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ABSTRACT

Online Local Communities

by Mrudula Murali

A community in a network is a group of nodes that are densely and closely

connected to each other, get sparsely connected to the nodes outside the community.

Finding communities in a large network helps solve many real-world problems. But

detecting such communities in a complex network by focusing on the whole network

is not feasible. Instead, we focus on finding communities around one or more seed

node(s) of interest. Therefore, in this project, we find local communities. Moreover,

we consider the online setting where the whole graph is unknown in the beginning and

we get a stream of edges, i.e., pair of nodes, or a stream of higher order structures,

i.e., triangles of nodes.

We created a new dataset that consists of web pages and their links by using the

Internet Archive. We extended an existing online local graph community detection

algorithm, called COEUS, for higher order structures such as triangles of nodes. We

provide experimental results and comparison of the existing method and our proposed

method using two public datasets, the Amazon and the DBLP as well as for our new

Webpages dataset. In the experimental results, we see that the proposed method

performs better than the existing method for one out of three test cases for the public

dataset but not for our Webpages dataset. This is because the Webpages dataset has

a large number of nodes with degree 1 which poses a problem for modified COEUS

because it takes triangles as an input stream.

Keywords - Community detection, Local graph clustering, Online com-

munity
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CHAPTER 1

Introduction

Graphs are formed by a set of vertices (nodes) and edges. They model the

real-world systems, like social networks, where nodes are people and edges are friend-

ships or interests. One way to analyze complex networks is by finding communities

(clusters). The community detection problem is defined as the one where we seek to

partition the nodes into groups, sometimes disjoint [1, 2] sometimes overlapping [3, 4].

In this project, we extended an existing online local graph community detection algo-

rithm, called COEUS, by considering motifs, also called higher order structures such

as triangles of nodes. Additionally, we created a new Webpage dataset by using the

Internet Archive. This dataset along with two public datasets, the Amazon and the

DBLP were used to test the accuracy of the proposed method and compare it to the

existing COEUS method.

There are many clustering algorithms to find communities in a graph, such as

spectral clustering method. Also, there are some heuristic search methods that pro-

vide a better quality of community structure in a network. Recently, some algorithms

first represent the graph by embedding the nodes into a low dimensional Euclidean

space. But these distance-based algorithms are not appropriate for the real world

networks of small world phenomena, where the edges between the nodes are small.

Page rank can be used to find communities in a network since it provides a struc-

tural relationship between nodes in a graph. It is more effective than reducing the

dimension of a large graph.

Page rank is the distribution of a random walk that stays put with probability 𝛼
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at each time step and walks to a random neighbor with probability 𝛼−1. The unique

solution to the linear system can be represented by the page rank vector p𝑟𝛼(s). The

distribution of a random walk is:

𝑝𝑟𝛼(𝑠) = 𝛼𝑠 + (1− 𝛼)𝑝𝑟𝛼(𝑠)𝑊. (1)

Here, 𝛼 is called the teleport probability which is a constant in [0, 1] and ‘s’ is a

starting vector (seed-set). W is the transition probability matrix. If the starting

vectors are not uniform then it is personalized page rank.

1.1 Problem Statement

With the increasing popularity of online social networking services such as Face-

book and Twitter, detecting communities becomes more relevant in the study of

networks. In this era of big data, processing massive networks by considering it as a

static graph poses a problem. Therefore, it is good to consider a data stream model,

in which the edges of a graph is considered as streams [5].

1.2 Applications of community detection

Detecting communities help solve many real-world problems. Some of its appli-

cations are:

∙ Social networks - Understanding communities in social networks helps to pre-

form recommendations to the users, understand the interests of users so that

we can provide specific feeds to them.

∙ Fraudulent websites - Many false websites tend to link to each other. Finding

communities of such websites is extremely useful because the whole network of

fraudulent websites can be exposed by finding one.

2



∙ Biological networks - Learning preferences of a user from one network can be

used to display related, useful ads for similar user/users in another network.

∙ Citation network - Finding communities in the citation network helps to identify

the citation patterns of the authors and uncover the relationship between the

disciplines.

3



CHAPTER 2

Preliminaries

In this chapter, we introduce some preliminaries that we will use in the rest of

this project. The sections 2.1 and 2.2 remind the quality function used in community

detection. In Section 2.3 we remind the well-known structure of sublinear space data

for high-dimensional vector representation.

2.1 Conductance

Conductance is a popular objective function that is used for local community

detection in many algorithms.

Definition 2.1.1. (Conductance) Let 𝐺 = (𝑉,𝐸) be an undirected graph and let

𝑆 ⊂ 𝑉 be a set of graph nodes. The following equation defines the conductance of a

cut (𝑆, 𝑆) as:

𝜑𝑆 = 𝜑𝑆 =
| 𝐸𝑆,𝑆 || 𝐸 |
| 𝐸𝑆 || 𝐸𝑆 |

(2)

The minimum conductance over all cuts is defined by the graph conductance 𝜑𝐺.

