
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-22-2019

Robust Lightweight Object Detection
Siddharth Kumar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Kumar, Siddharth, "Robust Lightweight Object Detection" (2019). Master's Projects. 715.
DOI: https://doi.org/10.31979/etd.y2c8-xjtg
https://scholarworks.sjsu.edu/etd_projects/715

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F715&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F715&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F715&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F715&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F715&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/715?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F715&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Robust Lightweight Object Detection

A project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Siddharth Kumar

May 2019

sidkuma24.github.io

c© 2019

Siddharth Kumar

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Robust Lightweight Object Detection

by

Siddharth Kumar

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2019

Dr. Robert Chun Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Prof. Kevin Smith Department of Computer Science

Abstract

Robust Lightweight Object Detection

By Siddharth Kumar

Object detection is a very challenging problem in computer vision and has been a

prominent subject of research for nearly three decades. There has been a promising in-

crease in the accuracy and performance of object detectors ever since deep convolutional

networks (CNN) were introduced. CNNs can be trained on large datasets made of high

resolution images without flattening them, thereby using the spatial information. Their

superior learning ability also makes them ideal for image classification and object de-

tection tasks. Unfortunately, this power comes at the big cost of compute and memory.

For instance, the Faster R-CNN detector required 180 billion FLOPs for training, and

has over 100 million parameters.

In this project, we explore the popular state-of-the-art object detectors and present

their contributions and shortcomings. Then we explore the recent lightweight detectors

which try to address the issue of high resource requirements by building leaner models.

Building upon the contributions of the state-of-the-art object detectors, and recent de-

velopments in CNN training, we propose our own lightweight detector. We proposed a

novel CNN block, to improve the inter-channel dependency in feature maps, called the

inter-channel dependency block (ICDB). Through experiments on benchmark datasets

we demonstrated our model attains better accuracy compared to the previous methods.

Three benchmarking datasets PASCAL VOC 2007, KITTI and COCO have been used

to demonstrate that our model scales well to different scenarios.

Keywords: Convolutional neural networks, deep learning, Faster R-CNN,

neural networks, object detection, SSD, YOLO

Acknowledgements

I would like to thank Dr. Robert Chun for giving me the opportunity to work on this

project and for his continued guidance and support necessary to complete this project.

I would also like to thank my committee members for their invaluable feedback that

helped me improve this project. Finally, I would like to thank my family and friends

and for their continuous support and guidance throughout the duration of this project.

iv

Contents

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Report Organization . 4

2 Background 5

2.1 Deep Learning . 5

2.2 Convolutional Neural Networks . 6

2.2.1 Training . 8

2.3 Some Terms and Definitions . 8

2.3.1 Intersection Over Union (IOU) . 9

2.3.2 Precision and Recall . 9

2.3.3 Average Precision . 9

3 Object Detection Methods 11

3.1 Deep Learning Based Object Detectors . 11

3.1.1 Region Proposal Based Framework 12

3.1.1.1 R-CNN . 12

3.1.1.2 SPP-net . 13

3.1.1.3 Fast R-CNN . 14

3.1.1.4 Faster R-CNN . 15

3.1.1.5 R-FCN . 16

3.1.1.6 FPN: Feature Pyramid Network 17

3.1.2 Regression/Classification Based Frameworks 19

3.1.2.1 YOLO . 19

3.1.2.2 SSD . 19

4 Lightweight Object Detection Methods 20

4.1 Tiny-YOLO . 21

4.2 MobileNet-SSD . 21

4.2.1 Depthwise Separable Convolutions 21

v

Contents vi

4.2.2 Architecture and Training . 22

4.2.3 Width Multiplier and Resolution Multiplier 22

4.3 DSOD . 23

4.3.1 Architecture of DSOD . 23

4.3.2 Training DSOD . 24

4.4 Tiny-DSOD . 25

4.4.1 Architecture of Tiny-DSOD . 25

4.4.1.1 Backbone Sub-network 25

4.4.2 Front-end Network . 26

5 Implementation Details 28

5.1 Caffe . 28

5.2 Proposed Model . 29

5.3 Back-end Network . 29

5.3.1 Dense Blocks . 29

5.3.2 Depthwise Separable Convolutions 31

5.3.3 DDB . 33

5.3.4 ICDB . 33

5.4 Front-end Network . 35

5.4.1 Downsampling Block . 35

5.4.2 Upsampling Block . 35

6 Experiments and Results 38

6.1 Datasets . 38

6.1.1 ImageNet . 39

6.1.2 PASCAL VOC . 39

6.1.2.1 Results on PASCAL VOC 40

6.1.3 KITTI . 42

6.1.3.1 Results on KITTI . 42

6.1.4 COCO . 43

6.1.4.1 Results on COCO . 43

7 Conclusion and Future Work 47

Bibliography 49

List of Figures

2.1 VGG16 architecture. 7

3.1 R-CNN architecture [12]. 12

3.2 3 level spatial pyramid pooling used in the SPP-net detector. [13]. 14

3.3 Fast R-CNN architecture.[31]. 15

3.4 R-FCN architecture. [2]. 17

3.5 Structure of FPN [23]. (a) Feature pyramid using an image pyramid. (b)
Feature pyramid using just a single feature map. (c) Variant of (b) using
the entire feature pyramid for prediction. (D) FPN combines (b) and (c). 18

4.1 Stem Block in DSOD. ’S’ = stride. 24

4.2 The two types of dense blocks used in Tiny-DSOD. Here ’S’ stands for
stride and ’C’ for number of channels. [21]. 26

5.1 The contents of a dense block with growth rate of k = 4.[17] 30

5.2 Dense Blocks with the transition layers between them. 31

5.3 Regular filters vs depthwise separable convolutional filters. [16] 32

5.4 The new DDB block in the proposed model. 33

5.5 Inter-channel dependency block (ICDB) as used in the proposed method. 34

5.6 Downsampling block in the font-end network. 36

5.7 Upsampling block in the font-end network. 36

5.8 The front-end network. 37

6.1 Detection results of some of the methods on sample image taken from
PASCAL VOC 2007 dataset. 41

6.2 PASCAL VOC 07 and 12, detection speed, running on the our system. . . 42

6.3 KITTI Results. 44

6.4 Time taken per image for KITTI. Tested on system configuration given
in table 6.1 . 45

6.5 Results on a sample from COCO. 46

vii

List of Tables

6.1 System Specifications . 38

6.2 Datasets Used for Experiments. 39

6.3 PASCAL VOC 2007 Detection Results. 40

6.4 KITTI Detection Results. 43

6.5 Detection Results on COCO test-dev dataset. 45

viii

Chapter 1

Introduction

In simple words, object detection is classification and localization of common everyday

objects in natural scene images or videos. Ever since deep convolutional neural networks

(CNN) were applied to object detection, there has been a tremendous improvement in

the accuracy of object detectors. These detectors can be trained on big datasets with

high-resolution images, with multiple object classes.

Object detection is a popular topic of research in compute science because of its wide

scope of applications. With minor changes, generic object detection techniques can be

used in domain-specific applications like pose estimation, pedestrian detection [27], [6]

, face detection [36], [39], autonomous driving , human-behaviour analysis, to name a

few. It is the most fundamental technique for getting useful insights into images and

videos.

Given the diverse applications, it is imperative that an object detection system is

’robust’ i.e., can handle a comprehensive set of inputs with good output accuracy, have

high detection speed and make efficient use of resources, to be cost effective. All of this

makes object detection a challenging task. Moreover, the real-life images suffer from

lighting-problems, occlusion, pose, viewpoint and size variations, which make the task

of object detection harder.

Over the recent years, thanks to steadfast developments in machine learning and

deep learning, researchers have been able to address most of these problems, yielding

promising results. Based on these recent developments, the process of object detection

(using deep learning) can split into three simpler steps, as follows:

1

Introduction 2

Region Selection: Natural images may contain multiple objects with varying sizes

and positions, this is why the entire image need to be searched for objects. A naive

approach would be to use a sliding windows of changing sizes that goes through the entire

image. This generates all possible bounding-boxes, most of which would not contain any

object. These windows make region selection slow. Therefore it is important to have

a efficient method for generating region proposals such that it eliminates most of the

useless proposals and retains most of the relevant proposals. In chapter three, some of

more recent detectors have been presented that used more sophisticated techniques for

generating region proposals. It can observed that having a good region selection method

makes the detector faster and more accurate. In the second part of chapter three, there

are method that eliminate the region selection step and transform object detection into

a regression problem.

Feature extraction: The most important and the compute intensive step is feature

extraction. It involves generating different types of features from the image that may

be used for recognizing the objects. Before deep learning, feature like Histogram of

sparse codecs (HSC) [32], HOG [3] and Haar-like [22] were used for object detection.

