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ABSTRACT 
 

Intelligent Log Analysis for Anomaly Detection 

 

By Steven Yen 
 

Computer logs are a rich source of information that can be analyzed to detect various issues. The 

large volumes of logs limit the effectiveness of manual approaches to log analysis. The earliest automated 

log analysis tools take a rule-based approach, which can only detect known issues with existing rules. On 

the other hand, anomaly detection approaches can detect new or unknown issues. This is achieved by 

looking for unusual behavior different from the norm, often utilizing machine learning (ML) or deep 

learning (DL) models. In this project, we evaluated various ML and DL techniques used for log anomaly 

detection. We propose a hybrid neural network (NN) we call "CausalConvLSTM" for modeling log 

sequences, which takes advantage of both Convolutional Neural Network and Long Short-Term Memory 

Network's strengths. Furthermore, we evaluated and proposed a concrete strategy for retraining NN 

anomaly detection models to maintain a low false-positive rate in a drifting environment.  
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1 - Introduction 
 

Computer systems generate large volumes of logs recording various events of interest. These can be 

generated by various sources including operating systems, network devices, applications, and so on. These 

logs are used by developers and system administrators for troubleshooting, auditing, and identifying various 

issues.  

As computing systems become more complex and the scale grows, the volumes of logs generated also 

increase tremendously. The manual analysis of logs using search utilities become ineffective, as it is often 

hard for humans to correlate events across large volumes of logs across time and many different systems. 

Additionally, manually analysis by humans is often not timely enough to keep up with the large throughput 

of events. This resulted in the development of automated log analysis tools, the earliest of which are rule-

based systems. These systems rely on a set of rules (in a rule-set) written by experts, defining the patterns of 

interest. A rule-engine then applies those rules to new, incoming events to detect if there’s a match and take 

the appropriate actions [1]. These systems are efficient and can quickly identify matches. Unfortunately, they 

can only detect known issues for which a rule exists in the rule-set. These types of systems cannot detect 

new or unknown issues for which there are no existing rules.  

To address the shortfall of rule-based systems, anomaly-based systems were developed, which leverage 

statistical, machine learning (ML), or deep learning (DL) techniques to mine large volumes of data to extract 

insights and learn their own evaluation criteria. Of these, deep learning (DL) techniques utilizing deep 

Artificial Neural Networks (ANN) with many layers showed the most promising results. However, these 

models require long training time before they can be used for detection. To improve the training time while 

maintaining good accuracy, we propose a hybrid model that uses a Convolutional Neural Network (CNN) 

in conjunction with a Long Short-Term Memory (LSTM) network. In our proposed model called 

“CausalConvLSTM”, we first use causal convolutions with variable-sized filters to extract features based on 

different sequence lengths to construct a rich feature map that preserves ordering significance. Then, we use 
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a LSTM network to ingest the resulting feature map in order to summarize the result into a hidden state 

vector that is then passed to a fully-connected (FC) layer to make predictions. Based on our experiments, the 

hybrid architecture achieves competitive accuracies while significantly reducing the training time.  

Another major challenge anomaly detection systems face is concept drift, which is the change in normal 

system behavior over time. Concept drift is an especially important issue in computing systems, which can 

change significantly over time for various reasons such as increase/decrease in the number of users, hardware 

changes (upgrade/downgrade), or software changes (introduction of new features). The result of this is that 

an anomaly detection system that is trained on normal system behavior from a baseline period will see a 

reduction in accuracy, as the normal system behavior becomes increasingly different form its behavior during 

the baseline period. To address this, we evaluated various strategies for updating anomaly detection models 

to adapt to concept drift. In the end, we propose a concrete strategy for retraining DL models based on false-

positive rates calculated from a rolling window. 

This paper is organized as follows. Section 2 will provide additional background and present related 

works. Section 3 will describe the problem of log anomaly detection we’re addressing. Section 4 will 

describe our proposed solution including the refined architecture and the retraining strategy. Section 5 

describes our experimental setup and the results. Section 6 includes general discussions, alternate approaches 

we experimented with, and lessons learned. Finally, Section 7 concludes the paper and describes future 

works. 
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2 - Background and Related Works 
 

2.1 Preliminaries 
 

In this project we focus on ML/DL techniques used for log anomaly detection, as they can identify new 

and unknown issues effectively.  

Before ML/DL techniques can be used, however, the raw logs must be processed into an appropriate 

format, based on the technique. The typical pipeline for using ML/DL for log anomaly detection is shown in 

Fig. 1 below.  

 

Fig. 1. Typical ML/DL Log Anomaly Detection Pipeline 

First, the raw log messages are parsed to extract various fields of interest. These could include standard 

fields like timestamp, source, and log level that are common in most logs. However, we might also be 

interested in fields that are unique to specific logs or messages. For example, from the Hadoop Distributed 

File System (HDFS) raw log show in Fig. 2, the standard fields that we can extract include the date 

“081109”, time “203616”, PID “161”, log level “INFO”, and component 
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“dfs.DataNode$PacketResponder”. However, the remainder of this message “Received block 

blk_4566277459864535342 of size 67108864 from /10.251.106.50” is the free text part that can vary 

depending on the source code that produced the message [2]. To extract fields from this portion, we need a 

template that describes which portion of the message are fixed string constants, and which portion are 

variables. Such a “template” could be obtained through source code analysis [2]. The source code that 

generated the message in this example might be printf(“Received block %s of size %d 

from %s”, block_id, size, srcip), which would give us the template “Received block (.*) of 

size (.*) from (.*)”, which we can use as a regular expression to parse the log and extract the values of the 

fields block_id, size, and srcip. The “template” is also referred to as message type [9], log key [8], or event 

type [3] by various researchers. 

 

 

 

 

 

The fields extracted through such parsing could be used directly as input to ML/DL techniques as 

categorical (discrete) or numerical features. However, these fields are often insufficient, as they all 

correspond to a single event in time, and provide no information about the context. To capture higher level, 

contextual information, additional feature extraction is often performed. This is commonly achieved by 

grouping events together through time windows or common identifiers (e.g. block id) [3]. Then, for each 

group, we calculate various statistics such as count, min/max, average, etc. of various quantities. For 

example, in [3], the time is divided into intervals, and within each interval they count the number of each 

type of events to construct an event count vector. In [2], such an event count vector is constructed for each 

block id. These event count vectors are then used as feature vectors for various ML/DL techniques.  

 

 

081109 203616 161 INFO dfs.DataNode$PacketResponder: 

Received block blk_4566277459864535342 of size 67108864 from 

/10.251.106.50 

Fig. 2. Example HDFS Log 
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2.2 Anomaly Detection 
 

The ML/DL techniques used for anomaly detection can be broadly divided into supervised, unsupervised, 

and semi-supervised [3], based on what kind of data is required for training. Fig. 3 below shows a broad 

categorization of anomaly detection techniques based on our literature review. Note, this is not a 

comprehensive list of all the possible anomaly detection techniques, but simply those we encountered in our 

application domain.  

