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ABSTRACT 

Sharing information over the Internet over multiple platforms and web-applications has 

become a quite common phenomenon in the recent times. The web-based applications that 

accept critical information from users store this information in databases. These applications 

and the databases connected to them are susceptible to all kinds of information security 

threats due to being accessible through the Internet. The threats include attacks such as Cross 

Side Scripting (CSS), Denial of Service Attack (DoS0, and Structured Query Language (SQL) 

Injection attacks. SQL Injection attacks fall under the top ten vulnerabilities when we talk 

about web-based applications. Through this kind of attack, the attacker can steal critical and 

confidential information and hence it could have damaging effects on a business or 

organization. The effects could range from monetary loss, leaking confidential business 

information, decrease in company’s stock market value or any combination of these. In this 

paper we have used an algorithm called Gradient Boosting Classifier from ensemble machine 

learning approaches to classify and detect SQL Injection attacks. 
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I. INTRODUCTION 

 

Most of the applications that we use every day are web-based applications. Organizations 

choose to make the applications accessible over the Internet to increase the exposure they 

gain. Being exposed to Internet increases the security challenges that come along with 

uncontrolled access. With the growth of Internet, we are used to performing various kinds 

of transactions online. All the data entered by the users during these transactions on web 

applications or websites is stored in some kind of a database. Relational Databases can be 

communicated with a language called Structured Query Language, i.e. SQL. Using SQL to 

launch attacks on databases and manipulate them to do what the user wants is a form of 

a web hacking technique called SQL Injection Attack. SQL Injection Attacks have become 

an increasing cause of worry for the cyber defenders. In the previous year alone, SQL 

Injection and Remote Code execution attacks contributed to more than four-fifths of the 

detected web-based attacks. SQL Injection attacks remain one of the most pervasive 

cyber-attacks. Many techniques have been developed to deal with such attacks, however 

cyber hackers still seem to successfully get through the various defense mechanisms in 

place to deal with SQL Injection attacks. 

Lately, the use of machine learning algorithms to detect and prevent various cyber security 

threats is being debated largely. While the power of using supervised and unsupervised 

learning techniques to detect security threats cannot be questioned, the computing 

resources and time required to execute such complex algorithms remains a major concern 

for the ever advancing cyber security community. Tremendous research work has been 

done on using various machine learning algorithms to detect SQL Injection attacks. There 
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is no single perfect algorithm or technique in machine learning that can be applied to a 

particular problem. A problem needs to be tested against various algorithms falling under 

classification or regression techniques, and the results need to be compared, before 

finalizing a particular approach, for maximum accuracy. SQL Injection detection using 

Naïve Bayes algorithm has been implemented in previous researches. In this paper we use 

an approach called Gradient Boosting algorithm to detect and prevent SQL Injection 

attacks. We also implemented the Naïve Bayes algorithm and compared the results against 

Gradient Boosting for this particular problem, details of which are discussed in later parts 

of this paper.  

In this paper we begin with an introduction to SQL Injection attacks and the need and 

motivation to build a better SQL Injection detection system. We then understand the SQL 

Injection attacks and various types in detail in section II. Section III describes the related 

work done in this area so far. All the significant implementations and research work done 

so far provides enough literature review to learn from and improve on the problem. 

Section IV gives an introduction to supervised learning, which is the generic approach we 

are using to solve this problem. This section also explains and delves a bit into the two 

algorithms considered for this experiment, i.e.  

1. Naïve Bayes 

2. Gradient Boosting 

Section V goes into the details of the dataset used, the implementation of the two 

algorithms, Naïve Bayes and Gradient Boosting, and comparing both the results. Finally, 

we conclude the paper with conclusion and future works in section VI. 
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II. UNDERSTANDING SQL INJECTION 

 

SQL Injection is an attack that tries to get unauthorized access to a database by injecting a 

code and exploiting the SQL query [1]. Let us understand this through a simple example. 

Say there is a banking website that lets users login by entering their username and 

password. When the user enters a valid username and password, the authentication will 

pass, and the user will be allowed to login. 

