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ABSTRACT 
 

Real Time Overspeed Detection using Artificial Intelligence 
 

By Samkit Patira 
 
 
 

Over speeding is one of the most common traffic violations. Around 41 million people are 

issued speeding tickets each year in USA i.e one every second. Existing approaches to detect over-

speeding are not scalable and require manual efforts. In this project, by the use of computer vision 

and artificial intelligence, I have tried to detect over speeding and report the violation to the law 

enforcement officer. It was observed that when predictions are done using YoloV3, we get the best 

results.  
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CHAPTER 1 

Introduction 

1.1    Problem Statement 

Speeding is one of the biggest traffic violations. It endangers everyone on the road. 

According to NHTSA [1], in year 2017 speeding killed 9717 people in the USA. Some of the 

consequences of over speeding are loss of vehicle control, increased stopping distance, economic 

losses, increased fuel consumption and loss of lives. As crash speeds get very high, airbags and 

seat belts may not work as well to protect the passengers from the collision. Over speeding costs 

of billions of dollars to the country’s economy [1]. 

 

    For example, Orland park, Illinois with population of 60000, police issued 26,821 

citations. Out of those 4732 were for speeding. Law enforcement officers spend a significant 

amount of time in catching over speed violators. Also, a very small fraction of violators is caught 

by the existing system.  

 

The aim of this project is to design an automated over speed detection system that would 

notify traffic police with the details of an over speeding vehicle. Once the details are sent to the 

regulatory authority, the driver can be charged for over speeding. The main objective of the project 

is to eliminate the manpower needed by the existing systems. Currently, officer has to hold the 

speeding gun to measure the speed of the vehicles. It should be noted that currently, only 5% of 

the violators get speeding tickets. This is because the number of vehicles is much more compared 

to law enforcement officers. Some of the cities like San Francisco, Stockton, Gilbert, etc. have less 
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than 10 officers per 10K [2] population. In this situation, it’s very difficult to catch all the traffic 

violators.  

In the proposed system, dashcam could be placed inside the vehicle which will read the 

traffic speed signs posted on the road. This speed would be compared with the actual speed of the 

vehicle using accelerometer present inside the mobile phone and if found very high it will notify 

the law enforcement agencies with the details like the place, driver, photo, etc. This will help in 

eliminating the manual efforts required. Also, this system can be used in remote places where there 

are no officers present.  

 

The project uses deep learning technique that needs a significant amount of computation 

for training. Thus, we decided to reduce the scope of the project just to train a model that can read 

different traffic speed signs.  
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1.2    Related Work 

Related work in over speed detection mainly involves the usage of devices that are not 

installed inside the vehicles. Pacing [3] is quite a common technique where cops drive behind the 

vehicle and accelerate until the speed of officer’s vehicle matches the speed of the vehicle of the 

suspect and until the distance between both the cars is constant. Then by looking at the 

speedometer, the officer can determine the target vehicle speed. But this technique is prone to 

human errors. Many time officers may read the wrong reading or may read the reading while he is 

accelerating his vehicle.   

 

Another such speed detection system involves the use of a speed gun which is placed in 

the direction of moving a vehicle and is based on the radio frequency or laser. Radio wave signal 

[4] is sent and then waiting for it to be reflected by the car. Using the timing of the wave signal, 

the speed of the vehicle is detected. This involves manual efforts with a person holding the gun.  

 

VASCAR (Visual Average Speed Computer and Recorder) is a small processor that is 

placed inside the officer’s car. An officer passes the vehicle at a very high speed than the speed of 

the vehicle of the suspect. Officer would be waiting few miles away and by doing some 

calculations, it’s possible to calculate the speed of the suspect’s vehicle. This is the type of speed 

trap.  

Many research studies have been conducted in the field of vehicle speed detection. One 

such technique [5] proposed involving the comparison of the vehicle position between the current 
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frame and the previous frame from video captured with a stationery camera. Another similar 

technique uses video surveillance system [6]. Frame of the camera covers specific area, then 

calculates the speed of the car on basis of the time the car was in that area.  