 

Fig. 3. Taxonomy of Anomaly Detection Techniques in Recent Literature 

 

There has been previous works using  supervised approaches for anomaly detection involving the use of 

Logistic Regression, Decision Trees, or Neural Networks as binary classifiers to directly classify behaviors 

as normal or abnormal [3][4]. However, these techniques require both normal and abnormal data points 

during training, which is often not a very practical requirement. Oftentimes, we won’t have labeled anomaly 

data, as anomalies are by definition rare. Furthermore, even if we do have labeled anomaly data, a model 

trained on such a dataset would only be able to detect types of abnormal activities represented in the training 

set, and not new or unseen abnormal activities. 
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Due to the large volume of logs generated by computers, we often do not have labeled data, as labeling 

would be labor-intensive or infeasible. As such, unsupervised methods that require no labels at all, or semi-

supervised methods that only require data from the normal class [11], are much more practical. Many authors 

do not make the distinction between unsupervised and semi-supervised anomaly detection methods, and 

simply refer to models that require only normal (benign) data for training as unsupervised [13]. This is 

understandable, since there is only one class label (i.e. “normal”) in the training data, and the class label is 

not explicitly used by the ML/DL algorithms. Unsupervised/semi-supervised anomaly detection models can 

be categorized into Statistical Modeling, Proximity-Based, Reconstruction-Based, Clustering-Based, and 

others, as shown in Fig. 3.  

In statistical modeling based anomaly detection, one constructs a parametric or non-parametric model 

describing the distribution of data in the normal class [14]. Then, various statistics are used to evaluate new, 

test points to see if they are significantly different from the normal class, and if they should be deemed 

abnormal. Parametric models assume the normal class distribution follows some well-known family of 

distribution (such as Gaussian) and uses relevant statistics (such as means and standard deviation) to 

determine the probability that a certain data point came from that distribution. Non-parametric models do 

not assume the data distribution follows some known distribution, but rather use frequency of baseline 

observations to assign anomaly scores to new, test points. The weakness of statistical modeling based 

approaches is that they are not able to handle problems with many independent variables (high 

dimensionality) [14][15]. 

Proximity-based anomaly detection is based on the assumption that normal data points have similar 

feature values and therefore lie close to one another in the feature space, while anomalous points have 

significantly different feature values and hence lie far away. Proximity-based techniques can be further 

divided into distance-based and density-based depending on the measure used for evaluation. In distance-

based technique, one typically calculate the distance from a data point to its nearest neighbors and compare 

that to some threshold for anomaly detection. In density-based approach, one calculates a local density for 
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each point based on the number of its neighbors that lie within some distance. The weakness of proximity-

based approaches is that they require the calculation and comparison of the distance between each pair of 

data points, leading to a O(n2) run time for n number of data points [14]. Furthermore, as the number of 

dimensions increase, data points become extremely sparse, and distances become less meaningful [14]. The 

authors of [13] applied a density-based approach using Local Outlier Factor (LOF) to the detection of 

anomalies in Internet-of-Things (IoT) traffic, and found the technique to perform extremely poorly compared 

to other approaches.  

Clustering based approaches are based on the assumption that there exists some underlying structure 

within a dataset that allows us to group them into subgroups or clusters. The most popular clustering 

technique used is K-Means, where the user specifies a k value representing the targeted number of clusters. 

Then, through an iterative process the algorithm assigns the data points to one of k clusters and identify the 

centroid of each cluster. Clustering based techniques are more efficient than proximity based techniques, 

with a runtime linear or near-linear in the number of data points [14]. Clustering have been widely used for 

anomaly detection in computer systems with some level of success. In [5], K-Means was used in a semi-

supervised setting, where clustering is performed on normal data from some baseline period to identify 

normal behaviors, represented by baseline clusters and their centroids. During the detection phase, traffic 

that deviates significantly from the baseline (measured by distance from the closest centroid) are deemed as 

abnormal. The downside with the K-Means approach is that the selection of the parameter k, which represents 

the targeted number of clusters, has significant impact on the accuracy, and it is not always apparent what a 

suitable value is [6]. 

Reconstruction-based approaches are based on the assumption that the normal data points have a low 

effective dimension, meaning it can be represented by a set of derived features that is smaller than the set of 

original features used for its representation [14]. These techniques involve the use of feature reduction 

techniques such as Principal Component Analysis (PCA) or neural network Autoencoders (AE), and the 

appropriate interpretation of the model outputs for anomaly detection.  
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In Principal Component Analysis (PCA), a set of principal components that are linear combinations of 

the original features are derived based on the variance of the data. For use in anomaly detection, principal 

components along which there are high data variation are referred to as normal subspaces (or normal 

directions), while principal components along which there are low data variation are referred to as abnormal 

subspaces (or abnormal directions). Anomaly detection can be done by looking for isolated points along the 

abnormal subspaces that are distant from the rest of the data points [2][7]. Quantitatively, this is done by 

calculating the projection distance of data points onto the abnormal subspaces, and comparing that to a 

threshold. The intuition is that an isolated, distant point along the abnormal subspace is exhibiting a 

correlation that is not exhibited by the majority of the points, so that point is likely to be anomalous. The 

authors of [2] used PCA for log anomaly detection in Hadoop File System (HDFS) logs, and found it to be 

effective in detecting many types of execution anomalies. One limitation of PCA is that they only capture 

linear relationships between the original features; they cannot capture more complex, non-linear 

relationships that exist in many systems [14]. 

In contrast to PCA, neural network autoencoders (AE) can capture non-linear relationships. This is 

possible because neural networks are able to model non-linear relationships through a series of linear and 

non-linear transformations, made possible by the application of various activation functions. Autoencoder is 

a special type of neural network that consists of an encoder network that takes in the input and transforms it 

into some latent representation (i.e. derived features). Then, a decoder network is used to reconstruct the 

original input based on that latent representation. The latent representation is typically of a dimension 

significantly lower than the input dimension. This setup, known as undercomplete, forces the network to 

learn the most important relationships between the original input features, and transform them into a few 

derived features that retain all the most important information. The decoder, which will be trained together 

with the encoder, will learn to create a reconstruction of the original input based on the low-dimensional 

representation. The error between the model’s reconstruction and the original input (known as the 

reconstruction error), is used to update the model weights during training [16]. To use an autoencoder for 
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anomaly detection, we train the network on data points from the normal class such that it can produce 

reconstructions of normal inputs with minimal reconstruction losses. Then, in the detection stage, new 

samples are fed into the model to create a reconstruction. If the reconstruction error exceeds some threshold, 

the sample is deemed anomalous, otherwise it is deemed normal. The authors of [17] applied a deep 

autoencoder to IoT traffic, and showed that it was effective in detecting Botnet attacks.  