A widely used quality function in the field of community detection is the con-

ductance of a community. More specifically, conductance 𝜑(𝐶) of a community C is

formally defined as:

𝜑 =
𝑎𝑑𝑗(𝐶, 𝑉 | 𝐶)

𝑚𝑖𝑛(𝑎𝑑𝑗(𝐶, 𝑉 ), 𝑎𝑑𝑗(𝑉 | 𝐶, 𝑉 ))
(3)

where:

𝑎𝑑𝑗(𝐶𝑖, 𝐶𝑗) =| {(𝑢, 𝑣) ∈ 𝐸 : 𝑢 ∈ 𝐶𝑖, 𝑣 ∈ 𝐶𝑗} |

.
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2.2 Community Participation

Community participation 𝑐𝑝(𝑢) of a node u in a community, that measures a

node’s u participation level in a community. In particular the community participa-

tion of node u in community C is defined as:

𝑐𝑝(𝑢) =
| {(𝑢, 𝑣) ∈ 𝐸 : 𝑣 ∈ 𝐶} |
| {(𝑢, 𝑣) ∈ 𝐸} |

(4)

Community participation of a node in a community is the fraction of its adjacent

nodes in the graph that are part of the community [5].

If community participation of one node is higher than the other, then the node

with higher community participation is considered to be more closely connected to

the community than the node which exhibits lower community participation

2.3 Count Min Sketch

The COUNT-MIN sketch for the representation of high-dimensional vectors is

a well-known sub-linear space data structure. COUNT-MIN sketches enable the an-

swering of fundamental queries efficiently and with strong guarantees of accuracy.

They are especially useful to summarize data streams because they can handle up-

dates at high rates.

Data Structure. A Count-Min (CM) sketch with parameters (𝜀, 𝛿) is represented

by a two-dimensional array of width 𝑤 and depth 𝑑: 𝑐𝑜𝑢𝑛𝑡[1, 1]...𝑐𝑜𝑢𝑛𝑡[𝑑, 𝑤] counts.

Set 𝑤 =
⌈︀
𝑒
𝜀

⌉︀
and 𝑑 =

⌈︀
ln 1

𝛿

⌉︀
, given parameters (𝜀, 𝛿). Initially, each entry in the array

is zero. Furthermore, 𝑑 hash functions

ℎ1...ℎ𝑑 : {1...𝑛} → {1...𝑤}

are selected randomly from a pairwise-independent family [6].

5



Figure 1: COUNT-MIN Sketch update process.

Update Procedure. When an update (𝑖𝑡, 𝑐𝑡) arrives, which means item 𝑎𝑖𝑡 is up-

dated by a quantity of 𝑐𝑡, then 𝑐𝑡 is added to one count in each row; ℎ𝑗 is used to

determine the counter. Formally, set ∀1 ≤ 𝑗 ≤ 𝑑

𝑐𝑜𝑢𝑛𝑡[𝑗, ℎ𝑗(𝑖𝑡)]← 𝑐𝑜𝑢𝑛𝑡[𝑗, ℎ𝑗(𝑖𝑡)] + 𝑐𝑡

The array of 𝑤𝑑 counts is the space used by Count-Min sketches, that takes 𝑤𝑑

words, and 𝑑 hash functions, each of which can be stored with two words when using

the pairwise functions [6].
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CHAPTER 3

Related Work

In this chapter, we give a brief review of the previous related works. Since our

work uses streams of graphs and local communities detection through seed sets we

present the related work that covers both as well the ones that cover each of these.

Additionally, we will review some works on Page Rank based algorithms used for

community detection.

3.1 Online community detection

In the work of [5], the authors propose a local community detection algorithm

that receives the graph as an edge stream. They call their algorithm COEUS. By

processing a stream of edges, without restriction on the arrival order, and maintain-

ing limited information about the respective graph, such as the nodes’ degrees, the

community participation of nodes and the nodes in each community they manage to

stay in sub-linear space to the number of edges. Additionally, they have two versions

of their algorithm. In the first one, they greedily merge the endpoints of the new

arriving edge to the same communities and check after some steps that their commu-

nities are not very big. In the second the quality of the new edge is considered. They

introduce and use a new node centrality, called community participation, instead of

page rank. As the last step, they determine in real-time the size of each community

by removing some nodes. In their experiments, they measure time and space. Sum-

marizing, their approach is one that can deal with large-scale community detection.

In the description of our methods, more details will be given in order to compare and

contrast.

7



3.2 Overlapping community detection

A local graph partitioning algorithm in presented in [7] that finds cuts with an

approximate computation and use of the PageRank vectors. Each of the PageRank

vectors they compute uses a seed node and then can use that vector to determine a

cut that partitions the local graph into two communities. This cut is found through a

sweep method over the vector and the computation of the conductance of the resulting

sets.

3.3 Higher order community detection

A network motif is a higher-order structure and such structures are important

aspects of the graph. A motif can be an edge or a triangle of nodes. In the work

of [8], first the generalize the conductance to one that is a motif conductance and then

extends the approximate Personalized PageRank with motifs, MAPPR algorithm,

starting from a seed node and finding a local community such that the minimal motif

conductance is achieved.

3.4 Local community detection using Page rank

PageRank vectors can be computed to calculate the importance of node u on

other nodes. Jeh and Widom [9] presented an algorithm for computing these PageR-

ank vectors. Making use of this PageRank vector technique, Andersen et al. [10]

proposed a local graph partitioning algorithm. It can be used to find communities

in an undirected graph for a given seed node(s). Sweep technique is used in this

algorithm to sweep over the PageRank vectors which selects a set that minimizes or

maximizes some scoring function. Conductance is one such scoring function. To find

a good high-quality cluster, select a set with low conductance. Later, Andersen et al.

8



extended the local graph partitioning algorithm to accommodate strongly connected

directed graphs in [11]. In this project, we will be using the page rank to determine

which nodes to consider in the local cluster of the seed.

