
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-20-2019

Real-Time Data Processing With Lambda
Architecture
Omkar Ashok Malusare
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Systems Architecture Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Malusare, Omkar Ashok, "Real-Time Data Processing With Lambda Architecture" (2019). Master's Projects. 681.
DOI: https://doi.org/10.31979/etd.2s5u-hgps
https://scholarworks.sjsu.edu/etd_projects/681

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/215423194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F681&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/681?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F681&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 1

Real-Time Data Processing With Lambda Architecture

A Thesis Presented

to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

 By

Omkar Ashok Malusare

 May 2019

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 2

The Designated Project Committee Approves the Project Titled

 Real-Time Data Processing With Lambda Architecture

By

 Omkar Ashok Malusare

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

 May 2019

Dr. Robert Chun Department of Computer Science

Dr. Jon Pearce Department of Computer Science

Mr. Manoj Thakur Staff Software Engineer at LinkedIn

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 3

Abstract

Data has evolved immensely in recent years, in type, volume and velocity. There are several

frameworks to handle the big data applications. The project focuses on the Lambda Architecture

proposed by Marz and its application to obtain real-time data processing. The architecture is a

solution that unites the benefits of the batch and stream processing techniques. Data can be

historically processed with high precision and involved algorithms without loss of short-term

information, alerts and insights. Lambda Architecture has an ability to serve a wide range of use

cases and workloads that withstands hardware and human mistakes. The layered architecture

enhances loose coupling and flexibility in the system. This a huge benefit that allows

understanding the trade-offs and application of various tools and technologies across the layers.

There has been an advancement in the approach of building the LA due to improvements in the

underlying tools. The project demonstrates a simplified architecture for the LA that is

maintainable.

Index terms – Lambda Architecture (LA), Batch Processing, Stream Processing, Real-time

Data Processing

i

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 4

TABLE OF CONTENTS

1. INTRODUCTION 6

2. BACKGROUND 8

3. LAMBDA ARCHITECTURE 10

3.1. BATCH LAYER 10

3.2. SPEED LAYER 12

3.3. SERVING LAYER 13

4. TOOLS AND TECHNOLOGIES 14

5. APPLICATIONS OF LAMBDA ARCHITECTURE 18

6. LIMITATIONS OF LAMBDA ARCHITECTURE 24

7. A PROPOSED SOLUTION 25

8. COMPARATIVE ANALYSIS 31

9. KEY INSIGHTS 39

10. CONCLUSION & FUTURE WORK 40

REFERENCES 42

ii

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 5

LIST OF FIGURES

1. LAMBDA ARCHITECTURE 10

2. INCREMENTAL COMPUTATION STRATEGY 13

3. SPARK STREAMING 16

4. LAMBDA ARCHITECTURE AT MAPR 19

5. LAMBDA ARCHITECTURE AT TALENTICA 20

6. LAMBDA ARCHITECTURE AT SMARTNEWS 21

7. LAMBDA ARCHITECTURE AT WALMART LABS 23

8. PROPOSED LAMBDA ARCHITECTURE 24

9. DATASET 25

10. APACHE KAFKA 26

11. ANATOMY OF A TOPIC 27

12. COMPARISON BETWEEN THE ARCHITECTURES 31

13. MAPREDUCE VS SPARK 32

14. BATCH VS STREAMING VS MICRO-BATCH 33

15. STORM VS SPARK STREAMING 35

16. PERFORMANCE COMPARISON BETWEEN QUEUE MODELS 36

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 6

1. INTRODUCTION

With tremendous rate of growth in the amounts of data, there have been innovations both

in storage and processing of big data. According to Dough Laney, Big data can be thought of as

an increase in the 3 V’s, i.e. Volume, Variety and Velocity. Due to sources such as IoT sensors,

twitter feeds, application logs and database state changes, there has been an inflow of streams of

data to store and process. These streams are a flow of continuous and unbounded data that demand

near real-time processing of data.

The field of data analytics is growing immensely to draw valuable insights from big chunks

of raw data. In order to compute information in a data system, processing frameworks and

processing engines are essential. The traditional relational database seems to show limitations

when exposed to the colossal chunks of unstructured data. There is a need to decouple compute

from storage. The processing frameworks can be categorized into three frameworks – batch

processing, stream data processing and hybrid data processing frameworks.

Traditional batch processing of data gives good results but with a high latency. Hadoop is

a scalable and fault-tolerant framework that includes Map Reduce for computational processing.

[1][2] Map Reduce jobs are run in batches to give results which are accurate and highly available.

The downside of Map Reduce is its high latency, which does not make it a good choice for real-

time data processing. In order to achieve results in real-time with low-latency, a good solution is

to use Apache Kafka coupled with Apache Spark. This streaming model does wonders in high

availability and low latency but might suffer in terms of accuracy.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 7

In most of the scenarios, use cases demand both fast results and deep processing of data.

[3] This project is focused towards Lambda Architecture that unifies batch and stream processing.