Some recent work for log anomaly detection takes inspiration from natural language processing (NLP), 

by modeling systems logs in a way similar to a natural language sequences [8][9]. These are based on the 

idea that logs are similar to natural language in that they have a certain “vocabulary” governed by the number 

of unique log keys in the source code, and follow certain “grammar” rules due to program execution flow. 

The authors of [9] used a Markov chain and the authors of [8] used a Long Short-Term Memory (LSTM) 

neural network to model system logs for anomaly detection.  

Based on experiments by [8], an anomaly detection system based on log key sequences alone can achieve 

high accuracies in some datasets, such as the HDFS dataset published by [2]. Similarly, the work by [9] 

showed that their log key sequence anomaly detection technique can achieve high accuracy on High 

Performance Computing (HPC) system logs. However, for finer levels of scrutiny, a similar sequence 

modeling approach can be applied to numerical features that can be extracted from logs, as demonstrated by 

[3] and [8]. 

2.3 Concept Drift 
 

 An important issue to consider in anomaly detection is concept drift, which is the change in the statistical 

distribution of a target variable over time. This is especially relevant for semi-supervised anomaly detection 

systems that are trained on normal data from some baseline period. 

 An anomaly detection model that is trained in an offline manner on data from a baseline period will see 

a reduction in accuracy over time. Specifically, when the normal system behavior changes, becoming 

significantly different from its behavior during the baseline, we’ll commonly see a rise in false-positives, 
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where normal samples are mistakenly identified as anomalies by the system. Therefore, an effective anomaly 

detection system needs to be able to adapt to concept drift. 

 Relatively few previous work on anomaly detection considers concept drift. It is often treated as a separate 

goal from obtaining a model that learns well and yields high accuracy. Regardless of the model used for 

detection, the concept drift adaptation always involves updating the model over time.  

 In a naïve approach, one can simply train a new model from scratch based on a new set of data. However, 

this approach is not very efficient. Ideally, one would be able to update a model incrementally by retraining 

on just the new, recent samples, rather than the entire set of baseline data.  

 Most traditional machine learning techniques are not designed to allow for incremental update. As such, 

one often has to modify existing algorithms to allow such capability. In [21], a general framework for concept 

drift adaptation is proposed for clustering based anomaly detection systems, involving the update of baseline 

exemplars (centroids) with new normal samples with some appropriate weights.   

 Neural networks on the other hand, are naturally able to learn in an incremental manner. That is, the 

training data does not have to be considered as a whole. During training, we can divide the training data into 

small batches, each of which is fed through the model separately to change the system weights a small 

amount, in a direction that minimizes the loss function. Therefore, to adapt to concept drift, one can simply 

maintain a small set of new, recent normal samples and retrain the model on that set periodically [8]. There 

have been previous works that propose more complex mechanisms for adapting to concept drift by adaptively 

increasing the number of neurons in the network [18]. However, if not managed properly, this approach 

could lead to uncontrolled growth of the model. 
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3 - Problem Statement 
 

In this project, our goal is to build an anomaly detection system that can identify anomalies based on 

analysis of computer-generated logs. 

We focus on semi-supervised log anomaly detection, as we believe this setting to be applicable to most 

real-world systems, where we won’t have labeled anomaly data, but could obtain data that is considered 

normal or sufficiently normal from some baseline period based on the system administrator’s evaluation. 

Another problem we tackle is concept drift, which is especially important for computer systems which 

are dynamic and often change over time. In this paper, we evaluate and propose a concrete strategy for 

effectively updating and retraining our model in an online manner to adapt to concept drift. 

4 - Proposed Solution 
 

Following the works of [8][9], we take a sequence modeling approach to log analysis. We treat our 

goal of learning normal log sequences as a language modeling problem, the goal of which is to learn the 

structure of a language by building a model that can take in previous tokens (words or characters), and 

predict what the next token is expected to be based on those previous tokens.  

In our application, we seek to build a system that can predict what the next log key is based on a series 

of previous log keys. For anomaly detection, we train a model on normal sequences from some baseline 

period. Then, in the detection phase, we apply the model continuously to predict the next expected event. 

If the new event that arrives agrees with our model’s prediction, then it is flagged as normal, otherwise it 

is treated as an anomaly. 

In addition to being applied to sequences of discrete values like log keys, our system can also be 

applied to continuous, numerical sequences, such as multi-variate time-series of  measurements or 

features. That is, the model predicts the next expected values of those features based on their values from 

some previous historical window. If the difference (measured by mean-squared-error) between the actual 



20 

 

values and the model’s prediction is within some threshold, then it is considered normal. It is abnormal 

otherwise. 

Our anomaly detection system has three components: Data Preprocessing Module, Core Anomaly 

Detection Model, and Online Update and Retraining Module. We describe each of these in depth in the 

following sections. 

 

4.1 Data Preprocessing Module 
 

In the data preprocessing phase, we parse the raw logs to extract various features and log keys as described 

in Section 2, so that they can be processed by our anomaly detection model. Recall that log key, message 

type, and event type are used by different researchers to refer to the same thing. For the rest of this paper, we 

will use the term log key. 

 Together, the log keys will form a log key sequence, which represents the underlying execution sequence 

of the code that printed those log keys. We’ll denote the set of all distinct log keys as K={k1, k2, k3,….,kn}, 

where there are n distinct log keys total. 

Our goal is to train a model that can predict the next log key based on a recent sequence of log keys in 

some historical window of size w (which is a hyperparameter that can be tuned). Therefore, we need to 

segment our log key sequence into multiple input-output pairs, where each input consists of the log keys in 

the historical window, and the output consists of the next log key.  

To demonstrate this, with a window size w=3 and an observed log key sequence of [k14, k21, k6, k28, k4, 

k35], we will derive the following 3 input-output pairs: 

 [k14, k21, k6] → k28 

 [k21, k6, k28] → k4 

 [k6, k28, k4] → k35 
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 Finally, we convert the log keys in both the input and output into one-hot vector representations, such 

that they can be ingested by the anomaly detection model and be treated as a categorical variable (with 

number of categories equal to the number of unique log keys). 

 For numerical sequences, we take a similar approach. From our logs, we derive multivariate time-series 

of the form [v1, v2, v3, ..., vt,..., vm], where vt is a vector (or tuple) storing the values of all the relevant features 

at time t, and m is the total number of time steps. Then, we segment this in a similar fashion as the log key 

into multiple input-output pairs.  

 The feature vectors do not need to be converted to one-hot as they don’t take on categorical values. 