9



CHAPTER 4

Datasets

We will be using three datasets in our project for experiment purpose. Two of

them are publicly available datasets, Amazon and DBLP [12] that are undirected and

contain the ground-truth communities. The third dataset is one which we create from

the web crawls. Creating webpage dataset is the first part of the project.

4.1 Internet Archive Dataset

We download the WARC files obtained from the Internet Archive 1. WARC, or

Web ARChive, is a successor to the previous ARC format used by the 1996 Internet

Archive to store web crawls. The WARC format is standardized by the International

Internet Preservation Consortium (IIPC), a consortium of national libraries, research

laboratories, and technology organizations, with version 1.1 being the latest version

from 2017.

The Internet Archive makes many of its web crawls available to the public. A

typical web crawl is stored as a WARC file sequence where each WARC file, in turn,

consists of a sequence of WARC records. Usually, a WARC file is used to store

a gigabyte of data. Each record in it is often compressed using gzip, and these

compressed records are concatenated, allowing the entire file to be decompressed

using gzip -d, but also allowing individual records to be read and uncompressed

without the need to decompress the entire file if an offset and a compressed length

are known. A record starts with a line declaring the WARC format in use followed by

a sequence of header-name value lines specifying record properties such as the type
1https://web.archive.org/web/*/warc
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and date of the record. This is followed by a line of Content-Length and the actual

content of the record is followed in turn. This content is a web page most often.

A smaller file called a CDX file is used to facilitate random access to a WARC

file. It consists of a sequence of one line recording in a WARC file, each with meta

information about one record which summarizes a single web document. The first line

in the file is a legend to interpret the data, and the following lines contain the data to

reference the corresponding host pages. The file’s first character is the field delimiter

used in the rest of the file. It is followed by the literal “CDX” and a space-separated

list of letters used as column type codes. Below are some of the column type codes

present in our WARC file.

∙ 𝑘− checksum

∙ 𝑔− warc file name

∙ 𝑆− record size (compressed)

∙ 𝑉− file offset (compressed)

∙ 𝑁− massaged url

∙ 𝑠− response code

∙ 𝑚− file type

∙ 𝑎− original url

Then the CDX record lines consist of space-separated fields in this format. For a

1 GB WARC, a compressed CDX file is about 20-30 MB, which makes it much more

manageable.

11



4.2 Creating webpage link dataset

To create the Webpage dataset we read the CDX file line by line and obtain the

necessary fields to extract each web document. The necessary fields are:

∙ 𝑔− warc file name

∙ 𝑆− compressed record size

∙ 𝑉− compressed arc file offset

∙ 𝑚− file type

∙ 𝑎− original url

Decompressing the whole WARC file takes a lot of time and not an efficient

approach. So we try to decompress only part of the WARC file where the web

document is stored. This can be done by using the offset and the record size available

in each of the CDX line for respective web document. In the creation of our Webpage

dataset, we are interested with only HTML pages. So the file type helps us to filter

only the HTML file type and ignore the rest. After we decompress part of the WARC

file for a web document, we scan it to check for the web page links (URL). original url

field helps us make a connection between the webpage URL and the links the webpage

contains. Let’s call each link in the webpage of a URL as linked_url . This process is

detailed in Algorithm 1.

The original url and all the linked_url is stored in ‘node’ table. Each of the

URL in the ‘node’ table is represented as a node in a graph and the link between

original url and the linked_url is stored in ‘edge’ table and represented by an edge

in the graph.

12



Algorithm 1 FetchWebLinks
1: Procedure fetchWebLinks(cdx)
2: for each 𝑙𝑖𝑛𝑒 in 𝑐𝑑𝑥 file do
3: open WARC file
4: seek(offset)
5: read(record size)
6: 𝑤𝑒𝑏𝑝𝑎𝑔𝑒 = Decompress the read section of WARC file
7: Scan the 𝑤𝑒𝑏𝑝𝑎𝑔𝑒 to get the links cited in the webpage
8: end for
9: end Procedure

The Webpage dataset we created by this process has 1,977,975 nodes and

2,484,651 edges. The ratio of nodes to edges is very less

13



CHAPTER 5

Methodology

In this chapter, we first explain the existing COEUS algorithm in section 5.1 and

then provide a modification to this algorithm(proposed algorithm) in the section 5.2

5.1 Community Detection via Seed-set Expansion on Graph Streams
(COEUS)

A community is generally thought to be a set of graph nodes that are closely

connected and have very few links to the rest of the nodes of the graph [13]. A widely

used [14], [15] community detection function is the conductance of a community as

defined in definition 2.4.1. Conductance is the most used quality function when

detecting communities. However, tracking the behavior of all possible communities

as we process the edges of the stream is inefficient w.r.t time and space. Rather, we

use community participation 𝑐𝑝(𝑢) of a node u in a community here, which measures

the level of participation of a node in a community.

Graph algorithms are unable to store and process the entire graph if the graph is

large [16]. Graph stream algorithms, on the other hand, process a stream comprising

the graph edges in the order in which these edges arrive over time using limited

memory. Due to a large amount of data, COUNT-MIN sketches are used to store the

frequency data.

5.1.1 COEUS Algorithm

In this section, the existing COEUS algorithm is explained in order to under-

stand the proposed algorithm which is the modification of the existing COEUS. The

14



Figure 2: A stream comprising the edges of an undirected graph and a set of com-
munities initialized with a few seed nodes.

pseudocode of COEUS is given in Algorithm 2.

