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ABSTRACT 
 
 

Using Computer Vision to Quantify Coral Reef Biodiversity 
 
 

By 

Niket Bhodia 

 
 

The preservation of the world’s oceans is crucial to human survival on this planet, yet we 
know too little to begin to understand anthropogenic impacts on marine life. This is 
especially true for coral reefs, which are the most diverse marine habitat per unit area (if 
not overall) as well as the most sensitive. To address this gap in knowledge, simple field 
devices called autonomous reef monitoring structures (ARMS) have been developed, 
which provide standardized samples of life from these complex ecosystems. ARMS have 
now become successful to the point that the amount of data collected through them has 
outstripped the capacity of research organizations to analyze through molecular 
methods. To facilitate these efforts, the present study explores the use of computer vision 
techniques to analyze the complex image data of these samples in order to extract useful 
information based on morphological (visual) characteristics of the collected organisms. 
Various techniques at varying levels of sophistry are surveyed for their suitability to the 
present problem. In the end, the more complex techniques are ruled out in the favor of 
basic image processing ones, of which three are tested: canny edge detection, color space 
transformations, and histogram equalization. While the first one does not directly yield 
useful results, the latter two turn out to be surprisingly effective, showing great promise 
as means to prepare data that more sophisticated techniques can be subsequently trained 
on. Future directions of investigation are recorded in detail, along with suggestions and 
relevant references, towards ultimately realizing an online analysis tool and repository 
for marine life that would accelerate related research and conservation efforts.  
 
Index Terms¾computer vision, OpenCV, deep learning, machine learning, 
unsupervised learning, artificial neural networks, image processing, autonomous reef 
monitoring structures, coral reef, biodiversity, Census of Marine Life  
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1. INTRODUCTION 

 

Common knowledge has it that Earth’s forests produce the oxygen that sustains so much 

of the life on the planet. However, the fact is that ocean life, specifically microscopic 

organisms called phytoplankton, produce as much oxygen as their terrestrial counterparts 

[1]. In addition, the combined actions of certain ocean organisms constitute the biological 

pump that sequesters ~40% of anthropogenic carbon emissions [2], mitigating climate 

change. Ocean life is also an important source of food, economic activity, and medicinal 

drugs [3], [4]. Hence, understanding ocean life and how it is impacted by human activity 

is a question that pertains to our very survival. 

   

Arguably, the most interesting of ocean habitats are coral reefs. Often referred to as the 

rainforests of the sea, they occupy only 0.2% of the ocean surface, yet are estimated to host 

around 35% of all marine species [5]. They are also exceptionally sensitive to human 

impact, the proverbial canary in a coal mine warning us about the irreversible damage 

we are doing to the planet. In 2008, it was estimated that 60% of all coral reefs were 

degraded or lost [6] and that one-third of all corals were at the risk of extinction, making 

them the most endangered group of animals on the planet [7]. Around the same time, 

another study predicted that given current trends in greenhouse gas emissions, coral 

reefs will cease to exist meaningfully by 2050 [8].   
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These factors make coral reef biodiversity an urgent topic of study. Biodiversity is an 

important metric because it increases ecological resilience by introducing functional 

redundancies within ecosystems [9]. However, before we measure biodiversity loss in 

coral reefs, extant biodiversity levels first need to be quantified. Current estimates [5], 

[10], [11], while valuable efforts, are only extrapolations. They put the number of species 

hosted by coral reefs in the range of 500,000 to 10 million, with even the lowest bound in 

that range far exceeding the number of species described so far. It is estimated that 85% 

to 99% of coral reef species still remain undescribed [9]. 

 

 

Fig.  1. Image of a coral reef, attesting to the abundance and variety of life these habitats host.1 

 

                                                        
1 Reproduced from the BBC America website under fair-use guidelines. Link: 
http://www.bbcamerica.com/shows/planet-earth-blue-planet-ii/season-1/episode-03-coral-reefs 
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Bridging this gap in knowledge poses several challenges, apart from the fact that data 

collection in ocean environments is inherently resource intensive. The most effective 

means of data collection for visible species is hand sampling, but this is an unscalable 

approach given the magnitude of diversity and the high degree of species endemism in 

coral reefs, whereby many species are unique to a certain limited geographic region and 

are found nowhere else in the world. Further, divers vary dramatically in their ability to 

collect samples, which makes standardization difficult. Finally, removal of samples from 

coral reefs constitutes destructive sampling of already impacted habitats, an anathema to 

most marine researchers, and requires securing permits from authorities [9]. 

