
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-20-2019

SENTIMENT ANALYSIS FOR SEARCH
ENGINE
Saravana Gunaseelan
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information
Systems Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Gunaseelan, Saravana, "SENTIMENT ANALYSIS FOR SEARCH ENGINE" (2019). Master's Projects. 694.
DOI: https://doi.org/10.31979/etd.fetx-v3gr
https://scholarworks.sjsu.edu/etd_projects/694

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/215423135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/694?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

i

SENTIMENT ANALYSIS FOR SEARCH ENGINE

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Saravana Gunaseelan

May 2019

ii

© 2019

Saravana Gunaseelan

ALL RIGHTS RESERVED

iii

The Designated Project Committee Approves the Project Titled

SENTIMENT ANALYSIS FOR SEARCH ENGINE

by

Saravana Gunaseelan

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2019

Dr. Ching-seh Wu Department of Computer Science

Dr. Robert Chun Department of Computer Science

Neraj Bobra Proteus Digital Health

iv

ABSTRACT

SENTIMENT ANALYSIS FOR SEARCH ENGINE

By Saravana Gunaseelan

The chief purpose of this study is to detect and eliminate the sentiment bias in a search

engine. Sentiment bias means a bias induced in the search results based on the

sentiment of the user’s search query. As people increasing depend on search engines

for information, it is important to understand the quality of results produced by the

search engines. This study does not try to build a search engine but leverage the

existing search engines to provide better results to the user. In this study, only the

queries that have high sentiment polarity are analyzed and the machine learning

models are used to predict the sentiment polarity of the input query, sentiment

polarity of the documents produced by the search engine for the given query and also

to change the sentiment polarity of the input query to its opposite sentiment. This

project proposes an end-to-end system that eliminates the search engine bias by

producing results that align with the query sentiment as well as the opposite

sentiment. The system comprising of three models for document level sentiment

analysis, aspect level sentiment analysis and sentiment style transfer. The document

level sentiment analyzer is an LSTM based model that uses GloVe word embeddings

to analyze the sentiment of the documents produced by the search engine. The aspect

level sentiment analyzer uses deep memory network with attention and auxiliary

memory to analyze the sentiment of each search query. In order to obtain the

v

documents of the opposite polarity, the sentiment of the search query is reversed

using the sentiment style transfer model that uses a bi-directional LSTM. The results

are analyzed to determine the sentiment bias of the search engine based on the input

query. In our experiments, we observed that positive sentiment queries yielded 67%

documents with positive sentiment and negative sentiment queries yielded 70%

documents with negative sentiment. The proposed system eliminates this bias by

providing the users with two sets of result, one with positive sentiment and one with

negative sentiment.

vi

ACKNOWLEDGMENTS

First, I would like to thank my project adviser Dr. Ching-seh Wu for his continued

support and guidance throughout this project. I would like to extend my gratitude to

Dr. Robert Chun and Neraj Bodra for being a part of my project committee and for

their indispensable feedback which helped me to complete my project. Last but not

the least, I would like to thank my family and friends and for their continuous support

and guidance throughout the duration of this project.