However, different features may take on different numeric ranges. As such, we need to normalize the features 

such that they have the same range. For each feature, we calculate the mean (µ) and standard deviation (σ) 

of its value across the baseline period. Then, for each instance x of the feature, we compute its normalized 

value x’ as follows: 

 x’ = ( x - µ ) / σ  (1) 

This normalization is performed for each value of each feature. This normalization technique is referred to 

as z-score normalization, and is useful when one doesn’t know the maximum and minimum possible value 

of an attribute a priori [11]. This is the scenario we’re dealing with, as our training data consists of points 

from only the baseline period, which most likely will not have data points spanning the entire possible range 

for each feature. 

 

4.2 Core Anomaly Detection Model 
 

Our system is modular, in that different types of models can be used as the core anomaly detection model, 

as long as it is compatible with the input and output format from the Data Preprocessing Module described 

previously.  
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The most common sequence modeling technique used is the Long Short-Term Memory (LSTM) neural 

network. LSTM is a type of Recurrent Neural Network (RNN) that uses three multiplicative gates—input 

gate, output gate, and forget gate—to control gradient flow and alleviate the vanishing/exploding gradient 

problems encountered when training RNNs on long sequences. Previous works [4][8] have used deep-LSTM 

for log sequence modeling with promising results. Therefore, we built LSTM-based models as baseline for 

comparison. 

While our LSTM-based models yielded good accuracies, they suffered from long training time. So, we 

set out to identify an architecture that improves the runtime while yielding equivalent or better accuracies.  

The first strategy we undertook to reduce run time is to swap out the LSTMs for Gated Recurrent Units 

(GRU), which is an alternate type of RNN that has fewer parameters than LSTMs. While this did improve 

the training time, it led to a drop in accuracy. 

Next, following the recent trend in using CNNs for sequence modeling, we built a deep CNN model that 

uses 1D convolutions. This led to drastic improvements in run time due to the ability of CNNs to be 

parallelized when performing convolutions with multiple filters. Unfortunately, this model also resulted in 

the worst accuracy when compared to the RNN based models such as LSTM and GRU. 

From these experimental architectures, we gained a few insights. Firstly, CNNs can in fact learn some 

spatial information based on the ordered events, and can do so extremely efficiently through parallel 

convolutions. However, its accuracy is sensitive to the choice of filter sizes. LSTMs, on the other hand, is 

naturally able to capture relationships in sequences and have relatively stable accuracies over different 

hyperparameter choices as shown by [8]. Lastly, we confirmed the conclusion by [4] and [8] that, when it 

comes to LSTMs, a deeper model can achieve higher accuracies than a shallower model, but this is at the 

cost of increased training time.  

Based on these observations, we set out to design an architecture that captures both CNNs ability to 

efficiently extract spatial features in a parallel fashion, and LSTMs superior ability to learn temporal 
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relationships in sequences. The result is a hybrid CNN-LSTM architecture that uses variable filter sizes and 

causal convolution to extract features which are then fed into an LSTM to make predictions. This model, 

which we call “CausalConvLSTM” is shown in Fig. 4. 

The CNN portion of the proposed architecture uses filters of different sizes in parallel to extract features 

across different span of the input sequence, alleviating the concern of not specifying a suitable filter size for 

the dataset. 

 

Fig. 4. Proposed CausalConvLSTM Architecture 

 Furthermore, the use of causal convolution ensures that the implication of ordering is preserved even 

after we concatenated all the features maps from the output of variable-sized convolutions together. This is 

illustrated in Fig. 5. 
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Fig. 5. Causal Convolution as Used in Our Architecture 

 Since the ordering remains meaningful in this output feature map, we can then use a LSTM to ingest it in 

order, from the first location to the last. After ingesting the sequence of rich features from the CNN, the 

LSTM’s hidden state vector is passed to a fully connected (FC) layer with same number of nodes as there 

are log keys. Finally, the output of the FC layer is fed through a softmax function to produce a probability 

distribution function across all the possible log key values. This probability distribution function is compared 

with the actual one-hot encoding of the next log key from the training sample, and the categorical cross-

entropy loss function is used to determine the error gradient used to update the model weights during training. 

 Then, in detection stage, we feed our model the most recent log entries within a historical window of size 

w. The model processes this sequence and outputs a probability distribution function across all possible log 

keys. We rank the probabilities from most to least likely, and if the new log key that just arrived is among 

the top g most likely predicted by the model, then it is treated as normal. Otherwise, it is treated as an 

anomaly, and an alert is generated. Note, g is another hyperparameter that can be tuned, and is essentially 

similar to a detection threshold. The smaller the g the more selective, and the larger it is, the less selective. 

A g of 1 would mean we only consider log keys that match the model’s single top prediction as normal. 

 A model similar to the one shown in Fig. 4 can be used for anomaly detection on multi-variate numerical 

time-series. The only difference is that the FC layer will have number of nodes equal to the number of 

features, and the softmax activation function will be omitted. The model’s output will be its prediction of the 

next set of values for those numerical features, and will be compared against the actual values using mean-

squared-error (MSE) loss function to determine the error gradient used to update the model weights during 
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training. In detection stage, we feed our model the most recent numerical feature vectors within the historical 

window, and the model outputs a prediction of what it expects the values of the numerical features to be 

next. We calculate the mean-squared-error (MSE) between the model’s prediction and the actual observed 

values of those numerical features, and if the MSE exceeds some threshold, then it is deemed anomalous. 

Otherwise, it is deemed normal. The threshold to use for the MSE is a hyperparameter that can be tuned. We 

will discuss how to establish suitable values for it in the performance evaluation section. 

 Based on our experiments, this hybrid model achieves comparable accuracies as the deep LSTM-only 

models, while requiring significantly less training time. 

 

4.3 Online Update and Retraining Module 
 

In addition to screening new messages and alerting operators when an anomaly is detected, our proposed 

system allows online training and model update to adapt to changes in system behavior over time (concept 

drift). 

By using a neural network as our core model, we can take advantage of neural networks’ natural ability 

to learn in an incremental manner. That is, rather than taking the entire training dataset as a whole in the 

learning process, it can update system weights iteratively based on small subsets of the training data. As 

such, we can retrain the model on a few new samples to make minor updates without having to retrain the 

model from scratch based on the entire training set with the new samples added. Based on this observation, 

previous works have proposed adapting to concept drift by incrementally retraining the model on false-

positive samples identified by the operator [8]. However, no previous work we are aware of provides 

concrete detail on how this retraining should be done.  