COEUS algorithm takes two inputs: (i) A set of community seeds 𝐾 ′ =

{𝐾1, 𝐾2, ..., 𝐾𝑠}, each of which is 𝐾𝑖 = {𝑘1, 𝑘2, .𝐾𝑙} ∈ 𝑉 and (ii) a stream 𝑆 =

(𝑒1, 𝑒2, ..., 𝑒𝑚), where 𝑒𝑖 ∈ 𝐸, and E is the set of edges of the undirected graph

𝐺 = {𝑉,𝐸} defined by 𝑆. Each edge in the graph stream is processed one at a time

and added to the initial seed-set communities 𝐾 ′ to extend it. At the end of this

algorithm, we get a set of communities 𝐶 = {𝐶1, 𝐶2, ..., 𝐶𝑠}, with community 𝐶𝑖 cor-

responding to 𝐾𝑖’s seed set, as the output. This output is available at any point in

time during the processing.

Line 1-7 of Algorithm 2 (COEUS algorithm) does the initialization of the seed-

set communities. This is a simple procedure whereby we create an additional set to

hold the nodes of the respective communities for each of the community seed sets.

The seed-sets and community sets allow us to check whether a node is a seed or a

15



Algorithm 2 COEUS (S,K’) SIMPLE
Input: A set of community seed-sets 𝐾 ′, and a graph stream 𝑆.
Output: A set of communities 𝐶 ′.
1: for each 𝐾 ∈ 𝐾 ′ do
2: 𝐶 ← {};
3: for each 𝑘 ∈ 𝐾 do
4: 𝐶[𝑘] = 1;
5: end for
6: 𝐶 ′.𝑝𝑢𝑡(𝐶);
7: end for
8: while ∃(𝑢, 𝑣) ∈ 𝑆 do
9: 𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑢]+ = 1;

10: 𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑣]+ = 1;
11: for each 𝐶 ∈ 𝐶 ′ do
12: if 𝑢 ∈ 𝐶 then
13: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]+ = 1;
14: end if
15: if 𝑣 ∈ 𝐶 then
16: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]+ = 1;
17: end if
18: if 𝑢 ∈ 𝐶 then
19: 𝐶.𝑝𝑢𝑡(𝑣);
20: end if
21: if 𝑣 ∈ 𝐶 then
22: 𝐶.𝑝𝑢𝑡(𝑢);
23: end if
24: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠+ = 1;
25: if 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑚𝑜𝑑𝑊 == 0 then
26: 𝐶 ← 𝑝𝑟𝑢𝑛𝑒(𝐶, 𝑠, 𝑑𝑒𝑔𝑟𝑒𝑒𝑉 , 𝑑𝑒𝑔𝑟𝑒𝑒𝐶)
27: end if
28: end for
29: end while

member of a community efficiently at any time. Consider using Figure 2 as an example

that we want three communities to be detected. COEUS begins with three seed sets

describing these communities, namely {2, 5, 8},{3, 6, 8}, and {1, 4, 7}. COEUS creates

three community sets consisting of these nodes in this setting.

COEUS is ready to process the stream after initializing the communities (Lines
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8-29). The size of the network is large, so we avoid storing the whole network. Hence

we keep track of the following aspects as we process the stream of edges:

1. Each node’s degree in a graph

2. community degree

3. nodes that form the community

We first increase the degree of each of the adjacent nodes in the graph by 1 for

each incoming edge of the stream (Lines 9-10). We then examine whether each of the

adjacent nodes is a member of the community for each community we wish to extend.

If this is the case, we will increase the other node’s community degree. Furthermore, if

the other node is not a community member, the node will be added to the community

(Lines 12-23). Returning to the example of Figure 2, when edge {9, 8} arrives, the

degree of both nodes 8 and 9 will first be increased by 1 by COEUS. After that, for

each community, COEUS will examine whether nodes 9 or 8 are community members.

This is true for two communities with node 8. Therefore, for both communities,

COEUS will increase the community degree of node 9 by 1. Furthermore, to both

communities to which node 8 belongs, COEUS will add node 9.

We want to focus on nodes for each community that is closely connected to each

other. So we consider a window of size W for this purpose. The communities can

freely grow in size during a window as new edges arrive. When the window closes,

however, COEUS prunes all communities and keeps only each community’s most

highly involved nodes (Lines 25-27).

With Algorithm 3 and pruneComm function, which uses Eq 4, this process is

detailed. We iterate over the nodes in a community and find the community par-

17



Algorithm 3 pruneComm
1: Procedure pruneComm(𝐶, 𝑠, 𝑑𝑒𝑔𝑟𝑒𝑒𝑉 , 𝑑𝑒𝑔𝑟𝑒𝑒𝐶)
2: 𝑚𝑖𝑛ℎ𝑒𝑎𝑝← []
3: for each 𝑐 ∈ 𝐶 do
4: 𝑐𝑝(𝑐) = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑐]

𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑐]

5: if 𝑚𝑖𝑛ℎ𝑒𝑎𝑝.𝑠𝑖𝑧𝑒() < 𝑠 then
6: 𝑚𝑖𝑛ℎ𝑒𝑎𝑝.𝑝𝑢𝑠ℎ((𝑐, 𝑐𝑝(𝑐)));
7: else if 𝑐𝑝(𝑐) > 𝑚𝑖𝑛ℎ𝑒𝑎𝑝[0] then
8: 𝑚𝑖𝑛ℎ𝑒𝑎𝑝.𝑝𝑜𝑝();
9: 𝑚𝑖𝑛ℎ𝑒𝑎𝑝.𝑝𝑢𝑠ℎ(𝑐, 𝑐𝑝(𝑐));

