file. The time to access a value in a dictionary by its key

is very fast, which helped speed up the process.

For malware files, each dictionary contained the top 100 bigrams while for benign

files, each dictionary contained the top 500 bigrams. Each of the 20 malware families

had a dictionary consisting of the top 1500 bigrams from that family. A Counter

object, which is a dict subclass, from the collections module [40] was used as a

dictionary.

The combinations function from the itertools module [41] generates combina-

tions given a list of malware families.

Once all the combinations are generated, min(100,
(

20
N

)
) combinations are chosen

randomly to perform experiments at the Nth level. We found that running 100

experiments at each level was a good balance between accurate results and an efficient

run time.
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The shuffle function from the random module [42] was used to randomly select

a subset of experiments to run. The function uses the Fisher-Yates shuffle which is an

unbiased algorithm. The algorithm runs through the list of combinations in reverse

order and randomly picks an element to exchange. After the shuffle, the first 100

combinations were chosen.

Scikit-learn library [38] was used to run SVM, k-NN, random forest, and

MLP experiments. The model_selection module was used to perform 5-fold cross-

validation, and the metrics module was used for calculating the balanced accuracy.

To preserve the class ratio in experiments, the StratifiedKFold function was used,

and to ensure that one fold would not consist of files from a specific family (especially

at level 5 where 5 families are used), the shuffle parameter was set to True. A linear

SVC model was used for classification using support vector machines. The neighbors

for k-NN were set to 5. Random forest used 10 for the n_estimators and 10 for the

max_depth. The lbfgs solver was used as a parameter for MLP.
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CHAPTER 5

Results and Analysis

In this chapter, we discuss the results and analysis of the experiments performed on

SVM, k-NN, random forest, and MLP. Although this chapter may mention accuracy,

it refers to balanced accuracy. We begin by discussing the binary classification

results of individual family models where we classified files from a specific family into

benign and malware classes. Next, we discuss the results of multifamily models where

we combined multiple malware families in the malware class and performed binary

classification experiments.

5.1 Individual Family Models

In this section, we list individual accuracies, note the average balanced accuracy

at level 1, and analyze the overall effectiveness of classifying one specific family as

benign or malware.

5.1.1 Support Vector Machines

Table 2 shows the results of classifying individual families using SVM. The average

balanced accuracy at level 1 using SVM is 88.88%. Considering that this number is

an average of 20 experiments, it appears that SVM worked well to classify individual

families with 1000 files in each class. Figure 7 shows an illustration created in Tableau.

It can be noted that 9 families are below the average of 88% using the legend given

in the figure. Two families (Agent and DelfInject) are far below the average, while

three families (Vobfus, Adload, and Hotbar) are far above the average. The difference

between the highest and the lowest accuracy is 19.81%. Despite the wide range, the

high accuracy score implies a good performance of the families at level 1. Overall,

SVM was a successful technique with a majority of families classified with a balanced

accuracy greater than the average of 88.88%. A bar plot is included in the Appendix.
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Table 2: SVM balanced accuracies for individual families

Malware Family Accuracy% Malware Family Accuracy%
Adload 97.60 Obfuscator 86.94
Agent 79.48 OnLineGames 91.54

Alureon 89.64 Rbot 82.04
BHO 90.95 Renos 90.60

CeeInject 87.14 Startpage 86.75
Cycbot.G 92.24 Vobfus 95.15
DelfInject 77.79 Vundo 88.34
FakeRean 84.09 Winwebsec 94.05

Hotbar 97.55 Zbot 82.10
Lolyda.BF 91.80 Zeroaccess 91.60

Figure 7: Individual accuracies for SVM

5.1.2 k-Nearest Neighbors

Table 3 shows the results of classifying individual families using k-NN. The

average balanced accuracy at level 1 using k-NN is 95.87%. This is a very high
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average accuracy, signifying that the technique worked very well for classifying

individual families. Figure 8 shows an illustration created in Tableau. It can be

noted that 9 families are below the average of 95.87% using the legend given in the

figure. DelfInject is far below the average while 6 families (Vobfus, Lolyda.BF, Adload,