 

Figure 1.2 Speed detection using video surveillance 

 

Moreover, most of the existing solutions need manual efforts or some kind of infrastructure 

setup. Such systems are either expensive or labor intensive and rely on outdated technology.  All 

the solutions seen so far are based on physical methods and this is because of the limited 

computation capabilities in the ’90s and 2000s. Recent advances in high-performance computation 

and artificial intelligence can overcome these drawbacks.  This will also ensure that all the over 

speeding violators are caught and are reported. 
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1.3 Contribution 

The primary contribution of this project is to design a system that can read traffic speed 

signs using computer vision and artificial intelligence. I have tried object detection algorithm 

(Yolo) and also experimented with transfer learning so as to use already existing trained model. It 

was observed that the by the use of transfer learning, we can significantly improve the effectiveness 

of the trained model.  

 

The project report is organized into chapters as follows: Chapter 2 defines common 

concepts and terms used in deep learning. Chapter 3 defines various data augmentation techniques 

used for training data. Chapter 4 describes algorithm used and experiments. Chapter 5 has the 

conclusion and future scope.  
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CHAPTER 2 

Background 

 

In this chapter, I provide background information related to deep learning and other related 

concepts. This background information is crucial to understand the algorithms and techniques used 

in the project.  

 

2.1 Deep Learning 

 Artificial intelligence can be defined as a science or engineering of making machines smart 

and intelligent. Deep Learning is a part of artificial intelligence which primarily deals with the 

neural networks. Neural networks try to learn from the training data without being programmed 

explicitly. They have a variety of applications in domains like natural language processing, image 

processing, object detection, classification, speech recognition, text processing, and 

summarization, etc.  

The basic building block of a neural network is called a neuron. A neuron can be thought 

as of biological neurons present inside the human brain. The neural network may have millions of 

the neurons. Each neuron is connected to other neurons by means of edges. They receive inputs 

from other elements or neurons and then the inputs are multiplied by the weights and result is then 

transformed by some mathematical function into the output.  

 

Neural networks have one layer of input, multiple hidden layers, and one output layer.   
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Figure 2.1 Neuron 

In the above figure, neuron has 3 inputs but can have more or less inputs. Each input is 

associated with real numbers called weights.  

2.2 Fully connected neural networks 

 

Figure 2.2 Fully connected layer 

 In fully connected neural networks, each neuron is connected to every other neuron of the 

next layer. Input and output length of the data is fixed.  

Training:  

 Most of the time for training, we use labeled training data. This means that training data 

has known output. Functions in neural networks can be classified into a sequence of linear and 

non-linear functions.  

𝑥 → 𝑓(𝑥) 

𝑥 → 𝑊1 → 	ℎ1(W1x) → 𝑊2ℎ1(W1x) →	….		~	𝑓(𝑥) 

During the training phase, we try to adjust and set the value of weight matrices. Weights 

during the start of training are randomly initialized. These weights are later used in the inference 

phase. The main goal of training is to start with the model with very low accuracy and eventually 
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have a network with high accuracy. We need non-linear functions to make the network more 

powerful and means to introduce differentiable. Some of the key terms used during training: 

 Sigmoid Function: It is very similar to the step function in which output is between 0 and 

1. It is used for models where  

Activation: 𝑠𝑖𝑔(𝑥) = 	 0
01234

  Derivative: 𝑠𝑖𝑔5(𝑥) = 𝑠𝑖𝑔(𝑥). (1 − 𝑠𝑖𝑔(𝑥))  Range: [0:1] 

 

 Tanh Function:  

Activation: 𝑡𝑎𝑛ℎ(𝑥) = 	 2
4;	234

241234
  Derivative: tanh`(x) = 1 – tanh(x)2   Range: [-1:1] 

 

 ReLu Function: Also called as a rectified linear unit. It outputs the same input for all 

positive values other zero.  

Activation: 𝑅𝑒𝐿𝑈(𝑥)	@𝑥	𝑥 > 0
0	𝑥 < 0 Derivative: 𝑅𝑒𝐿𝑈(𝑥)	@1	𝑥 > 0

0	𝑥 < 0  Range: [0:µ] 

 

 Leaky ReLu Function: It is very similar to ReLU except it has a scaling factor.  