10: end if
11: end for
12: return 𝑠𝑒𝑡(𝑚𝑖𝑛ℎ𝑒𝑎𝑝);
13: end Procedure

ticipation for that node in a community (Line 4). Then we push the community

participation value of the node into a min-heap. We repeat this procedure until it

reaches a set maximum size, ‘s’ of the min-heap (Lines 5-6). Once the min-heap

reaches its maximum size, the community participation value of a node is compared

with the first value in min-heap because this would be the lowest community partic-

ipation value (Line 7). If the community participation of a node is higher than the

first value of min-heap, the first value of min-heap is removed from the min-heap and

the community participation of the node is pushed into the min-heap (Lines 8-9). At

the end of this procedure, we will have ‘s’ nodes which exhibit the highest community

participation value. The function outputs a set containing these ‘s’ nodes (Line 12).

COEUS can be terminated at any point in time because the node members of

a community are always readily available. In Algorithm 2 we consider a finite edge

stream. So once all the edges in the stream are processed, Algorithm 2 terminates.

In Algorithm 2, we increase the community degree of a node by 1 if an adjacent

member of that node is in the community. We do not take in to account the level
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of involvement of a node in the community. But considering the level of involvement

of a node to decide if a node belongs in a community is important since this helps

us to differentiate between important nodes and irrelevant nodes. So COEUS offers

a variant of Algorithm 2 by considering edge quality when increasing the degree of a

community. This variation is based on the concept used in PageRank, that employs

the network’s link structure to improve over the in-degree measure [10].

We use Eq. 4 in our variation instead of increasing the node’s community degree

by 1 for all adjacent nodes that are community members. Eq. 4 is equal to the frac-

tion of the node adjacent nodes which are also members of the community concerned.

This fraction is essentially an estimate of the likelihood that a one-step random walk

starting from the node will result in a node being a community member in question.

Therefore, The involvement of each node in the community increases. If this value

is high, then there is also a high likelihood of an adjacent node being a community

member. Incrementing the community degree of a node using the community partic-

ipation value of its adjacent node instead of 1 helps COEUS ensure that the nodes

that exhibit strong ties in a community will have a significant contribution to the

community than the nodes which exhibit weak ties.

Algorithm 4 details the approach described above and can replace Algorithm 2

lines 11 - 23. The difference in functionality is in Algorithm 4 lines 4 and 7, which

use an Community participation estimate to increase a node’s participation level in

the community for the adjacent node in question.

One problem with COEUS is that it also includes the nodes which have lower

community participation value. But these nodes are not relevant to the community

as they do not exhibit strong ties with the community. COEUS resolves this issue by

removing the nodes with the lowest community participation value.
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Algorithm 4 COEUS addToCommByEdgeQuality
1: Procedure addToCommByEdgeQuality
2: for each 𝐶 ∈ 𝐶 ′ do
3: if 𝑢 ∈ 𝐶 then
4: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]

𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑢]
;

5: end if
6: if 𝑣 ∈ 𝐶 then
7: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]

𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑣]
;

8: end if
9: if 𝑢 ∈ 𝐶 then

10: 𝐶.𝑝𝑢𝑡(𝑣);
11: end if
12: if 𝑣 ∈ 𝐶 then
13: 𝐶.𝑝𝑢𝑡(𝑢);
14: end if
15: end for
16: end Procedure

Algorithm 5 details drop-tail, which first ranks the nodes in the community in

the decreasing order of their community participation value and then finds the mean

distance between two adjacent nodes using their community participation value. The

average distance is calculated by considering all the nodes in a community (Lines 5-

10). Then the drop-tail iterates over all the nodes in each community in the decreasing

order of their community participation value and finds the distance between that node

and the previous node. If this distance is less than the average distance then that

node is removed from the community. If drop-tail find the distance between two

nodes greater than the average distance it terminates the algorithm. Because all the

remaining nodes have a gap between them greater than the set threshold (Line 13-23).

5.2 Modified COEUS

In the previous section, we saw how [5] implements the COEUS to find communi-

ties of a graph stream. In this section, we will propose a modification to the existing
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Algorithm 5 dropTail
1: Procedure dropTail
2: 𝐶 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑜𝑟𝑡(𝐶);
3: 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒← 0;
4: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 0;
5: for each 𝐶 ∈ 𝐶 do
6: if 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 > 0 then
7: 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒← 𝑐𝑝(𝑐)− 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠;
8: end if
9: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 𝑐𝑝(𝑐);

10: end for
11: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒← 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐶.𝑠𝑖𝑧𝑒()−1
;

12: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 0;
13: for each 𝐶 ∈ 𝐶 do
14: if 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 > 0 then
15: 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒← 𝑐𝑝(𝑐)− 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠;
16: end if
17: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 𝑐𝑝(𝑐);
18: if 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 then
19: 𝐶.𝑟𝑒𝑚𝑜𝑣𝑒(𝑐);
20: else
21: break;
22: end if
23: end for
24: end Procedure

COEUS algorithm.

The COEUS algorithm proposed by Liakos et al. [5] considers a stream of edges

as input. In our proposed algorithm we will consider the stream of triangles of nodes

as an input.