 

Given this background, the use of devices called autonomous reef monitoring structures 

(ARMS) has emerged as a key methodology for standardized sampling of coral reef 

ecosystems. ARMS were developed under the Census of  Coral Reef Ecosystems project, 

one of the 14 field projects comprising the Census of Marine Life, a 10-year international 

effort that involved 2,700 scientists from 80+ nations [12].  Each ARMS consists of eight 

gray 23 cm ´ 23 cm PVC plates stacked in alternating open and partitioned layers, the 

latter created using X-shaped inserts to divide the space between the plates into four 

sections. The stack is topped by a plastic pond filter mesh and a final plate, and is 

mounted on a 35 cm ´ 45 cm base plate. The structure is deployed at reef sites for 

extended periods, typically 1 to 3 years, where they somewhat mimic the structural 

complexity of reef structures and end up becoming habitats for sessile (stationary) and 

motile (mobile) organisms. They are not designed to capture all or even the maximum 
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number of species, but rather to collect important indicators of diversity [9], [13], 

particularly sessile colonizing invertebrates. 

 

    

 

Fig.  2. (Top left) Autonomous reef monitoring structure (ARMS).2  (Top right) Diver retrieving an ARMS off Wake Island, 
Micronesia, Pacific Ocean. (Bottom) Photograph of one of the plates obtained from the same diving expedition, taken after the 
retrieved ARMS was disassembled.  

                                                        
2 Obtained from informational material provided by the Census of Coral Reef Ecosystems (CReefs). 
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Simple, rugged, and cost-effective, ARMS have been adopted as a standard sampling 

approach by research institutions worldwide. They have been an important component 

of National Oceanic and Atmospheric Administration (NOAA)’s Pacific Reef Assessment 

Monitoring Program, NOAA’s Biodiversity Alternative, and the Smithsonian’s Marine 

Initiative [9]. As of 2015, there were over 1600 ARMS deployed worldwide with huge 

investments by several organizations and ongoing efforts to standardize processing 

protocols to make the results globally comparable [13]. With ARMS now being deployed 

to marine habitats other than coral reefs, the number is only set to grow [14]. 

 

ARMS efforts have now reached a point where biodiversity assessment attempts are 

confronted with another typical big data bottleneck: analysis of collected data [15]. 

Genomic analysis is the ideal approach for analyzing the collected ARMS samples, but 

both techniques that fall under it have limitations. The first, genetic barcoding, relies on 

species identification based on a specific genetic subsequence, rather than the entire 

genome. However, this requires sampling individual organisms from collected material, 

which is very resource intensive. The second, metagenomics, is based on sequencing all 

genetic material from a sample of collected material and then identifying and quantifying 

the organisms within the mixed sample. However, currently, this technique presents a 

few unresolved challenges, especially for detecting multicellular life [9], [16]. 

 

This leaves visual analysis as perhaps the only remaining alternative. Visual 

identification of collected organisms by experts is unfeasible for several reasons: lack of 
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scalability, lack of taxonomic expertise, the existence of cryptic species (different species 

that look highly similar), and the inherent unreliability of identifying and classifying new 

species based on morphological (visual) characteristics. However, if the process of 

analyzing photographs of the retrieved ARMS plates can be automated reliably, then 

these drawbacks could be fruitfully addressed to various degrees.  

 

This is where computer vision (CV) can help. CV is the branch of computer science that 

deals with algorithms, techniques, and approaches that enable computers to extract 

useful information from images. The field has gained prominence in recent years due to 

the extraordinary success of supervised deep learning (DL) in CV applications. However, 

DL is just one of several machine learning (ML) techniques that can be applied to CV, and 

CV, on the other hand, employs many techniques outside of ML. All these techniques 

have utility depending on the use case, which we discuss next.  
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2. BACKGROUND 

 

In this section, we analyze the problem and assess the applicability of various computer 

vision (CV) techniques to address it. The flow of this section mirrors the thought process 

Dr. Heller and I went through as the project progressed. 

 

Let us first consider the nature of the problem. Fig.  3 shows another example of a 

retrieved plate. This is a good example because you can see the variety of organisms a 

single plate can hold. You can have red- or orange-colored patches of microorganisms, 

pulpy yellow or orange blobs, white noodle-shaped creatures, plant-like growths, and 

shelled specimens. The Heller Research Group has a dataset of nearly 15,000 such images 

courtesy of Dr. Russell Brainard, NOAA’s Supervisory Oceanographer for coral reef 

science. The images are from 17 sites in the Pacific Ocean for ARMS recovered from 2013 

through 2015.  