Activation: L𝑅𝑒𝐿𝑈(𝑥)	@ 𝑥	𝑥 > 0
−a	𝑥 < 0 Derivative: L𝑅𝑒𝐿𝑈(𝑥)	@1	𝑥 > 0

−a < 0  Range: [-µ:µ] 

 

 Cross Entropy Loss: Cross entropy loss functions is mainly used in classification 

problems.  

Cross Entropy Loss = -(yi .log(y`i) + (1-yi). log(1-yi)) 

 

During the forward propagation, it takes inputs from the previous layer, and then each node 

computes z = Wx + b where W is weight, x is the input and b is the bias [N3]. After this, some 
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activation function would be applied to the z. Different layers can have different activation 

functions. At the end of this process, a loss would be calculated using functions like cross-entropy 

loss.  

After calculating the loss, back-propagation is carried so as to update the weights. It starts 

from reverse topological order to compute the derivative of the node with respect to the previous 

node. This will change the values of parameters.  

 

Algorithm: 

 Step 1: Calculate the forward phase for each training data sample.   

 Step 2: Calculate the backward phase. 

 Step 3: Combine the individual gradients.  

 Step 4: Update the weights.   

 Experiment 1: A simple program was implemented to gain a better understanding of the 

forward and backward propagation. This program was written from scratch in python without 

using any library. I had used sigmoid as an activation function and mean square error as a loss 

function. Training set was XOR table.  It was trained for 1250 iterations.  

 

 

Figure 2.3 Loss vs Iterations     Figure 2.4 Input and Output 
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During the evaluation phase, model performed very well and predicted correct output for 

12 entries out of 14 entries.  

 

2.3 Convolution Neural Networks 

Convolutional neural networks are inspired by the brain [7]. They have a different 

architecture than the previously seen fully connected neural networks. All the layers in CNN used 

for image processing have three dimensions and input and output is 3-dimensional. Unlike fully 

connected neural network, only some neurons present in a layer are connected to the next layer. 

They are mainly used in applications related to image classification and recognition.  

 

Figure 2.5 Convolutional Neural network 

 

Convolutions are capable of extracting different features from an input image. It preserves 

the spatial relationship between pixels by learning features using small windows of input data. The 

motivation behind using CNN over a simple neural network is that they are capable to learn 

relevant features at different levels which was very similar to the human brain. A filter slides over 

the input to produce a feature map. Filters are associated with weights. We will get more feature 

maps if we use more number of filters. During the training phase, CNN learns or adjusts the values 

of weights.  
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One of the reasons for using CNN over a simple neural network is weight sharing in the 

CNN. CNN is more efficient in terms of memory, complexity and, computation. Consider we have 

5 filters of size 3x3 in CNN. The number of parameters required would be 3*3*5 = 45 parameters. 

In case of traditional a neural network, we will require (45*h*w) parameters where h and w and 

are height and width of the image. Also, it is possible to do transfer learning by using CNN. 

Transfer learning is a machine learning technique where a model trained for some particular task 

can be re-used to perform a similar task. This helps in reducing the training costs.  

 

Some of the layers used in CNN: 

Convolution Layer: This layer [N12] does dot product between the input tensor and weight 

matrix. The weight matrix is also called as a kernel. A kernel is generally square in shape and is 

spatially smaller than input tensor. A kernel can be imagined as a cube which has more depth in 

comparison to other dimensions. Kernel slides over the image and each kernel act as a feature 

detector.  

Max pool Layer: In max pool layer we move the window (size can be 2x2, 3x3, 4x4, etc.) over 

the image and take maximum value from the window as an output. Max pool reduces the number 

of parameters. It is down sampling layer which reduces the size of an output.  

Average pool Layer: Average pool is very similar to the max pool layer. Instead of taking 

maximum value from the window, it takes the average of all the values present in the window.  

It is also a down sampling layer, but it preserves the input information.  

Up sample Layer: Up sample is a deconvolution layer which increases the size of output. It uses 

interpolation techniques like bilinear interpolation to produce the output.  
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Dropout: Drop out is used to prevent over-fitting. It simply ignores some units during the training. 

It makes the model more robust but takes more iterations for the model to converge.  