Hotbar, Zeroaccess, and Winwebsec) have accuracies greater than 98%. A bar plot is

included in the Appendix. The difference between the highest and the lowest accuracy

is 11.21%, which is very narrow compared to the SVM range of 19.81%. The high

average accuracy implies the robustness of k-NN while the range tells us that there

are a few families which are comparatively harder to detect. Overall, k-NN performed

extremely well in classifying individual families with all but one accuracy greater

than 90%.
Table 3: k-NN balanced accuracies for individual families

Malware Family Accuracy% Malware Family Accuracy%
Adload 98.65 Obfuscator 91.05
Agent 94.25 OnLineGames 96.00

Alureon 94.30 Rbot 92.85
BHO 97.55 Renos 96.90

CeeInject 94.60 Startpage 95.85
Cycbot.G 98.40 Vobfus 98.10
DelfInject 87.84 Vundo 95.20
FakeRean 93.35 Winwebsec 98.85

Hotbar 98.65 Zbot 97.40
Lolyda.BF 98.60 Zeroaccess 99.05

5.1.3 Random Forest

Table 4 shows the results of classifying individual families using random forest.

The average balanced accuracy at level 1 using random forest is 98.23%, which is

significantly better than the results of SVM and k-NN. Figure 9 shows an illustration

created in Tableau. It can be noted that 10 families are below the average accuracy
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Figure 8: Individual accuracies for k-NN

of 98.23% using the legend given in the figure. DelfInject and Agent, two families

with the lowest accuracies, are less than 3% below the average. Winwebsec, the family

with the highest accuracy, has an accuracy of 99.95%, only 0.05% less than a perfect

classification. The difference between the highest and the lowest accuracy is 4.35%.

This range and the average balanced accuracy suggest that this technique produced

excellent results. A bar plot showing the individual family accuracies for random

forest is included in the Appendix.
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Table 4: Random forest balanced accuracies for individual families

Malware Family Accuracy% Malware Family Accuracy%
Adload 99.35 Obfuscator 96.10
Agent 95.90 OnLineGames 98.15

Alureon 98.00 Rbot 96.90
BHO 99.20 Renos 98.15

CeeInject 97.45 Startpage 98.75
Cycbot.G 99.35 Vobfus 99.45
DelfInject 95.60 Vundo 97.95
FakeRean 96.65 Winwebsec 99.95

Hotbar 99.35 Zbot 99.25
Lolyda.BF 99.65 Zeroaccess 99.45

5.1.4 Multi-layer Perceptron

Table 5 shows the results of classifying individual families using MLP. The

average balanced accuracy at level 1 using MLP is 93.97%, which is greater than the

level 1 average for SVM. A bar plot is included in the Appendix. Figure 10 shows an

illustration created in Tableau. It can be noted that 10 families are below the average

of 93.97% using the legend given in the figure. Alureon, DelfInject, and FakeRean have

low accuracies while Adload, BHO, Hotbar, and Zeroaccess have accuracies greater

than 98%. The difference between the highest and the lowest accuracy is 12.36%.

This range is close to the k-NN range of 11.21%. Overall, MLP classified individual

malware families resulting in a high accuracy and a narrow range.

5.1.5 Overall Results for Individual Families

Figure 11 shows boxplots for each technique. Each point on the boxplot represents

the accuracy of classifying an individual family. The line on the box or the median

for each boxplot indicates symmetry. It can be seen that the accuracies of SVM are

left-skewed. The fact that the median of the SVM boxplot is higher than its mean

of 88.88% justifies the skew. For SVM, it indicates that the high accuracies are closer
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Figure 9: Individual accuracies for random forest

together than the low accuracies. The SVM box is relatively larger than the k-NN

box, indicating that the accuracies of SVM are spread across a wide range while the

accuracies of k-NN are concentrated in a smaller region. The short whisker at the top

for the k-NN box indicates that the data points above the median are closer to each

other compared to the bottom 50%. The accuracies of SVM have higher variability

than the acuracies of k-NN. The box of k-NN closely resembles the box of random

forest. Both have a short whisker at the top, have accuracies clustered in a few regions,

and have shorter boxes compared to MLP and SVM.