Unfortunately, these feature had to be extracted manually from the image and then

fed in the corresponding detector. Moreover, the scope of these feature were limited

and they could not account the multiple objects of varying sizes in the image. With

the introduction of convolutional neural networks (CNN), feature extraction became

much more powerful, thanks to high learning and expressive capacity of CNNs. Since

feature extraction is the most compute intensive step, it is important that it is done

efficiently. Through the different object detectors presented in the subsequent chapters

it can be seen that an efficient method for feature extraction and substantially speed-up

the detector and forms the basis of lightweight object detection.

Classification: The last step in detection is classification. It involves using the

features extracted in the previous step to generate the class scores and bounding-box

offsets. Most deep learning based object detector use two parallel Softmax layers [12] to

generate the class score and the bounding-box offsets respectively.

CNNs were used for the first time for object detection in 2012. On the PASCAL VOC

[8] benchmark dataset, they improved the detection accuracy by 30% over the previous

methods based on the HSC based object detectors. This was due to the following

Introduction 3

advantages. First, these methods used sliding window technique to generate object

proposal which gives a large number of redundant proposals. Second, the manually

computed feature tend to have a big semantic gap with the input image. Third, deep

CNNs can learn more complex feature from an image. Although the better learning

ability was due much larger number of parameter which make the process of object

detection compute expensive and slow.

R-CNN, region based CNN is the first method to used CNN to obtain state-of-the-art

accuracy. Rather that the naive sliding window approach it uses selective search [38] to

generate region proposals over the input image. Each of these region proposals are then

fed into a CNN for classification and the bounding-box offsets are generated through

regression. Due its novel approach and superior accuracy R-CNN led to a new class

of object detectors like Fast R-CNN, Faster R-CNN, which incrementally improved on

both detection accuracy and performance.

Another class of detectors are proposal-free. YOLO [29] and SSD [26] are examples

of proposal-free detectors. YOLO generates a fixed grid on the input image and performs

regression on it. This regression is done using a CNN which generates an objectness score

for each of the boxes on the grid. Objectness score is how likely a box contains a class

of object. Single-shot mulit-box detector or SSD, uses anchor boxes and multi-scale

feature maps for object detection. It is faster that most of the previous state-of-the-art

detectors. Therefore, most of the lightweight detectors borrow design principles from

SSD.

State-of-the-art detectors such as Faster R-CNN, YOLO, SSD have large number

of parameters making them compute intensive and slow. Lightweight detectors are an

attempt to address this problem by building detectors with leaner model which yield

similar or slightly lower accuracy at a considerably lower compute cost. This makes

lightweight detectors suitable for devices with limited resources, such as laptops and

smartphones.

In this project, we have explored the different object detectors that use deep CNN for

feature extraction and classification. The advantages and shortcomings of each of these

methods have been presented. Then, the recent developments in lightweight detectors

has been examined. Recent development in CNNs design and training has been investi-

gated and used to build a model a more robust and accurate lightweight detector while

Background 4

keep the parameter count in check. Finally, the proposed inter-channel dependency block

(ICDB) has been explained, and how the ICDB block improves the information flow and

ultimately the detector accuracy. Experiments on the benchmark datasets show that the

proposed method performs better compared to the previous lightweight methods with

respect to accuracy. Although the model also has marginally more parameters compared

to it’s counterparts.

1.1 Report Organization

Chapter 2, explains some of the fundamentals concepts of deep learning and CNNs

that we frequently come across during object detection. Chapter 3, presents the all

the state-of-the-art object detectors. In chapter 4, the lightweight detectors have been

presented. In chapter 5, the proposed method and the corresponding implementation

has been discussed in detail. In chapter 6, the different experiments and their results on

the selected benchmark datasets has been presented. These experiments show that the

proposed method scales well do different datasets and also give better detection accuracy

compared to its lightweight counterparts.

Chapter 2

Background

In this chapter, the basics of deep learning and CNNs has been discussed. Beginning with

a short introduction to deep learning concepts.Then, VGG16 a commonly used CNN in

object detectors for feature extraction has been used to explain different layers in a

CNN. Section 2.3 talks about CNN training using Stochastic Gradient Descent (SGD).

Section 2.4, enumerates some of the many benefits of CNNs in computer vision tasks.

The chapter ends with the definitions of some important terms, used for measuring the

accuracy of object detectors.

2.1 Deep Learning

Pitts et. al [28] presented a paper on neural networks in 1947. They used mathematical

equations to represent the learning process of a neuron. The following years saw slow

research and development related to neural networks. Three decades later, in 1980,

after the development of the back-propagation technique, neural network were again a

hot topic of research. This new training technique made it much faster to train neural

network, making them feasible for practical applications. More recently, Hinton et.

al [15] demonstrated that deep neural network are capable at building better speech

recognition models than Hidden Markow Models (HMMs). Since then, there has been

a rapid growth in the field of deep learning. Some of the major breakthroughs are as

follows:

5

Background 6

• Free and easy access to high-quality datasets, ImageNet [4], Common Objects in

Context (COCO) [24] and PASCAL VOC [7]. These dataset made it easier to

perform deep learning research.

• Powerful CPUs and GPUs made it possible to build bigger and powerful models.

• Distributed training techniques that allowed models to be trained in parallel across

multiple systems.

• Development of Auto-encoders [5], improved neural network training by improving

the initialization of weights.

• Batch Normalization (BN) was introduced in 2015, allowed the training of deeper

neural network, by reducing extreme variations in the network weights. These

days, BN is used in almost all neural networks as well as convolutional neural

networks.

• Overfitting happens when a network is very closely trained on the train set and

performs poorly on new inputs. It can occur due to small number of training

examples or when the model trains for too many iterations. Overfitting can be

remedied by regularization [1]. Regularization modifies the loss function by adding

a penalty term. This term reduces large variations in the weights by reducing the

value of the gradient term. Dropout is another technique to avoid overfitting. It

involves fixing the weights of certain weights during training.

• Development of more powerful CNNs like like MobileNet [16], ResNet [14], GoogLeNet

[37], AlexNet [20], gave rise to better models for detection and classification.

2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) have been used to successfully build many end-

to-end models for image classification and object detection. These models automatically

extract features and perform classification without the need for any manual intervention.

Using the example of VGG16 the different layers in a CNN has been explained here.

The architecture of VGG16 has been shown in the figure 2.1. It uses 13 convolutional

layers, three fully-connected layers, 3 max pool layers and a softmax output layer.

Background 7

Figure 2.1: VGG16 architecture.

Convolutional layer : Consist of N number of filters of H ×W dimensions that

perform convolutions over the input image or feature map. The size of the filter is called

its Receptive Field. Each of the filters contain C channels, same as the input channels.

The filters perform matrix multiplication with the corresponding values in the receptive

field and store the result in a new matrix, which is output feature map.

Using the sliding window technique, the filter goes through the entire input map

(image or feature map). The output is a new map that can be used as input to other

convolution layers. It can also be subjected to prediction or classification. For example,

consider a 3 × 3 filter and a 32 × 32 input map. The input has three channels. For

convolution, the filter will slide over the entire image, performing matrix multiplications.

The number of blocks the filter moves in each step is called stride. The size of the output

map depends on the filter size and strides.

Consider an input RBG image of size, 32× 32, and 12 filters of size, 3× 3 with three

channels each. With stride = 1, each filter will produce an output map of size, 32× 32

with 3 channels each. The outputs of all the filters combined will give the final feature

map, which will have 12 ∗ 3 = 36 channels.

Pooling Layer : It is used to downsample the feature maps or transform them into

1D feature vectors. There are three types of pooling:

• Global Pooling: A single value from each channel of the feature map is selected.

• Average Pooling: The average of values in a fixed size window is selected.

• Max Pooling: The maximum value in a fixed size window is selected.

Sometimes global pooling and average pooling may be combined to form global average

pooling.

Background 8

Full Connected Layer : Contain 1D feature vector that use all the values of the

previous layer. FC layers transform feature maps to 1D feature vectors used to predict

class scores.

Softmax Layer: A special type of FC layer, without weights (parameters), used

to output class scores by converting the values in the feature vectors to probabilities.

Using the softmax equation:

σ(i) =
eZi∑

j=1..K eZj
(2.1)

Here the number of classes = K and Zi is the value ith value in the feature vector

input into into the softmax layer.