The Modified COEUS algorithm takes two inputs: (i) A set of community seeds

𝐾 ′ = {𝐾1, 𝐾2, ..., 𝐾𝑠}, each of which is 𝐾𝑖 = {𝑘1, 𝑘2, .𝐾𝑙} ∈ 𝑉 and (ii) a triangle

stream 𝑆 = (𝑡1, 𝑡2, ..., 𝑡𝑚), where 𝑡𝑖 ∈ 𝑇 , and T is the set of triangles of the undirected

graph 𝐺 = {𝑉,𝐸} defined by 𝑆 and T is of the form (𝑒1, 𝑒2, 𝑒3). Each triangle

in the graph stream is processed one at a time and added to the initial seed-set

21



communities 𝐾 ′ to extend it. At the end of this algorithm, we get a set of communities

𝐶 = {𝐶1, 𝐶2, ..., 𝐶𝑠}, with community 𝐶𝑖 corresponding to 𝐾𝑖’s seed set, as the output.

This output is available at any point in time during the processing.

Line 1-7 of Algorithm 6 (Modified COEUS algorithm) does the initialization of

the seed-set communities and is the same as we have seen in Algorithm 2. Modified

COEUS is now ready to process the stream after initializing the communities (Lines

8-42). Because of the size of the network, even in modified COEUS, we don’t keep the

entire triangle stream. Instead, we keep track of the following aspects as we process

the stream of edges:

1. Each node’s degree in a graph

2. community degree

3. nodes that form the community

We first increase the degree of each of the adjacent nodes in the graph by 1 for

each incoming triangle of edges of the stream (Lines 9-11). We then examine whether

each of the adjacent nodes is a member of the community for each community we wish

to extend. If this is the case, we will increase the other nodes’ community degree.

Furthermore, if the other nodes is not a community member, the nodes will be added

to the community (Lines 12-36). The pruning on communities once it reaches the

window size, is the same as the existing COEUS.

We also modify the Algorithm 4 of the existing COEUS to process nodes of three

(triangles) instead of edges. The modified edge quality is given in Algorithm 7.
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Algorithm 6 Modified COEUS (S,K’)
Input: A set of community seed-sets 𝐾 ′, and a triangle graph stream 𝑆.
Output: A set of communities 𝐶 ′.
1: for each 𝐾 ∈ 𝐾 ′ do
2: 𝐶 ← {};
3: for each 𝑘 ∈ 𝐾 do
4: 𝐶[𝑘] = 1;
5: end for
6: 𝐶 ′.𝑝𝑢𝑡(𝐶);
7: end for
8: while ∃(𝑢, 𝑣, 𝑤) ∈ 𝑆 do
9: 𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑢]+ = 1;

10: 𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑣]+ = 1;
11: 𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑤]+ = 1;
12: for each 𝐶 ∈ 𝐶 ′ do
13: if 𝑢 ∈ 𝐶 then
14: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]+ = 1;
15: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑤]+ = 1;
16: end if
17: if 𝑣 ∈ 𝐶 then
18: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]+ = 1;
19: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑤]+ = 1;
20: end if
21: if 𝑤 ∈ 𝐶 then
22: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]+ = 1;
23: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]+ = 1;
24: end if
25: if 𝑢 ∈ 𝐶 then
26: 𝐶.𝑝𝑢𝑡(𝑣);𝐶.𝑝𝑢𝑡(𝑤);
27: end if
28: if 𝑣 ∈ 𝐶 then
29: 𝐶.𝑝𝑢𝑡(𝑢);𝐶.𝑝𝑢𝑡(𝑤);
30: end if
31: if 𝑤 ∈ 𝐶 then
32: 𝐶.𝑝𝑢𝑡(𝑢);𝐶.𝑝𝑢𝑡(𝑣);
33: end if
34: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠+ = 1;
35: if 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑚𝑜𝑑𝑊 == 0 then
36: 𝐶 ← 𝑝𝑟𝑢𝑛𝑒(𝐶, 𝑠, 𝑑𝑒𝑔𝑟𝑒𝑒𝑉 , 𝑑𝑒𝑔𝑟𝑒𝑒𝐶)
37: end if
38: end for
39: end while
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Algorithm 7 Modified COEUS addToCommByEdgeQuality
1: Procedure addToCommByEdgeQualityModified
2: for each 𝐶 ∈ 𝐶 ′ do
3: if 𝑢 ∈ 𝐶 then
4: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]

𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑢]
;

5: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑤]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]
𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑢]

;
6: end if
7: if 𝑣 ∈ 𝐶 then
8: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]

𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑣]
;

9: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑤]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]
𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑣]

;
10: end if
11: if 𝑤 ∈ 𝐶 then
12: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑢]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑤]

𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑤]
;

13: 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑣]+ = 𝑑𝑒𝑔𝑟𝑒𝑒𝐶 [𝑤]
𝑑𝑒𝑔𝑟𝑒𝑒𝑉 [𝑤]

;
14: end if
15: if 𝑢 ∈ 𝐶 then
16: 𝐶.𝑝𝑢𝑡(𝑣);
17: 𝐶.𝑝𝑢𝑡(𝑤);
18: end if
19: if 𝑣 ∈ 𝐶 then
20: 𝐶.𝑝𝑢𝑡(𝑢);
21: 𝐶.𝑝𝑢𝑡(𝑤);
22: end if
23: if 𝑤 ∈ 𝐶 then
24: 𝐶.𝑝𝑢𝑡(𝑢);
25: 𝐶.𝑝𝑢𝑡(𝑣);
26: end if
27: end for
28: end Procedure
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CHAPTER 6

Experimental Results

In this chapter, we present an evaluation of our algorithms. In Section 6.1, we

describe the datasets we use in our experiments. Then in Section 6.2, we evaluate

the COEUS on three networks. Next, we evaluate the modified COEUS on the same

3 networks in Section 6.3. Finally in Section 6.4, we compare the results of COEUS

and modified COEUS.

