
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-22-2019

Over speed detection using Artificial Intelligence
Samkit Patira
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Patira, Samkit, "Over speed detection using Artificial Intelligence" (2019). Master's Projects. 712.
DOI: https://doi.org/10.31979/etd.u8qc-9d6e
https://scholarworks.sjsu.edu/etd_projects/712

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/712?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Over speed detection using Artificial Intelligence

A Project Presented to

The Faculty of Department of Computer Science

San Jose State University

In Partial Fulfilment of
the Requirements for the Degree

Master of Science

By

Samkit Patira

May 2019

 2

© 2019
Samkit Patira

ALL RIGHTS RESERVED

 3

The Designated Project Committee Approves the Master’s Project Titled

Overspeed detection using Artificial Intelligence

By

Samkit Patira

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2019

Dr. Philip Heller Department of Computer Science
Dr. Robert Chun Department of Computer Science
Vyas Bhagwat Wave Computing

 4

ABSTRACT

Real Time Overspeed Detection using Artificial Intelligence

By Samkit Patira

Over speeding is one of the most common traffic violations. Around 41 million people are

issued speeding tickets each year in USA i.e one every second. Existing approaches to detect over-

speeding are not scalable and require manual efforts. In this project, by the use of computer vision

and artificial intelligence, I have tried to detect over speeding and report the violation to the law

enforcement officer. It was observed that when predictions are done using YoloV3, we get the best

results.

 5

ACKNOWLEDGEMENTS

The past two years at San Jose State University were great. I learned a lot from professors

and friends.

This project won’t have been possible without the guidance and advise of Prof. Heller. I

would like to express my special thanks to Dr. Philip Heller for his patience and his brilliant

guidance throughout the duration of my project. My completion of the project would not be

accomplished without his support.

I am also thankful to my committee members, Dr. Robert Chun and Vyas Bhagwat for

providing their valuable feedback and guidance.

And finally, I would like to thank my parents and friends for helping me in gathering the

data and guiding me in making this project despite of their busy schedules.

 6

CONTENTS
1 Chapter 1

1.1 Problem Statement………………………………………………………………………………………………….6

1.2 Related Work……..9

1.3 Contribution………11

2 Chapter 2

2.1 Deep Learning……12

2.2 Fully connected neural networks……………………………………………………………………………13

2.3 Convolution Neural Networks…………………………………………………………………………………15

2.4 Traffic Sign Classifier………………………………………………………………………………………….……18

3 Chapter 3

3.1 Data collection………………………………………………………………………………………………………23

3.2 Data Augmentation…………………………………………………………………………………………….…24

4 Chapter 4

4.1 Image classification vs Object Detection………………………………………………………………25

4.2 You Only Look Once (YoLo) …………………………………………………………….……………………26

4.3 Model……27

4.4 Non-Max suppression Algorithm………………………………………………………………….………28

4.5 Neural Network……………………………………………………………….……………………………………29

4.6 Experiments………………………………………………………….………………………………………………30

4.7 Decision Factor…………………………………………….……………………………………………….………33

5 Future Work and Conclusion……………………………………………………………………………………35

6 References……37

 7

CHAPTER 1

Introduction

1.1 Problem Statement

Speeding is one of the biggest traffic violations. It endangers everyone on the road.

According to NHTSA [1], in year 2017 speeding killed 9717 people in the USA. Some of the

consequences of over speeding are loss of vehicle control, increased stopping distance, economic

losses, increased fuel consumption and loss of lives. As crash speeds get very high, airbags and

seat belts may not work as well to protect the passengers from the collision. Over speeding costs

of billions of dollars to the country’s economy [1].

 For example, Orland park, Illinois with population of 60000, police issued 26,821

citations. Out of those 4732 were for speeding. Law enforcement officers spend a significant

amount of time in catching over speed violators. Also, a very small fraction of violators is caught

by the existing system.

The aim of this project is to design an automated over speed detection system that would

notify traffic police with the details of an over speeding vehicle. Once the details are sent to the

regulatory authority, the driver can be charged for over speeding. The main objective of the project

is to eliminate the manpower needed by the existing systems. Currently, officer has to hold the

speeding gun to measure the speed of the vehicles. It should be noted that currently, only 5% of

the violators get speeding tickets. This is because the number of vehicles is much more compared

to law enforcement officers. Some of the cities like San Francisco, Stockton, Gilbert, etc. have less

 8

than 10 officers per 10K [2] population. In this situation, it’s very difficult to catch all the traffic

violators.