2.2.1 Training

The Back-propagation algorithm [1] is used to train neural networks and CNNs. It con-

sists of two step, forward pass and backward pass, which is done for multiple iterations,

until the loss value is small or lower than a selected threshold. An input image going

through all the layer of a CNN continues a forward pass. It ends with the calculation

of loss, using the loss function. The loss value is the propagated backwards and the

gradient of the loss with weights are calculated using Stochastic gradient descent (SGD).

This gradient is then used to compute the new weights.

The inital weights in the CNN filter can be set randomly or by using an Auto-

encoder. They can also be initialized by pre-training a CNN classifier on a image dataset.

The Xavier method for initialization involves using random values in the range of the

activation / gating function. Activation functions are used to introduce non-linearity

on the function learned by a model. Sigmoid and ReLU are examples of activation

functions. Acivation function are used to add non-linearity to the function learned by

the model.

2.3 Some Terms and Definitions

Object detectors mainly use four metrics for evaluation, IoU, Precision, Recall and mAP.

This the following section, the definitions of these metrics has been discussed.

Background 9

2.3.1 Intersection Over Union (IOU)

IoU is used to calculate the accuracy of a predicted bounding box. It measures the

overlap between two bounding boxes. If the ground-truth box is given by (Bg) and the

predicted box is (Bpred), then IoU for for these two bounding boxes is given by:

2.3.2 Precision and Recall

In object detection (or machine learning in general), a correct prediction is called True

Positive or TP. When the detector predicts an object that does not exists, we get

False Positive or FP. When a object present in the ground-truth is not present in the

prediction, it is called a . False Negative or FN.

Precision is defined as the fraction (or percentage) of all true positive prediction out

of all predictions.

Precision =
TP

TP + FP
(2.2)

Recall is all the true positive predictions divided by all ground truth predictions.

Number of GT predictions = TP + FN.

Recall =
TP

groundtruth
=

TP

TP + FN
(2.3)

2.3.3 Average Precision

In simple words, the area under the Precision vs Recall (PR) curve is called Average

Precision. Unfortunately, it is difficult to calculate the area under the PR curve, as it

consists of multiple variations and lines crossing over each other. To simplify this, the

precision value (pi(ri)) for a given recall (ri) is replaced with the max precision for a

recall ≥ ri. This converts the zig-zag lines in the PR curve to orthogonal lines, making it

a combination of rectangles of different dimensions. For recall = ri, let the interpolated

precision be, pinterp(ri), AP is given by equations 2.4, 2.5.

AP =
∑

i=1..N

pintrp(ri).(ri − ri−1) (2.4)

Object Detection 10

pintrp(ri) = maxr̂≥ri(p(r̂)) (2.5)

Mean Average Precision (mAP):

For a detector the AP for all the distinct classes in evaluated. The average of all

these APs is mAP. It is a very commonly used metric for comparing detectors. All

benchmarking dataset provide their own evaluation scripts to calculate mAP using the

predicted bounding-box coordinates and class labels. For all the experiments in this

project, mAP has been computed to determine the accuracy of the model. Fo K classes,

mAP is given by:

mAP =
1

K

∑
i=1..K

APi (2.6)

Chapter 3

Object Detection Methods

Object detection comprises of classification and localization of objects in images and

videos. For practical purposes, the output images are labelled with bounding boxes

and the object classes. This chapter presents the existing state-of-the-art detectors.

These detectors have been classified between two classes based on the detection approach

employed by the method.

Starting with R-CNN [12], most of the state-of-the-art detectors have been discussed

in the order in which they were published. For each detector, the key changes and

contributions have been discussed. Along with a list of drawbacks.

3.1 Deep Learning Based Object Detectors

Most object detectors that came out in the past 7-8 year have used CNNs for feature

extraction. These feature are then subjected to a set of prediction layers that generate

the bounding-box offsets and the class scores. These modern object detectors can be

classified into two types:

• Region proposal based.

• Regression/Classification based.

Region Proposal Based:

These detectors have a two stage detection process. The first step involves the generation

11

Object Detection 12

Figure 3.1: R-CNN architecture [12].

of all region proposals. This steps involves generating multiple bounding boxes for all

possible objects in the image. These bounding box coordinates along with the input

images fed into a feature extractor CNN. The feature maps generated by the CNN

are then transformed into 1D feature vectors to get class scores and bounding box

coordinates. R-CNN [12], Fast R-CNN [11], Faster R-CNN [31], SPP-net [13], R-FCN

[2], FPN [23] used region proposals.

Regression/Classification based:

Detectors that do not use any separated step for region proposals, instead use a combined

step to generate bounding boxes and class scores. YOLO [30] and SSD[25] are the

popular regression/classification based detector.

3.1.1 Region Proposal Based Framework

3.1.1.1 R-CNN

R-CNN is one of the first detectors to use deep CNNs for object detection. It attained

an overall accuracy of 53 % mAP on the PASCAL VOC 07 dataset. This was 30% more

the previous best, a Histogram Sparse Codecs (HSC) detector[32]. Due it promising

results, R-CNN started a new era of object of deep CNN based object detectors.

The design of R-CNN is shown in the figure 3.1. It has three major parts:

• Region proposal generation: Using selective search [38], multiple bounding

boxes are generated for all the objects in the input image. For R-CNN, 2K pro-

posals with the higher objectness score are considered. Selective search uses hi-

erarchical grouping and several saliency measure to score the boxes. It is much

faster than a naive brute-force approach of generating all possible boxes.

Object Detection 13

• Feature Extraction: The input image is cropped and wrapped to the region

proposals and passed through the Krizhevsky’s CNN [20]. Krizhevsky’s CNN has

5 convolution layers and 2 fully-connected (FC) layers. The output of the CNN is

a 4096-D feature vector.

• Classification: For this part, first an SVM classifier is trained on the dataset.

Then the output of the feature extraction step is passes into the classifier to gener-

ate the class scores. The bounding box regressor is used to predict the class scores.

The bounding box regressor is a neural network with one FC layer and softmax

output.

The major shorcomings of R-CNN are as follows:

• It has a very cumbersome training process. There are four different modules in

the model, and each required separate training. This problem is addressed in the

upcoming detectors.

• The input size of the feature extractor CNN is fixes due to the presence of FC layers.

Therefore, each region proposal has to pass through the CNN one at a time. This

step is very time consuming as 2k region proposal have to be processed.

• Despite having a high recall rate, SS generated redundant proposals and is time

consuming. It the more recent detector we see that the region proposal are handle

by a CNN which shares computations with the feature extractor.

3.1.1.2 SPP-net

The input size of R-CNN is limited because of FC layers. The feature extractor required

the input to be cropped and wrapped on the region proposal to a fixed size. This may

cause distortions to the objects inside the region proposal, leading to information loss.

Subsequently causing the detection accuracy to drop. More prominently in images that

contain multiple objects of different sizes. Using spatial pyramid pooling (SPP), SPP-net

[13] attempts to alleviate these problems.

Three level SPP is shown in figure 3.2. SPP uses multiple pooling layers to transform

the feature maps into feature vectors for the FC layers. Consider a feature map with

Object Detection 14

Figure 3.2: 3 level spatial pyramid pooling used in the SPP-net detector. [13].

256 channels. Using a 3-level SPP, the maps are pooled in a feature vector of length 256

taking one value per channel. Using 4 values per channel, they are pooled into a 4×256

length feature vector. Finally, taking 16 values from each channel, they are pooled into

a 16× 256 feature vector. The three feature vector are then concatenated. Rest of the

layer are same as R-CNN.

SPP-net uses the Krizhevsky’s CNN [20] to obtain feature maps. Feature maps of

different sizes are transformed into fixed length feature vectors using the SPP layer.

SPP-net processes all the region proposal in one pass, making it much faster R-CNN.

By avoiding information loss and object distortions cause by cropping and wrapping the

input image, it increases detection accuracy.

3.1.1.3 Fast R-CNN

SPP-net suffered from some major drawbacks. Like R-CNN it had a cumbersome, multi-

stage pipeline. This required additional parameter storage and lead to slow training and

detection speed. The during training, the layers before the the spatial pyramid pooling

layer could not be fine-tuned, causing a drop in accuracy. Faster R-CNN [11] solves

Object Detection 15

Figure 3.3: Fast R-CNN architecture.[31].

these problems by creating a new Region of Interest (RoI) pooling layer and multi-task

loss.

RoI Pooling:

This new layer was added to fixed dimension feature maps from region proposals of

arbitrary sizes. It was done using max pooling on the region of the feature maps inside

a region proposal (also RoI).

Multi-task Loss:

The bounding box offsets and the class score were predicted using two parallel output

layers. Let p = (p0, p1, ..pK−1) be the probabilities for the K classes. The bounding box

offsets are, li = (lia, l
i
b, l

i
c, l

i
d), where i = 0..K. Fast R-CNN uses a novel loss function

that combined both these outputs, called the multi-task loss.