MLP, like SVM, has a bigger box size with accuracies spread across the box. The
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Table 5: MLP balanced accuracies for individual families

Malware Family Accuracy% Malware Family Accuracy%
Adload 98.05 Obfuscator 90.95
Agent 90.65 OnLineGames 95.15

Alureon 86.74 Rbot 91.00
BHO 98.45 Renos 91.75

CeeInject 93.30 Startpage 93.60
Cycbot.G 97.80 Vobfus 97.40
DelfInject 87.65 Vundo 93.35
FakeRean 87.94 Winwebsec 97.05

Hotbar 98.70 Zbot 95.05
Lolyda.BF 95.70 Zeroaccess 99.10

Figure 10: Individual accuracies for MLP
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wide spread in the balanced accuracies of SVM shows that this technique magnified the

balanced accuracies based on how hard or easy it was to detect a specific family. The

length of the whiskers indicates tail length. The long whiskers of SVM indicate that

the population is heavy-tailed while the k-NN data indicate that it has a light-tailed

population. There is one outlier indicated by a diamond-shaped point in the k-NN

data. This outlier is the balanced accuracy of DelfInject.

Figure 11: Individual balanced accuracies for all techniques

Figure 12 shows the ROC curves for the DelfInject family. ROC curves show the

relationship between the false positive rate and the true positive rate of a classification.

AUC is the area under the curve and ranges from 0.0 to 1.0 with 1.0 meaning that there

are no false positives or false negatives at a certain threshold [8]. The AUC for k-NN,

random forest, and MLP show excellent scores of 0.90 or higher. All four techniques

are farther from the black-dotted diagonal line, indicating that all techniques have

performed well on DelfInject, which was classified with the lowest accuracy for SVM,
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k-NN, and random forest. It had the second lowest accuracy for MLP. The fact that

all techniques had an AUC of above 0.85 shows how well all techniques performed for

individual families, even for the family which was harder to detect.

Figure 12: ROC curves for DelfInject

5.2 Multifamily Models

In this section, we list the average balanced accuracies at each level, graph the

average, the lowest, and the highest accuracies, and analyze the overall effectiveness

of multifamily models for SVM, random forest, k-NN, and MLP.

5.2.1 Support Vector Machines

Table 6 lists the average balanced accuracies for multifamily models using SVM.

At level 1, the average balanced accuracy is 88.88%. For models with pairs of malware

families, the average balanced accuracy is 78.30%. At level 20, the accuracy drops

to 51.90%. Figure 13 graphs the data in Table 6 showing 3 lines which represent the

average, the lowest, and the highest balanced accuracies at each level.
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From level 1 to level 5, the average accuracy has drastically dropped with the

maximum drop from level 1 to level 2. This means that classification experiments

which consisted of two malware families in the malware class resulted in the greatest

drop. From level 5 onwards, the drop is almost uniform at each level. This means

that adding one more family at each level lowers the accuracy consistently.

From level 7 onwards, the three almost-parallel lines indicate that the area

between the average line and the high line is almost equal to the area between the

average line and the low line. In contrast, starting from level 1 to level 7, the area

between the average line and the high line is greater than the area between the average

line and the low line. Although the average is pulled to the low line initially, it remains

centered as more families are added.
Table 6: SVM average balanced accuracies for multifamily models

Level Accuracy% Level Accuracy%
1 88.88 11 59.21
2 78.30 12 58.47
3 72.16 13 57.85
4 67.97 14 56.38
5 65.50 15 55.41
6 63.73 16 53.82
7 62.49 17 53.38
8 61.74 18 52.98
9 61.08 19 52.42
10 60.29 20 51.90