vii

TABLE OF CONTENTS

List of Tables...……………………………………………………………………………..viii

List of Figures…………………………………………………………………………….....ix

Chapter 1: Introduction ... 1

1.1 Research Objective ... 1

1.2 Project Motivation .. 2

Chapter 2: Literature Review ... 4

2.1 Sentiment Analysis .. 7

2.2 Aspect-Level Sentiment Analysis .. 8

2.3 Document-level sentiment analysis .. 10

2.4 Sentiment Style Transfer ... 13

2.5 Web Scraper .. 14

Chapter 3: Model Components and Evaluation ... 15

3.1 Web Scraper .. 15

3.1.1 Implementation .. 16

3.1.2 Result ... 18

3.2 Text Summarization .. 19

3.3.1 Implementation .. 20

3.3.2 Results .. 22

3.3 Sentiment Analysis .. 24

3.3.1 Sentiment ... 24

3.3.2 Problems .. 25

3.3.3 Levels of Sentiment Analysis ... 27

3.3.4 Document-level Sentiment Analysis ... 28

3.3.4.1 Dataset ... 28

3.3.4.2 Implementation .. 29

3.3.4.3 Result ... 35

3.3.5 Aspect Level Sentiment Analysis .. 38

3.3.5.1 Dataset ... 39

3.3.5.2 Implementation .. 40

3.3.5.3 Result ... 43

3.4 Sentiment Style Transfer .. 46

3.4.1 Dataset ... 46

3.4.2 Implementation .. 48

3.4.3 Result ... 51

Chapter 4: End-to-End Model Evaluation ... 53

4.1 Dataset ... 53

4.2 Implementation .. 53

4.3 Result ... 55

viii

Chapter 5: Conclusion and Future Work ... 60

 References ... 62

 Appendix ... 65

ix

LIST OF TABLES

Table 1: Statistics for IMDB review dataset ... 28

Table 2: Comparison of different Document-level Sentiment Analyzer 35

Table 3: Statistics for two datasets .. 40

Table 4: Comparison of different Aspect-level Sentiment Analyzer 45

Table 5: Statistics of two datasets .. 47

Table 6: Comparison of different Sentiment Style Transfer methods 52

Table 7: Summary of results for individual components .. 59

x

LIST OF FIGURES

Figure 1: Various Sentiment Analyzer Approaches [30] ... 11

Figure 2: Representation of Bag of Words [34] ... 12

Figure 3: Steps involved in Web Scraper ... 17

Figure 4: List of Queries ... 18

Figure 5: List of URL obtained from Search Engine Result .. 18

Figure 6: Sample document scraped from search engine result 19

Figure 7: Sample document provided as input to web scraper 23

Figure 8: Summarized output from the Text Summarizer .. 23

Figure 9: Problems in Sentiment Analysis [31] ... 25

Figure 10: Levels of Sentiment Analysis .. 27

Figure 11: Review length for Document-level Sentiment Analyzer Dataset 29

Figure 12: Working of Recurrent Neural Network .. 31

Figure 13: Implementation of Document level sentiment analyzer 34

Figure 14: Loss Graph and Accuracy graph for model with no GloVe word

embedding ... 36

Figure 15: Loss Graph and Accuracy graph for model with GloVe word embedding

.. 37

Figure 16: Implementation structure of Aspect-level Sentiment Analyzer [24] 41

Figure 17: F-score for Restaurant and Laptop with increasing Epochs 44

Figure 18: Implementation steps for Sentiment Style Transfer [25] 48

Figure 19: Classifier Accuracy vs BLEU score for DeleteOnly and DeleteAndRetrieve.

.. 51

Figure 20: Overall project structure .. 54

Figure 21: Search results and its sentiment for a positive search query 56

Figure 22: Search results and its sentiment for a negative search query 57

Figure 23: Final search result produced by the end-to-end model. 58

1

Chapter 1:

Introduction

1.1 Research Objective

Advancement in technology is progressing in an exponential rate. The world wide

web is huge with different formats of information such as text, audio and video

recordings, etc. Everyone in this world is trying to be constantly connected to the

internet for many number of reasons. One of the primary reasons is to get the latest

information of the activities that is going on around them. The activities can be

anything from local news, information about famous people around them and for

several other reasons. Google, Bing, and Yahoo etc., are a common search engine that

consumers use when they search for information or services online. The majority or

about 90% of the customers select the search results from first page only and out of

that 90% more than 80% select the search results from first three or four links. So, it is

very important for these search engines to provide relevant information as their top

most results. As there is an abundance in information it is becoming increasing

difficult to select the results that suits the users.

For instance, a popular person can be viewed as both good and bad by different sets

of people. Some users may want to see only the positive content of a person that they

are searching for and the search engine must understand this and provide those search

results that have positive views for that person. But due to the excess amount of data

available for that person the search engines can provide some results which are not

2

exactly what the user is looking for. This problem can be solved by introducing

sentiment analysis to both the search query that the user provides as input to the

search engine and the search results that the search engine provides as output.

1.2 Project Motivation

This project aims to provide advancements two areas in specific, one is to provide

the search query’s sentiment that help the user to see how biased their query is and

also try to change the sentiment of the query to provide a complete picture of the topic

that the user is searching for. Also, the project aims to provide the exact sentiment of

the documents provided as a result by the search engine to make it easy for the users

to select or understand the content.

In this project, two different kinds of sentiment analysis model are built to provide

solution to the above problem. The first sentiment analyzer model tries to understand

the sentiment of the search query provided by the user. To do this, a model has to

developed that can identify the main aspect of the sentence and provide the sentiment

associated with the main aspect. The second sentiment analyzer model is used to

summarize the documents into its most important essence without changing the

overall meaning and further provide the sentiment score for each of the generated

search results. There are several machine learning algorithms such as regressions,

deep neural networks that try to predict the exact sentiment of the sentences. This

project tries to explore several of those techniques and to identify the approach for

3

sentiment prediction. Apart from developing two sentiment analysis models, this

project aims to explore existing web scrapers to develop the dataset. The web scraper

must be capable of identifying the URL’s present in the search results produced by the

search engines. In turn these URLs must be explored to extract the documents that are

related to the topic being searched by the user.

The project aims to develop a sentiment style transfer model that takes a positive or

negative sentiment query and produces the opposite sentiment of the search query.

This would allow the user to see the complete picture of what their search term’s

sentiment is around the world rather than showing only the positive or negative side

of the query.

4

Chapter 2:

Literature Review

People are completely trusting the search engines for information. Most of the queries

for a search engine are on controversial topic which are highly opinionated. These

topics include searching about a product, a lifestyle, a celebrity and much more.