 

Fig. 1. Example login page in browser 

Following will be the query constructed in case of an authorized login attempt where: 

Username = usr 

Password = usr123 

SQL Query:  SELECT * FROM users WHERE name = ‘usr’ and password = ‘usr123’ 

However, it is also possible that a user with malicious intent enters the following input in 

the username and password fields of the website where: 

Username = usr 
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Password = ’ or ‘1’ = ‘1 

The SQL Query constructed in this case will be. 

SQL Query: SELECT * FROM users WHERE name = ‘usr’ and password = ‘’ or ‘1’ = ‘1’  

Since 1=1 will always be true, this user will always be allowed to login to the website. The 

user gets unauthorized access to someone else's account details and the possession of this 

information could result in serious consequences for the person whose account 

information was stolen. This is a case of theft and a violation of data privacy.  

This was a very simple example of a SQL Injection attack just for understanding, and most 

of the websites and web applications today would easily prevent this kind of attack. But 

there are various and more complex forms of SQL Injection attacks, some of which are 

described later in detail. The aim of the attackers using SQL Injection is to exploit the 

database that is connected to a website or a web application. It is extremely important to 

protect such databases against SQL Injection attacks in order to protect the important data 

stored in them. Letting an unauthorized user get access to a database can result in many 

unauthorized actions on the database like deleting tables, retrieving important 

information and many more terrifying things, and SQL Injection attacks make all of this 

possible. 

  

SQL Injection Attacks can be broadly classified into the following three categories: 

1. Union Based SQL Injection 

2. Error Based SQL Injection 
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3. Blind SQL Injection 

 

Fig. 2. Types of SQL Injection 

 

 

i. Union Based SQL Injection 

 

In SQL, UNION operator is used to join two SQL statements or queries. Union Based SQL 

Injection takes advantage of this feature to make the database return desired results in 

addition to the intended results. This is achieved by injecting another query in place of 

plain text and using UNION keyword at the beginning of the query. 

A simple example would be searching for a song in a database. When we enter the name 

of the song in the search field, following query is formed. 

Value Entered: Magic 

SQL Query: SELECT * FROM songs WHERE name = 'magic' 
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However, a malicious user might enter the following in the song search field to exploit the 

database. 

Value Entered: Magic' UNION DROP TABLE songs 

SQL QUERY: SELECT * FROM songs WHERE name = 'magic' UNION DROP TABLE songs 

This might end up in deleting the entire songs table. Here the user is just trying to run two 

queries at one time and has used UNION keyword to combine both the queries. Using this 

approach, the second part of the query can be used to perform any desired unauthorized 

action on the database. 

  

ii. Error Based SQL Injection 

Error based SQL Injection approach works by passing an invalid input in the query and 

thereby triggering an error in the database. This is achieved by forcing the database to 

perform an action that will lead to an error. The user can then look for the errors generated 

by the database and use those errors to gain information on how to further manipulate 

the database by exploiting the SQL query. 

 

iii. Blind SQL Injection 

Blind SQL Injection attack is a technique where the malicious user asks questions to the 

database and decides on further course of action based on the returned answers. This is 

the most difficult type of SQL Injection attack since no information is known about the 

database. This type of approach is used when the database returns generic errors like 



SQL Injection Detection Using Machine Learning   

  

9 

 

'Syntax Error'. Blind SQL Injection attacks are further classified into Boolean Based SQL 

Injection attacks and Time-Based SQL Injection attacks. 

 

A. Boolean Based SQL Injection 

Boolean-based SQL Injection is an inferential SQL Injection technique that relies on sending 

an SQL query to the database which forces the application to return a different result 

depending on whether the query returns a TRUE or FALSE result. Depending on the result, 

the content within the HTTP response will change, or remain the same. This allows an 

attacker to infer if the payload used returned true or false, even though no data from the 

database is returned. This attack is typically slow (especially on large databases) since an 

attacker would need to enumerate a database, character by character. 

 

B. Time Based SQL Injection Attacks 

Time-based SQL Injection is an inferential SQL Injection technique that relies on sending a 

SQL query to the database which forces the database to wait for a specified amount of 

time (in seconds) before responding. The response time will indicate to the attacker 

whether the result of the query is TRUE or FALSE. 

Depending on the result, an HTTP response will be returned with a delay, or returned 

immediately. On the basis of the returned response, with or without the time delay, an 

attacker can infer information about the database and application. 
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III. Related Work 

 

This section briefly describes the research and work done so far on detecting SQL Injection 

attacks and preventing them effectively. The research work done so far on detecting SQL 

Injections can be broadly classified into two types of approaches. The first approach is to 

securely write the source code itself to enforce enough input validation for SQL queries. 