Multi-task loss and RoI pooling allowed for end-to-end training eliminating the prob-

lem of CNN fine-tuning. Since there was no need for individual modules, the model size

also reduced. These modification allowed Fast R-CNN to be more accurate and faster

than SPP-net.

Some of the major shortcomings of Fast R-CNN are as follows:

• The RoIs are forward passed one at a time, which made it slow.

• Region proposal generation using selective search was a bottleneck.

3.1.1.4 Faster R-CNN

Faster R-CNN introduced a Region proposal network (RPN) to address the problems

with RoI pooling and SS based region proposal generation. It used VGGNet as the

Object Detection 16

feature extractor CNN. The RPN was another CNN that would now generate the region

proposals. Feature maps are shared between the feature extractor and RPN. It can

predict the class scores and bounding box offsets for all the RoIs simultaneously.

RPN:

It is used to rank the pre-defined anchor boxes [11]. The output of RPN is probability of

how likely an anchor box contains an object. If this score is higher that a threshold, the

anchor box is considered as a region proposal. Moreover, since there are no FC layer, it

can process all the anchor boxes on the feature map at the same time.

Feature Extractor:

Similar to Fast R-CNN, VGG16 has been used as the feature extractor. The RoI pooling

layer transforms the output feature maps to feature maps with region proposals. Which

goes into two parallel outputs.

Training:

It uses a novel, 4-step alternating training, for fast end-to-end training. These 4 steps

are:

• Fine-tuning of the RPN using ImageNet.

• Fine-tuning of the detection network using ImageNet.

• The RPN and the detection network are then combined and the RPN is selectively

trained by fixing the parameters in the detection network.

• Finally, the other layer of the detection network are fine-tuned keeping the CNN

layers fixes.

On PASCAL VOC 07 and 12, Faster R-CNN obtains an overall 73.2 % mAP and a

speed of 5FPS on the Nvidia Titan X GPU.

3.1.1.5 R-FCN

With respect to the RoI pooling layer, Fast R-CNN, SPP-net and Faster R-CNN can

be divided into two components. First, is the full-convolution layer with shared feature

maps and second is the detection network. This design was inspired by the pioneering

Object Detection 17

Figure 3.4: R-FCN architecture. [2].

CNNs, AlexNet [20] and VGGNet [13], which also contain conv layers followed by FC

layers.

In FCN [34], R-FCN uses a fully-convolutionary shared network. Figure 3.4 shows the

R-FCN architecture. It consists of a fully-convolutionary network with shared feature

map with a regional proposal network (RPN). It uses positive-sensitive score maps to

solve the translation invariance problem. The entire network is trained to end-to-end.

For functionality extraction, R-FCN uses ResNet-101 [14]. ResNet-101 is a fully-

fledged network of 101 layers that also include skips for improving the training of deep

conv networks. When trained on the PASCAL VOC 07 + 12 train set, it achieves an

accuracy of 77.7 mAP. More importantly, it take about 0.17s per picture.

3.1.1.6 FPN: Feature Pyramid Network

The ideas behind the pyramid network feature (FPN) for object detection are shown

in figure 3.5. In the past [9], [13] used many featured image-pyramids (figure 3.5(a)).

The main objective is for the detection of various objects of different sizes to improve

the invariance of the scale. This process unfortunately requires time and memory for

extensive training. In order to avoid this, certain techniques are used to create a single

feature map (figure 3.5(b)).

A feature pyramid is essentially made of feature maps of different sizes. In conven-

tional CNNs, feature maps of different scales are generated at different layers, and these

Object Detection 18

Figure 3.5: Structure of FPN [23]. (a) Feature pyramid using an image pyramid. (b)
Feature pyramid using just a single feature map. (c) Variant of (b) using the entire

feature pyramid for prediction. (D) FPN combines (b) and (c).

layers have semantic gaps between them. FPN combines these multi-scale feature maps

to reduce this semantic gap.

The bottom-up path is the forward pass of the backbone convnet, which produces

feature hierarchy through a 2 step down sample of the corresponding maps. The layers

with the same size of output maps are grouped into the same network stage and the

output of the last layer of each stage is chosen as the reference set of feature maps to

create the following top-down path.

In the top-down paths, the maps from the later stages are upsampled and combined

with the similar sized maps from the bottom-up path using lateral connections. The

channel size of the upsampled map is reduced using a 1 × 1 convolution layer. The

maps are merged using simple element-wise addition. The feature pyramid allows rich

semantics to be extracted from all levels and is trained with all the scales, thus ensuring

a state-of-the- art detection without sacrificing speed and memory. The FPN can be

used with different feature extractors and can be used at different stages of the detection

process.

Lightweight Object Detection 19

3.1.2 Regression/Classification Based Frameworks

Two stage detectors like Faster R-CNN [31] use multi-step alternating training to gen-

erate feature maps. This multi-step process causes a bottleneck and slows the process.

Single-stage regression based detectors perform prediction directly in a set of anchor

boxes and the input image, without any need to explicitly generate region proposals.

This makes them faster and suitable for real-time applications. The most popular single

stage detectors, You only look once (YOLO) [29] and and Single Shot MultiBox Detector

(SSD) [26] have been discussed here.

3.1.2.1 YOLO

The first detector to use the single-stage strategy for detection is YOLO. The input

image is divided into a N ×N grid. The prediction is done for each grid cell to generate

bounding boxes and scores. The feature map generated by the CNN is used to perform

the predictions.

YOLO can perform at 45FPS, a smaller version of YOLO, called Fast YOLO can do

detection at 150FPS.

3.1.2.2 SSD

YOLO suffered from low accuracy due the absence of batch normalization, deep CNNs,

anchor boxes and multi-scale feature maps. Single Shot Multibox Detector (SSD) ad-

dressed these issues and also introduced custom conv layers on top of VGG16.

Using these latest developments in CNNs, it more accurate than Faster R-CNN while

being upto 3× faster. It is faster and more accurate that YOLO as well. Unfortunately,

SSD struggles when working images containing very small objects.

Chapter 4

Lightweight Object Detection

Methods

Faster R-CNN, YOLO and SSD are full-size state-of-the-art detection methods. All

these methods use powerful convolutional neural networks to automatically extract fea-

tures from the input image. Although this high accuracy is due to the large model

size and more number of parameters. This means that they require large compute and

memory resources. Moreover they require long training time, also making them expen-

sive in terms of power usage. These requirements limit the application of such ’full-size’

detectors in low-end battery powered devices.

Lightweight detectors address these concerns by using much smaller models to per-

form detection. This makes them much faster to train and test compared to the full-size

detectors. Taking advantage of recent developments in CNN design and training these

methods can have as low as 15 million parameters, 200× the full-size detector Faster

R-CNN. Tiny-YOLO, a smaller version of YOLO has only 15 million parameters and

perform as fast as 200fps on the PASCAL VOC 07 [8] dataset.

In this chapter, the most recent state-of-the-art lightweight detectors have been pre-

sented. Instead of getting into the details of each of the methods the unique contributions

of these methods have been presented. Finally, the proposed method has been presented

that used the novel inter-channel dependency block (ICDB) block.

20

Lightweight Object Detection 21

4.1 Tiny-YOLO

Tiny-YOLO [30] is the concise version of YOLO. It uses the DarkNet Reference Model1,

instead on the 24 layer deep CNN used on YOLO. This makes Tiny-YOLO much faster

compared to YOLO but with a considerable loss in accuracy.

The DarkNet Reference Model, is a full-convolutional network with 15 Layers. A

full-convolutional network means no full-connected (FC) layers. Having no FC layer

improves the learning ability of a model. DarkNet has 10× lower parameters compared

to Krizchevsky’s CNN [20], used in R-CNN [12].

Tiny-YOLO obtains 57.1 mAP accuracy on the PASCAL VOC 07 dataset, with a

test speed of 7ms per image. The model has approximately, 6.97 billion parameters.

4.2 MobileNet-SSD

MobileNet [16] is the most widely used deep CNN for computer vision applications in

mobile devices, hence the name. MobileNet introduced a new highly-efficient alternative

to the traditional convolution operation, called Depthwise Separable (DS) convolutions.

It also introduced two hyper-parameters to control model size. These contributions have

been discussed in the following sections, along the architecture and training process. It

is seen that using MobileNet as the feature extractor in SSD considerably reduces the

model size and boosts performance with a small drop in accuracy.

4.2.1 Depthwise Separable Convolutions

Depthwise separable convolutions factor the traditional convolution operation into two

efficient steps: (i) Depthwise convolutions, (ii) Pointwise convolutions.