 

It is important to note that not all these images are those of retrieved plates¾some only 

record the location where they were recovered, and the diving effort undertaken to do 

so. Even among the plate images, not all are unique. Each plate has been photographed 

multiple times. With images from 17 sites, an average 3 locations per site, an average 3 

installations per location, an average 2 ARMS per installations, and 8 plates per ARMS, 

the dataset is estimated to contain around 2,500 unique images. This estimate is 
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corroborated by the observation that there are, on average, 5-6 images for every unique 

plate. And these are just a fraction of the ARMS images that have been collected 

worldwide. Oceanographers, ecologists, and marine biologists would ideally like a 

system that could extract the different organisms from these images, classify them 

correctly, and store them in a globally accessible database. 

 

 

Fig.  3. Example ARMS plate retrieved off the coast of Ofu in the Samoan Islands, Pacific Ocean. 
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For a task of this magnitude, our natural instinct would be to first go for the best 

technique available in CV¾deep learning (DL)¾and that is what Dr. Heller and I initially 

conceived the project to be about. DL is a machine learning technique that involves 

training artificial neural networks (ANNs)¾computational models that mimic the 

functioning of the human brain¾over several iterations or epochs. The “deep” in “deep 

learning” comes from the fact that the ANNs trained with DL algorithms have multiple 

“hidden” layers, anywhere from 2 to 1000, which allows the ANNs to automatically 

extract hierarchical representations based on which they can approximate complex 

relationships. Interested readers can refer to [17][18] for more details. 

 

DL sparked intense interest in 2012, when it made breakthrough progress in the 

ImageNet Challenge, beating the competition by a considerable margin. Since then, it has 

surpassed humans on the ImageNet Challenge [19], and delivered breakthroughs in a 

wide variety of tasks, including problems in wildlife and marine biology. For instance, 

Norouzzadeh et al. [20] used DL to automate the identification, counting, and description 

of wild animals in camera-trap images, achieving a 96.6% accuracy as compared to 

human volunteers while saving 99.3% of the effort. Sun et al. [21] were able to employ 

pretrained DL models to achieve a precision of 99.68% and a recall of 99.45% when 

classifying between 26 species in low-quality underwater videos. Mahmood et al. [22] 

have employed DL for the automatic annotation of coral species in reefs with up to a 97% 

accuracy from imagery collected by autonomous underwater vehicles.  
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However, these DL successes have been achieved in the context of supervised learning, 

wherein the ANNs are trained using manually annotated datasets, such as the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) dataset [23] (approx. 1.2 million 

images spanning 1,000 classes) or the COCO Dataset [24] (approx. 200,000 images textual 

captions and object segmentation information). These are images of objects and living 

beings we encounter in everyday life that bear no correspondence to the reef organisms 

collected with ARMS. Furthermore, as evidenced by the sizes of the ILSVRC and COCO 

datasets, supervised learning requires massive amounts of such annotated data. Building 

such a massive dataset with, say, 1,000 examples per each class all annotated by human 

experts when so much of the sea life is unknown is a task bigger than the problem itself. 

Even if we take into account transfer learning, whereby networks pretrained on massive 

datasets like ImageNet or COCO are then honed on smaller, specialized datasets to yield 

good results for niche applications, the undertaking would be beyond our reach. 

 

Alternatively, we could resort to unsupervised applications of DL. Assuming the 

different organisms have been extracted from each plate, they could be clustered together 

based on morphological similarities, rather than classifying the data into the correct 

category based on a labeled supervised learning dataset. Each cluster could then be 

studied, quantified, and/or annotated by the appropriate experts, accelerating research 

in the respective areas. Such DL methods have been reported, with impressive results. 

For example, in [25], the authors consider the chicken-and-egg problem of how good 

representations are required to achieve good clustering results, and conversely, how 
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good clustering results allow us to refine the representations. They propose an iterative 

scheme, wherein image clustering is conducted in the forward pass and representation 

learning is performed in the backward pass, resulting in a robust model that generalizes 

well across various tasks and datasets. The authors have made the implementation 

publicly available, which makes for a promising avenue in terms of future work. 