In the proposed system, dashcam could be placed inside the vehicle which will read the

traffic speed signs posted on the road. This speed would be compared with the actual speed of the

vehicle using accelerometer present inside the mobile phone and if found very high it will notify

the law enforcement agencies with the details like the place, driver, photo, etc. This will help in

eliminating the manual efforts required. Also, this system can be used in remote places where there

are no officers present.

The project uses deep learning technique that needs a significant amount of computation

for training. Thus, we decided to reduce the scope of the project just to train a model that can read

different traffic speed signs.

 9

1.2 Related Work

Related work in over speed detection mainly involves the usage of devices that are not

installed inside the vehicles. Pacing [3] is quite a common technique where cops drive behind the

vehicle and accelerate until the speed of officer’s vehicle matches the speed of the vehicle of the

suspect and until the distance between both the cars is constant. Then by looking at the

speedometer, the officer can determine the target vehicle speed. But this technique is prone to

human errors. Many time officers may read the wrong reading or may read the reading while he is

accelerating his vehicle.

Another such speed detection system involves the use of a speed gun which is placed in

the direction of moving a vehicle and is based on the radio frequency or laser. Radio wave signal

[4] is sent and then waiting for it to be reflected by the car. Using the timing of the wave signal,

the speed of the vehicle is detected. This involves manual efforts with a person holding the gun.

VASCAR (Visual Average Speed Computer and Recorder) is a small processor that is

placed inside the officer’s car. An officer passes the vehicle at a very high speed than the speed of

the vehicle of the suspect. Officer would be waiting few miles away and by doing some

calculations, it’s possible to calculate the speed of the suspect’s vehicle. This is the type of speed

trap.

Many research studies have been conducted in the field of vehicle speed detection. One

such technique [5] proposed involving the comparison of the vehicle position between the current

 10

frame and the previous frame from video captured with a stationery camera. Another similar

technique uses video surveillance system [6]. Frame of the camera covers specific area, then

calculates the speed of the car on basis of the time the car was in that area.

Figure 1.2 Speed detection using video surveillance

Moreover, most of the existing solutions need manual efforts or some kind of infrastructure

setup. Such systems are either expensive or labor intensive and rely on outdated technology. All

the solutions seen so far are based on physical methods and this is because of the limited

computation capabilities in the ’90s and 2000s. Recent advances in high-performance computation

and artificial intelligence can overcome these drawbacks. This will also ensure that all the over

speeding violators are caught and are reported.

 11

1.3 Contribution

The primary contribution of this project is to design a system that can read traffic speed

signs using computer vision and artificial intelligence. I have tried object detection algorithm

(Yolo) and also experimented with transfer learning so as to use already existing trained model. It

was observed that the by the use of transfer learning, we can significantly improve the effectiveness

of the trained model.

The project report is organized into chapters as follows: Chapter 2 defines common

concepts and terms used in deep learning. Chapter 3 defines various data augmentation techniques

used for training data. Chapter 4 describes algorithm used and experiments. Chapter 5 has the

conclusion and future scope.

 12

CHAPTER 2

Background

In this chapter, I provide background information related to deep learning and other related

concepts. This background information is crucial to understand the algorithms and techniques used

in the project.

2.1 Deep Learning

 Artificial intelligence can be defined as a science or engineering of making machines smart

and intelligent. Deep Learning is a part of artificial intelligence which primarily deals with the

neural networks. Neural networks try to learn from the training data without being programmed

explicitly. They have a variety of applications in domains like natural language processing, image

processing, object detection, classification, speech recognition, text processing, and

summarization, etc.

The basic building block of a neural network is called a neuron. A neuron can be thought

as of biological neurons present inside the human brain. The neural network may have millions of

the neurons. Each neuron is connected to other neurons by means of edges. They receive inputs

from other elements or neurons and then the inputs are multiplied by the weights and result is then

transformed by some mathematical function into the output.

Neural networks have one layer of input, multiple hidden layers, and one output layer.

 13

Figure 2.1 Neuron

In the above figure, neuron has 3 inputs but can have more or less inputs. Each input is

associated with real numbers called weights.

2.2 Fully connected neural networks

Figure 2.2 Fully connected layer

 In fully connected neural networks, each neuron is connected to every other neuron of the

next layer. Input and output length of the data is fixed.