Depthwise Convolutions:

They are shallow layers where the filter contains channels equal to the number of input

channels. Each channel in the filter is responsible for convolution with the corresponding

input channel. This means that the output feature map contains channels equal to the

input image. In the traditional convolution operation, there are N filters with C channels

1https://pjreddie.com/darknet/imagenet/reference

Lightweight Object Detection 22

each, where C = input channels. These operations have been explained in more detail

in chapter 5, ”Implementation”.

Pointwise Convolutions:

Pointwise convolutions are used to add depth to the feature maps produced by the

depthwise convolutions. If number of input channels = C, then pointwise convolution

required N filters of dimension 1 × 1 with C channels each. The output generated by

each of these filters are then stacked together to produce the final feature map. The

dimensions of this feature map is same the one that would be produced by traditional

convolution operation using N D filters with C channels each.

4.2.2 Architecture and Training

MobileNet consists of 13 depthwise convolution layers, one FC layer, one average pooling

and softmax output. Feature maps are downsampled by pooling with stride = 2. Every

depthwise convolution layer is followed by a batch normalization (BN) [18] layer and

ReLU activation (gating function). BN normalizes the scale variations in the outputs

generated by the convolutional layers. This allows for a higher value of the learning rate,

faster training and reduces the need for regularization steps like dropout.

Since, convolution operation is basically a large number of matrix multiplications.

Making these operations more efficient, can speed-up training. So, using pointwise

convolutions with 1× 1 filters reduces the number of matrix multiplications.

For training, MobileNet used an adaptive learning rate computed using the RMSprop

[33] technique. RMSprop allows for faster convergence. The weight-decay for MobileNet

is small because of a smaller model. The official implementation of MobileNet has been

used for our experiments.

4.2.3 Width Multiplier and Resolution Multiplier

Width-multiplier, α was introduced to control the model size by reducing the width

of each layer when required, α ∈ (0, 1]. Consider an input channel with C channels and

width multiplier = α, the number of input channels reduce to αM .

Lightweight Object Detection 23

Resolution Multiplier, ρ was used to reduce model size by reducing the resolution

of the input image and each of the feature maps by the convolution layers. Consider an

input image of dimensions, D ×D, using the ρ the input, the input resolution reduces

to ρD ×D, as ρ ∈ (0, 1].

MobileNet-SSD is a detector that uses MobileNet as the feature extractor, instead of

the original VGG16. It has an accuracy of 68 mAP on the PASCAL VOC 07 dataset.

This is almost 7% lower than the accuracy of SSD with VGG16. On the other hand,

SSD has over 5× more parameter compared to MobileNet-SSD.

4.3 DSOD

Full-size detectors like Faster R-CNN, YOLO, SSD require pre-training, done using the

ImageNet dataset [20]. Training these models from scratch on the detection dataset

leads to lower accuracy. Moreover, the pre-training step induces a learning bias, caused

by differences in the class distribution, loss function and the outputs of the classifier and

the detector. Fine-tuning the detectors reduces this bias, but only to a certain extent.

The process of per-training adds an extra overhead to the training process. Deeply

Supervised Object Detector (DSOD) uses dense connections [35] along a novel training

technique to create object detectors from scratch without the need for pre-training and

fine-tuning. It is one of the first detectors to obtain state-of-the-art accuracy while

performing training from scratch.

DSOD contributions are as follows:

• First state-of-the-art detector to train from scratch.

• Introduced a set of design principles that gives detector that perform better than

the previous state-of-the-art detectors.

4.3.1 Architecture of DSOD

DSOD is a single-stage detector and does not require region proposals. Similar to SSD, it

concatenates multi-scale feature maps and performs the predictions on it. The structure

of DSOD can be divided into two parts:

Lightweight Object Detection 24

Figure 4.1: Stem Block in DSOD. ’S’ = stride.

• Backbone Network: It consists of a stem block, 4 dense blocks, with 4 transition

layers between them. Two of these transition layers with pooling and the other

without pooling layers. The stem block consists of 3 convolutional layers and a

max pooling layer. The dense blocks contains 5 densely connected conv layers. The

transition layer are placed after each of the dense blocks. The backbone network

is also called the back-end sub-network.

• Prediction Network: It consists of multi-scale feature map, like SSD [26]. These

feature maps are concatenated then passed through two softmax layers to predict

the bounding box offsets and the class score respectively. It is also referred as the

front-end sub-network.

4.3.2 Training DSOD

In the DSOD the authors present three design facets that can be combined to create

deeply supervised networks that can be trained from scratch. These are as follows:

• Proposal-free: Through experiments the authors show that only detectors like

SSD and YOLO, that do not require object proposals, can converge without pre-

training. This is cause by the RoI pooling layer. It generates feature maps for

the region proposals but reduces the accuracy of the gradients propagated to the

convolution layer.

• Stem Block: A new stem block containing three conv layer and one max-pool

layer has been used inn DSOD. The DSOD stem block is shown in the figure 4.1.

By demonstrating better detection accuracy, the authors show that the use of stem

block improve the information flow from the input to the dense blocks. It improve

the accuracy of DSOD by 1.8 % mAP compared to DSOD without the stem block.

Lightweight Object Detection 25

• Deep Supervision: The idea here is to have a loss function that helps the

output as well as the hidden layers. Dense blocks [17] are used to achieve this.

Where every layer is connected all its previous layers. These extra connection

improve supervision while using only one loss function. These block imporve both

accuracy and performance of the model. Since, each layer in these blocks only

contains typically 12 layers, the number of parameters are also reduced.

The official DSOD implementation github-DSOD has been used for all the experi-

ments. The training steps remain the same as for SSD with a few changes. L2 regular-

ization [35] has been applied to all the feature maps used in the output.

4.4 Tiny-DSOD

Tiny-DSOD is the most recent lightweight detector with state-of-the-art accuracy. It

is the lighter version of DSOD. Similar to DSOD, it consists of the backend network

and the front-end network. The backend network is use the compute efficient depthwise

convolutions inside dense blocks, forming the depthwise dense block (DDB). The front-

end network uses a lightweight version of FPN called L-FPN. It also uses depthwise

convolutions instead of regular convolutions.

4.4.1 Architecture of Tiny-DSOD

4.4.1.1 Backbone Sub-network

The backbone in Tiny-DSOD consist of dense blocks with compute efficient depthwise

convolutions. This new kind of dense block is called depth-wise dense block (DDB). The

authors proposed dense blocks of two types: (i) DDB-a and (ii) DDB-b.

DDB-a consists of a hyper-parameter w, called model capacity and another one

called growth rate, g. An number of channels in the input is increased w times in

the first convolution layer. The output of this layer is fed into depthwise convolution

layer followed by a pointwise layer. The input and the output feature maps are then

concatenated to form the final output of the block. g is the number of channels in the

pointwise convolution layer.

https://github.com/szq0214/DSOD

Lightweight Object Detection 26

(a) DDB-a

(b) DDB-b

Figure 4.2: The two types of dense blocks used in Tiny-DSOD. Here ’S’ stands for
stride and ’C’ for number of channels. [21].

The total space complexity of the N DDB-a blocks is O(N3g2) where g is the growth

rate. Therefore model complexity increases quickly with increase in N . Also, the con-

catenation of the feature maps generated by two adjacent DDB-a units introduce some

redundant parameters.

DDB-b addresses some of these issues by making some design modifications in DDB-

a. First, the model capacity hyper-parameters is omitted from the block. This makes

the number of channels in each of feature maps equals to g. Second, the pointwise

convolution layer after the depthwise layer is removed to get rid of redundant parameters.

This also reduces the overall space complexity of the block to O(N2g2).

Hence, DDB-b block has a lower space complexity and is used as the basic building

block in the backend network in Tiny-DSOD.

4.4.2 Front-end Network

A lightweight version of FPN [23] has been used to create the front-end network in

Tiny-DSOD. This structure is called L-FPN. Similar to FPN is contains two pathways, a

Implementation Details 27

downsampling pathway and an upsampling pathway, these pathways are inter-connected

using lateral connection to share feature maps. The main advantage of using an FPN is

that it combines small, feature rich maps with larger, shallower maps to obtain seman-

tically rich feature representations.

The upsampling pathways are made of upsampling block consisting of bi-linear in-

terpolation followed by depthwise convolution. The downsampling block consists of two

parallel pathways. First one contains a pointwise convolution layer followed by a max

pooling layer. The second contains a pointwise layer followed by a depthwise convolution

layer.