Many tech companies such as Twitter, LinkedIn, Netflix and Amazon use this architecture to

solve multiple business requirements. The LA architecture aims to meet the needs of a robust

system that is scalable and fault-tolerant against hardware failures and human mistakes. On the

other hand, the LA creates an overhead to maintain a lot of moving parts in the architecture and

duplicate code frameworks [4].

The project is structured into different sections. The Lambda Architecture emerges as a

solution that consists of three different layers. The LA is an amalgamation of numerous tools and

technologies. The LA fits in many use cases and has applications across various domain

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 8

2. BACKGROUND

Traditional batch processing saw a shift in 2004, when Google came up with Hadoop

MapReduce for big data processing [1]. MapReduce is a scalable and efficient model that

processes large amounts of data in batches. The idea behind the MapReduce framework is that the

collected data is stored over a certain period of time before it is processed. The execution time of

a batched MapReduce job is dependent on the computational power of the system and the overall

size of the data being processed. That is why, large scale processing is performed on an hourly,

daily or weekly basis in the industry as per the use case. MapReduce is widely used for data

analytics with its batch data processing approach but tends to fall short when immediate results

are required.

In recent times, there has been a need to process and analyze data at speed. There is a

necessity to gain insights quickly after the event has happened as the value diminishes with time.

Online retail, social media, stock markets and intrusion detection systems rely heavily on

instantaneous analysis within milliseconds or seconds. According to [5], Real-time data processing

combines data capturing, data processing and data exploration in a very fast and prompt manner.

However, MapReduce was never built for this purpose, thereby, leading to the innovation of stream

processing systems. Unlike batch processing, the data fed to a stream processing system is

unbounded and in motion. This can be time series data or generated from user’s web activity,

applications logs, or IoT sensors, and must be pipelined into a stream processing engine such as

Apache Spark [9] or Apache Storm [11]. These engines have the capability to compute analysis

that can be further displayed as real-time results on a dashboard.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 9

Stream processing is an excellent solution for real-time data processing, but the results

can sometimes be approximate. As data arrives in the form of streams, the processing engine only

knows about the current data and is unaware of the dataset as a whole. Batch processing

frameworks operate over the entire dataset in a parallel and exhaustive approach to ensure the

correctness of the result. Stream processing fails to achieve the same accuracy as that of batch

processing systems.

Batch and stream processing were considered diametrical paradigms of big data architecture

until 2013, when Nathan Marz founded the Lambda Architecture (LA). [3] describes how LA

addressed the need of unifying the benefits of batch and stream processing models.

According to Marz, the following are the essential requirements of the LA:

• Fault-tolerant and robust enough to withstand code failures and human errors

• The layers must be horizontally scalable.

• Low latency in order to achieve real-time results

• Easy to maintain and debug.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 10

3. LAMBDA ARCHITECTURE

The proposed architecture is demonstrated in Fig. 1. The incoming data is duplicated and

fed to the batch and speed layer for computation.

Fig. 1. Lambda Architecture [2]

[3] discusses in detail about the three layers in the LA. A subset of properties necessary

for large-scale distributed big data architectures is satisfied by each layer in the LA. A highly

reliable, fault-tolerant and low latency architecture is developed using multiple big data

frameworks and technologies that scale out in conjunction across the layers.

3.1. BATCH LAYER

The crux of the LA is considered to be the master dataset. The master dataset constantly

receives new data in an append-only fashion. This approach is highly desirable to maintain the

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 11

immutability of the data. In the book [3], Marz stresses on the importance of immutable

datasets. The overall purpose is to prepare for human or system errors and allow reprocessing. As

values are overridden in a mutable data model, the immutability principle prevents loss of data.

Secondly, the immutable data model supports simplification due to the absence of indexing

of data. The master dataset in the batch layer is ever growing and is the detailed source of data in

the architecture. The master dataset permits random read feature on the historical data. The batch

layer prefers re-computation algorithms over incremental algorithms. The problem with

incremental algorithms is the failure to address the challenges faced by human mistakes. The re-

computational nature of the batch layer creates simple batch views as the complexity is addressed

during precomputation. Additionally, the responsibility of the batch layer is to historically process

the data with high accuracy. Machine learning algorithms take time to train the model and give

better results over time. Such naturally exhaustive and time-consuming tasks are processed inside

the batch layer.

In the Hadoop framework, the master dataset is persisted in the Hadoop File System

(HDFS). [6] HDFS is distributed and fault-tolerant and follows an append only approach to fulfill

the needs of the batch layer of the LA. Batch processing is performed with the use of MapReduce

jobs than run at constant intervals and calculate batch views over the entire data spread out in

HDFS.

The problem with the batch layer is high-latency. The batch jobs have to be run over the

entire master dataset and are time consuming. For example, there might be some MapReduce.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 12

jobs that are run after every two hours. These jobs can process data that can be relatively old as

they cannot keep up with the inflow of stream data. This is a serious limitation for real-time data

processing. To overcome this limitation, the speed layer is very significant.