Training:

 Most of the time for training, we use labeled training data. This means that training data

has known output. Functions in neural networks can be classified into a sequence of linear and

non-linear functions.

𝑥 → 𝑓(𝑥)

𝑥 → 𝑊1 → 	ℎ1(W1x) → 𝑊2ℎ1(W1x) →	….		~	𝑓(𝑥)

During the training phase, we try to adjust and set the value of weight matrices. Weights

during the start of training are randomly initialized. These weights are later used in the inference

phase. The main goal of training is to start with the model with very low accuracy and eventually

 14

have a network with high accuracy. We need non-linear functions to make the network more

powerful and means to introduce differentiable. Some of the key terms used during training:

 Sigmoid Function: It is very similar to the step function in which output is between 0 and

1. It is used for models where

Activation: 𝑠𝑖𝑔(𝑥) = 	 0
01234

 Derivative: 𝑠𝑖𝑔5(𝑥) = 𝑠𝑖𝑔(𝑥). (1 − 𝑠𝑖𝑔(𝑥)) Range: [0:1]

 Tanh Function:

Activation: 𝑡𝑎𝑛ℎ(𝑥) = 	 2
4;	234

241234
 Derivative: tanh`(x) = 1 – tanh(x)2 Range: [-1:1]

 ReLu Function: Also called as a rectified linear unit. It outputs the same input for all

positive values other zero.

Activation: 𝑅𝑒𝐿𝑈(𝑥)	@𝑥	𝑥 > 0
0	𝑥 < 0 Derivative: 𝑅𝑒𝐿𝑈(𝑥)	@1	𝑥 > 0

0	𝑥 < 0 Range: [0:µ]

 Leaky ReLu Function: It is very similar to ReLU except it has a scaling factor.

Activation: L𝑅𝑒𝐿𝑈(𝑥)	@ 𝑥	𝑥 > 0
−a	𝑥 < 0 Derivative: L𝑅𝑒𝐿𝑈(𝑥)	@1	𝑥 > 0

−a < 0 Range: [-µ:µ]

 Cross Entropy Loss: Cross entropy loss functions is mainly used in classification

problems.

Cross Entropy Loss = -(yi .log(y`i) + (1-yi). log(1-yi))

During the forward propagation, it takes inputs from the previous layer, and then each node

computes z = Wx + b where W is weight, x is the input and b is the bias [N3]. After this, some

 15

activation function would be applied to the z. Different layers can have different activation

functions. At the end of this process, a loss would be calculated using functions like cross-entropy

loss.

After calculating the loss, back-propagation is carried so as to update the weights. It starts

from reverse topological order to compute the derivative of the node with respect to the previous

node. This will change the values of parameters.

Algorithm:

 Step 1: Calculate the forward phase for each training data sample.

 Step 2: Calculate the backward phase.

 Step 3: Combine the individual gradients.

 Step 4: Update the weights.

 Experiment 1: A simple program was implemented to gain a better understanding of the

forward and backward propagation. This program was written from scratch in python without

using any library. I had used sigmoid as an activation function and mean square error as a loss

function. Training set was XOR table. It was trained for 1250 iterations.

Figure 2.3 Loss vs Iterations Figure 2.4 Input and Output

0

0.05

0.1

0.15

0.2

200 400 600 800 100 1200

Lo
ss

Loss vs Iterations
X1 X2 Y
0 0 0

0 1 1

1 0 1

1 1 0

 16

During the evaluation phase, model performed very well and predicted correct output for

12 entries out of 14 entries.

2.3 Convolution Neural Networks

Convolutional neural networks are inspired by the brain [7]. They have a different

architecture than the previously seen fully connected neural networks. All the layers in CNN used

for image processing have three dimensions and input and output is 3-dimensional. Unlike fully

connected neural network, only some neurons present in a layer are connected to the next layer.

They are mainly used in applications related to image classification and recognition.

Figure 2.5 Convolutional Neural network

Convolutions are capable of extracting different features from an input image. It preserves

the spatial relationship between pixels by learning features using small windows of input data. The

motivation behind using CNN over a simple neural network is that they are capable to learn

relevant features at different levels which was very similar to the human brain. A filter slides over

the input to produce a feature map. Filters are associated with weights. We will get more feature

maps if we use more number of filters. During the training phase, CNN learns or adjusts the values

of weights.