6.1 Dataset

As we mentioned already, our experiments include three datasets. Two of the

them are publicly available [12], one is the Amazon co-purchasing network and the

other is the DBLP co-authorship network. Both these datasets are undirected and

contain the ground-truth communities. The last one is the one we created in the

first part of the project, namely consisting of webpages. The details of the provided

datasets are listed in Table 1.

Table 1: Graphs of our dataset

Dataset Type Nodes Edges
Amazon Co-purchasing 334,863 925,872
DBLP Co-authorship 317,080 1,049,866
Webpages (own) Link citation 1,977,975 2,484,651

6.1.1 Amazon

The Amazon co-purchasing network dataset is obtained from the SNAP li-

brary [12]. The SNAP library collected this data by crawling the Amazon website.
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The data is based on Amazon website’s feature ‘Customers Who Bought This Item

Also Bought’. If a product 𝑖 is often co-purchased with product 𝑗, an undirected

edge from 𝑖 to 𝑗 exists in the graph. Each category of products provided by Amazon

defines each community of ground-truth. They considered each connected component

to be a separate ground-truth community in a product category. Then they removed

communities with less than 3 nodes of ground-truth.

6.1.2 DBLP

The DBLP co-authorship network dataset is also obtained from the SNAP li-

brary [12]. The bibliography of the DBLP computer science provides a comprehen-

sive list of computer science research papers. The SNAP library built a network of

co-authorships where two authors are connected if at least one paper is published to-

gether. Publication venue like journal or conferencewas used to define an individual

ground-truth community; a community is formed by authors who have published in

a particular journal or conference.

They considered each connected component in a group to be a separate commu-

nity of ground-truth. They removed communities with less than 3 nodes of ground-

truth.

6.1.3 Webpages

The webpages dataset is obtained from the web crawl as described in section 4.2.

The graphical representation of the subset of the network obtained from section 4.2

is shown in Figure 3.

The degree distribution of the whole network is shown in Figure 4. In Figure 4,

we observe that the number of nodes with degree 1(100) is large which might pose
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Figure 3: A subset of the Webpage network.

Figure 4: Degree distribution of the Webpage network.

a problem when the Webpage dataset is used to compare the existing COEUS and

modified COEUS.
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6.2 COEUS

We use the three datasets described above to run experiments on the existing

COEUS approach. The COEUS approach forms communities by tacking edges as

streams. We initialized the following parameters so that we obtain 99% confidence

and 𝜖 < 0.00001:

1. 𝑑 = 7

2. 𝑤 = 200, 000

We consider three random nodes of each ground truth community as the input

seed set. Since we have the ground truth communities for the publicly available

datasets we use F1 score to measure the accuracy of the algorithm. There are two

techniques in the coeus algorithm. Let’s call it SIMPLE technique When we incre-

ment the community degree of a node by 1 and EDGE_QUALITY technique when

the community degree of a node is incremented by the community degree of the ad-

jacent node. Result of each of this technique is compared against the ground-truth

community, GROUND_TRUTH, and the F1 score is calculated. A novel clustering

algorithm (Algorithm 5) is applied to the resulting COEUS community to separate

the nodes that exhibit weak community ties and are removed. Let’s call this ap-

proach as DROP_TAIL. We compare the efficiency of Algorithm 5 by comparing the

F1 scores of DROP_TAIL and EDGE_QUALITY. The results of this approach for

Amazon dataset is listed in Table 2 and the results of this approach for DBLP dataset

is listed in Table 3. The results of this approach for the webpage dataset created in

this project is listed in Table 4.
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Table 2: COEUS on Amazon dataset

Test Case Test Parameter 1 Test Parameter 2 F1-score
1 SIMPLE GROUND_TRUTH 0.76
2 EDGE_QUALITY GROUND_TRUTH 0.85
3 EDGE_QUALITY DROP_TAIL 0.80

Table 3: COEUS on DBLP dataset

Test Case Test Parameter 1 Test Parameter 2 F1-score
1 SIMPLE GROUND_TRUTH 0.38
2 EDGE_QUALITY GROUND_TRUTH 0.43
3 EDGE_QUALITY DROP_TAIL 0.25

Table 4: COEUS on Webpage dataset

Test Case Test Parameter 1 Test Parameter 2 F1-score
1 SIMPLE GROUND_TRUTH 0.90
2 EDGE_QUALITY GROUND_TRUTH 0.90
3 EDGE_QUALITY DROP_TAIL 0.74

6.3 Modified COEUS

In this project we have modified the existing COEUS as explained in Section 5.2

and did some experiments on it. In the modified COEUS we consider a stream of

triangles instead of edges. So first we need to find the triangles in each dataset. We

added the edges of the network in to MySQL database where two nodes of the edges

were considered as two columns and named it node1 and node2. Say the database

name is ‘edge_data’, then the following SQL return the triangles for a given network.

SELECT e1.node1 as U, e2.node1 as V, e3.node2 as W
FROM edge_data e1, edge_data e2, edge_data e3

WHERE e1.node2 = e2.node1 AND e2.node2 = e3.node2 AND e3.node1 = e1.node1;

The number of triangles for the provided datasets are listed in Table 5.

