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Abstract 

 
Data has evolved immensely in recent years, in type, volume and velocity. There are several 

frameworks to handle the big data applications. The project focuses on the Lambda Architecture 

proposed by Marz and its application to obtain real-time data processing. The architecture is a 

solution that unites the benefits of the batch and stream processing techniques. Data can be 

historically processed with high precision and involved algorithms without loss of short-term 

information, alerts and insights. Lambda Architecture has an ability to serve a wide range of use 

cases and workloads that withstands hardware and human mistakes. The layered architecture 

enhances loose coupling and flexibility in the system. This a huge benefit that allows 

understanding the trade-offs and application of various tools and technologies across the layers. 

There has been an advancement in the approach of building the LA due to improvements in the 

underlying tools. The project demonstrates a simplified architecture for the LA that is 

maintainable. 

 

 
 

Index terms – Lambda Architecture (LA), Batch Processing, Stream Processing, Real-time 

Data Processing 
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1. INTRODUCTION 

 
With tremendous rate of growth in the amounts of data, there have been innovations both 

in storage and processing of big data. According to Dough Laney, Big data can be thought of as 

an increase in the 3 V’s, i.e. Volume, Variety and Velocity. Due to sources such as IoT sensors, 

twitter feeds, application logs and database state changes, there has been an inflow of streams of 

data to store and process. These streams are a flow of continuous and unbounded data that demand 

near real-time processing of data. 

The field of data analytics is growing immensely to draw valuable insights from big chunks 

of raw data. In order to compute information in a data system, processing frameworks and 

processing engines are essential. The traditional relational database seems to show limitations 

when exposed to the colossal chunks of unstructured data. There is a need to decouple compute 

from storage. The processing frameworks can be categorized into three frameworks – batch 

processing, stream data processing and hybrid data processing frameworks. 

Traditional batch processing of data gives good results but with a high latency. Hadoop is 

a scalable and fault-tolerant framework that includes Map Reduce for computational processing. 

[1][2] Map Reduce jobs are run in batches to give results which are accurate and highly available. 

The downside of Map Reduce is its high latency, which does not make it a good choice for real-

time data processing. In order to achieve results in real-time with low-latency, a good solution is 

to use Apache Kafka coupled with Apache Spark. This streaming model does wonders in high 

availability and low latency but might suffer in terms of accuracy.
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In most of the scenarios, use cases demand both fast results and deep processing of data. 
 

[3] This project is focused towards Lambda Architecture that unifies batch and stream processing. 

Many tech companies such as Twitter, LinkedIn, Netflix and Amazon use this architecture to 

solve multiple business requirements. The LA architecture aims to meet the needs of a robust 

system that is scalable and fault-tolerant against hardware failures and human mistakes. On the 

other hand, the LA creates an overhead to maintain a lot of moving parts in the architecture and 

duplicate code frameworks [4]. 

The project is structured into different sections. The Lambda Architecture emerges as a 

solution that consists of three different layers. The LA is an amalgamation of numerous tools and 

technologies. The LA fits in many use cases and has applications across various domain
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2. BACKGROUND 

 
Traditional batch processing saw a shift in 2004, when Google came up with Hadoop 

MapReduce for big data processing [1]. MapReduce is a scalable and efficient model that 

processes large amounts of data in batches. The idea behind the MapReduce framework is that the 

collected data is stored over a certain period of time before it is processed. The execution time of 

a batched MapReduce job is dependent on the computational power of the system and the overall 

size of the data being processed. That is why, large scale processing is performed on an hourly, 

daily or weekly basis in the industry as per the use case. MapReduce is widely used for data 

analytics with its batch data processing approach but tends to fall short when immediate results 

are required. 

In recent times, there has been a need to process and analyze data at speed. There is a 

necessity to gain insights quickly after the event has happened as the value diminishes with time. 

Online retail, social media, stock markets and intrusion detection systems rely heavily on 

instantaneous analysis within milliseconds or seconds. According to [5], Real-time data processing 

combines data capturing, data processing and data exploration in a very fast and prompt manner. 