 17

One of the reasons for using CNN over a simple neural network is weight sharing in the

CNN. CNN is more efficient in terms of memory, complexity and, computation. Consider we have

5 filters of size 3x3 in CNN. The number of parameters required would be 3*3*5 = 45 parameters.

In case of traditional a neural network, we will require (45*h*w) parameters where h and w and

are height and width of the image. Also, it is possible to do transfer learning by using CNN.

Transfer learning is a machine learning technique where a model trained for some particular task

can be re-used to perform a similar task. This helps in reducing the training costs.

Some of the layers used in CNN:

Convolution Layer: This layer [N12] does dot product between the input tensor and weight

matrix. The weight matrix is also called as a kernel. A kernel is generally square in shape and is

spatially smaller than input tensor. A kernel can be imagined as a cube which has more depth in

comparison to other dimensions. Kernel slides over the image and each kernel act as a feature

detector.

Max pool Layer: In max pool layer we move the window (size can be 2x2, 3x3, 4x4, etc.) over

the image and take maximum value from the window as an output. Max pool reduces the number

of parameters. It is down sampling layer which reduces the size of an output.

Average pool Layer: Average pool is very similar to the max pool layer. Instead of taking

maximum value from the window, it takes the average of all the values present in the window.

It is also a down sampling layer, but it preserves the input information.

Up sample Layer: Up sample is a deconvolution layer which increases the size of output. It uses

interpolation techniques like bilinear interpolation to produce the output.

 18

Dropout: Drop out is used to prevent over-fitting. It simply ignores some units during the training.

It makes the model more robust but takes more iterations for the model to converge.

Gradient Descent: Gradient descent can be imagined as a ball moving down the hill. The aim is

to find the deepest point among all the hills. It can be seen from the picture. Gradient descent

measures the change in the weights with respect to change in the difference of actual output and

predicted output or error.

2.4 EXPERIMENT 2:

TRAFFIC SIGN CLASSIFIER.

The aim of this experiment was to become familiar with the convolution neural networks

and Keras library. In this experiment, I have classified traffic signs by using convolutional neural

networks. This can have application in the autonomous vehicles. Dataset was taken from German

Traffic Signs [8]. Dataset consisted of around 20000 images belonging to 43 different categories.

These categories included traffic signs like the left turn, right turn, stop sign, one way, etc. Images

just had traffic sign and nothing else in the background.

Images present in the dataset were of different sizes. As a neural network need a fix size

input, images were resized to 48x48. Later, images were converted into greyscale so as to reduce

the input tensor size. Data was split in the ratio of 4:1 i.e 16000 images were used for training and

4000 images were used for validation.

 19

Figure 2.6 Snapshot of images

 For doing this, I have used pandas, NumPy, SkImage, SkLearn, h5py, glob, Keras, Matplot

lib, OpenCV and python. Keras is an open source library which is developed by Google. It uses

Tensorflow at the backend and was installed using pip command. Keras provides support for

various neural network models and is more user-friendly compared to other deep learning libraries.

It supports training on GPU (Graphical Processing Unit) and TPU (Tensor Processing Unit).

OpenCV is an open source library developed by Intel. It is used for computer vision and I have

used it for various image transformation operations. Skimage provides support for image

processing and has inbuilt functionality for geometric transformations, morphing, segmentation,

color changes, etc. 9

 I have used CNN architecture to build the model. This is because our aim here is to do

image classification. As seen previously CNN is a much better option than using multi perceptron

network.

 20

Figure 2.7 Snapshot of model used using Keras

I have used convolution 3x3 with different channels length, max pool, and dropout. To

introduce non-linearity, I have used ReLU as an activation function. Below I have explained some

of the hyperparameters that I have tuned.

I had initially used gradient descent [9]. In this kind of gradient descent, we calculate an

error for each sample but updates the model only after all the samples are evaluated. This is

computationally very efficient but sometimes can lead to wrong convergence. Later, I used

stochastic gradient descent [10] which updates the model after each training sample. This is very

slow, but it leads to the right state of convergence. It should be noted that stochastic gradient

descent is computationally more costly. During inference, it was observed that accuracy was

improved by 14% when a stochastic gradient was used.

 21

I tried experimenting with mean square error and cross-entropy as a loss function. Mean

square takes the square of difference between the actual output and predicted output whereas cross

entropy is the logarithmic function. It turned out that cross entropy was a better option. This is

because mean square error is suited for regression whereas cross-entropy is well for classification

problems.