To determine a concrete and robust retraining strategy, we proposed and evaluated many different online 

retraining strategies. Based on our evaluation, an effective and generally applicable strategy is to trigger 

retraining when the FP rate calculated from a rolling window of the most recent events exceeds some 

specified threshold. 
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5 - Performance Evaluation 
 

As mentioned previously, our system is modular in that different core anomaly detection models can used 

as long as its input and output format is compatible with those produced by the Data Preprocessing Module. 

Similarly, the Online Update and Retraining Module can adopt different retraining strategies regardless of 

the core anomaly detection model used, as long as it is a neural network based model.  

To quantify and compare the performance of anomaly detection, we use the popular metrics Precision, 

Recall, and F-Measure. These measures are defined in terms of the count of True-Positives (TP), False-

Negatives (FN), True-Negatives (TN), and False-Positives (FP) as specified by the equations below: 

 Precision = TP / (TP+FP) (2) 

 Recall = TP / (TP+FN) (3) 

 F-Measure = 2*Precision*Recall / (Precision+Recall)       (4) 

Note, in the context of anomaly detection, “positive” means anomalous, and “negative” means normal. 

The precision quantifies what portion of the points identified by the model as anomalous are actually 

anomalous (per the ground-truth label). The recall quantifies what portion of the points that are actually 

anomalous the model successfully detected. The F-measure, given as a harmonic mean of precision and 

recall represents a holistic measure that takes into account both precision and recall [8]. For all three 

measures, the higher the better. 

Another measure of interest we use is the false-positive rate, calculated as FP / (FP + TN). This measure 

quantifies the portion of normal samples that are mistakenly identified as anomalous by the system. We want 

to keep this measure low, as an increase in the number of false-positives can overwhelm the operator and 

cause him/her to distrust and ignore new alerts created by the system. 
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5.1 Anomaly Detection Evaluation 
 

The dataset we used for benchmarking our core model’s effectiveness for log key anomaly detection is 

the HDFS dataset generated and published by the authors of [2]. This dataset consists of over 11 million log 

entries generated over a period of 48 hours by a 203-node Hadoop cluster running in AWS [2]. The data set 

has been used in various previous studies on log anomaly detection [2][3][7][8]. After generating these log 

messages, the authors of [2] worked with Hadoop domain experts to identify and label blocks that 

experienced abnormal execution. Using these block ids, we can group the messages into 558,221 normal 

subsequences and 16,838 abnormal subsequences [8]. 

Following a semi-supervised anomaly detection approach and the work by [8], we train our model on 

only the first 4,855 of normal samples (less than 1% of all the normal data points available). Then, we use 

the rest of the normal and abnormal data points for testing and accuracy evaluation. 

Across our experiments, we fix the historical window size (w) at 12, since this is the shortest length 

observed among the 4,855 normal subsequences. For the hyperparameter g that specifies the top places to 

compare the new sample against in the model output probability distribution, we used 5, as the experiments 

by [8] showed that with g=5, 99.8% of the next log key in normal sequences is among the top-g log keys 

predicted by their model. We can increase g, but the potential gain is marginal, and may result an increase 

in false-negatives. This g parameter is similar to a detection threshold as we discussed previously. 

We first implemented a stacked, Deep-LSTM model based on the description by [8]. This model achieved 

very promising results but had a long training time. In an attempt to reduce the training time, we 

experimented with various models including a Deep-GRU, a Deep-CNN, and finally our original 

CausalConvLSTM model. The model parameters and their performance are summarized below. 
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Table 1. Model Description and Performance Results on HDFS Dataset 

Model Deep-LSTM Deep-GRU Deep-CNN CausalConvLSTM 

Layer 1 LSTM with 75 

Units 

GRU with 75 Units Conv1D, 64 filters Conv1D, 64 filters 

Layer 2 LSTM with 75 

Units 

GRU with 75 Units Conv1D, 64 filters LSTM with 96 

Units 

Layer 3 FC Layer with 30 

Nodes 

FC Layer with 30 

Nodes 

Conv1D, 80 filters FC Layer with 30 

Nodes 

Layer 4 - - Conv1D, 80 filters - 

Layer 5 - - FC Layer with 30 Nodes - 

Training 

Time 

28s/epoch 25s/epoch 16s/epoch 15s/epoch 

Precision 0.8968 0.8710 0.8949 0.8959 

Recall 0.9971 0.9959 0.9619 0.9972 

F-Measure 0.9443 0.9293 0.9272 0.9438 

 

 

Fig. 6. Model Accuracies on HDFS Dataset 

As these results show, the stacked, Deep-LSTM still maintained the best accuracy with a F-Measure of 

0.9443. However, the training time of the Deep-LSTM model was also the longest of all the models 

compared. The Deep-GRU had similar training times with worse accuracies. The Deep-CNN architecture 

leads to significant reduction in run time due to its ability to take advantage of parallelization, however, this 
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purely CNN-based model performed the worst of all 4 models compared. Finally, our proposed 

CausalConvLSTM model achieved results that are essentially equivalent to the Deep-LSTM model, while 

requiring almost half the training time.  

To evaluate the effectiveness of our proposed model when used for numerical sequence modeling, we 

needed a different dataset. The HDFS dataset has very few numeric features, and was not useful for 

benchmarking numerical sequence modeling for anomaly detection [8].  

The dataset we were able to obtain was the Canadian Institute for Cybersecurity’s Intrusion Detection 

Evaluation Dataset (CICIDS2017), published by the authors of [12]. This dataset was generated from a test 

network over a 5-day period (Monday-Friday), during which both normal and various attack traffic was 

simulated. Throughout the simulation, packet-capture (PCAP) logs were collected. The researchers then used 

their network packet analyzer CICFlowMeter to extract various numerical features from the PCAP logs. The 

result is a multivariate time series, with the values of multiple features at each timestamp. The data was also 

labeled to indicate normal traffic as well as the various types of attacks.  

For our evaluation, we used the data from the first day (Monday) of the simulation as baseline. This day 

contained only normal traffic. We used 80% of this day’s traffic for training and reserved 20% as a validation 

set, which is used to help us establish detection thresholds for the mean-squared-error (MSE). The reason is 

that we want to obtain prediction errors on normal data points the model was not trained on. Therefore, after 

training the model on the training set, we apply it to each point in the validation set and calculate the MSE 

between the model prediction and the ground-truth. This gave us a list of model prediction errors across the 

validation set. Fig. 7 shows a histogram of the MSE values when our CausalConvLSTM model is applied to 

the validation set. 
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Fig. 7. Histogram of MSEs from Validation Set (CICIDS2017, CausalConvLSTM Model) 

Based on Fig. 7, we realized that the MSE losses is highly skewed. As a result, we cannot use means and 

standard deviations to establish the threshold. Instead, we chose to use the quantile statistic to help us 

establish the detection threshold. Specifically, we found a threshold set at the 90% quantile of the validation 

set MSE values gave us the best F-Measure.  