However, MapReduce was never built for this purpose, thereby, leading to the innovation of stream 

processing systems. Unlike batch processing, the data fed to a stream processing system is 

unbounded and in motion. This can be time series data or generated from user’s web activity, 

applications logs, or IoT sensors, and must be pipelined into a stream processing engine such as 

Apache Spark [9] or Apache Storm [11]. These engines have the capability to compute analysis 

that can be further displayed as real-time results on a dashboard.
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Stream processing is an excellent solution for real-time data processing, but the results 

can sometimes be approximate. As data arrives in the form of streams, the processing engine only 

knows about the current data and is unaware of the dataset as a whole. Batch processing 

frameworks operate over the entire dataset in a parallel and exhaustive approach to ensure the 

correctness of the result. Stream processing fails to achieve the same accuracy as that of batch 

processing systems. 

Batch and stream processing were considered diametrical paradigms of big data architecture 

until 2013, when Nathan Marz founded the Lambda Architecture (LA). [3] describes how LA 

addressed the need of unifying the benefits of batch and stream processing models. 

According to Marz, the following are the essential requirements of the LA: 

 
• Fault-tolerant and robust enough to withstand code failures and human errors 

 

• The layers must be horizontally scalable. 

 

• Low latency in order to achieve real-time results 

 

• Easy to maintain and debug.
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3. LAMBDA ARCHITECTURE 

 
The proposed architecture is demonstrated in Fig. 1. The incoming data is duplicated and 

fed to the batch and speed layer for computation. 

 

 

 
 

 
Fig. 1. Lambda Architecture [2] 

 
[3] discusses in detail about the three layers in the LA. A subset of properties necessary 

for large-scale distributed big data architectures is satisfied by each layer in the LA. A highly 

reliable, fault-tolerant and low latency architecture is developed using multiple big data 

frameworks and technologies that scale out in conjunction across the layers. 

3.1. BATCH LAYER 

 

The crux of the LA is considered to be the master dataset. The master dataset constantly 

receives new data in an append-only fashion. This approach is highly desirable to maintain the
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immutability of the data. In the book [3], Marz stresses on the importance of immutable 

datasets.  The overall purpose is to prepare for human or system errors and allow reprocessing. As 

values are overridden in a mutable data model, the immutability principle prevents loss of data. 

Secondly, the immutable data model supports simplification due to the absence of indexing 

of data. The master dataset in the batch layer is ever growing and is the detailed source of data in 

the architecture. The master dataset permits random read feature on the historical data. The batch 

layer prefers re-computation algorithms over incremental algorithms. The problem with 

incremental algorithms is the failure to address the challenges faced by human mistakes. The re- 

computational nature of the batch layer creates simple batch views as the complexity is addressed 

during precomputation. Additionally, the responsibility of the batch layer is to historically process 

the data with high accuracy. Machine learning algorithms take time to train the model and give 

better results over time. Such naturally exhaustive and time-consuming tasks are processed inside 

the batch layer. 

In the Hadoop framework, the master dataset is persisted in the Hadoop File System 

(HDFS). [6] HDFS is distributed and fault-tolerant and follows an append only approach to fulfill 

the needs of the batch layer of the LA. Batch processing is performed with the use of MapReduce 

jobs than run at constant intervals and calculate batch views over the entire data spread out in 

HDFS. 

The problem with the batch layer is high-latency. The batch jobs have to be run over the 

entire master dataset and are time consuming. For example, there might be some MapReduce. 
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jobs that are run after every two hours. These jobs can process data that can be relatively old as 

they cannot keep up with the inflow of stream data. This is a serious limitation for real-time data 

processing. To overcome this limitation, the speed layer is very significant. 

3.2. SPEED LAYER 

 
[3] and [5] state that real-time data processing is realized because of the presence of the 

speed layer. The data streams are processed in real-time without the consideration of completeness 

or fix-ups. The speed layer achieves up-to-date query results and compensates for the high-latency 

of the batch layer. The purpose of this layer is to fill in the gap caused by the time-consuming 

batch layer. In order to create real-time views of the most recent data, this layer sacrifices 

throughput and decreases latency substantially. The real-time views are generated immediately 

after the data is received but are not as complete or precise as the batch layer. The idea behind this 

design is that the accurate results of the batch layer override the real-time views, once they arrive. 

The separation of roles in the different layers account for the beauty of the LA. As 

mentioned earlier, the batch layer participates in a resource intensive operation by running over 

the entire master dataset. Therefore, the speed layer must incorporate a different approach to meet 

the low-latency requirements. In contrast to the re-computation approach of batch layer, the speed 

layer adopts incremental computation. The incremental computation is more complex, but the data 

handled in the speed layer is vastly smaller and the views are transient. A random- read/random-

write methodology is used to re-use and update the previous views. There is a demonstration of 

the incremental computational strategy in the Fig. 2.
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Fig. 2. Incremental Computation Strategy [3] 

 

 

 
 

3.3. SERVING LAYER 

 
The serving layer is responsible to store the outputs from the batch and the speed layer. [3] An 

arrangement of flat records with pre-computed views are obtained as results from the batch layer. 