 

However, that is a later consideration as the different organisms still need to be extracted 

from the plate images. This becomes a segmentation task, specifically, boundary 

segmentation, which once again needs to be unsupervised because of lack of labeled data. 

The organisms do not have fixed shapes, and human vision need to rely on a combination 

of color, texture, depth perception, and learned experience to tell these organisms apart. 

Unsupervised CV would need to rely on just color and texture, of which unsupervised 

texture-based segmentation is the real technical challenge. Some impressive work has 

been reported in this area last year [26], wherein the authors use a two-step process. The 

first involves using a randomly sampled subset of patches from an image to train 

convolutional features using an objective function and certain constraints. The trained 

convolutional features have the property that they show low variation across the same 

texture but a high variation at the edges of texture boundaries. This stage is 

computationally intensive and is made tractable by introducing certain relaxations to the 

equations. The second step is to then use these filters to segment the image based on a 

metric called the Mahalanobis distance. This is followed by a post-processing stage that 
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merges small spurious regions into larger ones. The authors successfully applied this 

method to prepared sample images and actual histology images.  

 

However, the math underlying this technique is fairly sophisticated, and its 

implementation requires several optimizations to make the computations feasible. The 

source code is not publicly available, so I contacted the corresponding author to inquire 

whether the authors would be willing to share it for us to test on ARMS data. I have 

received no response yet, but perhaps another attempt can be made in the future given 

that ARMS is an ideal case study for the technique and the results should be interesting 

for the authors too. 

 

Of course, we could use other, simpler ML techniques to carry out the segmentation. This 

was attempted on the ARMS data last year wherein the author used the k-means and the 

fuzzy c-means (FCM) clustering algorithms to segment the images by clustering pixels in 

the color space [27]. The k-means algorithm is one of the simplest ML algorithms. We start 

by assuming that k clusters exist and randomly initialize k corresponding cluster 

centroids in a Euclidean space with d dimensions in which our n data points are plotted. 

Then, every point is assigned to its nearest centroid. Once all points are assigned, the 

centroids of the resulting clusters are calculated, and the original centroids are updated 

with these newly calculated centroids. This continues for i iterations until convergence is 

reached. FCM is based on the same concept, but with one key difference: while in k-

means, every point can belong to only one cluster (hard assignment), FCM tracks the 
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probability of each point belonging to each of the clusters (soft assignment). The 

probability is assigned based on the distance of the point from the cluster centroid. 

 

The limitation of the implementation in [27] was that it only considered the color space 

and did not take the textures or spatial relationships into account. Consequently, a single, 

more complex organism showing different colors would be segmented across multiple 

clusters, as shown in Fig.  4. The same would also occur for a single group of organisms 

(the red and orange patches in Fig.  4) due to minor changes in color, which complicates 

matter further downstream as these clusters would need to be recombined subsequently 

at some point. Conversely, different organisms would be grouped into the same cluster 

simply because they share similar colors, as Fig.  4 illustrates.  

 

One could perhaps improve on this by extracting texture descriptors and clustering in 

spatial-color-texture space [28], but this will increase the number of dimensions and incur 

a performance penalty given that the time complexities of k-means and FCM are O(nkdi) 

and O(nc2di), respectively, where n is the number of points; k and c, the number of 

clusters; d, the number of dimensions; and i, the number of iterations required for 

convergence. Moreover, say, we started with 2,000 images, each yielding 5 clusters on 

average. Once they all are segmented, n = 10,000; all of these will need to be reclustered. 

And, practically speaking, even the c and i values will increase when so many organisms 

are put together in a single bucket, and as more organisms are added subsequently. 
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Fig.  4. (Top) Original image. Red circles, blue circle, and blue ellipse indicate complex specimens, zoomed in for clarity. Green 
rectangle indicates single group of red organisms discussed later. (Bottom) Image segmented using fuzzy c-means (FCM) 
clustering with the implementation in [27]; the overlaid colors indicate the clusters the pixels have been grouped in. Note how the 
complex specimens marked by red circles are divided across different clusters. Same occurs for the colony of red organism marked 
by the green rectangle, due to minor color variations. Blue circle and ellipse indicate two different organisms grouped into same 
cluster because of similar colors. FCM showed better results as compared to k-means, which is why the comparison is being carried 
out with an example from this method.          
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Further, while both algorithms guarantee convergence, they do so only to local minima. 