Gradient Descent:  Gradient descent can be imagined as a ball moving down the hill. The aim is 

to find the deepest point among all the hills. It can be seen from the picture. Gradient descent 

measures the change in the weights with respect to change in the difference of actual output and 

predicted output or error.   

 

2.4 EXPERIMENT 2:  

TRAFFIC SIGN CLASSIFIER.  

The aim of this experiment was to become familiar with the convolution neural networks 

and Keras library. In this experiment, I have classified traffic signs by using convolutional neural 

networks. This can have application in the autonomous vehicles. Dataset was taken from German 

Traffic Signs [8]. Dataset consisted of around 20000 images belonging to 43 different categories. 

These categories included traffic signs like the left turn, right turn, stop sign, one way, etc. Images 

just had traffic sign and nothing else in the background.  

 

Images present in the dataset were of different sizes. As a neural network need a fix size 

input, images were resized to 48x48. Later, images were converted into greyscale so as to reduce 

the input tensor size.  Data was split in the ratio of 4:1 i.e 16000 images were used for training and 

4000 images were used for validation.   



 19 

 

Figure 2.6 Snapshot of images 

 

 For doing this, I have used pandas, NumPy, SkImage, SkLearn, h5py, glob, Keras, Matplot 

lib, OpenCV and python. Keras is an open source library which is developed by Google. It uses 

Tensorflow at the backend and was installed using pip command. Keras provides support for 

various neural network models and is more user-friendly compared to other deep learning libraries. 

It supports training on GPU (Graphical Processing Unit) and TPU (Tensor Processing Unit). 

OpenCV is an open source library developed by Intel. It is used for computer vision and I have 

used it for various image transformation operations. Skimage provides support for image 

processing and has inbuilt functionality for geometric transformations, morphing, segmentation, 

color changes, etc. 9 

 I have used CNN architecture to build the model. This is because our aim here is to do 

image classification. As seen previously CNN is a much better option than using multi perceptron 

network.  
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Figure 2.7 Snapshot of model used using Keras  

 

I have used convolution 3x3 with different channels length, max pool, and dropout. To 

introduce non-linearity, I have used ReLU as an activation function. Below I have explained some 

of the hyperparameters that I have tuned.  

I had initially used gradient descent [9]. In this kind of gradient descent, we calculate an 

error for each sample but updates the model only after all the samples are evaluated. This is 

computationally very efficient but sometimes can lead to wrong convergence. Later, I used 

stochastic gradient descent [10] which updates the model after each training sample. This is very 

slow, but it leads to the right state of convergence. It should be noted that stochastic gradient 

descent is computationally more costly. During inference, it was observed that accuracy was 

improved by 14% when a stochastic gradient was used.  
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I tried experimenting with mean square error and cross-entropy as a loss function. Mean 

square takes the square of difference between the actual output and predicted output whereas cross 

entropy is the logarithmic function. It turned out that cross entropy was a better option. This is 

because mean square error is suited for regression whereas cross-entropy is well for classification 

problems.  

Learning rate used in the model was dynamic. Learning rate determines how fast the model 

would be trained. It is also called as step size and it governs how weights are updated during the 

training. Range of learning rate is between 0 to 1. If the learning rate is low, it will take more time 

for the model to converge. Initially, learning rate was set as 0.01. Learning rate used is given as 

LR = LR * (0.1 * (epoch/10)) 

 

Batch size refers to the number of samples present in a single batch. I have taken batch size 

as 30.  

Epochs refer to the number of iterations of training data. The model was trained for 

different values of the epochs but best results were achieved when the number of epochs was 30.  

                                        

Figure 2.8 Data Flow 
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The model was trained on MacBook Pro which had 16 GB of RAM, 2.9 GHz Intel 

processor and Radeon Pro 4 GB graphics card. It took a little more than 9 hours to train the model. 

To improve the model, I had used k–fold cross validation where k was 5.  

 

 

Figure 2.8 Graph of Error vs Epochs 

Observation: Over the whole course of training, it was observed that loss was decreasing 

with increase in the epochs. Initially, loss was very high and was decreasing non-linearly. After 30 

epochs there was a negligible change in the loss and therefore training the model for 30 epochs 

would be the most efficient. The best accuracy I was able to achieve was 96% on the validation 

set. It takes ~2 seconds for inference of single image using the trained model on the same machine. 