3.2. SPEED LAYER

[3] and [5] state that real-time data processing is realized because of the presence of the

speed layer. The data streams are processed in real-time without the consideration of completeness

or fix-ups. The speed layer achieves up-to-date query results and compensates for the high-latency

of the batch layer. The purpose of this layer is to fill in the gap caused by the time-consuming

batch layer. In order to create real-time views of the most recent data, this layer sacrifices

throughput and decreases latency substantially. The real-time views are generated immediately

after the data is received but are not as complete or precise as the batch layer. The idea behind this

design is that the accurate results of the batch layer override the real-time views, once they arrive.

The separation of roles in the different layers account for the beauty of the LA. As

mentioned earlier, the batch layer participates in a resource intensive operation by running over

the entire master dataset. Therefore, the speed layer must incorporate a different approach to meet

the low-latency requirements. In contrast to the re-computation approach of batch layer, the speed

layer adopts incremental computation. The incremental computation is more complex, but the data

handled in the speed layer is vastly smaller and the views are transient. A random- read/random-

write methodology is used to re-use and update the previous views. There is a demonstration of

the incremental computational strategy in the Fig. 2.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 13

Fig. 2. Incremental Computation Strategy [3]

3.3. SERVING LAYER

The serving layer is responsible to store the outputs from the batch and the speed layer. [3] An

arrangement of flat records with pre-computed views are obtained as results from the batch layer.

These pre-computed batch views are indexed in this layer for faster retrieval. This layer provides

random reads and batch upgrades due to static batch perspectives. According to [3], whenever the

LA is queried, the serving layer merges the batch and real-time views and outputs a result. The

merged views can be displayed on a dashboard or used to create reports.

Therefore, the LA combines the results from a data-intensive, yet accurate batch layer, and a

prompt speed layer as per the required use case.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 14

4. TOOLS AND TECHNOLOGIES

The LA is a generic purpose architecture that allows a choice between multiple

technologies. Each layer has a unique responsibility in the LA and requires a specific

technology. Here is a list of a few technologies used across this architecture:

4.1. APACHE KAFKA

According to [7], Apache Kafka is a distributed pub-sub/messaging queue used to build

real-time streaming data pipelines. A topic is used to store the stream of records inside

Kafka. A publisher pushes messages into the topics and a consumer subscribes to the topic.

Due to the fact that Kafka is a multi-consumer queue, the messages can be rewound and

replayed in case of a point of failure. There is a configurable retention period to persist all

published records irrespective of their consumption. The data generated from user website

activity, applications logs, IoT sensors can be ingested into Apache Kafka.

[10] shows how it is the responsibility of Apache Kafka to duplicate the data and send

each copy to the batch and the speed layer respectively.

4.2. APACHE HADOOP

[2] defines Apache Hadoop as a distributed software platform for managing big data across

clusters. The idea behind Hadoop was instead of bringing data towards compute, bring

compute to the data. The Hadoop framework can be categorized into storage and compute

models known as Hadoop Distributed File System and MapReduce respectively.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 15

4.2. HDFS

HDFS is a scalable, reliable and fault-tolerant file system that stores huge quantities of

data. HDFS is the most used technology for storage in the batch layer. [5] The immutable,

append- only master dataset is dumped inside a resilient HDFS.

4.3. MAPREDUCE

According to [1] and [2], MapReduce is a programming paradigm that manipulates key-

value pairs to write computations in map and reduce functions. In the map phase, the individual

chunks of data generated through splits of input-data are processed in parallel. The output from

the map phase is then sorted and forwarded to the reduce stage of the framework. The

MapReduce framework runs over the master dataset and performs the precomputation required

in the batch layer. Hadoop also includes Hive and Pig, which are high level abstractions that later

translate to MapReduce jobs.

4.4. APACHE SPARK

As discussed in [9] and [10], the process of reading and writing to a disk in MapReduce

is slow. Apache Spark is an alternative to MapReduce and runs up to 100 times faster due to in-

memory processing. Spark works on the entire data as opposed to MapReduce, which runs in

stages. Resilient Distributed Datasets (RDD) is the primary data structure of Spark that is a

sharable object across jobs representing the state of memory. Spark is a polyglot and can run

stand-alone or on Apache Mesos, Kubernetes, or in the cloud. Spark supports multiple features

such as batch processing, stream processing, graph processing, interactive analysis and machine

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 16

learning.

4.5. SPARK STREAMING

Spark streaming is an extension of core Spark API to enable processing of live data

streams. The input data streams are divided into micro batches by Spark streaming and then final

streams of results in batches are processed by the Spark Engine. Fig. 3. illustrates the same.

Fig. 3. Spark Streaming [10]

The live stream data can be ingested from a source such as Apache Kafka and can be

analyzed using various functions provided by Spark. The processed data can be dumped out to

databases, file systems, live dashboards or be used to apply machine learning. A stream of

continuous data is represented with DStreams (discretized streams) and is basically a sequence of

RDDs. The speed layer can be implemented using Spark Streaming for low latency requirements.

4.6. APACHE STORM

Apache Storm is the basis of the speed layer in the LA suggested by Nathan Marz [3].

Instead of micro-batching the streams, Storm relies on a one-at-a-time stream processing approach.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 17

Due to this, the results have lower latency compared to Spark Streaming. [11] Storm is dependent

on a concept called topologies which is equivalent to MapReduce jobs in Hadoop. A topology is

a network of spouts and bolts. A spout is considered as the source of a stream, whereas the bolt

performs some action on the stream.