Hence, the recommended approach is to perform a number of random restarts and retain 

the best result. The methods also need to be supplied with a k or c value, which there is 

no way of knowing beforehand for each plate with the ARMS data. The common 

approach to dealing with this problem is to perform repeated runs assuming k or c as 1, 

2, 3 …, computing the clusters for each k or c value. The average distance to centroid a is 

tracked till the elbow point can be determined, that is, the point in the k (or c) vs. a graph 

until which a decreases sharply and subsequently slows down. This elbow point is 

considered the correct k value.  

 

The time complexity presented earlier does not account for the restarts and the elbow 

method¾incorporating these makes the time function grow as O(nk2dir) and O(n(c2)2dir), 

where r denotes the number of restarts. Optimized implementations do exist for k-means 

and FCM, which work or reducing repeated work since the points do not move between 

clusters too often. Their span can also be reduced through parallelized implementations, 

as was done in 2018 by Bharath Baiju, an undergraduate in the Heller Research Group. 

But put all the considerations together¾extracting textures, mapping pixels to a spatial-

color-texture space, and the potential performance issues¾we might be better served 

looking at alternative methods. 

 

Hence, we started our discussion with DL, but then by a process of elimination, have 

systematically worked our way down to the simplest algorithms in CV, which are related 
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to basic image processing. This study will demonstrate how these techniques turn out to 

be surprisingly potent and show great promise in helping us build datasets that the more 

sophisticated techniques discussed earlier can be trained on in the future.    
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3. METHODS 

 

Three key image processing techniques were tested: canny edge detection, color-space 

transformation to HSV space to separate hue and saturation ranges, and histogram 

equalization so that the same techniques and color ranges could be applied to a set of 

images. These operations were performed using OpenCV (v. 4.1.0), an open-source 

library with more than 2,500 classic and state-of-the-art CV and ML algorithms [29]. The 

library is written in optimized C++, which makes it computationally efficient and capable 

of meeting the needs of real-time CV applications. It has bindings in Python, Java, 

MATLAB, as well as wrappers in various other languages.   

 

The code was implemented in Python (v. 3.6.8) using Jupyter Notebook (v. 5.7.8) on a 

Mid-2018 MacBook Pro running macOS Mojave 10.14.4 and equipped with a 2.6 GHz 

Intel Core i7 (8850H) processor, 16 GB of RAM, an AMD Radeon Pro 560X GPU with 4 

GB of dedicated memory, and an Intel UHD Graphics 630 on-board GPU. Numpy, the 

popular array-processing package, was used as a prerequisite for OpenCV, and 

Matplotlib’s Pyplot interface was used for plotting. Appropriate color ranges were 

identified with the help of the Just Color Picker desktop application [30] and Alloy UI’s 

online HSV Palette color picker [31]. 
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4. RESULTS AND DISCUSSION 

 

4.1 Canny Edge Detection 

To address the limitations of k-means and fuzzy c-means, I first wanted to see whether 

organisms with coherent and regular shapes could be detected. If these could be removed 

from the images beforehand, then organisms that have no discernible shapes could 

subsequently be extracted using other techniques. To this end, the plan was to first detect 

the edges in the image, and then use these edges to find approximate shapes in the image. 

For edge detection, the images were converted to grayscale, Gaussian blurring was 

applied to remove high-frequency noise, and then OpenCV’s built-in Canny edge 

detection function was used.  

 

Canny edge detection is based on the use of the Sobel kernel, which is used to filter the 

image in the horizontal and vertical direction to obtain the edge gradient and direction 

for each pixel [32].  The OpenCV Canny function takes two arguments besides the image 

itself, the minVal and maxVal. Any edges with an intensity gradient below minVal are 

considered to not be edges and are discarded, while those with an intensity gradient 

above the maxVal are considered to be sure edges and are retained.  

 

Experiments were run with various values of minVal and maxVal, with/without 

Gaussian blurring, and with/without histogram equalization. I also tried a function that 
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automatically sets the minVal and maxVal by first computing the median of the pixel 

intensities and then setting minVal = median * (1 -  s) and maxVal = median * (1 + s), 

where 0 £ s £ 1 and is set by the user [33]. However, in all cases, the results were 

disappointing as the function returned very confused results, as shown in Fig.  5. I came 

to conclude that edge detection and contour finding (which depends on edge detection) 

might have a better chance if some other ways could be found to reduce the clutter on the 

plate first. Hence, I began looking at color, as discussed in the next section. 