The second approach is to deploy additional software to verify the SQL queries being 

passed through web applications to be executed across the database. Lately some 

researchers have also highlighted the importance of using these two approaches in 

combination to achieve a more reliable SQL Injection detection model. In this section, both 

the approaches and the research work done in those fields is discussed. 

Goud et al. developed a JDBC checker that is a static analysis tool to check for errors in SQL 

strings and verify them for potential malicious queries [3]. It verifies the SQL strings for 

correctness and promises to identify and indicate potential errors in SQL queries. The way 

it works is instead of dynamically checking each query while it is generated at runtime, it 

statically creates a list of all potential SQL strings that could be executed across a particular 

application and then analyses all those potential SQL strings for malicious content and 

semantic errors. The problem with this approach could be multiple, including the high 

storage that will be required for storing all the potential SQL queries, and how could a tool 

generate all possible potential queries for an application. There is a huge possibility that it 

would miss out on predicting SQL query statements that were actually executed. To 

overcome this limitation of static analysis, a tool named CANDID was developed, that 

stands for ‘Candidate Evaluation for Discovering Intent Dynamically’,[4]. It works on the 
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concept of programmer intent. The concept of programmer intent describes how a SQL 

query structure should look like if it is formed exactly as was intended by the programmer 

of the application. There is a pattern observed in SQL injection attacks that the malicious 

SQL query executed across database always has a different structure than the one that 

was intended by the programmer. Authors of this paper believed that identifying this 

difference in structure could be a significant step towards successfully identifying and 

preventing SQL injection attacks. The way this tool achieves its goal is that it dynamically 

creates the programmer intended SQL query structure when the program reaches a 

location where it will generate and execute a SQL query. This generated programmer 

intended SQL query is then compared with the actual SQL query that was passed by the 

user, to identify and prevent the malicious queries from being executed. Later a few 

researchers came up with the idea of combining the use of static analysis and dynamic 

monitoring to efficiently prevent SQL Injection attacks. AMNESIA is a tool that was 

developed on this idea of using both static and dynamic approaches [5]. In this approach, 

the application code itself contains information to produce all the possible SQL queries 

that could be generated by the application. All these possible legitimate queries are 

generated and stored for comparison. At the same time dynamic monitoring is done of 

SQL queries generated at runtime, and each dynamically generated SQL query is compared 

to the list of possible SQL queries. If no match is found for a SQL query generated as a 

result of some input from a user, in the list of possible legitimate SQL queries, the query is 

classified as malicious and is not allowed to be executed on the database. This method has 

its own set of drawbacks, biggest one being that it is not a hundred percent accurate and 

could generate a lot of false positives. Buehrer et al. used similar approach of comparing 
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the actually generated queries with the one that should have been generated 

(programmer intended) [6]. The only difference in this approach is that it achieves the 

results by using Parse Trees. Parse trees are generated by parsing the statements by using 

the syntax of the language that statement in written in. This is a dynamic approach only, 

that is, it verifies the SQL queries generated at runtime and has no previously stored set of 

possible legitimate queries. In this approach two parse trees are generated, one is 

generated by using the input from the user and generating a tree that would be generated 

if this was a legitimate query, and the other tree is generated by processing the actual 

input and seeing how the query actually will be executed. Now there is one thing about 

malicious SQL queries, that is also discussed previously, that the behaviour of such queries 

is always different than the programmer intended behaviour. Hence in case of a malicious 

query, this paper promises that the two parse trees generated will be different, and hence 

the SQL Injection attacks can be identified more efficiently.  