5.2.2 k-Nearest Neighbors

Table 7 lists the average balanced accuracies at each level. Figure 14 shows a

line graph representing the average, the lowest, and the highest balanced accuracies

at each level. The overall trend shows that as the model becomes more generic with

one more family added at each step, the performance is decreasing.
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Figure 13: SVM results for all levels showing average (of 100 experiments), low, and
high accuracies and linear fit lines

Table 7: k-NN average balanced accuracies for multifamily models

Level Accuracy% Level Accuracy%
1 95.87 11 92.46
2 95.20 12 92.26
3 94.99 13 92.28
4 94.48 14 92.12
5 93.79 15 92.02
6 93.58 16 92.05
7 93.20 17 91.94
8 93.07 18 91.92
9 92.79 19 91.97
10 92.51 20 92.00
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Figure 14: k-NN results for all levels showing average (of 100 experiments), low, and
high accuracies and linear fit lines

5.2.3 Random Forest

Random forest experiments were run using different parameters for lev-

els 1, 5, 10, 15, and 20. Table 8 shows how the balanced accuracy for random

forest changes as more families are added and as the maximum depth of the tree

increases, and Figure 15 graphs the data as a line chart. A parameter in random

forest that specifies the maximum depth of the tree is max_depth [38]. At level 1,

the accuracy changes from 93 to 97 to 98 for max_depth 2, 5, and 10 respectively.

At this level, the accuracies do not differ significantly. At level 20, the accuracy

changes from 50 to 83 to 93 as the max_depth increases from 2 to 5 to 10. It is

evident from the graph that at each level, as the max_depth increases, the accuracy

increases. Additionally, the accuracy drop at each level can be examined to conclude
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that a higher max_depth parameter of 10 is relatively robust against generic models as

opposed to a parameter value of 2 or 5. It can be said that increasing the max_depth

is preferable for generic models. For all three max_depth values graphed in Figure 15,

the drop from level 1 to level 10 is greater than the drop from level 10 to level 20.

This shows that initially, the drop is very significant. As more families are added

progressively, the drop in accuracy decreases. The relatively big drop in the initial

levels means that each of the 20 malware families are so different that adding one

more family drops the average balanced accuracy significantly. On the other hand,

when 15 families are combined, the accuracy keeps decreasing only slightly as more

families are added because the model is already generic enough that adding one more

family does not make a huge impact.

Table 8: Random forest balanced accuracies for changing depths

Level max_depth=2 max_depth=5 max_depth=10
1 92.85 97.46 98.23
5 70.01 92.34 96.77
10 56.78 86.10 94.81
15 53.98 82.90 93.35
20 50.00 82.53 92.87

Table 9 shows the average balanced accuracies for multifamily models using

random forest. The average balanced accuracy for classifying a specific family as

malware or benign is 98.23%. When two families are combined, the average balanced

accuracy drops to 97.94%. Finally, when all 20 families are combined in the malware

class, the accuracy drops to 92.87%. Figure 16 graphs the data in Table 9 and shows

three lines representing the average, the lowest, and the highest balanced accuracies

at each level. The average is taken using 100 randomly-chosen experiments.
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Figure 15: Balanced accuracies for malware combinations at level 1, 5, 10, 15, and 20
using different max_depth parameters for random forest

Table 9: Random forest average balanced accuracies for multifamily models

Level Accuracy% Level Accuracy%
1 98.23 11 94.56
2 97.94 12 94.14
3 97.68 13 94.09
4 97.24 14 93.76
5 96.77 15 93.35
6 96.42 16 93.29
7 96.03 17 93.00
8 95.74 18 92.94
9 95.25 19 92.79
10 94.81 20 92.87
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Figure 16: Random forest results for all levels showing average (of 100 experiments),
low, and high accuracies and linear fit lines

5.2.4 Multi-layer Perceptron

Table 10 shows how the balanced accuracy for MLP changes as more families are

added and as the value of alpha is changed. Figure 17 graphs the data as a line chart.