For testing, we picked a day from the dataset that contained the most diverse attacks. Specifically, the 

data from Wednesday, which included normal data mixed with various types of attacks including Slowloris, 

Slowhttptest, Hulk, GoldenEye, and Heartbleed. We treated all the attacks as anomalies (or “positive”) 

instances in our metric calculation, and the rest as normal (or “negative”) instances. Our CausalConvLSTM 

model achieved an F-Measure of 0.76, which is slightly better than a GRU model we also implemented for 

comparison, which had an F-Measure of 0.74. However, the CausalConvLSTM model required almost half 

the training time compared to the GRU model, when trained on the same workstation. The results are 

summarized in Table 2 and Fig. 8 below.  

Table 2. Model Performance Results on CICIDS2017 Dataset 

Model GRU CausalConvLSTM 

Precision 0.77 0.84 

Recall 0.72 0.69 

F-Measure 0.74 0.76 

Training Time 239 s/epoch 151 s/epoch 
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Fig. 8. GRU vs CausalConvLSTM on CICIDS2017 Dataset 

 

Our experiment results show that rather than having a deep homogenous model with multiple layers of 

the same architecture (either all RNN or all CNN), it is worth considering a hybrid model with mixed 

architecture. Designed properly, a hybrid model can achieve equivalent or better results while requiring less 

training time, allowing us to take advantage of the strengths of different architectures. 

 

5.2 Online Update and Retraining Evaluation 
 

 For evaluating drift, we needed a dataset that actually exhibits change in normal system behavior over 

time. Based on our preliminary experiments, the HDFS Dataset proved to be unsuitable for drift analysis, as 

the normal system behavior is relatively stable over time. This could be due to the fact that the logs from that 

dataset only spans about 2 days, which is far too short a time period for significant system change to take 

place. The same is expected of the CICIDS2017 dataset, which spans only 5 days.  
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 For this evaluation, we identified a dataset published by the authors of [10], which consists of system 

logs generated by a Blue Gene/L supercomputer (“BGL Dataset”). This dataset consists of 215 days’ worth 

of logs, involving over 4 million log messages, of which 7.33% were labeled as abnormal by domain experts. 

This dataset was used by the authors of [8] for the purpose of drift evaluation. 

In a setup similar to that proposed in [8], we assume there’s an analyst who is alerted when an anomaly 

is detected, and who can flag the alert as a false-positive if the entry is actually determined to be normal 

based on the analyst’s evaluation. In our retraining system, we want to save these labeled false-positive 

entries and use them to update the model later on. These entries represent examples of new normal behavior 

that our model should know about. As for the true negatives, the model does not need to be retrained on 

them, because it already knows to treat them as normal. The remaining question is, when should we retrain 

the model.  

 We implemented different retraining strategies. We chose as our baseline the first 10% of data, and used 

the normal data points from the baseline period for training the model. Then, we used the rest of the 90% of 

data for testing. Fig. 9 below compares the resulting overall FP rate on the entire test set, when different 

retraining strategies are used.    

 

Fig. 9. Overall FP Rate on Entire BGL Test Set with Different Retraining Strategies (GRU AD Model) 
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The first retraining strategy we tested is to trigger a retrain periodically either based on time elapsed or 

number of records screened since the last retrain. A downside of this approach is that it has no regard to the 

FP count or rate, and may therefore retrain even when there’s no need to. Additionally, the selection of the 

retrain interval has significant effect on the performance.  

The second approach we experimented with is to have a system that triggers a retrain based on some 

threshold on the FP count. A retrain is triggered whenever the accumulated FP count since the last retrain 

exceeds the threshold. We noticed that for this approach, the choice of the FP count threshold again has 

significant effect on the overall accuracy. 

The next approach we experimented with is based on the FP rate. A retrain is triggered whenever the FP 

rate exceeds some threshold. While experimenting with this scheme we noticed that there are multiple ways 

to define the FP rate, and how the FP rate is defined has significant impact on the model performance. Three 

different ways to define the FP rate are as follows: cumulative FP rate, fixed window FP rate, and rolling 

window FP rate.  

The cumulative FP rate is calculated by keeping a count of all the false-positives and true-negatives of 

the system since the beginning of the detection (testing) phase, and calculating the FP rate based on those 

cumulative counts at each step. 

The fixed window FP rate is calculated by dividing the time into fixed, non-overlapping increments and 

tallying the false-positives and true-negatives within each increment to calculate the FP rate. 

The rolling window FP rate is calculated by tallying the false-positives and true-negatives within a 

moving/rolling window that encompasses only the most recent events.   

 Based on our experiments, the cumulative FP rate is not suitable as it misses many momentary spikes in 

false-positives due to an averaging effect. If there was a prior period of good accuracy followed by a sudden 

increase in the number of false-positives in quick succession, those new false-positives still would not be 

sufficient to raise the cumulative FP rate significantly.   
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 FP rate based on fixed, non-overlapping windows are better at capturing momentary spikes in the number 

of false-positives. However, we’re left to the mercy of how the windows are divided, and may or may not 

capture the highest FP rate if an increase in the number of false-positives happens to land on the boundary 

between two windows. On the other hand, a rolling window that slides over the timeline would capture all 

possible divisions ensuring we’ll cover a window that has the highest number of false-positives. Based on 

these observations, we decided that a FP rate based on a rolling window is the most appropriate for use with 

our retraining strategy. Therefore, we propose calculating the rolling window FP rate at each time step, 

comparing it to a threshold, and triggering a retrain if the FP rate exceeds the threshold. 

 From our experiments, a retrain strategy that is triggered when the rolling FP rate exceeds a certain 

threshold resulted in the lowest overall FP rate of 0.0056 (0.56%). We also observed that the overall FP rate 

will stay near the threshold we’ve set. This makes the threshold more meaningful than a threshold on the FP 

count, as a system administrator is likely to have an idea of what a desirable FP rate might be for his/her 

system.  

 Fig. 10 below shows the accuracy measures over time with this retraining strategy. We see that the 

precision, recall, F-Measure and overall accuracy all stayed relatively high, while the FP rate stayed very 

low. This indicates that our retraining strategy is effective. 
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Fig. 10. GRU Model Metrics over Time, with Retraining Based on Rolling Window FP Rate 

        Lastly, we compared the runtime of the system with and without retraining. Without retraining, the 

amortized runtime to screen each event is about 1.1 milliseconds, when tested on our mid-range personal 

workstation. With retraining, the amortized runtime to screen each event is about 0.03 milliseconds longer 

than for a system without retraining, when tested on the same workstation. This difference in runtime is 

insignificant considering the improvement in accuracy obtained. Furthermore, as pointed out by [8], the 

retraining could be done in parallel to detection using a copy of the old model, so that detection time will 

not be affected at all. The models can then be swapped when retraining is complete. 