Tiny-DSOD achieves better accuracy compared to previously proposed lightweight

detectors. More importantly, it does so while keeping the parameter count low, by using

novel blocks like DDB-b and L-FPN. The official Tiny-DSOD implementation has been

used as the baseline for our method. The proposed method adds new layers to Tiny-

DSOD to improve the overall detection accuracy. In the next chapter, the proposed

method has been explained in detail.

Chapter 5

Implementation Details

In the previous chapters we saw most of the state-of-the-art full-size and lightweight

detectors. Lightweight detectors such as MobileNet-SSD and Tiny-DSOD introduced

some promising techniques such as depthwise convolutions, dense blocks and lightweight

FPN to obtain higher accuracy, similar to full-size detectors. Drawing from the success

of these techniques, a new lightweight detector has been proposed that uses a novel inter

channel dependency block (ICDB). The subsequent section present the details about our

proposed method and the implementation.

5.1 Caffe

The official Caffe [19] implementation of Tiny-DSOD1 has been used as the baseline for

implementing the proposed method. Caffe is an open-source deep learning framework

developed by the Berkeley Artificial Intelligence Research (BAIR) group. It has a large

community of contributors and free access, a lot of academic research in deep learning

is done using Caffe. Popular detectors like SSD, DSOD, Tiny-DSOD were developed

using Caffe. Some of the major advantages of Caffe are as follows:

• Nvidia CUDA : Caffe has support for most of the recent Nvidia GPUs that use

the Nvidia CUDA library to perform highly efficient arithmetic operations. Since

these operations form the basis of most deep learning models, having GPU support

is beneficial for optimal performance of object detectors.

1https://github.com/lyxok1/Tiny-DSOD

28

Implementation Details 29

• ATLAS : Automatically Tuned Linear Algebra Software, is an open-source library

which provides memory and compute efficient implementation of common linear

algebra operation such as vector and matrix multiplication. The implementation

more efficient hardware utilization, without the need to write common sub-routines

in low-level code.

Apart from these major advantage, Caffe uses C++ boost library and OpenCV to

allow easy access to several image processing methods.

5.2 Proposed Model

The proposed detector consists of two parts:

• Back-end Network: It is made of dense blocks like in Tiny-DSOD and the

proposed Inter-channel dependency block (ICDB).

• Front-end Network: This part of the network uses a lightweight feature pyramid

network to generate multi-scale feature maps for accurate prediction.

5.3 Back-end Network

The backend network consists of 3 convolution layers, 1 depthwise convolution layer, 5

depthwise dense block (DDB) layers with ICDB and 6 max pooling layers for downsam-

pling the feature maps. The DDB consists of dense blocks using depthwise convolutions

instead of the regular convolutions. In upcoming sections, the structure and working of

the dense block, depthwise convolutions and ICDB block has been discussed.

5.3.1 Dense Blocks

Dense blocks were first introduced in DenseNets [17]. DSOD [35] used it for build

a detector that can be trained from scratch with state-of-the-art accuracy and better

performance. Later, Tiny-DSOD replaced the convolution layers in these dense block

Implementation Details 30

Figure 5.1: The contents of a dense block with growth rate of k = 4.[17]

with depthwise convolution to get the depthwise dense blocks, dense blocks with skip-

connections.

Skip-connection were first introduced by ResNets. It was used to train very deep

CNNs (> 30 hidden layers) as they suffered from the vanishing gradient problem. The

skip-connection improve the gradient flow between the layers and also improve infor-

mation flow. Further, DenseNet introduced dense connections between convolutional

layers. In denseNets, every convolution layer is connected to all the previous layers in

one dense block.

Therefore, inside a dense block, the nth, Ln convolution layer is connected to all the

previous layers, L0, L1..., Ln−1. The N th layer gets the feature maps from all the N − 1

layers. In the implementation, all the feature maps are combined in one 3-D numpy

array.

To facilitate the concatenation of the feature maps, downsampling or upsampling

is done inside a dense block. The downsampling of the feature maps are done using

Implementation Details 31

Figure 5.2: Dense Blocks with the transition layers between them.

transition layers between the dense blocks. These transition layers are made of a batch

normalization (BN) layer, pointwise convolution layer and a max pooling layer.

Every convolution layer in a dense block has a fixed of channels give by, growth-

rate (g). The value is typically, g = 12. This is much lower compared to traditional

convolution layer, which can have over 500 channels. Experiments show dense blocks

based networks perform better than ResNets in both accuracy and speed, while contain-

ing 1/50th parameters. This is one of the major reasons for using dense blocks in our

detector.

5.3.2 Depthwise Separable Convolutions

In this section, the arithmetic behind depthwise separable (DS) convolutions [16] has

been presented. DS convolutions divide standard convolutions into pointwise and depth-

wise convolutions. This process reduces the number of operations in the convolution

operation by a factor of over 1
N , where N is the number of filters in the convolution

layer.

Consider N convolutional filters of dimensions, DL × DL, with M channels each.

Such a filter can be represented by a 4-D array as, DL × DL ×M × N . This filter is

broken into a depthwise filter of dimensions, DL×DL×1×M , and pointwise filter with

dimensions, 1 × 1 ×M ×N . Figure 5.3 shows this factorization. Considering an input

image with with dimensions DI ×DI ×M . The cost of the convolution operation will

be:

DI ·DI ·DL ·DL ·M ·N (5.1)

Now, considering DS convolutions, the first step is depthwise and then pointwise

convolutions. Depthwise convolutions will have one filter / channel of the input image,

the computation cost of this step would be:

Implementation Details 32

(a)

(b)

(c)

Figure 5.3: Regular filters vs depthwise separable convolutional filters. [16]

DI ·DI ·DL ·DL ·M (5.2)

The result of this operation is filtering the features from the input feature map. Then,

pointwise convolutions are applied to create new features. Filters of size 1× 1×N are

used for pointwise convolutions. The cost of this step is:

DI ·DI ·N ·M (5.3)

Finally, the total cost of DS convolutions is:

DI ·DI ·DL ·DL ·M +DI ·DI ·N ·M (5.4)

Comparing the cost of regular convolutions and DS convolutions, we get:

DI ·DI ·DL ·DL ·M +DI ·DI ·N ·M
DI ·DI ·DK ·DL ·M ·N

=
1

N
+

1

D2
L

(5.5)

Implementation Details 33

Figure 5.4: The new DDB block in the proposed model.

It can be seen that DS convolutions reduce the computation cost by a ratio of 1
N + 1

D2
L

.

Making them much more efficient that regular convolution operations.

5.3.3 DDB

Using the DS convolutions inside dense blocks, Tiny-DSOD created the depthwise dense

blocks (DDB). Combining these blocks gives the advantage of lower number of channels

and lower computational cost. Our proposed model consists of DDB blocks, each made

of a 1 × 1 conv layer and channels = g, followed by a depthwise conv layer with same

number of channels. Figure 5.4 shows the variation of DDB used in the proposed model.

5.3.4 ICDB

Feature maps produced by the convolution operation is a good representation of the

features in the input image. Typically, these feature maps contain hundreds of channels,

and more channels means more parameters but it also makes the feature map semanti-

cally rich. Convolutional filter are effective in processing images because they can model

the spatial relations of the objects in an image. Unfortunately, there is no information

on the relationship between all the channels in a feature map. Using simple two layer

neural network, we add the ICDB block in the back-end network, so that the model can

learn the relationships between the different channels in a feature map. This allows the

model to learn which channels contain more relevant information for the current task

(object detection).

Implementation Details 34

Figure 5.5: Inter-channel dependency block (ICDB) as used in the proposed method.

The proposed ICDB block is shown in the figure 6.4. The feature map generated by

the DDB blocks becomes the input of ICDB. The information each of the channel is

aggregated in a feature of vector of size C using global average pooling. This feature

vector is then subjected to ReLU to add non-linearity and passed into a FC layer which

reduced its length by a factor of p to reduce parameter count, as a feature map can have

hundreds of channels. A small value of p means more parameters in ICDB. Experiments

have shown that the value of p = 8 gives a good trade-off between parameter count and

accuracy.

Experiments and Results 35

Finally, the output of the second FC layer is passed through the sigmoid gating

function and re scaled into a 2D feature map with one channel and stacked on top of

the feature maps generated by the DDB.

5.4 Front-end Network

The front-end network is made of L-FPN. A variation of FPN that uses DS convolutions,

similar to the one used in Tiny-DSOD. The structure of the network is shown in figure

5.8. It consists of a downsampling followed by an upsampling pathways with lateral

connection to share feature maps.

First the feature maps produced by the backend network fed into the downsampling

pathway. This feature maps goes through five downsampling blocks. All the down

sampled feature maps are then subjected to the upsampling block. The output of each

of the upsampled blocks and the smallest downsampling block is stacked together to

form the prediction layer. The prediction layer is fed into two parallel softmax layers.