4.7. APACHE HBASE

[13] Apache HBase is a non-relational distributed database that is a great option for the

serving layer. It is a core component of the Hadoop Framework that handles large scale data.

Due to extremely good read and write performance, the batch and real-time views can be stored

and read in real-time. It fulfills the responsibility of exposing the views created by both the layers

in order to service incoming queries.

4.8. APACHE CASSANDRA

Apache Cassandra is heavily used in the LA to store the real-time views of the speed layer.

It is the preferred technology proposed by [3] to store the output from stream processing

technologies. Along with that, it supports high read performance to output reports. Cassandra is a

distributed database and has the ability to perform, scale and provide high availability with no

single point of failure. [12] The architecture includes a masterless ring that is simple, easy to setup

and maintain. Instead of maintaining a separate database in the serving layer like HBase or

ElephantDB, Cassandra can be used to fulfill the same purpose. This reduces a lot of overhead and

complexity.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 18

5. APPLICATIONS OF LAMBDA ARCHITECTURE

Lambda architecture can be considered as almost real-time data processing architecture. It

can withstand the faults as well as allow scalability. It uses the functions of batch layer and stream

layer and keeps adding new data to the main storage while ensuring that the existing data will

remain intact. In order to meet the quality of service standards, companies like Twitter, Netflix,

and LinkedIn are using this architecture. Online advertisers use data enrichment to combine

historical customer data with live customer behavior data and deliver more personalized and

targeted ads in real-time and in context with what customers are doing. LA is also applied to detect

and realize unusual behaviors that could indicate a potentially serious problem within the system.

Financial institutions rely on trigger events to detect fraudulent transactions and stop fraud in its

tracks. Hospitals also use triggers to detect potentially dangerous health changes while monitoring

patient vital signs, sending automatic alerts to the right caregivers who can then take immediate

and appropriate action. Twitter APIs can be called to process large feeds through the lambda

architecture pipeline and sentiment analysis can be performed. Additionally, complex networks

can be protected from intrusion detection by tracking the failure of a node and avoiding future

issues.

As discussed in [14], MapR uses the Lambda architecture for online alerting in order to

minimize the idle transports. The architecture used by MapR is demonstrated in Fig. 4.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 19

Fig. 4. Lambda Architecture at MapR [14]

One of the customers of MapR captures real-time values of geo-spatial locations of the truck fleet.

The captured values are directly forwarded to MapR, which are then handled by the LA.

The speed layer implements Apache Storm to provide online alerts. In the batch layer, MapReduce

is run to calculate tax reduction reports.

In [15], a software development company named Talentica uses the LA for mobile ad

campaign management. In a mobile ad campaign management, a processing challenge is faced

due to high volumes and velocities of data. If real-time views are not generated, the campaign

might fail to deliver and incur heavy losses in terms of revenue and missed opportunities. The

company faced a situation where over 500 GB of data and 200k messages/sec were generated.

The company needed a unified approach including both batch and stream and hence, the

architecture demonstrated in Fig. 5. was established.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 20

Fig. 5. Lambda Architecture at Talentica [15]

The LA turned out to be a cost effective and scalable solution to meet the demanding requirements

of the mobile ad campaign.

[16] provides detailed information about how a LA was built on AWS to analyze customer

behavior and recommend content by a software engineer who works at SmartNews.

SmartNews aggregates outputs from machine learning algorithms with data streams to gather user

feedback in near real-time. The LA helps them achieve the best stories on the web with low-

latency and high performance. The architecture followed at SmartNews can be seen in Fig. 6.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 21

Fig. 6. Lambda Architecture at SmartNews [16]

Another use case of LA can be seen incorporated by the tech giant, Walmart Labs [17].

Walmart is a data driven company and produces business and product decisions based on the

analysis of data. The use case focuses on click stream analysis in order to find the unique visitors,

orders, units, revenues, site error rates. During peak hours, the pipeline holds as much as 250k

events per second. The software engineers at Walmart devised a LA solution as illustrated in Fig.

7. for better productivity and results.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 22

Fig. 7. Lambda Architecture at Walmart Labs [17]

This framework is a simplified version of LA because of the Spark implementation in the

batch and speed layer. As discussed earlier, Spark provides APIs for both batch and Spark

streaming. Due to this, there is a considerable decrease in the complexity of the code base. There

is no need to maintain separate code frameworks as Spark enables code reuse.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 23

6. LIMITATIONS OF THE TRADITIONAL LAMBDA ARCHITECTURE

Initially, when the LA was proposed, the batch layer was meant to be a combination of

Hadoop File System and MapReduce and the stream layer was realized using Apache Storm.

Also, the serving layer was a combination of two independent databases i.e. ElephantDB and

Cassandra. Inherently, this model had a lot of implementation and maintenance issues. [4]

Developers were required to possess a good understanding of two different systems and there was

a steep learning curve. Additionally, creating a unified solution was possible but resulted a lot of

merge issues, debugging problems and operational complexity.