These pre-computed batch views are indexed in this layer for faster retrieval. This layer provides 

random reads and batch upgrades due to static batch perspectives. According to [3], whenever the 

LA is queried, the serving layer merges the batch and real-time views and outputs a result. The 

merged views can be displayed on a dashboard or used to create reports. 

Therefore, the LA combines the results from a data-intensive, yet accurate batch layer, and a 

prompt speed layer as per the required use case.
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4. TOOLS AND TECHNOLOGIES 

 
The LA is a generic purpose architecture that allows a choice between multiple 

technologies. Each layer has a unique responsibility in the LA and requires a specific 

technology. Here is a list of a few technologies used across this architecture: 

4.1. APACHE KAFKA 

 
According to [7], Apache Kafka is a distributed pub-sub/messaging queue used to build 

real-time streaming data pipelines. A topic is used to store the stream of records inside 

Kafka. A publisher pushes messages into the topics and a consumer subscribes to the topic. 

Due to the fact that Kafka is a multi-consumer queue, the messages can be rewound and 

replayed in case of a point of failure. There is a configurable retention period to persist all 

published records irrespective of their consumption. The data generated from user website 

activity, applications logs, IoT sensors can be ingested into Apache Kafka. 

[10] shows how it is the responsibility of Apache Kafka to duplicate the data and send 

each copy to the batch and the speed layer respectively. 

4.2. APACHE HADOOP 

 
[2] defines Apache Hadoop as a distributed software platform for managing big data across 

clusters. The idea behind Hadoop was instead of bringing data towards compute, bring 

compute to the data. The Hadoop framework can be categorized into storage and compute 

models known as Hadoop Distributed File System and MapReduce respectively.
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4.2. HDFS 

 
HDFS is a scalable, reliable and fault-tolerant file system that stores huge quantities of 

data. HDFS is the most used technology for storage in the batch layer. [5] The immutable, 

append- only master dataset is dumped inside a resilient HDFS. 

4.3. MAPREDUCE 

 
According to [1] and [2], MapReduce is a programming paradigm that manipulates key- 

value pairs to write computations in map and reduce functions. In the map phase, the individual 

chunks of data generated through splits of input-data are processed in parallel. The output from 

the map phase is then sorted and forwarded to the reduce stage of the framework. The 

MapReduce framework runs over the master dataset and performs the precomputation required 

in the batch layer. Hadoop also includes Hive and Pig, which are high level abstractions that later 

translate to MapReduce jobs. 

4.4. APACHE SPARK 

 
As discussed in [9] and [10], the process of reading and writing to a disk in MapReduce 

is slow. Apache Spark is an alternative to MapReduce and runs up to 100 times faster due to in- 

memory processing. Spark works on the entire data as opposed to MapReduce, which runs in 

stages. Resilient Distributed Datasets (RDD) is the primary data structure of Spark that is a 

sharable object across jobs representing the state of memory. Spark is a polyglot and can run 

stand-alone or on Apache Mesos, Kubernetes, or in the cloud. Spark supports multiple features 

such as batch processing, stream processing, graph processing, interactive analysis and machine 
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learning. 

 

4.5. SPARK STREAMING 

 
Spark streaming is an extension of core Spark API to enable processing of live data 

streams. The input data streams are divided into micro batches by Spark streaming and then final 

streams of results in batches are processed by the Spark Engine. Fig. 3. illustrates the same. 

 

 
Fig. 3. Spark Streaming [10] 

 
The live stream data can be ingested from a source such as Apache Kafka and can be 

analyzed using various functions provided by Spark. The processed data can be dumped out to 

databases, file systems, live dashboards or be used to apply machine learning. A stream of 

continuous data is represented with DStreams (discretized streams) and is basically a sequence of 

RDDs. The speed layer can be implemented using Spark Streaming for low latency requirements. 

4.6. APACHE STORM 

 
Apache Storm is the basis of the speed layer in the LA suggested by Nathan Marz [3]. 