Learning rate used in the model was dynamic. Learning rate determines how fast the model

would be trained. It is also called as step size and it governs how weights are updated during the

training. Range of learning rate is between 0 to 1. If the learning rate is low, it will take more time

for the model to converge. Initially, learning rate was set as 0.01. Learning rate used is given as

LR = LR * (0.1 * (epoch/10))

Batch size refers to the number of samples present in a single batch. I have taken batch size

as 30.

Epochs refer to the number of iterations of training data. The model was trained for

different values of the epochs but best results were achieved when the number of epochs was 30.

Figure 2.8 Data Flow

Orignal image

Transformation

Model

Result

 22

The model was trained on MacBook Pro which had 16 GB of RAM, 2.9 GHz Intel

processor and Radeon Pro 4 GB graphics card. It took a little more than 9 hours to train the model.

To improve the model, I had used k–fold cross validation where k was 5.

Figure 2.8 Graph of Error vs Epochs

Observation: Over the whole course of training, it was observed that loss was decreasing

with increase in the epochs. Initially, loss was very high and was decreasing non-linearly. After 30

epochs there was a negligible change in the loss and therefore training the model for 30 epochs

would be the most efficient. The best accuracy I was able to achieve was 96% on the validation

set. It takes ~2 seconds for inference of single image using the trained model on the same machine.

For testing, I had clicked manually 25 images and these images were cropped so just as to get the

traffic sign. When testing was done over these images, 21 images predicted the correct categories

whereas 4 images predicted the invalid categories.

0

0.002

0.004

0.006

0.008

5 9 13 17 21 25 29 33

Er
ro

r

Loss vs epochs

 23

CHAPTER 3

Dataset

3.1 DATA COLLECTION

 For training data most of the images I have collected using google map’s street view. Some

of the images were also taken from videos available on YouTube. By doing so I was able to

generate the training dataset of around 530 images. After getting all the images, it is important to

create labels. Bounding boxes were drawn over the speed limit sign and top left and bottom right

coordinates of the boxes were stored in the .txt file. This file also contains information about the

speed limit (category) and the size of the image.

 24

3.2 DATA AUGMENTATION

Training deep learning model on a large number of training samples is always helpful. It

makes the model more robust and prevents overfitting. By exposing the model to the different set

of images with different variations and environment, it helps to achieve more accuracy [13]. I did

data augmentation to generate more training data. Data augmentation is a technique to generate

automatically more images by doing some transformations on images.

I have used several data augmentation techniques. Scaling [12] is done to make the image

dataset diverse. Sometimes object to be detected in the image can be a very small or could be very

large. Rotation rotates the image on x or y axis. Images captured from the camera have a various

angle of rotations. I have added generated images by adding the Gaussian noise [N11]. This will

produce images with different lighting conditions. It will stimulate the practical scenario of images

taken by device for different times of the day.

In contrast stretching technique we change the contrast of an image by altering range of

intensity levels. Histogram equalization is another such technique based on the histogram. We first

find the histogram and then normalize it over the probability distribution.

Tools used to achieve image data augmentation consists of MATLAB, python, SkiImage,

NumPy and OpenCV (Computer Vision library). All the tools used except MATLAB are open

source. By doing so, I was able to create a database of 1930 images from the original 530 images.

All the images in the dataset had speed signs. To prevent overfitting of the model and make the

model more robust, I added some negative images. Negative images consisted of invalid categories

and some images had no traffic speed signs. Final dataset consisted of 2078 images.

 25

CHAPTER 4

4.1 IMAGE CLASSIFICATION VS OBJECT DETECTION

Previously seen CNN for traffic light does image classification. Classification can be

defined as a process of categorizing an image into one of the pre-defined group of classes.

Classification models try to find the most dominating object (area wise) in the image and classify

it [14]. The dominating portion gets the highest score or priority. It does not consider

transformation properties like scaling, location, color changes, rotation, etc. Let’s say we have

trained our classification model for the stop sign and the car. If the car is present in the majority

portion of the image, the image would be classified as a car and will ignore the stop sign. It should

be noted that in our current use case, speed sign will have area less than 5% of total image area.

Image classification also does not care about the location of the object in the frame.

Sometimes we would like to know the location and number of cars or the number of known objects

present in the image. Solution for this is to use object detection model. Classification differentiates

two objects whereas object detection tries to find particular features of objects in the images.