The incoming data needs to be fed to both the batch and the speed layer of the LA. It is

very important to preserve the ordering of events of the input data to obtain thorough results. The

process of duplicating streams of data and passing it over to two separate consumers can be

troublesome and creates operational overhead. The LA does not always live up to the expectation

and many industries use full batch processing system or a stream processing system to meet their

use case.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 24

7. A PROPOSED SOLUTION

As understood, the LA can lead to code complexity, debugging and maintenance problems if not

implemented in the right manner. A proper analysis and understanding of existing tools helped

me realize that the LA can be implemented using a technology stack comprising of Apache Kafka,

Apache Spark and Apache Cassandra. There are multiple ways of building a LA. In this approach,

I will try one of them. I will use Apache Zeppelin to display the results observed in the serving

layer.

Fig. 8. Proposed Lambda Architecture

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 25

7.1. DATASET

As discussed earlier, LA handles fast incoming data from sources such as IoT sensors, web

application clickstreams, application logs etc. In our case, a log producing continuous flow of

clickstream is chosen as a dataset. The dataset resembles an online retail web application and the

clickstream events. Basically, this is a simulation of streams in the form of logs. Kafka producer

will publish this data on the broker which will be used by the downstream systems, i.e. the batch

and speed layers. The log will be demonstrated in the following format:

Fig. 9. Data Set

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 26

7.2 APACHE KAFKA – DATA INGESTION

Kafka is a distributed streaming platform with the following capabilities:

- Publish and subscribe to streams of records, similar to a message queue or enterprise

messaging system.

- Store streams of records in a fault-tolerant durable way.

- Process streams of records as they occur.

Kafka is used to build ingestion pipelines for scalable data processing systems and very well fits

our real-time data processing use case. A brief introduction to the architecture and terminologies

used in Kafka:

Fig. 10. Apache Kafka [7]

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 27

Kafka acts as a publisher-subscriber model and hence benefits from the loose coupling between

the producers and the consumers. A Kafka cluster contains brokers to store the published messages

from a producer. The consumers subscribe to the broker and receive the messages in order. The

asynchronous nature of Kafka really helps out in building scalable architectures.

 Fig. 11. Anatomy of a Topic [7]

The Kafka cluster stores streams of records in categories called topics. Each record consists of a

key, a value, and a timestamp [12]. A topic is a category or feed name to which records are

published. A topic is broken down into partitions that can be scaled horizontally.

Topics in Kafka are always multi-subscriber; that is, a topic can have zero, one, or many

consumers that subscribe to the data written to it. In our architecture, the Kafka Producer produces

continuous streams of data in the form of clickstream events and pushes them on to the Kafka

broker. The streams are then forwarded to HDFS and Spark’s stream processing engine.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 28

7.3 APACHE SPARK – BATCH + SPEED

In the previous architecture, there was a mixture of two processing systems for the batch and speed

layer respectively. The batch layer consisted of the Hadoop stack – HDFS for storage and

MapReduce for compute. The speed layer consisted of the fast MapReduce version, i.e. Apache

Storm.

In our architecture, we will rely only on Apache Spark.

Spark revolves around the concept of a resilient distributed dataset (RDD), which is a fault-

tolerant collection of elements that can be operated on in parallel [8]. An RDD is immutable

data structure. There are two types of operations for an RDD, i.e. transformations and actions.

A transformation basically creates a new dataset from an existing dataset. An action basically

after running a computation on the dataset, returns a value to the driver program.

Spark uses a DAG approach to optimize the operations. In Spark, the transformations are

lazy and are not computed until an action operation occurs. Whenever an action takes place,

all the transformations are executed. A directed acyclic graph is formed for the RDDs and

are executed in order. If a dataset is created through a map transformation operation then it

will only return the result of the reduce to the driver instead of a larger mapped dataset.

By default, each transformed RDD may be recomputed each time you run an action on it.

However, you may also persist an RDD in memory using the persist (or cache) method, in

which case Spark will keep the elements around on the cluster for much faster access the

next time you query it.

We make use of the Kafka Consumer APIs to Integrate Kafka with Spark. There are two

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 29

types of approaches to achieve the same, i.e. Receiver based Approach and Direct Approach.

We will use the Direct Approach because of the following advantages it provides:

1) Efficiency

2) Simplified parallelism

Exactly-one semantics

Also, Direct Kafka streams will make sure that there is a 1-1 mapping between the Kafka partition

and the Spark partition. We can make use of Spark’s DataFrame API to read data from HDFS in

a structured format using Spark SQL.

Building the Speed Layer with Spark:

Basically, we fork the data coming from Kafka into a HDFS and into stream processing engine of

Kafka. We make use of Spark’s DStream API to deal with the streaming data.

Discretized Stream or DStream is the basic abstraction provided by Spark Streaming. It represents

a continuous stream of data, either the input data stream received from source, or the processed

data stream generated by transforming the input stream. Internally, a DStream is represented by a

continuous series of RDDs, which is Spark’s abstraction of an immutable, distributed dataset.