 

Instead of micro-batching the streams, Storm relies on a one-at-a-time stream processing approach. 
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Due to this, the results have lower latency compared to Spark Streaming. [11] Storm is dependent 

on a concept called topologies which is equivalent to MapReduce jobs in Hadoop. A topology is 

a network of spouts and bolts. A spout is considered as the source of a stream, whereas the bolt 

performs some action on the stream. 

4.7. APACHE HBASE 

 
[13] Apache HBase is a non-relational distributed database that is a great option for the 

serving layer. It is a core component of the Hadoop Framework that handles large scale data. 

Due to extremely good read and write performance, the batch and real-time views can be stored 

and read in real-time. It fulfills the responsibility of exposing the views created by both the layers 

in order to service incoming queries. 

4.8. APACHE CASSANDRA 

 
Apache Cassandra is heavily used in the LA to store the real-time views of the speed layer. 

It is the preferred technology proposed by [3] to store the output from stream processing 

technologies. Along with that, it supports high read performance to output reports. Cassandra is a 

distributed database and has the ability to perform, scale and provide high availability with no 

single point of failure. [12] The architecture includes a masterless ring that is simple, easy to setup 

and maintain. Instead of maintaining a separate database in the serving layer like HBase or 

ElephantDB, Cassandra can be used to fulfill the same purpose. This reduces a lot of overhead and 

complexity.
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5. APPLICATIONS OF LAMBDA ARCHITECTURE 

 
Lambda architecture can be considered as almost real-time data processing architecture. It 

can withstand the faults as well as allow scalability. It uses the functions of batch layer and stream 

layer and keeps adding new data to the main storage while ensuring that the existing data will 

remain intact. In order to meet the quality of service standards, companies like Twitter, Netflix, 

and LinkedIn are using this architecture. Online advertisers use data enrichment to combine 

historical customer data with live customer behavior data and deliver more personalized and 

targeted ads in real-time and in context with what customers are doing. LA is also applied to detect 

and realize unusual behaviors that could indicate a potentially serious problem within the system. 

Financial institutions rely on trigger events to detect fraudulent transactions and stop fraud in its 

tracks. Hospitals also use triggers to detect potentially dangerous health changes while monitoring 

patient vital signs, sending automatic alerts to the right caregivers who can then take immediate 

and appropriate action. Twitter APIs can be called to process large feeds through the lambda 

architecture pipeline and sentiment analysis can be performed. Additionally, complex networks 

can be protected from intrusion detection by tracking the failure of a node and avoiding future 

issues. 

As discussed in [14], MapR uses the Lambda architecture for online alerting in order to 

minimize the idle transports. The architecture used by MapR is demonstrated in Fig. 4. 
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Fig. 4. Lambda Architecture at MapR [14] 

 
One of the customers of MapR captures real-time values of geo-spatial locations of the truck fleet. 

The captured values are directly forwarded to MapR, which are then handled by the LA. 

The speed layer implements Apache Storm to provide online alerts. In the batch layer, MapReduce 

is run to calculate tax reduction reports. 

In [15], a software development company named Talentica uses the LA for mobile ad 

campaign management. In a mobile ad campaign management, a processing challenge is faced 

due to high volumes and velocities of data. If real-time views are not generated, the campaign 

might fail to deliver and incur heavy losses in terms of revenue and missed opportunities. The 

company faced a situation where over 500 GB of data and 200k messages/sec were generated. 

The company needed a unified approach including both batch and stream and hence, the 

architecture demonstrated in Fig. 5. was established. 
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Fig. 5. Lambda Architecture at Talentica [15] 

 
The LA turned out to be a cost effective and scalable solution to meet the demanding requirements 

of the mobile ad campaign. 

[16] provides detailed information about how a LA was built on AWS to analyze customer 

behavior and recommend content by a software engineer who works at SmartNews. 

SmartNews aggregates outputs from machine learning algorithms with data streams to gather user 

feedback in near real-time. The LA helps them achieve the best stories on the web with low- 

latency and high performance. The architecture followed at SmartNews can be seen in Fig. 6. 
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Fig. 6. Lambda Architecture at SmartNews [16] 

 
 

 
 

Another use case of LA can be seen incorporated by the tech giant, Walmart Labs [17]. 

Walmart is a data driven company and produces business and product decisions based on the 

analysis of data. The use case focuses on click stream analysis in order to find the unique visitors, 

orders, units, revenues, site error rates. During peak hours, the pipeline holds as much as 250k 

events per second. The software engineers at Walmart devised a LA solution as illustrated in Fig. 