Object detection can be defined as a combination of classification and localization. Object

detection considers all the objects and their location. It is programmed to categorize each known

present object and give details about the location. Well, known application of an object detection

system is Amazon Go stores.

 26

4.2 You Only Look Once (YoLo)

Humans look at the image frame and easily detect what different objects are present in the

image. Traditional computer vision techniques are able to detect the objects in the image only if

the image has a majority portion of that object and nothing else in the background. They use

properties of objects like image color, shape, etc. These algorithms work for a constrained

environment and fail if the images have variations. They may be able to detect a single large-sized

soccer ball in the image very accurately but won’t work if we wish to detect many small size soccer

balls of different variations present in the image.

Under this kind of situations, Yolo comes to rescue. Yolo is an object detection system and

is able to detect a wide variety of the objects present in the real time. Because of its unified

architecture, it is extremely fast in detection. Existing deep learning classifier models like Regions

with Convolutional Neural Network [15] (R-CNN) are capable of performing object detection. For

object detection, these systems use sliding window i.e they consider a classifier for every object to

be detected and slide it over all possible window locations on the image. Once the classification is

done, post-processing is carried out and bounding boxes are redefined. Post processing is also done

to remove duplicated detections. This increases the complexity, computation and time it takes for

the detection.

The basic motivation for using Yolo is the speed and complexity of the system. Instead of

sliding over an image many times, Yolo [16] only looks once and detects all the objects present in

the image. Yolo defines the detection problem as a regression problem and uses features from an

entire image at the time of training. Unlike RCNN, it looks at the entire image during the time of

 27

training and testing That means Yolo predicts all the different object categories present on an

image simultaneously.

4.3 MODEL

Before understanding the working of Yolo, let us understand input to the model. In my

current experiment, input to the neural network consists of the image, type or category of the speed

sign present in the image and bounding box details. Bounding box is a square drawn over the

circular speed signboard. A bounding box has details like normalized x and y position and also

normalized the height and width of the box. All values present in the bounding box have range

from 0 to 1. I have stored all these details in the form of text file. If the image has two different

speed signs (rare case) then there will be two text files. The training dataset consists of the speed

signs of 7 different categories.

Unlike fast R-CNN [15] which produces the output by performing prediction multiple

times for the same image, Yolo passes the image only once and produces the output. Yolo divides

the input into grid cells X*Y. Each grid cell is associated with n bounding boxes and would predict

the following parameters:

y = (pc, bx, by, bw, bh, c)

where pc = confidence score of the bounding box

 bx, by = location of the box

 bw, bh = dimensions of the box

 c = class predicted.

 28

Figure 4.1 Division of image into grids

4.4 NON-MAX SUPPRESSION ALGORITHM:

A number of bounding box produced by the model would be very high. This is because if

there are m*m grids and each grid is producing n boxes then total bounding boxes would be

m*m*n. Only very few numbers of boxes would have actual object present in it whereas other

boxes would be empty. One or more grid cells may predict the same object and will have different

bounding boxes.

Figure 4.2 Multiple bounding boxes for same object

 pc bx by bw bh c1 cn

Box1

Box2

Here in the picture, it can be seen that

many grid cells predict the same

speed sign with different confidence

score. Box with the thickest outline

border has the highest confidence

score.

 29

 To overcome this, Yolo uses non-maximal suppression [N13].

Algorithm:

Step 1: Sort all the bounding boxes where objects are present by the pc confidence score.

Step2: Start from first box and ignore the next bounding box if it has the same object and IoU

(Intersection over Union) > 0.5.

4.5 NEURAL NETWORK:

Figure 4.3 Neural network

Neural network of Yolo is very similar to GoogLeNet [17]. GoogLeNet has 22

convolutional layers whereas Yolo has 24 convolutional layers. Convolution layer in Yolo is

followed by the two fully connected layers. Size of the kernel used in convolution layers is 3*3 or

5*5. This causes the weights of convolution layer to be less dependent on the location of the objects

in the image and weights do not have spatial information. Fully connected layer takes into

consideration spatial far-away features.