Each RDD in a DStream contains data from a certain interval. Any operation applied on a DStream

translates to operations on the underlying RDDs. The DStream operations hide most of these

details and provide the developer with a higher-level API for convenience.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 30

7.2 APACHE CASSANDRA – SERVING LAYER

Apache Cassandra is a NoSQL distributed management system designed for large amounts of data

and provides high availability with no single point of failure. It serves our use case as it can take

heavy write loads and be gracefully used for analytics. We use a Spark Cassandra Connector

Library that provides excellent integration between the two systems. As per the CAP theorem, it

is only possible to have either of consistency or availability in a distributed system. The consistency

parameter in Cassandra is tunable and configurable with a trade-off with availability. In our use

case, there is a need for high availability and hence, consistency can be compromised. Furthermore,

the data modeling in Cassandra revolves around the queries. It is possible to build tailored tables

and materialized views with a read-write separation for better performance. A Cassandra cluster is

configurable and for our use case I went with a simple strategy with a default replication factor of

3. Additionally, Cassandra’s Query Language (CQL) integrates well with Apache Zeppelin for

querying and analytics.

7.2 APACHE ZEPPELIN

Apache Zeppelin is a web-based notebook which brings data exploration, visualization, sharing

and collaboration features to Spark. The reason to choose Zeppelin is because of its support for

Spark APIs and CQL .

https://hortonworks.com/hadoop/spark

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 31

8. COMPARITIVE ANALYSIS

Fig. 12. COMPARISON BETWEEN ARCHITECTURES

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 32

MAPREDUCE VS SPARK

As demonstrated in the table below, Spark gives better performance compared to MapReduce.

 DATASET SIZE

 (size in MB)

 MAPREDUCE

 (execution time in seconds)

 APACHE SPARK

 (execution time in seconds)

80 46 20

263 79 41

550 120 73

800 183 107

1230 288 157

Fig. 13. MapReduce vs Apache Spark

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 33

SPARK VS STORM

When the Lambda Architecture was initially proposed, it consisted of Apache Storm as the engine

for the speed layer. Apache Storm follows a native streaming approach for the creation of real-

time views. Spark has grown exponentially during these years and has been a top-level Apache

Project. Spark has been a preferred solution due to rich APIs for SQL (Spark SQL) and Machine

Learning (MLlib). Spark streaming is more of a micro-batch processing engine. The below

diagram demonstrates the meaning of micro-batching as it is an overlap of batch and stream and

can be thought of as a fast-batch processing.

Fig. 14. Batch vs Streaming vs Micro-Batch

The choice between Storm and Spark Streaming is dependent on a lot of factors. Both the

technologies have built-in support for fault tolerance and high availability. The term real-time data

processing is a relative term and dependent on the use case. For our use case, initially, Storm performs

slightly better in comparison to Spark on the basis of low-latency. As time progresses, Spark

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 34

Streaming matches the performance of Storm. There is a trade-off between latency and ease-of-

development that impacts the design decision in the proposed architecture. Unlike Spark, Storm does

not support using the same application code for both batch and stream processing. The traditional

architecture has separate processing engines across the parallel layers. There is a considerable

overhead in software installation and maintenance of MapReduce and Storm. Even though the

application logic remains almost same, writing code for two different systems was difficult for my

use case. The group of APIs supported by Storm and MapReduce are very different to each other.

This issue can easily scale up on an industry-level. This is where Spark’s unified API for batch and

stream processing helped my case. Spark has a unified API that can be reused in both the layers.

Spark Streaming is inherently a micro-batch, therefore, foreachRDD operation streamlined the

application logic. The proposed architecture performs computation and manipulation in SQL with

the help of SparkSQL. This helps the vast community of developers and analysts that prefer SQL for

data processing. Additionally, the interoperability between Spark and Cassandra is smooth due to the

Spark-Cassandra connector. This helped us push the processed records into Cassandra tables with

ease.

We carried out an analysis for different data sizes and worked it out with Apache Storm and Spark

Streaming. The demonstration can be seen below in the table followed by a figure.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 35

 DATASET SIZE

 (size in MB)

 APACHE STORM

(execution time in seconds)

 SPARK STREAMING

 (execution time in seconds)

600 0.41 0.62

800 0.53 0.67

1200 0.58 0.71

1350 1.07 1.09

1570 1.12 1.15

Fig. 15. Storm vs Spark Streaming

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 36

KAFKA VS OTHER QUEUEING SYSTEMS

Fig. 16. Performance Comparison Between Queueing Systems [21]

The above figure is a demonstration for the comparison between different pub-sub/queueing

systems. The blue value represents the throughput of the sending messages i.e. Sender. The red

value represents the throughput of receiving the messages i.e. Receiver.

The LA is meant to handle data at a huge scale. Especially for big data with very high velocity,

a resilient queueing system such as Kafka is necessary. Even though other pub/sub systems such

as ActiveMQ and RabbitMQ are used widely, they do not match the results of Kafka. The major

reason to go with Kafka for our use case is due to its ability to rewind records with the help of an

offset handled by a consumer. This offloads a lot of burden from the queueing system and results

in loose coupling. Additionally, Kafka provides a very good persistence mechanism and a

configurable retention period that fits in our use case very well. I have set the retention period to

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 37

seven days after which I push the data to HDFS. If re-computation is required, we can always

look up the data from HDFS.