7. for better productivity and results. 
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Fig. 7. Lambda Architecture at Walmart Labs [17] 

 
This framework is a simplified version of LA because of the Spark implementation in the 

batch and speed layer. As discussed earlier, Spark provides APIs for both batch and Spark 

streaming. Due to this, there is a considerable decrease in the complexity of the code base. There 

is no need to maintain separate code frameworks as Spark enables code reuse.
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6. LIMITATIONS OF THE TRADITIONAL LAMBDA ARCHITECTURE 

 
 

 
Initially, when the LA was proposed, the batch layer was meant to be a combination of 

Hadoop File System and MapReduce and the stream layer was realized using Apache Storm.  

Also, the serving layer was a combination of two independent databases i.e. ElephantDB and 

Cassandra. Inherently, this model had a lot of implementation and maintenance issues. [4] 

Developers were required to possess a good understanding of two different systems and there was 

a steep learning curve. Additionally, creating a unified solution was possible but resulted a lot of 

merge issues, debugging problems and operational complexity. 

 

The incoming data needs to be fed to both the batch and the speed layer of the LA. It is 

very important to preserve the ordering of events of the input data to obtain thorough results. The 

process of duplicating streams of data and passing it over to two separate consumers can be 

troublesome and creates operational overhead. The LA does not always live up to the expectation 

and many industries use full batch processing system or a stream processing system to meet their 

use case.
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7. A PROPOSED SOLUTION 

 
As understood, the LA can lead to code complexity, debugging and maintenance problems if not 

implemented in the right manner. A proper analysis and understanding of existing tools helped 

me realize that the LA can be implemented using a technology stack comprising of Apache Kafka, 

Apache Spark and Apache Cassandra. There are multiple ways of building a LA. In this approach, 

I will try one of them. I will use Apache Zeppelin to display the results observed in the serving 

layer. 

 

 
 

Fig. 8. Proposed Lambda Architecture
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7.1. DATASET 

 
As discussed earlier, LA handles fast incoming data from sources such as IoT sensors, web 

application clickstreams, application logs etc. In our case, a log producing continuous flow of 

clickstream is chosen as a dataset. The dataset resembles an online retail web application and the 

clickstream events. Basically, this is a simulation of streams in the form of logs. Kafka producer 

will publish this data on the broker which will be used by the downstream systems, i.e. the batch 

and speed layers. The log will be demonstrated in the following format: 

 

 
 

 
Fig. 9. Data Set
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7.2 APACHE KAFKA – DATA INGESTION 

Kafka is a distributed streaming platform with the following capabilities: 

- Publish and subscribe to streams of records, similar to a message queue or enterprise 

messaging system. 

- Store streams of records in a fault-tolerant durable way. 

- Process streams of records as they occur. 

 

Kafka is used to build ingestion pipelines for scalable data processing systems and very well fits 

our real-time data processing use case. A brief introduction to the architecture and terminologies 

used in Kafka: 

 

 
Fig. 10. Apache Kafka [7]
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Kafka acts as a publisher-subscriber model and hence benefits from the loose coupling between 

the producers and the consumers. A Kafka cluster contains brokers to store the published messages 

from a producer. The consumers subscribe to the broker and receive the messages in order. The 

asynchronous nature of Kafka really helps out in building scalable architectures. 

 

 

 

 
                                                       Fig. 11. Anatomy of a Topic [7] 

 
 

The Kafka cluster stores streams of records in categories called topics. Each record consists of a 

key, a value, and a timestamp [12]. A topic is a category or feed name to which records are 

published. A topic is broken down into partitions that can be scaled horizontally. 

Topics in Kafka are always multi-subscriber; that is, a topic can have zero, one, or many 

consumers that subscribe to the data written to it. In our architecture, the Kafka Producer produces 

continuous streams of data in the form of clickstream events and pushes them on to the Kafka 

broker. The streams are then forwarded to HDFS and Spark’s stream processing engine.
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7.3 APACHE SPARK – BATCH + SPEED 

 
In the previous architecture, there was a mixture of two processing systems for the batch and speed 

layer respectively. The batch layer consisted of the Hadoop stack – HDFS for storage and 

MapReduce for compute. The speed layer consisted of the fast MapReduce version, i.e. Apache 

Storm. 

In our architecture, we will rely only on Apache Spark. 