 30

4.6 EXPERIMENTS:

All the experiments were carried on the Google cloud platform. Compute Engine had NVIDIA

Tesla P100 processor with 4 GPUs. P100 is based on Pascal architecture. It’s capable of

performing 21 TeraFLOPs of performance. For testing I have used 34 images. Some part of the

code is adapted from the [20].

a) Loss function:

Yolo uses mean square loss function [18]. Outcome of Yolo is N – vector where

N = (m*n) * (B + 5) * C

 where m*n are number of grid cells

 B is number of bounding boxes per grid. (B = 2)

 C is the number of categories (C = 8)

 5 is for the bx, by, bw, bh, pc. This is explained in previous section.

Here l is the constant.

 31

 When the model was trained from scratch using above loss function, it made correct

bounding boxes for 29 images. Model took 234 minutes to train.

b) Transfer Learning:

Transfer learning is the process of training the model with the help of the other model which

is already trained for some dataset. Transfer learning is done to reduce the time required for

training. Here I did transfer learning using Yolo trained for COCO dataset. Weights were obtained

from the official Yolo website. Model has the same number of neural network layers as the one in

previous experiment. Training was faster as it took 190 minutes to train the network.

c) Changing the number of convolution layers:

In this experiment, I changed the number of convolution layers. Initially, I reduced the number

of convolution layers. I tried with 14, 16 and 18 number of layers. It was observed that the more

the number of layers, better was the accuracy. When the number of layers was 14, model was doing

false predictions and drawing the bounding boxes at the random places. Accuracy improved when

the number of layers was 18 but still, it was not satisfactory.

Next, I tried to increase the number of convolution layers to 28 from the original 22. Training

the network with 28 layers took around 310 minutes. Accuracy of the prediction of the model was

almost as same as the original model.

It can be concluded that increasing the number of layers, does not help us to improve the

accuracy.

d) Different batch sizes:

 32

I tried training the model with different batch sizes. Batch size has a direct effect

on the convergence [18]. It was observed that greater the batch size, higher would be the

accuracy. Increasing batch size beyond 64 did not have a drastic change in the performance.

Optimal batch size for the current was found to be 64. With the increase in the batch size,

computation cost also increased.

Figure 4.4 Final output

 33

4.7 DECISION FACTOR

 During the inference, it was seen that for the same speed sign the machine learning

model was giving different outputs. Consider that we are using a camera for detection of speed

sign is producing 30 frames per seconds. The time for which a driver or camera is able to see the

speed sign would depend on the speed of the car. We will calculate the time when the speed of the

car is 60 miles per hour or 96 kilometers per hour and the driver is able to see the speed sign from

50 meters away.

𝑡 = 	
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑠𝑝𝑒𝑒𝑑 =

0.05
96 = 1.8	𝑠𝑒𝑐𝑠	

That means the camera will produce ~50 frames that will have speed sign in it.

Assuming our model is able to process images in real-time, the model will produce 50 outputs.

These outputs may not have the same predictions. Under such circumstances, we can use

different approaches to predict the correct speed sign reading:

a. Based on frequency: Category having the maximum count of output from the

model would be the final speed. If more than one category has the same maximum

count, we can consider the average of such speeds.

b. Based on the car speed: We can use the speed of the car to find out the final

speed. The predicted speed which is having a minimum difference with actual car

speed would be the right value. Here we are assuming that the driver is not over-

speeding under-speeding.

 34

c. Gaussian Distribution: Normal distribution has the bell curve and probability of

speed sign can be given as

𝑓(𝑥) = 	
1

√2psM
	 . 𝑒;	

(N;µ)O
MsO

 where, µ = average of speed
 s = variation

 35

FUTURE WORK AND CONCLUSION

 The goal of this project is to detect over-speeding by placing the device on the car

dashboard and report the violation to the officers. For this purpose, we identified and explored

computer vision technique using deep learning. Yolo is the best-suited model as it has the

capability to add more categories. We were able to achieve accuracy of around 90% for the images

in day time but accuracy reduces if it is night time. By adding more nighttime images to the training

set, this can be improved. Using our designed system, it’s possible to catch over speeding violators

in the remote areas where cops are not present.

Although we were able to train the model, it needs a very high amount of computation for

inference. One way to improve our model would be to optimize the neural network used, so it

needs less computation. We can also try out different networks like Deep Multibox, OverFeat,

Multi grasp, etc.

If we are able to create a model which can run on a normal phone which has limited

resources, we can create a phone application. By doing so, we will not need any external device.

Further, it is possible to detect a traffic light violation using the same model. The system would

identify the red and green light and then check if the car is stationary or not. But this will require

a change in the decision logic. It is possible that our model detects red light falsely reports while

the car is far away from the traffic light and is moving. I have collected the dataset which has

green, yellow and red traffic light images.