One outputs the bounding box offsets and other gives the class scores.

5.4.1 Downsampling Block

Figure 5.6 shows the downsampling block used in our model. It uses max pooling to

reduce the dimensions of the input feature maps.

5.4.2 Upsampling Block

Figure 5.7 show the upsampling block. Using bi-linear interpolation the feature map

size is doubled. This map is then fed into a depthwise convolution block.

Experiments and Results 36

Figure 5.6: Downsampling block in the font-end network.

Figure 5.7: Upsampling block in the font-end network.

Experiments and Results 37

Figure 5.8: The front-end network.

Chapter 6

Experiments and Results

State-of-the-art detectors like Faster R-CNN, SSD, YOLO, DSOD, Tiny-YOLO, MobileNet-

SSD and the proposed method have been trained and tested on three benchmark datasets,

PASCAL VOC 07 and 12 [8], KITTI [10] and COCO [24]. In the subsequent the experi-

ments of each of the dataset is presented along the training parameters. For each model

and dataset we have computed the number of parameters, computations (FLOPs) and

overall accuracy (mAP) has been recorded and compared.

Table 6.1: System Specifications

Operating System 64-bit Ubuntu 18.04 LTS

CPU Core i9

Memory 32GB

GPU Nvidia RTX 2080 Ti

CUDA Ver. 10.1

6.1 Datasets

The ImageNet [4] dataset has been used for pre-training Faster R-CNN, SSD and YOLO.

PASCAL VOC [7], KITTI [10] and COCO [24] have been used to fine tune and test the

detectors. The following table outline these datasets.

38

Experiments and Results 39

Table 6.2: Datasets Used for Experiments.

Dataset Classes Images Size

ImageNet 200 4,56,567 55G

PASCAL VOC 07 20 9,963 2.7G

KITTI 80 7,481 6.2G

COCO 80 123,287 24G

6.1.1 ImageNet

One of the biggest dataset containing images from 200 classes. It was first introduced in

2010 as a part of the Large Scale Visual Recognition Challenge (ILSCRC). The challenge

consists of classification, object localization and detection task. The ImageNet dataset

is divided into subsets for each of these challenges. Along with the manually labelled

and quality controlled ground truths.

The images in ImageNet are ordered based on the WordNet hierarchy1. WordNet

consists of set of words and phrases that carry the same meaning. Hence, they are also

called ”synomym sets” or ”sysnets”.

ImageNet has been used for pre-training Faster R-CNN, YOLO, SSD and MobileNet-

SSD. This is done by training the feature extractor CNN in each of the detectors as a

classifier, whose weights are then saved in a file. These weights are then used to initialize

the new detector.

6.1.2 PASCAL VOC

This dataset was created for the PASCAL Visual Object Challenge2. For the experi-

ments, we have considered the Pascal VOC 2007 and 2012 datasets as they have been ex-

tensively used for benchmarking detectors by researchers. Unlike ImageNet, this dataset

consists of higher resolution images containing multiple objects, photographed under

natural conditions. Both VOC 07 + 12 consist of 20 classes and a total of 20K images.

1https://wordnet.princeton.edu/
2http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

Experiments and Results 40

Table 6.3: PASCAL VOC 2007 Detection Results.

Method Param. Count Operations (FLOPs) Accuracy (mAP)

Faster-RCNN 134.80M 181.12B 73.2

SSD 26.20M 31.75B 77.2

Tiny-YOLO 15.22M 6.97B 57.1

MobileNet-SSD 5.60M 1.14B 68.0

DSOD-smallest 5.86M 5.29B 73.6

Tiny-DSOD 0.94M 1.06B 72.1

Proposed Method 1.31M 1.2B 73.4

6.1.2.1 Results on PASCAL VOC

All the model compared have been trained on combined VOC 07 and 12 train set. For

the proposed model, the batch size is 128. The initial learning rate is 0.1 which is reduced

by a factor of 10 every 20K iterations. Total number of iterations is 160K. SGD has

been used for gradient calculations, with momentum = 0.1. Weight decay of 0.0005 has

been considered in the SGD to reduce the effect of large gradients and avoid overfitting.

The weights are randomly initialized, with values ∈ (0, 1).

Table 6.3 shows the results on VOC dataset. Faster R-CNN and SSD are the full-size

detectors and Tiny-YOLO, MobileNet-SSD, DSOD-smallest, Tiny-DSOD and proposed

method are the lightweight detectors. These detectors have been considered for com-

parison as they were the state-of-the-art at time of their introduction.

As seen in the table, the proposed model obtains an overall accuracy of 73.4 mAP, bet-

ter than all the lightweight detectors except DSOD-smallest. Although DSOD-smallest

has has 4× the parameters. The computational cost of the proposed method is much

lower.

Among all, the highest accuracy attained by SSD, 77.2 mAP, 4.1% higher that the

proposed method. Unfortunately, the SSD detector is over 20× bigger than the proposed

method. Therefore, it can be said that the proposed model achieves a better trade-off

between accuracy and complexity. The detection results on a sample image from the

VOC 07 test set has been shown in the figure 6.1. Note that the bounding boxes show

the location of the object, labelled with the class and the confidence score.

Experiments and Results 41

(a) SSD on PASCAL VOC 2007

(b) DSOD on PASCAL VOC 2007

(c) Tiny-DSOD on PASCAL VOC 2007

(d) Our method on PASCAL VOC 2007

Figure 6.1: Detection results of some of the methods on sample image taken from
PASCAL VOC 2007 dataset.

Experiments and Results 42

Figure 6.2: PASCAL VOC 07 and 12, detection speed, running on the our system.

6.1.3 KITTI

KITTI is a specialized dataset aimed at creating models for autonomous driving. The

images have been taken by human driven cars equipped with multiple image sensors.

The object detection benchmark in KITTI has been used for this project.

This dataset contains 7000 images with 80 classes. Only the relevant classes such as

cars, pedestrians, traffic-lights etc, have been labelled in the ground-truth images. The

dataset has been divided into a train and test set containing 70% and 30% of the images.

6.1.3.1 Results on KITTI

The KITTI images are much larger compared to the VOC dataset. Therefore, the

resolution of all the layers had to be increased for training. The higher resolution

improved accuracy but also increased the parameter count. All the models were trained

on 5k images and evaluated on 3k images. Considering the larger images and lesser

number of training examples, the batch size was reduced to 64. The total number of

iterations is 60k. Initial learning rate is 0.01 which is divided by a factor of 2 every 10k

iterations.

Conclusion and Future Work 43

Table 6.4: KITTI Detection Results.

Method Params FLOPs Accuracy(mAP) Time (ms)

Tiny-YOLO 22.55M 35.6B 69.8 9.1

MobileNet-SSD 1.98M 9.7B 76.7 28.09

Tiny-DSOD 0.85M 4.1B 77.0 15.15

Proposed Method 1.23M 6.3B 77.6 15.9

SGD with momentum = 0.1 has been used to adjust the model weights. Weigh-decay

= 0.0005, to reduce over-fitting. All the layers are initialized with random weights. Ta-

ble 6.4 shows that out method achieves the higher accuracy among all its lightweight

counterparts. This increase is accompanied with a marginal increase in the model pa-

rameters. The detection result on a sample image from the KITTI dataset is shown in

the figure 6.3.

6.1.4 COCO

One of most challenging object detection dataset created using the images of common

objects. It consists of 200,000 images with object from 80 classes. All the objects in the

ground-truths are annotated with bounding boxes and class labels.

6.1.4.1 Results on COCO

All the models have been trained on the COCO trainval containing 35k images. The

results have been evaluated on the 2015 test-dev dataset. The input size is fixed at

300×300 for all models. For the proposed model, the batch size = 128. Learning rate =

0.1 for 80k iterations, then divided by 10 every 60k iterations. Total training iterations

is 320K as 80 classes require larger output layers and more training. The results are

shown in table 6.5.

The proposed model attained better accuracy compared to other lightweight detec-

tors. The model size is also much smaller compared to others, except Tiny-DSOD. These

results show that the proposed model is accurate and efficient for different applications,

hence can be called a ”robust lightweight detector”. The result on a sample COCO

image is shown in figure 6.5.

Conclusion and Future Work 44

(a) SSD on KITTI

(b) DSOD on KITTI

(c) Tiny-DSOD on KITTI

(d) Our method on KITTI

Figure 6.3: KITTI Results.

Conclusion and Future Work 45

Figure 6.4: Time taken per image for KITTI. Tested on system configuration given
in table 6.1

Table 6.5: Detection Results on COCO test-dev dataset.