 
Spark revolves around the concept of a resilient distributed dataset (RDD), which is a fault- 

tolerant collection of elements that can be operated on in parallel [8]. An RDD is immutable 

data structure. There are two types of operations for an RDD, i.e. transformations and actions. 

A transformation basically creates a new dataset from an existing dataset. An action basically 

after running a computation on the dataset, returns a value to the driver program. 

Spark uses a DAG approach to optimize the operations. In Spark, the transformations are 

lazy and are not computed until an action operation occurs. Whenever an action takes place, 

all the transformations are executed. A directed acyclic graph is formed for the RDDs and 

are executed in order. If a dataset is created through a map transformation operation then it 

will only return the result of the reduce to the driver instead of a larger mapped dataset.  

By default, each transformed RDD may be recomputed each time you run an action on it. 

However, you may also persist an RDD in memory using the persist (or cache) method, in 

which case Spark will keep the elements around on the cluster for much faster access the 

next time you query it. 

We make use of the Kafka Consumer APIs to Integrate Kafka with Spark. There are two  
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types of approaches to achieve the same, i.e. Receiver based Approach and Direct Approach. 

We will use the Direct Approach because of the following advantages it provides: 

1) Efficiency 

 
2) Simplified parallelism 

 

Exactly-one semantics 

Also, Direct Kafka streams will make sure that there is a 1-1 mapping between the Kafka partition  

and the Spark partition. We can make use of Spark’s DataFrame API to read data from HDFS in 

a structured format using Spark SQL. 

Building the Speed Layer with Spark: 

Basically, we fork the data coming from Kafka into a HDFS and into stream processing engine of 

Kafka. We make use of Spark’s DStream API to deal with the streaming data. 

Discretized Stream or DStream is the basic abstraction provided by Spark Streaming. It represents 

a continuous stream of data, either the input data stream received from source, or the processed 

data stream generated by transforming the input stream. Internally, a DStream is represented by a 

continuous series of RDDs, which is Spark’s abstraction of an immutable, distributed dataset.  

Each RDD in a DStream contains data from a certain interval. Any operation applied on a DStream 

translates to operations on the underlying RDDs. The DStream operations hide most of these 

details and provide the developer with a higher-level API for convenience.
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7.2 APACHE CASSANDRA – SERVING LAYER 

 
Apache Cassandra is a NoSQL distributed management system designed for large amounts of data 

and provides high availability with no single point of failure. It serves our use case as it can take 

heavy write loads and be gracefully used for analytics. We use a Spark Cassandra Connector 

Library that provides excellent integration between the two systems. As per the CAP theorem, it 

is only possible to have either of consistency or availability in a distributed system. The consistency 

parameter in Cassandra is tunable and configurable with a trade-off with availability. In our use 

case, there is a need for high availability and hence, consistency can be compromised. Furthermore, 

the data modeling in Cassandra revolves around the queries. It is possible to build tailored tables 

and materialized views with a read-write separation for better performance. A Cassandra cluster is 

configurable and for our use case I went with a simple strategy with a default replication factor of 

3. Additionally, Cassandra’s Query Language (CQL) integrates well with Apache Zeppelin for 

querying and analytics.  

 

7.2 APACHE ZEPPELIN 

 
Apache Zeppelin is a web-based notebook which brings data exploration, visualization, sharing 

and collaboration features to Spark. The reason  to choose Zeppelin is because  of its support for 

Spark APIs and CQL .

https://hortonworks.com/hadoop/spark


REAL-TIME DATA PROCESSING WITH LAMBDA ARCHITECTURE 31 

 

 

 
8.  COMPARITIVE ANALYSIS 

 

 

   
 

 

 

 

 
 

 

 

Fig. 12. COMPARISON BETWEEN ARCHITECTURES 
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MAPREDUCE VS SPARK 
 

As demonstrated in the table below, Spark gives better performance compared to MapReduce. 

 

 

 

     DATASET SIZE 

         (size in MB) 

 

 MAPREDUCE 

      (execution time in seconds) 

 

          APACHE SPARK 

      (execution time in seconds) 

80 46 20 

263 79 41 

550 120 73 

800 183 107 

1230 288 157 

 

 

 

 

 
 

 

Fig. 13. MapReduce vs Apache Spark 
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SPARK VS STORM 
 

 

When the Lambda Architecture was initially proposed, it consisted of Apache Storm as the engine 

for the speed layer. Apache Storm follows a native streaming approach for the creation of real-

time views. Spark has grown exponentially during these years and has been a top-level Apache 

Project. Spark has been a preferred solution due to rich APIs for SQL (Spark SQL) and Machine 

Learning (MLlib). Spark streaming is more of a micro-batch processing engine. The below 

diagram demonstrates the meaning of micro-batching as it is an overlap of batch and stream and 

can be thought of as a fast-batch processing.  