 

      

       

Fig.  5. (Top left) The original image. (Top right) Edges obtained by setting a wide range of minVal and maxVal. (Bottom left) 
Edges obtained by setting a narrow range of minVal and maxVal. (Bottom right) Edges obtained by automatically setting minVal 
and maxVal based on median pixel intensity.  
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4.2 Color Space Transformations 

Consider Fig.  6, which shows a representative sample of the ARMS dataset. 

  

  

  

  

  
 
Fig.  6. Sample images from the ARMS dataset. Notice the differences in the lighting conditions, the variation in plate population, 
the uniformity of the gray background, and the many plates having colonies of red-colored microorganism. The first image in this 
figure is the one we have been discussing in Fig. 4 and Fig. 5. 
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Notice the gray background of all the plates in this sample¾setting aside the differences 

due to lighting conditions, the particular gray color is very uniform across plates. This is 

one of the consequences of ARMS standardization, and it could be used to our 

advantage¾by subtracting this gray, some of the work might be made easier. In addition, 

one can see that several of the plates have colonies of red-colored microorganisms that 

look like rust. These are oxygen-producing organisms and are important to study and 

quantify; therefore, it would be useful to separate them from the rest of the information 

on the plate. 

 

To carry out these tasks, we need a way to not just specify a single color, but a range of 

colors. The BGR (Blue-Green-Red) color space, which is default for OpenCV, and its more 

popular variant the RGB (Red-Green-Blue) color space, do not allow us to do that. But 

OpenCV allows us to convert from these color spaces to the HSV (Hue-Saturation-

Brightness; also called HSB) color space with allows us to do exactly this. The HSV color 

space is frequently used in color-picker tools in graphic design software as it is intuitive 

to human users. The hue stands for the actual color, which is represented as a circle and 

takes values from 0° to 360° (although OpenCV scales the range down to 0° to 180°). The 

saturation represents how dark the color is, so assuming same lighting conditions a light 

blue might have the same hue but a lower saturation than a dark blue; it ranges from 0 to 

255 in OpenCV. Finally, brightness, which too ranges from 0 to 255 in OpenCV, refers to 

how much light is shining on the object. Fig.  7 provides a visual representation of the 

RGB and HSV color spaces. 
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Fig.  7. An illustration of the RGB and HSV color spaces.3 

   

HSV color space also makes sense intuitively in that all colors look like a certain shade of 

gray when not enough of that color is present on the surface and/or when not enough 

light is shining on it. This is perfect for our use case as it enables us to remove grays 

irrespective of which non-discernible hue they represent. In practice, I found that the 

grays of the ARMS plates had S <= 25%. The result of removing all pixels with S <= 25% 

is shown in Fig.  8 (top right). From this image, in turn, we can separate out the red 

patches. One can see in Fig.  8 (bottom right) how removing the grays and reds has done 

much to isolate the three shelled organisms in the image, making them more amenable 

to edge finding, contour finding, and texture detection. Note that generalizing these 

results will also require the brightness channel V to be taken into account, which is 

discussed in the Future Work section. 

 

                                                        
3 Image by Michael Horvath, reproduced under the Creative Commons Attribution-Share Alike 3.0 
Unported license. 
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On the other hand, the extracted red patches (Fig.  8 bottom right) also constitute 

important information and their data can be saved separately. Simply applying the 

procedure to a set of images and taking a pixel count of the reds gives us a datum that 

can be compared across the various ARMS sites. The red patches can also be sampled to 

create training data for future supervised learning efforts. 

       

       

Fig.  8. (Top left) Original image, same as the one discussed in Fig. 4 and Fig. 5 (Top right) Image with the grays removed. (Bottom 
left) Image with the grays and reds removed. (Bottom right) The reds extracted from the top right image. These red patches can be 
analyzed further (e.g., by obtaining a simple pixel count to quantify them across images) or be used as training data. 
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4.3 Histogram Equalization 

Examining Fig.  6 also shows us that the lighting conditions under which the ARMS 

images are captured vary substantially. We need some way to normalize the images so 

that the color space transformations and extractions can be applied uniformly to all 

images. In addition, improving the contrast in the images will certainly help researchers 

whenever they need to visually examine the images. Both concerns could potentially be 

tackled through histogram equalization.  

 

In the context of images, histograms are graphical plots where the x-axis represents the 

discrete intensity values and the y-axis represents the number of pixels in the image with 

these intensity value. Often, the pixel intensities are confined to a particular range, 

making for poor contrast, and stretching out this range normally improves contrast. It 

can also potentially help us set uniform color and brightness ranges.  