With the development of AI and Machine Learning, some researchers proposed using 

the machine learning algorithms to prevent SQL Injection attacks [7]. This paper detects 

SQL Injection attacks using a machine learning algorithm called Naïve Bayes. Naïve Bayes 

is a classification machine learning algorithm that assumes that a particular incident is 

unrelated to and is independent of other all other incidents. In this paper Naïve Bayes 

classifier is used to classify between malicious and non-malicious SQL queries. To train the 

model they have used a training dataset that consists of both malicious and non-malicious 

SQL queries and also every query in this training data is labelled. Labelling the data helps 

the model to learn what is malicious and what is non-malicious. This type of model is called 

a supervised machine learning model. Once the model has been trained it is then used on 
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the test dataset to verify if the model is classifying the SQL queries correctly. The model 

suggested in this paper promises to even detect those SQL Injection attacks that are new 

and whose signatures are not known. We will also use machine learning to detect SQL 

Injection attacks but with a different machine learning algorithm. 
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IV. Supervised Learning 

 

Machine learning algorithms can be broadly classified as Supervised Learning algorithms 

and Unsupervised Learning algorithms. Supervised learning is a type of machine learning 

that in its simplest form, works in the following manner. We have a dataset called as 

training dataset and each individual component of this dataset is labelled. The supervised 

learning model basically learns the relationship between the data and the label and then 

uses this learnt information to classify new data that it has never seen before. This new 

data is called as the test dataset. We use test dataset to determine the accuracy of a 

supervised learning algorithm. This is how we predict the values or classify never before 

seen data using supervised machine learning. Supervised learning algorithms can further 

be broadly classified as Regression algorithms and Classification algorithms.  

 

Fig. 3 Supervised Machine Learning 
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Regression algorithms are used for predicting a value for an individual data component, 

for example, predicting the value of a house, or predicting stocks. Usually the values 

predicted by the Regression algorithms are quantitative or numerical. Classification 

algorithms are used for classifying individual data components. For example, classifying if 

the vehicle is a truck or a car, or predicting if it will rain or not on a given day. Classification 

algorithms are used to predict qualitative values. Figure 3 shows the derived hierarchy of 

Classification and Regression algorithms. In this section we will focus on Classification 

algorithms in Machine Learning, and more specifically the two classification models that 

are Naïve Bayes and Gradient Boosting. 

 

i. Naïve Bayes 

Naïve Bayes algorithm has already been implemented for detecting SQL Injections [7]. 

Naïve Bayes is a classification model in supervised learning that is based on Bayes 

Theorem. The essence to Naïve Bayes is that it assumes that the presence of a feature in 

a data model is unrelated to the presence of other features. In short it assumes that all the 

features in a data are conditionally independent of each other, hence it gets its name 

‘Naïve Bayes’. Figure 4 shows the equation for Bayes Theorem.  
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Fig. 4  Equation of Bayes Theorem 

Where: 

P (A|B) = Probability of A being true given that B is true. 

P (B|A) = Probability of B being true given that A is true. 

P (A) = Probability of A regardless of the other data. 

P (B) = Probability of B regardless of other data. 

There are two types of probabilities in this equation. Prior probability, that is P(A) and P(B) 

and posterior probability, that is P(A|B) and P(B|A).  

P(A|B) and P(B|A) are also called conditional probabilities since they are condition to 

something.  

The benefits of using Naïve Bayes model could be many including the following: 

1. It can be trained on a small dataset. 

2. It is easier to compute and requires less computational resources. 

However, the Naïve Bayes classifier, being extremely simple to implement, could also 

result in missing to detect a few SQL injection attacks, especially when a particular type of 

SQL Injection is being used for the first time. To deal with the issues in Naïve Bayes 
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algorithm, there are Ensemble methods in machine learning that can be used to improve 

accuracy of models. 

 

ii. Ensemble Learning 

Ensemble models are multiple supervised learning models used together to predict a 

value. In an ensemble model, individual supervised learning models are trained 

independently, and then the results obtained from each model are either averaged or 

voted to provide a single result. This obtained result obviously provides much better 

predictive accuracy than the individual models. Machine Learning models are prone to 

various errors including Bias Error and Variance Error. Bias and Variance Errors can be 

defined as follows. 

Bias Error: This error signifies how much the predicted value is different from the actual 

value. 

Variance Error: This error signifies how much a model’s behavior will change if we change 

the training dataset. High Variance Error indicates overfitting issue. Understandably the 

outcome of a function will depend on the training data, since it was used to train the 

function in the first place. Hence some amount of variance is expected in every supervised 

learning model. But it should not be the case that the model significantly changes if the 

training data is changed. Ensemble learning could also help with reducing these errors. 
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Fig. 5 Bias Variance Trade-off [11] 

 

Figure 5 shows the Bias Variance errors. The red dot in the middle denotes the actual 

values and the blue dots denote the predicted values by the model. It can be inferred from 

the figure 5 that in case of higher variance, the predicted values are farther apart from 

each other and in case of high bias the predicted values are farther apart from the actual 

values. Ensemble learning can be achieved by the following two ways that are discussed 

briefly in the next section. 