 

 
Fig. 14. Batch vs Streaming vs Micro-Batch 

 

 

The choice between Storm and Spark Streaming is dependent on a lot of factors. Both the 

technologies have built-in support for fault tolerance and high availability. The term real-time data 

processing is a relative term and dependent on the use case. For our use case, initially, Storm performs 

slightly better in comparison to Spark on the basis of low-latency. As time progresses, Spark  
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Streaming matches the performance of Storm. There is a trade-off between latency and ease-of- 

development that impacts the design decision in the proposed architecture. Unlike Spark, Storm does 

not support using the same application code for both batch and stream processing. The traditional 

architecture has separate processing engines across the parallel layers. There is a considerable 

overhead in software installation and maintenance of MapReduce and Storm. Even though the 

application logic remains almost same, writing code for two different systems was difficult for my 

use case. The group of APIs supported by Storm and MapReduce are very different to each other. 

This issue can easily scale up on an industry-level. This is where Spark’s unified API for batch and 

stream processing helped my case. Spark has a unified API that can be reused in both the layers. 

Spark Streaming is inherently a micro-batch, therefore, foreachRDD operation streamlined the 

application logic. The proposed architecture performs computation and manipulation in SQL with 

the help of SparkSQL. This helps the vast community of developers and analysts that prefer SQL for 

data processing. Additionally, the interoperability between Spark and Cassandra is smooth due to the 

Spark-Cassandra connector. This helped us push the processed records into Cassandra tables with 

ease. 

We carried out an analysis for different data sizes and worked it out with Apache Storm and Spark 

Streaming. The demonstration can be seen below in the table followed by a figure.  
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     DATASET SIZE 

         (size in MB) 

 

 APACHE STORM 

(execution time in seconds) 

 

          SPARK STREAMING 

      (execution time in seconds) 

600 0.41 0.62 

800 0.53 0.67 

1200 0.58 0.71 

1350 1.07 1.09 

1570 1.12 1.15 

 

 

 

 

 

Fig. 15. Storm vs Spark Streaming 
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KAFKA VS OTHER QUEUEING SYSTEMS 
 

 

 
 

Fig. 16. Performance Comparison Between Queueing Systems [21] 

 

 

The above figure is a demonstration for the comparison between different pub-sub/queueing 

systems. The blue value represents the throughput of the sending messages i.e. Sender. The red 

value represents the throughput of receiving the messages i.e. Receiver. 

The LA is meant to handle data at a huge scale. Especially for big data with very high velocity, 

a resilient queueing system such as Kafka is necessary. Even though other pub/sub systems such 

as ActiveMQ and RabbitMQ are used widely, they do not match the results of Kafka. The major 

reason to go with Kafka for our use case is due to its ability to rewind records with the help of an 

offset handled by a consumer. This offloads a lot of burden from the queueing system and results 

in loose coupling. Additionally, Kafka provides a very good persistence mechanism and a 

configurable retention period that fits in our use case very well. I have set the retention period to  
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seven days after which I push the data to HDFS. If re-computation is required, we can always 

look up the data from HDFS. 

 

SERVING LAYER SIMPLIFIED 

 
In the traditional LA, the serving layer comprised of both the ElephantDB and Apache Cassandra. The views  

 

computed in the batch layer are sent to ElephantDB. The views calculated in the speed layer are sent to Apache 

 

Cassandra. The proposed architecture comprises of a single database to hold the views from both the batch and 

 

the speed layer. Due to growth and acceptance of Apache Cassandra, building software systems using 

 

Cassandra as a data store has become very easy. Unlike the traditional architecture, the proposed architecture 

 

has a Spark Processing engine on top of the serving layer datastore. Hence, a distributed, heavy-write database 

 

like Cassandra smoothly integrates with our use case. This alleviates the burden of maintaining separate 

 

databases and therefore reduces storage cost. 
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SUMMARIZED COMPARISON BETWEEN TRADITIONAL & PROPOSED ARCHITECTURE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Traditional Lambda Architecture 