For testing, I had clicked manually 25 images and these images were cropped so just as to get the 

traffic sign. When testing was done over these images, 21 images predicted the correct categories 

whereas 4 images predicted the invalid categories.  
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CHAPTER 3 

Dataset 

3.1 DATA COLLECTION 

 For training data most of the images I have collected using google map’s street view. Some 

of the images were also taken from videos available on YouTube. By doing so I was able to 

generate the training dataset of around 530 images. After getting all the images, it is important to 

create labels. Bounding boxes were drawn over the speed limit sign and top left and bottom right 

coordinates of the boxes were stored in the .txt file. This file also contains information about the 

speed limit (category) and the size of the image.  
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3.2 DATA AUGMENTATION 

Training deep learning model on a large number of training samples is always helpful. It 

makes the model more robust and prevents overfitting. By exposing the model to the different set 

of images with different variations and environment, it helps to achieve more accuracy [13]. I did 

data augmentation to generate more training data. Data augmentation is a technique to generate 

automatically more images by doing some transformations on images.  

 

I have used several data augmentation techniques. Scaling [12] is done to make the image 

dataset diverse. Sometimes object to be detected in the image can be a very small or could be very 

large. Rotation rotates the image on x or y axis. Images captured from the camera have a various 

angle of rotations.  I have added generated images by adding the Gaussian noise [N11]. This will 

produce images with different lighting conditions. It will stimulate the practical scenario of images 

taken by device for different times of the day.  

In contrast stretching technique we change the contrast of an image by altering range of 

intensity levels. Histogram equalization is another such technique based on the histogram. We first 

find the histogram and then normalize it over the probability distribution.  

Tools used to achieve image data augmentation consists of MATLAB, python, SkiImage, 

NumPy and OpenCV (Computer Vision library). All the tools used except MATLAB are open 

source. By doing so, I was able to create a database of 1930 images from the original 530 images. 

All the images in the dataset had speed signs. To prevent overfitting of the model and make the 

model more robust, I added some negative images. Negative images consisted of invalid categories 

and some images had no traffic speed signs. Final dataset consisted of 2078 images.  
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CHAPTER 4 

4.1 IMAGE CLASSIFICATION VS OBJECT DETECTION 

Previously seen CNN for traffic light does image classification. Classification can be 

defined as a process of categorizing an image into one of the pre-defined group of classes. 

Classification models try to find the most dominating object (area wise) in the image and classify 

it [14]. The dominating portion gets the highest score or priority. It does not consider 

transformation properties like scaling, location, color changes, rotation, etc. Let’s say we have 

trained our classification model for the stop sign and the car. If the car is present in the majority 

portion of the image, the image would be classified as a car and will ignore the stop sign. It should 

be noted that in our current use case, speed sign will have area less than 5% of total image area.  

 

Image classification also does not care about the location of the object in the frame. 

Sometimes we would like to know the location and number of cars or the number of known objects 

present in the image. Solution for this is to use object detection model. Classification differentiates 

two objects whereas object detection tries to find particular features of objects in the images.  

 

Object detection can be defined as a combination of classification and localization. Object 

detection considers all the objects and their location. It is programmed to categorize each known 

present object and give details about the location.  Well, known application of an object detection 

system is Amazon Go stores. 

 

 

 



 26 

4.2 You Only Look Once (YoLo) 

Humans look at the image frame and easily detect what different objects are present in the 

image. Traditional computer vision techniques are able to detect the objects in the image only if 

the image has a majority portion of that object and nothing else in the background. They use 

properties of objects like image color, shape, etc. These algorithms work for a constrained 

environment and fail if the images have variations. They may be able to detect a single large-sized 

soccer ball in the image very accurately but won’t work if we wish to detect many small size soccer 

balls of different variations present in the image.  