 

I tested two methods for histogram equalization in OpenCV. The default method 

depends on the global contrast of the image [34], the results for which are shown in Fig.  9. 

It is apparent from the results that this technique does not produce a visually desirable 

result. Notice too, how the original histogram was well spread out, and equalization 

nearly flattened it. Typically, this equalization technique only works when intensity 

values are confined to a certain narrow range; this is not typically the case for the ARMS 

images. 
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Fig.  9. (Left) Original image and its corresponding histogram. (Right) Image equalized based on global contrast and the resulting 
histogram. The red, green, and blue lines correspond to the intensity distribution in the red, green, and blue image channels, 
respectively. 

 

I therefore experimented with contrast-limited locally adaptive histogram equalization 

(CLAHE), which works based on a preset contrast limit (default is 40). If any histogram 

bin is above this contrast limit, the corresponding pixels are clipped and distributed 

equally to the remaining bins. Subsequently, histogram equalization is applied and any 

artifacts that might occur at the borders are removed through bilinear interpolation [34]. 
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Fig. 10 shows the CLAHE results. Notice how the results are visually clearer, but the 

integrity of the image is still maintained. CLAHE has altered the histogram, but not 

completely flattened it; it has merely nudged the histogram in the right direction without 

going too far.  

 

 

 

Fig. 10. (Left) Original image and its corresponding histogram. (Right) Image equalized based on contrast-limited locally adaptive 
histogram equalization, and the resulting histogram. The red, green, and blue lines correspond to the intensity distribution in the 
red, green, and blue image channels, respectively. 
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While CLAHE does deliver results that would aid researchers examining the data, it must 

still be ascertained to what extent CLAHE helps us with normalizing the images. An 

alternative approach could be to work in the HSV color space and apply either histogram 

equalization technique only on the V channel, leaving the hue and the saturation of the 

image untouched. These explorations are left to future work. 

 

4.4 Cropping 

It is worth noting that the plate images in this thesis have been cropped out from larger 

rectangular images to remove irrelevant visual information. This was achieved using a 

Python script prepared by the author of [27]. The script employs OpenCV’s thresholding 

and contour finding functions to crop out the plate. Fig. 11 shows the uncropped version 

of the image discussed in Fig.  8. The extraneous details seen on the left and the right of 

the image would doubtless cause problems if not removed, and specifically, they interfere 

with histogram equalization.   

 

 

Fig. 11. Uncropped version of the image discussed in Fig.  8. 
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On the other hand, it is possible that cropping out the plates could lead to some loss of 

information. Fig. 12 shows one such case, where significant growths are seen clinging to 

the edges of the plate. It might be important to devise an automatic way of checking for 

such potential data loss before cropping the images. 

 

 

Fig. 12. Plate recovered off Rose Atoll, American Samoa, Pacific Ocean. The growths clinging to the side of the plates might be 
information researchers consider important. Measures might be needed to ensure they are not cropped out. 
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4.5 Advantages of the Proposed Approach 

The proposed approach and the accompanying suggestions for future work in the next 

section offer several advantages. They 

1. are easy to implement and experiment with 

2. are computationally efficient compared to more sophisticated techniques 

3. can be combined in various ways through bitwise operations to deliver a variety 

of useful results 

4. can deliver quick results across an entire dataset if we figure out how to extract 

one particular kind of information, e.g., now that we have figured how to extract 

the colonies of red organisms, the method can be immediately applied to the entire 

dataset to quantify their population (provided we figure out image normalization) 

5. will helps us eyeball the problem and come up with suitable evaluation criteria for 

future systems 

6. might supplement future systems, e.g., histogram equalization would still be 

required to prepare data for artificial neural nets 

7. can get us to a point where we have enough data for supervised-learning-based 

approaches  

 

It is noteworthy that some of these techniques are reliant on ARMS standardization 

efforts, for example, having a uniform plate color and uniform perspective certainly 

helps these techniques work. 
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5. FUTURE WORK 

 

The project carries tremendous possibilities for future work. These are outlined below 

along with useful references and suggested timescale: 

1. Immediate:  

a. Test how well equalization works in terms of helping set uniform color and 

brightness ranges for all images. Experiment with working in HSV space 

and equalizing only the V channel (see Sec. 4.3).  

b. Once equalization works, test how well oxygen-producing red 

microorganism colonies can be quantified across a set of images by simply 

counting the extracted red pixels against total pixels. 

c. Extend the definition of “gray” to the brightness channel V too. This is 

crucial to generalizing the results for gray background removal. The 

relationship between saturation S and brightness V with respect to whether 

the color or hue H is discernible or not, is likely to be a non-linear function. 