 

Proposed Lambda Architecture 

 

 

Batch Layer 

 

Storage – HDFS 

 

Compute - MapReduce 

 

Storage – Kafka (HDFS only if 

necessary) 

 

Compute – Apache Spark 

 

Speed Layer 

 

  

Apache Storm 

 

 

Spark Streaming 

 

 

Serving Layer 

 

 

ElephantDB, Apache Cassandra 

 

 

Apache Cassandra 

 

 

Code Reusability 

 

 

Low 

 

 

High 

 

 

Complexity 

 

   

 High 

 

 

Low 

 

 

Maintenance 

 

High 

 

Low 

 

Learning Curve 

 

High 

 

Low 

 

Cost 

 

High 

 

Low 
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9. KEY INSIGHTS 

 
1) The trouble and overhead to duplicate incoming data can be eliminated with the help of Kafka. 

Kafka can store messages over a period of time that can be consumed by multiple consumers. 

Each consumer maintains an offset to denote a position in the commit log. Thus, the batch and 

speed layers of the LA can act as consumers to the published records on the topics in Kafka. This 

reduces the duplication complexity and simplifies the architecture. 

2) Spark’s rich APIs for batch and streaming make it a tailor-made solution for the LA. The 

underlying element for Spark streaming API (DStreams) is a collection of RDDs. Hence, there is 

huge scope for code reuse. Also, the business logic is simpler to maintain and debug. Additionally, 

for the batch layer, Spark is a better option due to the speed it achieves because of in-memory 

processing. 

3) Kafka is a beast that can store messages for as long as the use case demands (7 days by default, 

but that is configurable). We have used HDFS for reliability in case of human or machine faults. 

In fact, we can totally eliminate HDFS from the batch layer and store the records as they are in the 

Kafka topics. Whenever re-computation is required, the commit log inside Kafka can be replayed. 

4) Kafka’s commit log is very useful for event sourcing as well. As the commit log is an 

immutable, append-only data store, a history of user events can be tracked for analytics. It finds 

it application in online retail and recommendation engines. 

5) Cassandra is a write heavy database that can build tables as per new use cases. Kafka commit 

log can be replayed and new views can be materialized using Cassandra. 
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10.   CONCLUSION & FUTURE WORK 

 
Due to a tremendous evolution of big data, there is a big challenge to process and analyze 

the large amounts of data. Traditional systems such as relational databases and batch processing 

systems are not able to keep up with the big data trends. Even though Hadoop frameworks instill 

a great promise and reduce complexities in distributed systems, they fail to satisfy the real-time 

processing capabilities. 

The primary goal of the project is to demonstrate and synthesize the advancements in the 

field of real-time data processing with Lambda architecture. The architecture is a robust 

combination of batch and stream processing techniques. Each layer in the architecture has a 

defined role and is decoupled from the other layer. The LA is overall a highly distributed, scalable, 

fault-tolerant, low-latency platform. All the data entering the system is sent to both the batch and 

the speed layer for further processing. The purpose of the batch layer is management of the master 

dataset and a pre-compute of the batch views. The high latency disadvantage of the batch layer is 

compensated by a speed layer. The serving layer accumulates the batch and real-time views. 

The beauty of the architecture is to apply different technologies across the three layers. 

As the big data tools are improving day-by-day, the LA provides new opportunities and 

possibilities. It is the responsibility of the LA to translate the incoming raw data into something 

meaningful. There is a massive demand for real-time data processing in the industry, which is 

addressed by the LA. The system is a good balance of speed and reliability. Although the LA has 

many pros, there are a few observed cons as well. There are a lot of moving parts resulting into 

coding overhead due to the involvement of comprehensive processing in the disparate batch and 

speed layers. In certain scenarios, it is not beneficial to perform re-processing for every batch  
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cycle. Additionally, it can be difficult to merge the views in the serving layer. Therefore, we have 

introduced a LA using Apache Spark as a common framework for both batch and speed layer.  

This simplifies the architecture to a great extent and is maintainable as well. Furthermore, a 

detailed comparison has been made between the two architcetures depending on the design 

decision and trade-offs. 

 The future work will be to understand the different technologies that can be used as an 

alternative to the proposed architecture. Apache Samza is a stream processing engine that 

integrates very well with Kafka.  It is built by the same researchers that were responsible for the 

development of Kafka. It would be interesting to try different use cases with the architecture and 

analyze how they perform. 
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