 36

REFERENCES

[1] -amy.lee.ctr@dot.gov. ‘Speeding’. NHTSA, 9 Sept. 2016, Retrieved from
https://www.nhtsa.gov/risky-driving/speeding.

[2] -Law Enforcement Officers Per Capita for Cities, Local Departments. Retrieved from
https://www.governing.com/gov-data/safety-justice/law-enforcement-police-department-
employee-totals-for-cities.html.

[3] -A. G. Rad, A. Dehghani, and M. R. Karim. “Vehicle speed detection in video image
sequences using cvs method”, International Journal of Physical Sciences, 5(17):2555–2563,
2010.

[4] -Pornpanomchai, C., & Kongkittisan, K. (2009). Vehicle speed detection system. 2009 IEEE
International Conference on Signal and Image Processing Applications.
doi:10.1109/icsipa.2009.5478629

[5] -Ginzburg, Chaim, et al. “A Cheap System for Vehicle Speed Detection”, arxiv.org,
https://arxiv.org/abs/1501.06751v1. Jan. 2015

[6] -Jozef Gerát, Dominik Sopiak, Miloš Oravec, Jarmila Pavlovicová, "Vehicle speed detection
from camera stream using image processing methods", ELMAR 2017 International Symposium,
pp. 201-204, 2017.

[7] -Huang, Xiaobo. “Convolutional Neural Networks In Convolution”. Oct. 2018. arxiv.org,

[8] -“Dataset,” German Traffic Sign Benchmarks. [Online]. Retrieved from
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset. [Accessed: 12-March-2019].

[9] -L. Simon S., L. Jason D., Wang, Liwei, Zhai, and Xiyu, “Gradient Descent Finds Global
Minima of Deep Neural Networks,” arXiv.org, 04-Feb-2019.

[10] -Ting, Li, Guiying, Tang, and Ke, “Stochastic Gradient Descent for Nonconvex Learning
without Bounded Gradient Assumptions,” arXiv.org, 10-Mar-2019

[11] -S. Lau and S. Lau, “Image Augmentation for Deep Learning,” Towards Data Science, 10-
Jul-2017. [Online]. Available: https://towardsdatascience.com/image-augmentation-for-deep-
learning-histogram-equalization-a71387f609b2.

[12] -B. Raj and B. Raj, “Data Augmentation | How to use Deep Learning when you have
Limited Data - Part 2,” Medium, 11-Apr-2018. [Online]. Retrieved from
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-
data-augmentation-c26971dc8ced

[13] -Luis, Wang, and Jason, “The Effectiveness of Data Augmentation in Image Classification
using Deep Learning,” arXiv.org, 13-Dec-2017. Available: https://arxiv.org/abs/1712.04621.

 37

[14] -Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.” arXiv.org

[15] -Parthasarathy, Dhruv. ‘A Brief History of CNNs in Image Segmentation: From R-CNN to
Mask R-CNN’. Athelas, 22 Apr. 2017

[16] -Redmon, Joseph, and Ali Farhadi. ‘YOLO9000: Better, Faster, Stronger’. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017, pp. 6517–25.
Crossref, doi:10.1109/CVPR.2017.690.

[17] -A Krizhevsky, Sutskever and G. Hinton, “ImageNet Classification with Deep convolutional
Neural Networks”, Retrieved from http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

[18] -J. Hui and J. Hui, “Real-time Object Detection with YOLO, YOLOv2 and now
YOLOv3,” Medium, 18-Mar-2018. [Online]. Retrieved from
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088.

[19] -Playing around with RCNN, State of the Art Object Detector Retrieved from
https://cs.stanford.edu/people/karpathy/rcnn/

[20] -Convolutional Neural Networks. Contribute to Pjreddie/ GitHub, Retrieved from
https://github.com/pjreddie/darknet.

[21] -Mehta, Rakesh, and Cemalettin Ozturk. ‘Object Detection at 200 Frames Per
Second’. ArXiv:1805.06361 [Cs], May 2018. arXiv.org, Retrieved from
http://arxiv.org/abs/1805.06361.

	San Jose State University
	SJSU ScholarWorks
	Spring 5-22-2019

	Over speed detection using Artificial Intelligence
	Samkit Patira
	Recommended Citation

	Microsoft Word - CS298.docx