1. Bagging 

2. Boosting 
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iii. Bagging and Boosting 

Bagging is an ensemble learning approach that predicts a value of data by using multiple 

supervised learning models and then combining the results of all these individual learning 

models by a chosen technique. The technique used for combining these results could be 

any including by weighting the results, taking their average, voting for the maximum result, 

etc. Bagging is also called as Bootstrap Aggregation. Bagging can help with reducing 

variance errors by using multiple supervised learning models and then combining their 

result. An example of bagging technique is Random Forest Algorithm. In this approach, 

multiple decision trees are created on random subsets of training data and results are 

collected from each decision tree. A final result is then selected from these results by 

taking an average of all the results from individual supervised learning models. Figure 6 

shows the architectural depiction of bagging and boosting techniques. As can be observed 

from the figure, all the individual models are used in parallel in Bagging approach.  

 

Fig. 6 Ensemble Learning – Bagging vs Boosting [12]  
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Boosting on the other hand is an Ensemble learning approach that also uses multiple 

supervised learning models in combination to provide better predictive results. The 

difference is the way in which boosting uses these multiple models. Instead of using them 

in parallel, in boosting the multiple models are used sequentially. In this technique each 

predictor model learns and tries to minimize the errors from the previous predictor model.  

Boosting algorithms can reduce the bias errors introduced due to small size of datasets. 

An example of boosting algorithm is Gradient Boosting.  

In this paper, Gradient Boosting approach is used to classify and detect SQL Injection 

attacks. One of the important reasons of choosing this approach is because not enough 

data is available to train the machine learning models. Naïve Bayes technique has been 

implemented to detect SQL Injection attacks because it can be trained even on small 

datasets. However, that can lead to high bias errors as it is possible that data will not be 

classified correctly all the time. The hope is that using Gradient Boosting approach results 

in better accuracy while classifying the SQL Injection queries and overall provides better 

results and higher ratio of detecting an SQL Injection attack. 
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V. Methodology 

Gradient boosting is an Ensemble learning method to reduce errors and provide 

predictions with better accuracy. Gradient Boosting algorithm uses simple classifiers, 

mostly decision trees, in a sequential manner, to provide results.  

 

Fig. 7 Multiple Decision Tree Classifiers used for Gradient Boosting 

 

The algorithm first uses the simple classifier to classify the data. Then the results are 

considered to calculate the errors or the data points that were not easily fit by the simple 

classifier. The algorithm then focuses on those data points in the next round and tries to 

fit them as well. In this way the errors are reduced, and outlier data points are also taken 

into consideration. But overdoing this remodeling can also cause overfitting. Hence 

learning to stop remodeling at an acceptable accuracy and error rate is also an important 

point to consider with this approach. In this paper, we use Gradient Boosting machine 

learning approach to detect and prevent SQL Injections.  
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VI. Dataset 

The dataset consists of the following two parts: Their descriptions are given under 

respective sections. 

i. Plain-Text Dataset 

This dataset consists of plain-text sentences and has around four thousand rows. The plain-

text dataset has been created with payloads received from html forms. The dataset 

consists of a combination of URL’s, special characters, textual data and numerical data. 

Figure 8 shows a small sample of plain-text dataset.  

 

Fig. 8 Sample Plain-text dataset 

Following features of this dataset make it a good choice for this problem. 



SQL Injection Detection Using Machine Learning   

  

23 

 

A. Diversity 

The dataset not only contains just the textual data, but it is comprised of special characters 

and numbers. This is helpful while training the model to identify SQL Injections with better 

accuracy and avoid false positives. 

B. Size 

The dataset is large enough in size for our model to be trained properly. 

C. Source 

The dataset is created by collecting user inputs from a form in a web application. 

Because of the source of the dataset, there is more probability of wide range of scenarios 

being covered for training the model efficiently. 