 

 

 

 



36 

 

6 – Discussion and Lessons Learned 
 

        In this chapter, we take a step back and review some lessons learned from the various experiments 

conducted as part of this project. This includes reviewing the other anomaly detection techniques that we 

experimented with which do not take a sequence modeling based approach. 

6.1 Alternate Approaches (Non-Sequence Based) 
 

        As discussed in the background section, there are many anomaly detection techniques. However, not 

all anomaly detection techniques are suitable for our specific problem of anomaly detection from computer 

logs. Statistical modeling and proximity-based anomaly detection approaches were precluded from our 

application because they don’t perform well in high-dimensional space [14]. On the other hand, clustering 

based techniques and reconstruction-based techniques have been shown to be effective for anomaly 

detection from computer logs [2][6][7][19]. As such, we also implemented and evaluated these 

techniques, applying them to the same datasets we have used to evaluate the sequence modeling based 

approaches. 

        Specifically, we evaluated K-Means to represent the clustering-based approach, and a neural network 

autoencoder to represent the reconstruction-based approach. However, as these techniques don’t operate 

on sequences like our proposed CausalConvLSTM, the data needs to be preprocessed in a different 

manner. To apply these methods to the HDFS dataset, we follow the approach by [2] and [3] to create an 

event count vector for each block id, which stores the occurrences of each type of event associated with 

that that block from the logs. Each event count vector then represents a feature vector. For both the K-

Means and Autoencoder based approach, we train the models on 4,855 normal event count vectors parsed 

from the first 100,000 log entries [8], and test on the event count vectors parsed from the rest of the logs.  

        For K-Means, we used the same approach discussed in the background section for anomaly 

detection, as outlined below: 
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1. Perform K-Means clustering on the training set to derived k-clusters and their associated 

centroids. These clusters and centroids will represent our baseline. 

2. For each new test instance x, calculate its distance to the closest baseline centroid.  

3. If the distance exceeds our threshold T, flag the instance as anomalous. If the distance is less than 

the threshold T, the instance is considered normal. 

The target number of clusters (k) and the threshold (T) are hyperparameters. Since we perform 

clustering on only normal training data, k can be considered to be the expected number of types of normal 

system behaviors. System knowledge or previous, related application can provide some hint as to the 

appropriate ranges of k to use, or one can simply experiment with different k values to see which one 

yields the best results. We consulted previous works [5] and [6] for approximate ranges of k, and then 

simply tried all the values. The results are summarized in Fig. 11. Note, as we have not settled on an 

appropriate distance threshold, we initially set it as the average distance of each baseline data point to its 

respective cluster centroid, plus three standard deviations. This is based on the assumption that these 

distances follow a normal distribution, and 99.7% of the observations are expected to lie within 3 

standard-deviations, according the “68-95-99.7” rule.    
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Fig. 11. K-Means Accuracy vs Target Number of Clusters (HDFS Dataset) 

        We found that k=6 gave us the best accuracy based on the overall F-Measure. Therefore, we 

determined that this is the most suitable selection for this dataset.  

        The next parameter we need to determine is the threshold (T). For setting detection thresholds, one 

typically rely on confidence intervals of well-known statistical distributions (such as a Gaussian) [8], 

which was what we did initially. Unfortunately, our experiments showed that the distances of data points 

from their centroids do not follow a normal distribution; therefore, our initial threshold setting based on 

the “68-95-99.7” rule was not appropriate. As such, we experimented with different distance thresholds, 

and found a threshold set at near the 99th percentile of the distances of the validation set data points to 

their nearest centroids to work the best. With this selection, we obtained a precision of 0.72, recall of 

0.61, and F-measure of 0.66. 

        Next, we created a deep multi-layer perceptron autoencoder (MLP-AE) that is also trained on the 

event count vectors from the baseline period. As the frequency of different types of events can vary (some 
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events naturally occur much more often than others), we needed to normalize the counts of each type of 

events to bring them in the same range. We do so by using z-score normalization [11] as discussed 

previously. The model is then trained to minimize the reconstruction losses when applied to event count 

vectors of normal execution sequences. At detection stage, we extract the event count vectors of new 

sequences and feed them into the autoencoder to get a reconstruction. Then, we calculate the 

reconstruction loss between the reconstruction and the input. If the reconstruction loss exceeds a certain 

threshold, it is deemed anomalous. Otherwise, it is deemed normal. 

        To establish the threshold for the reconstruction loss, we applied the autoencoder to a validation set, 

which consists of normal data points the model was not trained on. This gave us an idea of the range of 

thresholds to try. In the end, the threshold that gave the best performance was at around the 99th percentile 

of the reconstruction losses when the model is applied to the validation set. This gave us a precision of 

0.67, recall of 0.66, and F-Measure of 0.66. 

        The following figure compares the accuracy measures of clustering-based approach (K-Means), 

reconstruction-based approach (MLP-AE), and sequence modeling approach (CausalConvLSTM) applied 

to the same HDFS dataset. 



40 

 

 

Fig. 12. Clustering, Reconstruction, and Sequence-Based AD Comparison (HDFS Dataset) 

        Based on this experiment, we observe that the sequence modeling approach far out-performed the 

clustering and reconstruction based approach. This is somewhat expected because the feature used by our 

K-Means and deep MLP-AE models are the event count vectors. Since the event count vectors simply 

tally the number of each type of events that occurred for that execution sequence, the ordering 

information is not preserved. Therefore, the decision made by the K-Means and deep MLP-AE models do 

not take ordering in to consideration. The sequence-based approach (CausalConvLSTM) on the other 

hand, ingests the sequence of event types directly; therefore, it is able to consider the order of event types, 

and discover sequential relationships. As the ordering of events is important for the execution path 

anomalies present in this data set [2], it is no surprise that the sequence modeling based 

CausalConvLSTM performed better.  

        To further evaluate these different classes of anomaly detection techniques, we also compared them 

using the CICIDS2017 dataset. As described previously, this dataset contains numerical features 
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generated by a network packet analyzer [12]. The timestamp in the dataset allows us to order and treat 

these data points as a multi-variate time-series, as we’ve done in the sequence modeling approach 

described previously. Alternatively, we could consider the set of features at each timestamp individually 

(independent of its surrounding time steps), and try to make a determination based on the information 

from that point in time alone; this is the approach we’ll take when applying the clustering-based model 

and the reconstruction-based model. 

        As before, we performed z-score normalization to ensure all the features are in similar ranges. We 

train the models on the baseline data from the first day (Monday), which consisted of only normal traffic.  