SERVING LAYER SIMPLIFIED

In the traditional LA, the serving layer comprised of both the ElephantDB and Apache Cassandra. The views

computed in the batch layer are sent to ElephantDB. The views calculated in the speed layer are sent to Apache

Cassandra. The proposed architecture comprises of a single database to hold the views from both the batch and

the speed layer. Due to growth and acceptance of Apache Cassandra, building software systems using

Cassandra as a data store has become very easy. Unlike the traditional architecture, the proposed architecture

has a Spark Processing engine on top of the serving layer datastore. Hence, a distributed, heavy-write database

like Cassandra smoothly integrates with our use case. This alleviates the burden of maintaining separate

databases and therefore reduces storage cost.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 38

SUMMARIZED COMPARISON BETWEEN TRADITIONAL & PROPOSED ARCHITECTURE

Traditional Lambda Architecture

Proposed Lambda Architecture

Batch Layer

Storage – HDFS

Compute - MapReduce

Storage – Kafka (HDFS only if

necessary)

Compute – Apache Spark

Speed Layer

Apache Storm

Spark Streaming

Serving Layer

ElephantDB, Apache Cassandra

Apache Cassandra

Code Reusability

Low

High

Complexity

 High

Low

Maintenance

High

Low

Learning Curve

High

Low

Cost

High

Low

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 39

9. KEY INSIGHTS

1) The trouble and overhead to duplicate incoming data can be eliminated with the help of Kafka.

Kafka can store messages over a period of time that can be consumed by multiple consumers.

Each consumer maintains an offset to denote a position in the commit log. Thus, the batch and

speed layers of the LA can act as consumers to the published records on the topics in Kafka. This

reduces the duplication complexity and simplifies the architecture.

2) Spark’s rich APIs for batch and streaming make it a tailor-made solution for the LA. The

underlying element for Spark streaming API (DStreams) is a collection of RDDs. Hence, there is

huge scope for code reuse. Also, the business logic is simpler to maintain and debug. Additionally,

for the batch layer, Spark is a better option due to the speed it achieves because of in-memory

processing.

3) Kafka is a beast that can store messages for as long as the use case demands (7 days by default,

but that is configurable). We have used HDFS for reliability in case of human or machine faults.

In fact, we can totally eliminate HDFS from the batch layer and store the records as they are in the

Kafka topics. Whenever re-computation is required, the commit log inside Kafka can be replayed.

4) Kafka’s commit log is very useful for event sourcing as well. As the commit log is an

immutable, append-only data store, a history of user events can be tracked for analytics. It finds

it application in online retail and recommendation engines.

5) Cassandra is a write heavy database that can build tables as per new use cases. Kafka commit

log can be replayed and new views can be materialized using Cassandra.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 40

10. CONCLUSION & FUTURE WORK

Due to a tremendous evolution of big data, there is a big challenge to process and analyze

the large amounts of data. Traditional systems such as relational databases and batch processing

systems are not able to keep up with the big data trends. Even though Hadoop frameworks instill

a great promise and reduce complexities in distributed systems, they fail to satisfy the real-time

processing capabilities.

The primary goal of the project is to demonstrate and synthesize the advancements in the

field of real-time data processing with Lambda architecture. The architecture is a robust

combination of batch and stream processing techniques. Each layer in the architecture has a

defined role and is decoupled from the other layer. The LA is overall a highly distributed, scalable,

fault-tolerant, low-latency platform. All the data entering the system is sent to both the batch and

the speed layer for further processing. The purpose of the batch layer is management of the master

dataset and a pre-compute of the batch views. The high latency disadvantage of the batch layer is

compensated by a speed layer. The serving layer accumulates the batch and real-time views.

The beauty of the architecture is to apply different technologies across the three layers.

As the big data tools are improving day-by-day, the LA provides new opportunities and

possibilities. It is the responsibility of the LA to translate the incoming raw data into something

meaningful. There is a massive demand for real-time data processing in the industry, which is

addressed by the LA. The system is a good balance of speed and reliability. Although the LA has

many pros, there are a few observed cons as well. There are a lot of moving parts resulting into

coding overhead due to the involvement of comprehensive processing in the disparate batch and

speed layers. In certain scenarios, it is not beneficial to perform re-processing for every batch

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 41

cycle. Additionally, it can be difficult to merge the views in the serving layer. Therefore, we have

introduced a LA using Apache Spark as a common framework for both batch and speed layer.

This simplifies the architecture to a great extent and is maintainable as well. Furthermore, a

detailed comparison has been made between the two architcetures depending on the design

decision and trade-offs.

 The future work will be to understand the different technologies that can be used as an

alternative to the proposed architecture. Apache Samza is a stream processing engine that

integrates very well with Kafka. It is built by the same researchers that were responsible for the

development of Kafka. It would be interesting to try different use cases with the architecture and

analyze how they perform.

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 42

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters,” Proc. 6th Symp. Oper. Syst. Des. Implement., pp. 137– 149, 2004.

[2] T. Chen, D. Dai, Y. Huang, and X. Zhou, “MapReduce On Stream Processing,” pp.