 

Under this kind of situations, Yolo comes to rescue. Yolo is an object detection system and 

is able to detect a wide variety of the objects present in the real time. Because of its unified 

architecture, it is extremely fast in detection. Existing deep learning classifier models like Regions 

with Convolutional Neural Network [15] (R-CNN) are capable of performing object detection. For 

object detection, these systems use sliding window i.e they consider a classifier for every object to 

be detected and slide it over all possible window locations on the image. Once the classification is 

done, post-processing is carried out and bounding boxes are redefined. Post processing is also done 

to remove duplicated detections. This increases the complexity, computation and time it takes for 

the detection.  

 

The basic motivation for using Yolo is the speed and complexity of the system. Instead of 

sliding over an image many times, Yolo [16] only looks once and detects all the objects present in 

the image. Yolo defines the detection problem as a regression problem and uses features from an 

entire image at the time of training. Unlike RCNN, it looks at the entire image during the time of 
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training and testing That means Yolo predicts all the different object categories present on an 

image simultaneously.  

 

4.3 MODEL 

Before understanding the working of Yolo, let us understand input to the model. In my 

current experiment, input to the neural network consists of the image, type or category of the speed 

sign present in the image and bounding box details. Bounding box is a square drawn over the 

circular speed signboard. A bounding box has details like normalized x and y position and also 

normalized the height and width of the box. All values present in the bounding box have range 

from 0 to 1. I have stored all these details in the form of text file. If the image has two different 

speed signs (rare case) then there will be two text files. The training dataset consists of the speed 

signs of 7 different categories.  

 

Unlike fast R-CNN [15] which produces the output by performing prediction multiple 

times for the same image, Yolo passes the image only once and produces the output. Yolo divides 

the input into grid cells X*Y. Each grid cell is associated with n bounding boxes and would predict 

the following parameters:  

y = (pc, bx, by, bw, bh, c) 

where  pc = confidence score of the bounding box 

 bx, by = location of the box 

 bw, bh = dimensions of the box 

 c = class predicted.  
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Figure 4.1 Division of image into grids 

4.4 NON-MAX SUPPRESSION ALGORITHM:  

A number of bounding box produced by the model would be very high. This is because if 

there are m*m grids and each grid is producing n boxes then total bounding boxes would be 

m*m*n. Only very few numbers of boxes would have actual object present in it whereas other 

boxes would be empty. One or more grid cells may predict the same object and will have different 

bounding boxes.  

 

 

Figure 4.2 Multiple bounding boxes for same object 

 

 

 pc bx by bw bh c1 cn 

Box1        

Box2        

Here in the picture, it can be seen that 

many grid cells predict the same 

speed sign with different confidence 

score. Box with the thickest outline 

border has the highest confidence 

score.  
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 To overcome this, Yolo uses non-maximal suppression [N13].  

Algorithm: 

Step 1: Sort all the bounding boxes where objects are present by the pc confidence score.  

Step2: Start from first box and ignore the next bounding box if it has the same object and IoU 

(Intersection over Union) > 0.5.  

 

4.5 NEURAL NETWORK:  

 

Figure 4.3 Neural network  

 

Neural network of Yolo is very similar to GoogLeNet [17]. GoogLeNet has 22 

convolutional layers whereas Yolo has 24 convolutional layers. Convolution layer in Yolo is 

followed by the two fully connected layers. Size of the kernel used in convolution layers is 3*3 or 

5*5. This causes the weights of convolution layer to be less dependent on the location of the objects 

in the image and weights do not have spatial information. Fully connected layer takes into 

consideration spatial far-away features.  
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4.6 EXPERIMENTS: 

All the experiments were carried on the Google cloud platform. Compute Engine had NVIDIA 

Tesla P100 processor with 4 GPUs. P100 is based on Pascal architecture. It’s capable of 

performing 21 TeraFLOPs of performance. For testing I have used 34 images. Some part of the 

code is adapted from the [20].  

 

a) Loss function: 

Yolo uses mean square loss function [18]. Outcome of Yolo is N – vector where  

N = (m*n) * (B + 5) * C  

 where m*n are number of grid cells 

  B is number of bounding boxes per grid. (B = 2) 

  C is the number of categories (C = 8) 

  5 is for the bx, by, bw, bh, pc. This is explained in previous section.  

 

   

Here l is the constant.  
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 When the model was trained from scratch using above loss function, it made correct 

bounding boxes for 29 images. Model took 234 minutes to train.  