29



Table 5: Graphs of our dataset with triangles

Dataset Type Nodes Edges Triangles
Amazon Co-purchasing 334,863 925,872 667,129
DBLP Co-authorship 317,080 1,049,866 2,224,385
Webpages (own) Link citation 1,977,975 2,484,651 1,269,112

We maintained the same setting as before and initialized the following parameters

so that we obtain 99% confidence and 𝜖 < 0.00001:

1. 𝑑 = 7

2. 𝑤 = 200, 000

The results of the modified COEUS for Amazon dataset is listed in Table 6. The

results of the modified COEUS for DBLP dataset is listed in Table 7. The results

of the modified COEUS for the webpage dataset created in this project is listed in

Table 8.

Table 6: Modified COEUS on Amazon dataset

Test Case Test Parameter 1 Test Parameter 2 F1-score
1 SIMPLE GROUND_TRUTH 0.83
2 EDGE_QUALITY GROUND_TRUTH 0.83
3 EDGE_QUALITY DROP_TAIL 0.80

Table 7: Modified COEUS on DBLP dataset

Test Case Test Parameter 1 Test Parameter 2 F1-score
1 SIMPLE GROUND_TRUTH 0.40
2 EDGE_QUALITY GROUND_TRUTH 0.40
3 EDGE_QUALITY DROP_TAIL 0.33
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Table 8: Modified COEUS on Webpage dataset

Test Case Test Parameter 1 Test Parameter 2 F1-score
1 SIMPLE GROUND_TRUTH 0.47
2 EDGE_QUALITY GROUND_TRUTH 0.47
3 EDGE_QUALITY DROP_TAIL 0.47

6.4 Comparing results of COEUS and modified COEUS

Comparing Table 2 and Table 6 we see that for the test case 1 (SIMPLE and

GROUND_TRUTH) the modified COEUS gives much better result than the existing

COEUS for the Amazon dataset. Test case 3 (EDGE_QUALITY and DROP_TAIL)

gives almost the same result for both COEUS implementations. But the test case 2

(EDGE_QUALITY and GROUND_TRUTH) does not provide better result for the

Modified COEUS compared to existing COEUS.

Similarly, comparing Table 3 and Table 7 we see that for the test case 1 (SIMPLE

and GROUND_TRUTH) the modified COEUS gives better result than the existing

COEUS for the DBLP dataset. Test case 3 (EDGE_QUALITY and DROP_TAIL)

also gives better result for modified COEUS than the existing COEUS. But the test

case 2 (EDGE_QUALITY and GROUND_TRUTH) does not provide better result

for the Modified COEUS compared to existing COEUS.

Comparing Table 4 and Table 8 we see that modified COEUS fails to perform

better than the existing COEUS for any of the test cases. The ratio of nodes to

edges in the Webpage dataset is high and this might be one of the reasons for the

failure of the modified COEUS. The modified COEUS considers triangles as the input

stream and the Webpage dataset has less number of triangles due to the large number

of nodes with degree 1. We also do not have a ground-truth community for the

Webpage dataset which is used to pick the initial seed-set. Also, the accuracy of
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existing COEUS and modified COEUS is calculated by comparing the output of

these methods against the ground-truth communities.
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CHAPTER 7

Conclusion and Future Work

In this project, we proposed modified COEUS which is a modification to the

existing novel graph stream community detection algorithm, COEUS that expands

seed-sets of nodes into communities [5]. The modified COEUS is based on motifs,

also called higher order structures, such as edges and triangles.

Table 9: Comparison of accuracy for COEUS and modified COEUS on Amazon
dataset

Test Case COEUS modified COEUS
SIMPLE & GROUND_TRUTH 0.76 0.83
EDGE_QUALITY & GROUND_TRUTH 0.85 0.83
EDGE_QUALITY & DROP_TAIL 0.80 0.80

Table 10: Comparison of accuracy for COEUS and modified COEUS on DBLP dataset

Test Case COEUS modified COEUS
SIMPLE & GROUND_TRUTH 0.38 0.40
EDGE_QUALITY & GROUND_TRUTH 0.43 0.40
EDGE_QUALITY & DROP_TAIL 0.25 0.33

In Table 9 and Table 10 we see that modified COEUS performs better than

COEUS for SIMPLE technique and for EDGE_QUALITY with DROP_TAIL tech-

nique, modified COEUS performs equivalent to or better than COEUS.

In the future work, we can try to improve the accuracy of EDGE_QUALITY

technique.

In Table 11 we see that modified COEUS fails to perform better than the existing

COEUS for any of the test cases. The ratio of nodes to edges in the Webpage dataset
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Table 11: Comparison of accuracy for COEUS and modified COEUS on Webpage
dataset

Test Case COEUS modified COEUS
SIMPLE & GROUND_TRUTH 0.90 0.47
EDGE_QUALITY & GROUND_TRUTH 0.90 0.47
EDGE_QUALITY & DROP_TAIL 0.76 0.37

is high and this might be one of the reasons for the failure of the modified COEUS. The

modified COEUS considers triangles as the input stream and the Webpage dataset

has less number of triangles due to the large number of nodes with degree 1. We

also do not have a ground-truth community for the Webpage dataset which is used to

pick the initial seed-set. Also, the accuracy of existing COEUS and modified COEUS

is calculated by comparing the output of these methods against the ground-truth

communities.

In the future work, we can try to improve the dataset creation so as to reduce

the number of nodes with degree 1.
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