337–341.

[3] N. Marz and J. Warren. Big Data: Principles and best practices of scalable realtime

data systems. Manning Publications Co., 2015.

[4] J. Kreps, “Questioning the Lambda Architecture”,

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

[5] I. Ganelin, E. Orhian, K. Sasaki, and B. York, Spark: Big Data Cluster Computing

in Production. 2016.

[6] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

2010. The Hadoop Distributed File System. In Proceedings of the 2010 IEEE

26th Symposium on Mass Storage Systems and Technologies (MSST) (MSST

'10). IEEE Computer Society, Washington, DC, USA, 1-10.

DOI=http://dx.doi.org/10.1109/MSST.2010.5496972

[7] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a distributed messaging

system for log processing. SIGMOD Workshop on Networking Meets

Databases, 2011.

[8] W. Yang et al. “Big Data Real-Time Processing Based on Storm.” 2013 12th

IEEE International Conference on Trust, Security and Privacy in Computing

and Communications (2013): 1784-1787.

http://www.oreilly.com/ideas/questioning-the-lambda-architecture

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 43

[9] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael

Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion

Stoica. 2016. Apache Spark: a unified engine for big data processing.

Commun. ACM 59, 11 (October 2016), 56-65. DOI:

https://doi.org/10.1145/2934664

[10] Apache Spark, spark.apache.org

[11] Apache Storm, www.storm.apache.org

[12] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized

structured storage system. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35-40.

DOI=http://dx.doi.org/10.1145/1773912.1773922

[13] Apache HBase, https://hbase.apache.org

[14] “Stream processing with MapR”, https://mapr.com/resources/stream-processing-

mapr/

[15] https://www.talentica.com/assets/white-papers/big-data-using-lambda-architecture

[16] https://aws.amazon.com/blogs/big-data/how-smartnews-built-a-lambda-

architecture-on- aws-to-analyze-customer-behavior-and-recommend-content/

[17] S. Kasireddy, “How we built a data pipeline with Lambda Architecture using

Spark/Spark Streaming”, https://medium.com/walmartlabs/how-we-built-a-

data- pipeline-with-lambda-architecture-using-spark-spark-streaming-

9d3b4b4555d3

https://doi.org/10.1145/2934664
http://www.storm.apache.org/
https://hbase.apache.org/
https://mapr.com/resources/stream-processing-mapr/
https://mapr.com/resources/stream-processing-mapr/
https://www.talentica.com/assets/white-papers/big-data-using-lambda-architecture
https://aws.amazon.com/blogs/big-data/how-smartnews-built-a-lambda-architecture-on-aws-to-analyze-customer-behavior-and-recommend-content/
https://aws.amazon.com/blogs/big-data/how-smartnews-built-a-lambda-architecture-on-aws-to-analyze-customer-behavior-and-recommend-content/
https://aws.amazon.com/blogs/big-data/how-smartnews-built-a-lambda-architecture-on-aws-to-analyze-customer-behavior-and-recommend-content/
https://medium.com/walmartlabs/how-we-built-a-data-pipeline-with-lambda-architecture-using-spark-spark-streaming-9d3b4b4555d3
https://medium.com/walmartlabs/how-we-built-a-data-pipeline-with-lambda-architecture-using-spark-spark-streaming-9d3b4b4555d3
https://medium.com/walmartlabs/how-we-built-a-data-pipeline-with-lambda-architecture-using-spark-spark-streaming-9d3b4b4555d3
https://medium.com/walmartlabs/how-we-built-a-data-pipeline-with-lambda-architecture-using-spark-spark-streaming-9d3b4b4555d3

REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 44

[18] “Lambda Architecture for Batch and Stream Processing”,

https://d0.awsstatic.com/whitepapers/lambda-architecure-on-for-batch-aws.pdf

[19] “A prototype of Lambda architecture for financial risk”,

https://www.linkedin.com/pulse/prototype-lambda-architecture-build-financial-

risk- mich/

[20] “Applying the Lambda Architecture with Spark, Kafka, and Cassandra”,

https://github.com/aalkilani/spark-kafka-cassandra-applying-lambda-architecture

[21] Adam Warski, “Evaluating persistent, replicated message queues”

http://www.warski.org/blog/2014/07/evaluating-persistent-replicated-message-queues/

https://d0.awsstatic.com/whitepapers/lambda-architecure-on-for-batch-aws.pdf
https://www.linkedin.com/pulse/prototype-lambda-architecture-build-financial-risk-mich/
https://www.linkedin.com/pulse/prototype-lambda-architecture-build-financial-risk-mich/
https://www.linkedin.com/pulse/prototype-lambda-architecture-build-financial-risk-mich/
https://www.linkedin.com/pulse/prototype-lambda-architecture-build-financial-risk-mich/
https://github.com/aalkilani/spark-kafka-cassandra-applying-lambda-architecture

	San Jose State University
	SJSU ScholarWorks
	Spring 5-20-2019

	Real-Time Data Processing With Lambda Architecture
	Omkar Ashok Malusare
	Recommended Citation

	tmp.1558380526.pdf.rWp1G