 

ii. SQL Injection Dataset 

Gathering a dataset for this problem was challenging as no datasets with public access to 

actual SQL Injection attacks that were launched are available. The dataset for SQL 

Injections has been created from a tool named Libinjection [13]. Libinjection is an open 

source tool that is used for penetration testing of web applications. It passes SQL Injections 

as payload to web applications and analyses if the application is vulnerable to SQL Injection 

attack. By the use of this tool, all the payloads generated by libinjection were captured for 

a particular instance and a dataset consisting of all these payloads is used as the SQL 

Injection dataset [14]. This dataset contains around six thousand SQL Injections of all the 
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three types, that are, Union Based, Error Based and Blind SQL Injections. Figure 9 shows a 

sample of SQL Injection dataset. 

 

Fig. 9 Sample SQL Injection Dataset 

Following two features of this dataset make it a good choice for our problem. 

A. Categories 

It covers all the categories of SQL Injections. This will help while training the model, so that 

it learns to identify all the types of SQL Injections correctly. 

B. Size 

The size of the dataset is big enough for our model to be trained appropriately. 
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VII. Tokenization: 

 

In machine learning analysis that consists of text-based datasets, tokenization usually is 

the first and most important step in data preprocessing. In tokenization, sequence of 

characters are broken down into small pieces called ‘tokens’. Tokenization also includes 

removing certain characters sometimes. This practice is usually performed in word-based 

learning. A common example of tokenization in NLP (Natural Language Processing) is 

shown in figure 8 below. It can be seen how each part of the sentence is tokenized at every 

step.  

 

Fig. 10 Tokenization in NLP [15] 

However, in our case, since we are trying to identify SQL Injections, every character in both 

the datasets is retained and the tokens are generated using regular expressions instead of 

tokenizing words. Sequence of characters are grouped together for tokenization in this 

approach.  
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i. Regular Expressions 

Regex in python is used for tokenizing each entry in both the SQL Injection and plain-text 

datasets. They define a sequence of characters in a string format. Regular expressions are 

popularly used in pattern matching.  

In this paper, re.compile() method is used to compile a regular expression sequence into a 

regular expression object. 

 

Fig. 11 re.compile() for Tokenization 

The regular expression object is created using multiple SQL queries and SQL reserved 

words. Tokenization is implemented by lexical analysis using regular expression in python. 

Groupby() method is used to split the objects into tokens. After creating tokens from the 

dataset, feature extraction is performed on the dataset using the tokens. The token object 

has three parameters. 

A. Token_Count: 

The token_count parameter stores the number of times a particular token is present in 

the entire dataset. 

B. Token_Value: 

The token_value parameter stores the actual values of tokens that are created. 

C. Token_Type: 
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The token_type parameter categorises each token as ‘plain’ or ‘sqli’. Type ‘sqli’ tokens are 

generated from the SQL Injection dataset and type ‘plain’ tokens are generated from the 

plain-text dataset.  

Besides the three parameters listed above, tokens are also grouped together using 

groupby() function, based on the sequence in which they most commonly occur together. 
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VIII. Feature Extraction 

After tokenization of the dataset, feature extraction is performed on the data and first step 

in feature extraction is calculating the G-test Scores for all token values in the dataset. 

Prior to calculating the G-test scores, a dataframe is created using Pandas library in python. 

This dataframe acts as the new dataset and has the following columns. 

 Token_Count 

 Token_Value 

G-test score calculation is then performed on this new dataset.  

 

i. Step 1 : Calculate G-test Score 

G-test Score is also called the likelihood ratio. It is considered to be an alternative to Chi-

Square Test. G-test score is usually used when there is one nominal variable, that means 

there are two classes to classify. For example, if ‘Sex’ is the nominal variable, then ‘Male’ 

and ‘Female’ will be the two classes. This feature makes G-test score perfect to be used in 

our approach, since the classification is to classify data in two classes that are plain-text 

and SQL injection. G-test scores help to determine the variation of a prediction from ideal 

prediction and it is applied to categorical data. 

To calculate the G-test scores, some pre-processing needs to be done on the data. The 

numerical values for counts in the data is converted to float type. Two types of G-test 

scores are calculated in this case. 
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 Observed G-test Score 

 Expected G-Test Score 

Expected G-test score is calculated based on the total tokens, number of tokens in a 

particular row and the types of tokens. Expected G-test score is the ideal score that should 

have been if the data was normally distributed. Observed G-test score is the actual score 

of the occurrence of data. 