The ranges will likely need to be discretized and the results combined with 

bitwise masks. 

d. Investigate whether region merging can be used for ARMS data. [35] is a 

popular textbook on computer vision that covers this topic, and it is 

available for free on the author’s website. 
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2. Short-term: 

a. Investigate whether linear binary patterns (LBPs) can help us extract 

organisms exhibiting color patterns with some regularity (refer to [36] and 

[37]). The approach would be to first obtain texture datasets available online 

(e.g., the Brodatz Dataset [38] and the Kylberg Texture Dataset [39]. [40] 

provides an entire list at the bottom of the webpage). Obtain the LBPs for 

these patterns, then run them across images to check whether these patterns 

exist. The check will be done by monitoring some metric, e.g., Bhattacharya 

distance [28], and extracting the pattern if the distance is below a certain 

threshold.  

        

Fig. 13. (Left) Texture of a scarf from the Kylberg Texture Dataset [39] and a shelled specimen with a similar 
pattern from the plate in Fig. 11.  

 

b. Test edge detection and contour detection on images in which certain colors 

are removed. Of course, removing a certain color could remove some part 

of a multicolored organism with a regular shape, breaking the contours. 

This could be addressed by removing one color at a time and checking for 

patterns, then two colors at a time, and so on. Since there are only about 6 
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main hues in the HSV space, the n is small enough to avoid scaling 

considerations (this is inspired by the recursive feature elimination 

approach used with SVMs [41]).    

c. Devise an efficient and accurate scheme to extract unique images from the 

ARMS dataset, so that data is not over- or underrepresented. The dataset 

has several repeat photographs for each plate. However, there seems to be 

no way to determine from image metadata which group of photos 

correspond to a particular plate. The method used to address this would 

likely involve extraction of some descriptor from each image, which is then 

compared across images. One starting point could be to compute 

histograms for each image, use a suitable distance measure to compare 

them, and then cluster them using k-means or fuzzy c-means. Images of a 

given ARMS plate should be in one cluster. 

 

3. Medium-term: 

a. Check whether the unsupervised segmentation technique in [26] is 

implementable, delivers good results, and is computationally feasible (see 

Sec. 2).  

b. If the above technique [26] can be realized, then a method will be required 

to perform unsupervised clustering. The iterative unsupervised clustering 

approach in [25] looks promising. 
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4. Long-term: 

a. A supervised deep learning implementation once enough data is available, 

supplemented with some of the techniques above, depending on need. It is 

important to note that even if there are some mistakes in the data, deep 

learning might be able to weed them out if the most incorrect or the most 

uncertain labels are examined (see Lesson 1 in [42]). Combining with cross-

validation could help clean up the entire dataset [41]. 

b. Make the DL implementation accessible over the web, with researchers 

having the option of contributing to an online database. This would further 

enable data collection and drastically accelerate research and conservation 

efforts. 
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6. CONCLUSION 

 

This work explored the question of automatically extracting information from 

photographs of autonomous reef monitoring structures¾standardized devices that can 

be deployed underwater for extended periods to collect samples of life from ocean 

habitats¾in order to quantify the biodiversity of coral reef, the most sensitive and 

perhaps the most diverse of all marine habitats. Various computer vision (CV) techniques 

were analyzed to assess their suitability in the context of the problem¾the complex 

(though in some ways standardized) nature of the visual data, the lack of labeled data to 

train the models, and the scalability and performance considerations for a task of this 

magnitude. Through a process of elimination, the study ended up exploring three simple 

image processing techniques: canny edge detection, color space transformations, and 

contrast-limited locally adaptive histogram equalization. While the canny edge detection 

results were not very encouraging, the other two turned out to be surprisingly efficient 

and effective in the context of the ARMS-CV project. The results led to the conclusion that 

such simple image processing techniques are the most promising avenue to get the 

project off the ground and collect enough data to train more sophisticated CV techniques 

(and to supplement them thereafter). To this end, concrete future directions of work were 

listed for the immediate, short, medium, and long term as a roadmap toward achieving 

the ultimate goal of creating an online automated analysis tool and marine life database 

that facilitates research and conservation efforts such as the Census of Coral Reef 

Ecosystems.   
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