 

b) Transfer Learning: 

Transfer learning is the process of training the model with the help of the other model which 

is already trained for some dataset. Transfer learning is done to reduce the time required for 

training. Here I did transfer learning using Yolo trained for COCO dataset. Weights were obtained 

from the official Yolo website. Model has the same number of neural network layers as the one in 

previous experiment. Training was faster as it took 190 minutes to train the network.  

 

c) Changing the number of convolution layers:  

In this experiment, I changed the number of convolution layers. Initially, I reduced the number 

of convolution layers. I tried with 14, 16 and 18 number of layers. It was observed that the more 

the number of layers, better was the accuracy. When the number of layers was 14, model was doing 

false predictions and drawing the bounding boxes at the random places. Accuracy improved when 

the number of layers was 18 but still, it was not satisfactory.  

Next, I tried to increase the number of convolution layers to 28 from the original 22. Training 

the network with 28 layers took around 310 minutes. Accuracy of the prediction of the model was 

almost as same as the original model.  

It can be concluded that increasing the number of layers, does not help us to improve the 

accuracy.  

 

d) Different batch sizes: 
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I tried training the model with different batch sizes. Batch size has a direct effect 

on the convergence [18]. It was observed that greater the batch size, higher would be the 

accuracy. Increasing batch size beyond 64 did not have a drastic change in the performance. 

Optimal batch size for the current was found to be 64. With the increase in the batch size, 

computation cost also increased.  

 

Figure 4.4 Final output 
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4.7 DECISION FACTOR 

 

 During the inference, it was seen that for the same speed sign the machine learning 

model was giving different outputs. Consider that we are using a camera for detection of speed 

sign is producing 30 frames per seconds. The time for which a driver or camera is able to see the 

speed sign would depend on the speed of the car. We will calculate the time when the speed of the 

car is 60 miles per hour or 96 kilometers per hour and the driver is able to see the speed sign from 

50 meters away.  

𝑡 = 	
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑠𝑝𝑒𝑒𝑑 =

0.05
96 = 1.8	𝑠𝑒𝑐𝑠	 

That means the camera will produce ~50 frames that will have speed sign in it. 

Assuming our model is able to process images in real-time, the model will produce 50 outputs. 

These outputs may not have the same predictions. Under such circumstances, we can use 

different approaches to predict the correct speed sign reading: 

 

a.    Based on frequency: Category having the maximum count of output from the 

model would be the final speed. If more than one category has the same maximum 

count, we can consider the average of such speeds.  

b.    Based on the car speed: We can use the speed of the car to find out the final 

speed. The predicted speed which is having a minimum difference with actual car 

speed would be the right value. Here we are assuming that the driver is not over-

speeding under-speeding.  
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c.    Gaussian Distribution: Normal distribution has the bell curve and probability of 

speed sign can be given as 

𝑓(𝑥) = 	
1

√2psM
	 . 𝑒;	

(N;µ)O
MsO  

   where, µ = average of speed 
    s = variation 
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FUTURE WORK AND CONCLUSION 

 

 The goal of this project is to detect over-speeding by placing the device on the car 

dashboard and report the violation to the officers. For this purpose, we identified and explored 

computer vision technique using deep learning. Yolo is the best-suited model as it has the 

capability to add more categories. We were able to achieve accuracy of around 90% for the images 

in day time but accuracy reduces if it is night time. By adding more nighttime images to the training 

set, this can be improved. Using our designed system, it’s possible to catch over speeding violators 

in the remote areas where cops are not present.  

 

Although we were able to train the model, it needs a very high amount of computation for 

inference. One way to improve our model would be to optimize the neural network used, so it 

needs less computation. We can also try out different networks like Deep Multibox, OverFeat, 

Multi grasp, etc.  

 

If we are able to create a model which can run on a normal phone which has limited 

resources, we can create a phone application. By doing so, we will not need any external device. 

Further, it is possible to detect a traffic light violation using the same model. The system would 

identify the red and green light and then check if the car is stationary or not. But this will require 

a change in the decision logic. It is possible that our model detects red light falsely reports while 

the car is far away from the traffic light and is moving. I have collected the dataset which has 

green, yellow and red traffic light images.  
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