 

ii. Step 2 : Calculate Entropy 

Next step in feature extraction is calculating Entropy of each row in the dataset. Entropy 

helps to measure the randomness of the data. If the data is very similar to each other, 

entropy of such dataset will be low, and if the data is diverse, entropy of such data will 

always be high. Decision trees use Entropy to split data. The goal of a decision tree is to 

split the data in such a way that similar data is grouped together. Hence the decision trees 

validate their split based on entropy. If the entropy decreases, they go ahead with the split, 

and if the entropy increases, they try to split at some other point.  

The formula for Entropy is shown in figure 10 below. 
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Fig. 12 Entropy Formula 

Where p(x) = number of x / total number of features. 

 

iii. Step 3 : Calculate G-test score mean 

In this step, average value of G-test scores is calculated for each token in the dataset. A 

new dataset is generated and stored in Dataframe using pandas library in python. This 

dataset is actually used for training the model using Gradient Boosting Classifier. The 

dataset contains the following columns as shown in figure 11 below. 

 

Fig. 13 Dataset with Extracted Features 
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IX. Experiments 

i. Experiment 1 : Naïve Bayes 

Similar approach as above is used to implement Naïve Bayes Algorithm. Tokens are created 

and grouped together based on their occurrence.  

Step 1 : Prior probabilities are calculated in the following manner. 

 Calculate total number of rows in the dataset = total_cnt 

 Calculate the number of SQL Injection rows in the dataset = sqli_cnt 

 Calculate the number of plain-text rows in the dataset = plain_cnt 

Prior probabilities are calculated as: 

P (sqli) = sqli_cnt / total_cnt 

P (plain) = plain_cnt / total_cnt 

Where: 

P (sqli) is the Probability of SQL Injection 

P (plain) is the Probability of plain text 

Step 2 : Next we calculate the likelihood of a new input being a SQL Injection or plain-text. 

Likelihood is similar to the G-test score in this case and is calculated based on the number 

of tokens matching with the new input. Likelihood is calculated in the following manner. 

 Calculate total number of tokens that match with the user input = 

Match_Token_Cnt 
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Finally, likelihood is calculated by using the formula: 

Likelihood (sqli) = Match_Token_Cnt / sqli_cnt 

Likelihood (plain) = Match_Token_Cnt / plaint_cnt 

Where: 

Likelihood (sqli) = The possibility that the new input is a SQL Injection 

Likelihood (plain) = The possibility that the new input is a plain-text 

Figure 14 shows the prediction accuracy of Naïve Bayes classifier.  

 

Fig. 14 Naïve Bayes Classifier Results 

 

ii. Experiment 2 : Gradient Boosting Classifier 

Research suggests that Ensemble approaches in machine learning could provide better 

predictive accuracy than other classifiers.  
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Fig. 15 Algorithm Mean Ranking [16] 

Figure 13 shows a box-graph plot of comparisons of performance of various machine 

learning algorithms after applying them to various datasets. Gradient Boosting and 

Random Forest algorithms have lowest mean ranking, i.e. highest performance than other 

machine learning algorithms. Both the algorithms fall under Ensemble learning category. 

Hence Gradient Boosting Classifier was chosen to implement SQL Injection detection on 

our dataset. Gradient Boosting Classifier has been implemented from the ensemble part 

of Scikit-Learn library in Python. Parameter tuning is of high significance in ensemble 

learning algorithms. The parameter tuning for our problem is done as explained below. 

A. Parameter Tuning 

 n_estimators 

This parameter decides the number of boosting stages that will be performed. Its default 

value is 100. The default value is used in this case. Large number of estimators gives better 

performance. 
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 learning_rate 

Learning rate decides the contribution of each tree. The default value of this parameter is 

0.1, which is also retained in this implementation.  

 max_depth 

max_depth decides the maximum depth of individual trees. The default value of this 

parameter is 3 however it was observed that the model performed better with a depth of 

2. Hence the depth is set to 2. 

 random_state 

Random state can be set as an integer, ‘RandomState’ or ‘None’. If it is set as an integer 

value, that particular node will always be used as a seed to generate trees. If it is set as 

‘RandomState’, random_state will be used as a random number generator for trees. If it is 

set as ‘None’, np.random is used as a random number generator for trees.  