        For the clustering-based anomaly detection, we run the K-means algorithm on the baseline training 

data with k=6, grouping the baseline data points into 6 clusters and obtaining the centroids of each of 

these clusters. These clusters and centroids represent our baseline, normal behavior. Then, in detection 

stage, we screen new entries by calculating their distance to the closest centroid. If the distance exceeds a 

certain threshold, it is deemed anomalous. Else, it is deemed normal. Through our experiments, we found 

a threshold set at around the 97th percentile of the distances between the validation set data points and 

their nearest baseline centroid yielded the best accuracy.  

        For the reconstruction-based anomaly detection, we built a deep MLP-AE with input and output 

layers both with number of nodes equal to the number of features. The bottleneck of the MLP-AE is set at 

64% the size of the input. This forces the MLP-AE to learn a reduced-dimension representation of the 

higher-dimension input, from which it can reconstruct the original input with minimal loss. The MLP-AE 

was then trained on the normal baseline data. Then, in detection stage, we screen new entries by feeding 

them through the MLP-AE to obtain a reconstruction. We then calculate the MSE reconstruction error 

between the reconstruction and the input. If the reconstruction error exceeds a threshold, it is deemed 

anomalous, else it is deemed normal. Through our experiments, we found a threshold set at around the 

97th percentile of the validation set reconstruction losses to give the best accuracy.  
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        We applied our clustering, reconstruction, and sequence-based anomaly detection systems to the 

CICIDSD17 data from Wednesday, which included normal data mixed with various types of attacks 

including Slowloris, Slowhttptest, Hulk, GoldenEye, and Heartbleed. The accuracy results are shown in 

Fig. 13 below for comparison. 

 

Fig. 13. Clustering, Reconstruction, and Sequence-Based AD Comparison (CICIDS17 Dataset) 

        Surprisingly, on this dataset, the K-Means based anomaly detection model outperformed deep MLP-

AE and CausalConvLSTM. This is in contrast to the HDFS dataset, where the K-Means based approach 

performed the worst. The fact that our sequence modeling based CausalConvLSTM performed worst here 

is especially surprising, since it is able to consider sequential relationships, rather than treat each data 

point as an isolated, independent instance, which was how it was treated by the MLP-AE and K-Means 

models. Based on some literature review, we came across another paper [20], which also experimented 

with a sequence-modeling based approach on this dataset. Their experiments also showed that a simpler, 

frequency-based method out-performed a more complex LSTM-based model [20], and concluded that this 

is most likely because there isn’t much valuable information encoded in the sequences in this dataset. The 
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data set was created by a packet analyzer, so each data point already summarizes multiple events that took 

place over a short time window, and this information was sufficient for detecting the types of anomalies 

involved in this dataset. 

        While a sequence modeling based approach is more general in that it can capture any sequential 

relationships that may exist, for the CICIDS17 dataset, the sequence information proved to be 

unimportant. Therefore, by including information from multiple time steps, we’re likely diluting the 

discriminating power of information that can be gained from a single time step alone. This is likely the 

reason that a sequence-based approach performed slightly worse than those that do not consider sequence 

information, as demonstrated by our experiments as well as those by [20]. 

6.2 Lessons Learned 
 

        An important lesson learned from this project is the importance of evaluating the data itself early on. 

This includes inspecting the raw data as well as attempting to understand the underlying behaviors 

represented by the data.  

        The larger a data set, the higher the chance that something could go amiss. For instance, while 

parsing the BGL data set, we inspected the first few lines of the log to get the general format, and 

implemented our parser based on the assumption that the rest of the data will follow the same format. 

Then as extra precaution, we ran our parser on a subset of the log file (the first 1,000 lines) and made sure 

it performed correctly. Unfortunately, when we proceeded to run the parser on the entire set of over 4 

million log entries, we encountered various corrupted log lines, including timestamp fields with 

unexpected text (spilled over from other fields), unexpected line break character ‘\n’ in the log level field, 

as well as missing fields. To fix these issues, we needed to include special cases in our parsing logic to 

handle when things go awry. The CICIDS2017 dataset also contained inconsistencies. Specifically, the 

CSV file published by the author contained lines with no field values, but simply the comma separators. 

Also, some labels used a version of the dash symbol that is not recognized by UTF-8 encoding. The 
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lesson learned is that, when it comes to large volumes of data, what can go wrong will more likely go 

wrong, so we should anticipate and take the appropriate precautions, such as making our data 

preprocessing code more robust to handle special cases.  

        Once we’ve taken care of these low-level issues with the raw data itself, we also need to understand 

the behavior of the data. For example, we initially tried to use the HDFS data set for drift analysis, as well 

as for benchmarking the numerical-sequence modeling effectiveness of our model. However, after initial 

experiment, we discovered that the HDFS dataset did not actually exhibit drift behavior; that is, the 

normal system behavior stayed relatively constant throughout the 2-day simulation done by the authors 

[2]. Additionally, these logs contained only a few numeric parameters, and they occurred very 

infrequently, resulting in insufficient data to perform meaningful sequence modeling. The original creator 

of the HDFS dataset [2] also stated that they only identified and labeled the execution anomalies by 

identifying the sessions (i.e. block_id) that went through abnormal execution. They did not consider any 

of the numerical features when labeling anomalies. It is for these reasons that [8] only applied log key 

anomaly detection to the HDFS dataset, and used separate datasets for benchmarking numerical sequence 

modeling and drift adaptation. 

        Through our series of experiments, what we discovered is that there is no one-size-fit-all solution for 

log anomaly detection. That is, not all anomaly detection techniques can be applied to all types of logs 

with great result. Our sequence modeling based approach takes a step toward creating a more general 

solution, as it can ingest sequences of events directly rather than relying on the user to engineer the best 

features that capture the inherent relationships in sequences. However, there’s no guarantee that it will 

always outperform custom solutions hand-picked and designed for specific applications.   
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7 - Conclusion & Future Work 
 

        In this project, we evaluated various techniques used for log anomaly detection. We built upon 

previous anomaly detection techniques that seek to model log sequences directly using neural networks. 

Based on observations from our experiments, we designed an original hybrid neural network architecture 

called “CausalConvLSTM” that takes advantage of CNN’s ability to efficiently extract spatial features in a 

parallel fashion, and LSTM’s superior ability to learn the relationships in sequential data. Through our 

experiments, we showed that our model can achieve high accuracy for anomaly detection after training on 

only a small amount of normal log data. Furthermore, our model requires less training time than previous 

state-of-the-art architectures, while achieving comparable accuracies. Additionally, we address the concept 

drift problem by performing evaluations of different online retraining strategies for neural network based 

anomaly detection systems, and propose a concrete strategy that was effective in maintaining high 

accuracies and low false-positive rates as demonstrated by our experiments. Future work could involve 

applying our proposed system to additional types of log data or the incorporation of a module to help users 

more easily diagnose identified anomalies. 
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