The penalty parameter in MLP is alpha. For example, a parameter value of 1e-5

signifies larger weights and a complicated decision boundary [38]. The experiments in

Figure 17 indicate that a model with alpha value as 1e-5 performed the best. In all

three cases, the balanced accuracy dropped significantly in the initial levels. After

level 5, the change is subtle.

Table 11 shows a list of accuracies for different combinations of malware families,

and Figure 18 graphs the lowest and the highest accuracies at each level. For the

high case, the downward trend is more evident. The fact that the high case is also
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decreasing means that as more families are added, the overall performance strictly

decreases. The area between the average line and the low line is greater than the area

between the average line and the high line. This means that at each level, there is at

least one experiment which has a significantly lower accuracy than its average case.

Table 10: MLP balanced accuracies for changing alpha

Level 20.0 10.0 1e-5
1 83.16 91.72 93.97
5 72.91 78.27 84.22
10 70.09 74.71 80.26
15 71.61 76.15 80.07
20 71.96 77.09 80.24

Figure 17: Balanced accuracies for malware combinations at level 1, 5, 10, 15, and 20
using different alpha values for MLP
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Table 11: MLP average balanced accuracies for multifamily models

Level Accuracy% Level Accuracy%
1 93.97 11 80.59
2 90.45 12 80.27
3 89.10 13 79.92
4 87.29 14 80.36
5 84.22 15 80.07
6 83.63 16 80.37
7 81.82 17 80.14
8 81.47 18 79.82
9 81.06 19 79.45
10 80.26 20 80.24

Figure 18: MLP results for all levels showing average (of 100 experiments), low, and
high accuracies and linear fit lines
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5.3 Overall Results

Figure 19 summarizes the performance of all the techniques mentioned in the pre-

vious section. It shows how the average balanced accuracy changes from single-family

binary classification experiments to twenty-family binary classification experiments

for SVM, k-NN, random forest, and MLP. Generally, the accuracy decreased as more

families were added to the malware class. For the single-family case, the average

balanced accuracy of random forest was the highest. The same trend followed for

every level. The SVM technique resulted in the lowest accuracy at level 1 through

level 20. For SVM, there was a drastic drop in the initial levels followed by a constant

decrease. For MLP, there was a significant decrease from level 1 to level 7. From

level 7, the constant decrease was almost negligible. For k-NN and random forest,

level 1 through 10 shows a constant decrease while the trend from level 10 through 20

shows an almost-flat line.

It appears from Figure 19 that SVM and MLP are similar to each other while

random forest and k-NN are similar to each other given the parameters specified in

Chapter 4. We compare SVM and MLP in Figure 20, and random forest and k-NN

in Figure 21. Each technique is split into a separate boxplot with its own scale to

provide an enlarged image of the box. These figures represent the results at level 19.

Level 19 involves combining 19 malware families into the malware class in order to

classify as malware or benign.

For the SVM boxplot, there is one outlier significantly above other points while

for the MLP boxplot, there are three outliers lower than the group. The line on the

box shows the median. The SVM box is symmetric with most points scattered in the

first three quartiles. On the other hand, the MLP points are scattered throughout

the boxplot. The mean for the SVM boxplot is 52.42%, and the mean for the MLP

boxplot is 79.45%. The maximum value on the y-axis of the SVM boxplot is lesser
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Figure 19: Average balanced accuracies and linear fit

than the minimum value on the y-axis of the MLP boxplot.

The boxplots of k-NN and random forest in Figure 21 show two outliers for k-NN

and two outliers for RF that are below their respective groups. The median for the

k-NN boxplot is more towards the top of the box while the random forest boxplot

has a symmetric box. At level 19, the mean for k-NN is 91.97%, and the mean for

random forest is 92.79%.
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Figure 20: Balanced accuracies for SVM and MLP at level 19
Each point on the graph represents the classification result of malware (consisting of 19

families) and benign.
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Figure 21: Balanced accuracies for k-NN and RF at level 19
Each point on the graph represents the classification result of malware (consisting of 19

families) and benign.
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CHAPTER 6

Conclusion and Future Work

In this paper, we have used bigram features and machine learning techniques to

examine how accuracy changes when a model is trained using multiple families. First,

we classified each specific family as malware or benign. Then, we trained models using

pairs of families, then triples, and all combinations until we reached a model with

all 20 families. At the Nth level, we considered min(100,
(

20
N

)
) experiments.