Method Param. Count Ops. (FLOPs) mAP Time/Image(ms)

MobileNet-SSD 4.30M 0.80B 22.1 46

Tiny-Yolo 18.43M 34.36B 21.6 5.1

Tiny-DSOD 1.15M 1.12B 23.2 18.14

Proposed Method 1.32M 1.55B 24.6 26.3

SSD 34.30M 34.34B 25.4 145

Conclusion and Future Work 46

(a) SSD on COCO

(b) DSOD on COCO

(c) Tiny-DSOD on COCO

(d) Our method on COCO

Figure 6.5: Results on a sample from COCO.

Chapter 7

Conclusion and Future Work

CNNs have shown to have high capacity to learn which is very beneficial when deal-

ing with high-resolution images containing objects from multiple classes. The major

challenges to object detection such as occlusion, viewpoint changes, scale variations,

lighting problems has been addressed by CNNs much better that older methods. There-

fore, CNN based object detector have been extensively development in the recent year.

Unfortunately, most of these detector have large number of parameters and a very high

computational cost. Full-size detectors such as Faster R-CNN achieves state-of-the-art

accuracy on the VOC dataset, but take 181 billion FLOPs to train. Such detectors

require high-end system to make training and testing feasible.

In an effort to reduce the model complexity of the modern object detectors, a new

category of detectors recently evolved, called lightweight object detectors. These detec-

tors are designed to work in resource-restricted scenarios, such as mobile devices and

laptops. Example of such detectors are Tiny-YOLO, MobileNet-SSD and Tiny-DSOD.

Most of these method borrow the basic design principles from their full-size counter-

parts and at the same time use some novel techniques to reduce the model size and

computation cost.

After exploring the contributions of the state-of-the-art detectors, we proposed a

new lightweight detector with modified dense block and a new inter-channel dependency

block (ICDB). The proposed model attains the accuracy of 73.4 mAP on the PASCAL

VOC 07 testset. 77.6 mAP on KITTI and 24.6 mAP on the COCO dataset. Comparison

47

Conclusion and Future Work 48

shows that the proposed model achieves superior accuracy with a marginal increase in

the model size.

In the future, the accuracy of the proposed model may be improved by using dense

blocks in the backbone network and by setting a higher value for the growth rate of

the dense blocks. Instead of one, multiple ICDB blocks can be added in parallel to

improve the model’s accuracy. Moreover, the proposed model can also be trained for 3D

object detection, by small modifications to the input and output. It can also be used

for real-time object tracking by training on appropriate datasets.

Bibliography

[1] Deep learning in neural networks: An overview. CoRR, abs/1404.7828, 2014.

[2] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-
based fully convolutional networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 379–387. Curran Associates, Inc., 2016.

[3] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de-
tection. In international Conference on computer vision & Pattern Recognition
(CVPR’05), volume 1, pages 886–893. IEEE Computer Society, 2005.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-
Scale Hierarchical Image Database. In CVPR09, 2009.

[5] Li Deng, Michael L. Seltzer, Dong Yu, Alex Acero, Abdel rahman Mohamed, and
Geoffrey E. Hinton. Binary coding of speech spectrograms using a deep auto-
encoder. In Takao Kobayashi, Keikichi Hirose, and Satoshi Nakamura, editors,
INTERSPEECH, pages 1692–1695. ISCA, 2010.

[6] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian de-
tection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach.
Intell., 34(4):743–761, April 2012.

[7] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes challenge: A retrospective. Interna-
tional Journal of Computer Vision, 111(1):98–136, January 2015.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International Journal of Computer
Vision, 88(2):303–338, June 2010.

[9] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. IEEE Trans.
Pattern Anal. Mach. Intell., 32(9):1627–1645, September 2010.

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

[11] Ross Girshick. Fast r-cnn. In Proceedings of the 2015 IEEE International Confer-
ence on Computer Vision (ICCV), ICCV ’15, pages 1440–1448, Washington, DC,
USA, 2015. IEEE Computer Society.

49

Bibliography 50

[12] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. CoRR,
abs/1311.2524, 2013.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. CoRR, abs/1406.4729, 2014.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[15] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine, 29(6):82–97, Nov 2012.

[16] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. CoRR, abs/1704.04861,
2017.

[17] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolu-
tional networks. CoRR, abs/1608.06993, 2016.

[18] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. pages 448–456, 2015.

[19] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional archi-
tecture for fast feature embedding. In Proceedings of the 22Nd ACM International
Conference on Multimedia, MM ’14, pages 675–678, New York, NY, USA, 2014.
ACM.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[21] Yuxi Li, Jiuwei Li, Weiyao Lin, and Jianguo Li. Tiny-dsod: Lightweight object
detection for resource-restricted usages. CoRR, abs/1807.11013, 2018.

[22] Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for rapid
object detection. In Proceedings. International Conference on Image Processing,
volume 1, pages I–I. IEEE, 2002.

[23] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and
Serge J. Belongie. Feature pyramid networks for object detection. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017, pages 936–944, 2017.

[24] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[25] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. 2016.
To appear.

Bibliography 51

[26] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed,
Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR,
abs/1512.02325, 2015.

[27] Eshed Ohn-Bar and Mohan M. Trivedi. To boost or not to boost? on the limits of
boosted trees for object detection. CoRR, abs/1701.01692, 2017.

[28] Walter Pitts and Warren S McCulloch. How we know universals the perception of
auditory and visual forms. The Bulletin of mathematical biophysics, 9(3):127–147,
1947.

[29] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[30] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 779–788, 2016.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 91–99. Curran Associates, Inc., 2015.

[32] Xiaofeng Ren and Deva Ramanan. Histograms of sparse codes for object detec-
tion. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR ’13, pages 3246–3253, Washington, DC, USA, 2013. IEEE
Computer Society.

[33] Sebastian Ruder. An overview of gradient descent optimization algorithms., 2016.
cite arxiv:1609.04747Comment: Added derivations of AdaMax and Nadam.

[34] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39(4):640–
651, April 2017.

[35] Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and Xi-
angyang Xue. DSOD: learning deeply supervised object detectors from scratch.
CoRR, abs/1708.01241, 2017.

[36] K. . Sung and T. Poggio. Example-based learning for view-based human face detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):39–
51, Jan 1998.

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[38] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders. Selective
search for object recognition. International Journal of Computer Vision, 2013.

[39] Paul Viola and Michael J. Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137–154, May 2004.

	San Jose State University
	SJSU ScholarWorks
	Spring 5-22-2019

	Robust Lightweight Object Detection
	Siddharth Kumar
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Report Organization

	2 Background
	2.1 Deep Learning
	2.2 Convolutional Neural Networks
	2.2.1 Training

	2.3 Some Terms and Definitions
	2.3.1 Intersection Over Union (IOU)
	2.3.2 Precision and Recall
	2.3.3 Average Precision

	3 Object Detection Methods
	3.1 Deep Learning Based Object Detectors
	3.1.1 Region Proposal Based Framework
	3.1.1.1 R-CNN
	3.1.1.2 SPP-net
	3.1.1.3 Fast R-CNN
	3.1.1.4 Faster R-CNN
	3.1.1.5 R-FCN
	3.1.1.6 FPN: Feature Pyramid Network

	3.1.2 Regression/Classification Based Frameworks
	3.1.2.1 YOLO
	3.1.2.2 SSD

	4 Lightweight Object Detection Methods
	4.1 Tiny-YOLO
	4.2 MobileNet-SSD
	4.2.1 Depthwise Separable Convolutions
	4.2.2 Architecture and Training
	4.2.3 Width Multiplier and Resolution Multiplier

	4.3 DSOD
	4.3.1 Architecture of DSOD
	4.3.2 Training DSOD

	4.4 Tiny-DSOD
	4.4.1 Architecture of Tiny-DSOD
	4.4.1.1 Backbone Sub-network

	4.4.2 Front-end Network

	5 Implementation Details
	5.1 Caffe
	5.2 Proposed Model
	5.3 Back-end Network
	5.3.1 Dense Blocks
	5.3.2 Depthwise Separable Convolutions
	5.3.3 DDB
	5.3.4 ICDB

	5.4 Front-end Network
	5.4.1 Downsampling Block
	5.4.2 Upsampling Block

	6 Experiments and Results
	6.1 Datasets
	6.1.1 ImageNet
	6.1.2 PASCAL VOC
	6.1.2.1 Results on PASCAL VOC

	6.1.3 KITTI
	6.1.3.1 Results on KITTI

	6.1.4 COCO
	6.1.4.1 Results on COCO

	7 Conclusion and Future Work
	Bibliography