 It was observed that the model gave different results each time when it is run when 

the seed is randomly generated. To avoid inconsistency in results, this parameter is set to 

0, so that the 0th node is always used as a seed for tree generation. Figure 16 shows the 

accuracy of predictions done by Gradient Boosting model. 

 

Fig. 16 Gradient Boosting Classifier Results 
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X. Results and Analysis 

Research shows that boosting approaches in machine learning can help reduce bias in 

models. The results from both experiments show that Gradient Boosting approach does 

perform better in terms of prediction accuracy. Figure 17 shows a comparison of the 

results of two experiments. 

 

Fig. 17 Accuracy Naïve Bayes vs Gradient Boosting 

Gradient Boosting Classifier model is implemented for this problem as ensemble learning 

methods are said to perform better than simple classifiers, it seemed to be the right fit 

considering the criticality of failing to identify even a single SQL Injection. The model 

identifies all types of SQL Injections correctly as shown in below figures. 

Identifying Union Based SQL Injection: 

 

Fig. 18 Identifying Union Based SQL Injection 
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Identifying Error Based SQL Injection: 

 

Fig. 19 Identifying Error Based SQL Injection 

 

Identifying Boolean SQL Injection: 

 

Fig. 20 Identifying Boolean SQL Injection 

 

Identifying Time Based SQL Injection: 

 

Fig. 21 Identifying Time Based SQL Injection 

 



SQL Injection Detection Using Machine Learning   

  

37 

 

Identifying Plain-text: 

 

Fig. 22 Identifying Plain-Text  

 

Fig. 23 Identifying Plain-Text 

As seen from above figures, the implemented model is able to classify between SQL 

Injection and Plain-text data. The machine learning model is able to identify almost all 

types of SQL Injections.   

Ensemble approaches - of which Gradient Boosting is an example, also have certain trade-

offs. 

Trade-offs: 

 Ensemble learning approaches tend to take longer time in the learning phase but 

are better learners.  

 This approach can be easily susceptible to overfitting. In this project, overfitting is 

avoided by experimenting with the number of boosting stages to be performed. 

Selecting a number in higher range helps with the overfitting issue.  
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 Gradient Boosting approach is computationally expensive than simple classifiers in 

terms of memory and computation. More memory is needed to store multiple 

trees. 
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XI. Conclusion and Future Work 

SQL Injection attacks remain to be one of top concerns for cyber security researchers. 

Signature based SQL Injection detection methods are no longer reliable as attackers are 

using new types of SQL Injections each time. There is a need for SQL Injection detection 

mechanisms that are capable of identifying new, never before seen attacks. Applying 

machine learning to the field of cyber-security is being considered by many researchers. 

Since machine learning in cyber-security is still a developing research area, there are not 

many libraries and open source tools that are machine learning specific and apply to 

problems related to threats and attacks.  

In this thesis, the SQL Injection detection problem is approached by applying machine 

learning algorithms. Classification method is used to classify the incoming traffic as a SQL 

Injection or plain text. Two machine learning classification algorithms are implemented on 

the problem, which are, Naïve Bayes Classifier and Gradient Boosting Classifier. Naïve 

Bayes classifier machine learning model provides results with an accuracy of 92.8%. 

Ensemble learning methods are said to provide results with better accuracy as they 

implement multiple simple classifiers to improve error and accuracy. Hence Gradient 

Boosting Classifier from ensemble learning is selected to be implemented on the SQL 

Injection classification problem. Various combinations of parameters are tuned and tried 

together and an accuracy of 97.4% is achieved by the Gradient Boosting classifier. From 

this project it can be concluded that machine learning approaches can be used for SQL 

Injection detection, and Gradient Boosting classifier algorithm provides better accuracy 

than Naïve Bayes approach. 
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For future work this project could further be modified in terms of usability and efficiency. 

The machine learning approach for detecting SQL Injections could be used in combination 

with other SQL Injection detection mechanisms such as static code analysis and web 

application firewalls. The machine learning model can also be advanced further with better 

feature extraction. In this project tokenization approach is used to create features for the 

machine learning model. Other approaches can be used for feature extraction and training 

the model in more effective manner. 
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