Figure 22 illustrates a bar graph that compares the performance of a specific

model and the most generic model. SVM has the biggest drop from level 1 to level

20. This means that a Linear SVC model was not robust when generic models were

involved. MLP performed significantly better than SVM but not better than random

forest and k-NN. The parameter of k = 5 in k-NN has a very low difference, signifying

that k-NN performed very well compared to SVM and MLP. Random forest had the

highest accuracy for the most specific case (level 1) as well as the most generic case

(level 20) when compared to other techniques. This means that a random forest model

with 10 trees and max_depth 10 was very robust despite a generic dataset. The low

difference between level 1 and level 20 signifies that random forest is a suitable model

when generic (multifamily) models are involved. Overall, in every case, adding more

families to the malware class lowered the accuracy, and this drop increased as the

number of families combined increased. Through each level, the model became more

generic and less effective as families were added.

When classifying one specific family, the accuracies are very high indicating

the strength of bigrams. In the malware domain, the detection problem is based

on classifying a specific family, and in this case, n-grams are a strong feature, as

indicated by the accuracies at level 1. When multiple malware families are involved

in the binary classification, it would be efficient to have a single model that could
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Figure 22: A comparison of average balanced accuracy at level 1 and at level 20 for
all techniques

detect multiple families rather than scoring each sample against multiple specific

models. Since random forest and k-NN were robust even for a very generic dataset,

these techniques could be used to score against a single model trained using multiple

families. On the other hand, SVM could not distinguish well between malware and

benign files when more than 10 families were involved.

6.1 Future Work

In this research, we have worked with a big dataset and considered 20 malware

families with 1000 files in each family. We have used trojans, worms, and other

malware types, so our combinations were composed of a variety of malware families.

Experiments could be conducted where combinations could include families of the same

type, such as adware families. These experiments would show the tradeoff between
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combining families that are of the same type based on their characteristics versus

combining families without any discrimination of types. It would be interesting to see

the results of progressively combining 20 adware families, or 20 backdoor trojans, or 20

such specific family types. The challenge in such a research would involve efficiently

considering only those families which are similar.

Our experiments included binary classification of malware and benign files. Ex-

periments could also involve multi-class classification. Such experiments that involve

classifying and combining multiple malware families help to understand the similarity

or dissimilarity between families.

We have classified malware using bigram features. Further research could include

experimenting with varying values of n such as 3-grams, 4-grams, and 6-grams. Such

experiments would quantify the relationship between higher n and the accuracy of a

generic model. To compare and contrast the effectiveness of n-grams, experiments

could involve other features such as opcodes. We normalized the training and testing

vectors by dividing each frequency by the sum of the frequencies. These vectors could

be normalized by the total number of n-grams in the file.

Experiments could be conducted by varying the number of top features. We

considered the top 20 features from the malware class, but experiments could consider

more than 20 or less than 20 features to examine how feature selection affects accuracy.

We have considered four classification techniques: SVM, k-NN, random forest, and

MLP. Other techniques could be included such as hidden Markov models and deep

neural networks. Clustering techniques such as k-means and model-based clustering

would help to compare and contrast clustering and classification techniques.
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APPENDIX

Additional Results
A.1 Individual Family Results

Red colored bars indicate an accuracy lower than the average while blue bars

indicate an accuracy greater than or equal to the average. A darker share indicates

farther distance from the average while a lighter shade indicates closer distance to the

average.

Figure A.23: Individual family accuracy results using SVM
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Figure A.24: Individual family accuracy results using k-NN

Figure A.25: Individual family accuracy results using Random Forest
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Figure A.26: Individual family accuracy results using MLP
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