Though the search engine provides appropriate result for the query that the user is

searching for, the user never knows how biased or opinionated is their query. Also,

the user must search through the results provided by the search engine to find the

results which may also be highly opinionated [1]. A sentiment analysis model can

present the user with the sentiment of the search results to help the user in navigating

those documents. There are several methods proposed for developing the sentiment

analyzer. These methods range from simple machine learning algorithms such as

Naive-Bayes to deep neural network such as convoluted neural network or recurrent

neural network. Some of the related methods are mentioned in this section.

Sergui et al. proposed a novel approach to exploit the web queries provided by the

user to the search engine and detect the sentiment for those queries. The authors state

that though there are several literatures and researches related to the sentiment

analysis as various topics such as product reviews or book reviews, there is an

unexplored field where the opinionated queries are used a lot. One such field is the

web queries and their sentiments. They clearly list out four different methods in which

they can use the sentiment of the queries to gain more information. First advantage is

5

to generate a search query recommendation system, that will try to recommend the

users with additional queries that have the same sentiment as the user has provided

or try to provide queries that are opposite to that of the user’s query sentiment.

Another advantage is to change the wordings provided in the query that could be

more meaningful to the topic but at the same time does not change the sentiment of

the user query. Some other advantages include the Trend Analysis and Target

Advertising that can be capitalized by the search engine to gather more information

on their users and provide results that are more appropriate for the user. Some

interesting finding provided by [2], include identifying the volume of opinionated

queries by developing such as sentiment model for analyzing it. Also, the intent of the

user can also be identified, and the system can adapt to better suit the user.

 As for the dataset creation, they identified the most opinionated topics that are

currently trending in the world. They used Google’s trend analyzer software to get

topmost highly controversial topics and attached questions to them. For example, if

the topic was ‘abortion’, they added questions as prefix such as why, how, when and

added opinions as suffix such as good, bad. This allowed them to create a query

dataset containing 1200 queries. These queries where then manually tagged to obtain

the sentiments.

In [3], the authors tried to use the queries sentiment to effectively remove the search

results that are not valuable to the user. They call this method as genre and sentiment

classification. The results are analyzed, and they classify the documents into review

6

and non-review documents. They claim that by removing the non-review documents

from the search results the user gets to see only the search results that are important

and have a more suitable result. The models used for developing the sentiment

analysis model include Support Vector Machine and hybrid and heuristic approach

that involves understanding the domain knowledge. They try to use only the title of

product under review, the URLs associated with the search result and snippets of the

actual reviews. In [4], the paper claims that just using SVM would not be suitable for

sentiment analysis but a combination of SVMs using the domain knowledge based on

unigrams and lemmatized unigrams provide much more satisfying result for

developing a sentiment model. Another interesting use case for including sentiment

analyzer is to build reputation that help the user by providing beneficial information.

According to [5], this can be achieved by using word vectors and paragraph vectors.

Word vectors means converting a sentence into vector form and paragraph vectors

means preserving the order of words while converting them to a vector. To achieve

this, they used morphological analyzer and named entity recognition to convert the

sentences into word vectors. Their model consisted of understanding the sentiment

polarity of the web queries and providing the search results that align with the user’s

sentiment polarity. For this, they analyzed the documents provided by the search

engine and selected only the documents that are heavily opinionated. Then, the

polarities of those documents were analyzed and only the document that align with

user’s polarity was displayed to the user.

7

2.1 Sentiment Analysis

Though, sentiment analysis is a highly researched topic, there is not a single model

that has good accuracy as compared to other fields. The primary objective of the

sentiment analyzer is simple, to check if a given text has a positive or negative

sentiment, if so how much polarity score they exhibit. There are several different

domains in natural language processing that developing one model will not answer

all satisfy all test cases. Some of the challenges in sentiment analysis is domain specific

and is difficult to overcome.

Several machine learning techniques have been used separately or in a hybrid form

by combining multiple algorithms to analyze and predict the sentiment of a sentence.

One of the very first machine learning techniques were developed by Bo Pang et al.

They were among the first to analyze the sentiment of the sentences. They used the

IMDB movie database which contains around 2000 reviews after being manually

labeled as positive, negative or neutral. They used the Naïve Bayes approach as a

baseline machine learning algorithm for analyzing the sentiment [17]. For the

preprocessing of data, they used unigrams and bigrams. Unigrams are a collection of

individual words and bigrams are a collection of pair of words. For their research,

they split the movie reviews into individual word vectors forming a bag of words. The

words are individually separated for the unigram approach and in pairs for the

bigram approach. Finally, a bag of words each with their frequency count and whether

they appeared in a positive or negative sentiment is stored.

8

For actual training of the model, the training dataset was changed into a bag of words

and Naïve Bayes approach was applied. The Naïve Bayes approach assigns

probability value for each of the words in the vector space.

 Once all the probabilities are determined for each word, their collective probabilities

are computed and stored for testing phase. Then during the testing phase, sentences

with unknown sentiments are tested on the model trained to predict their sentiment.

They achieved an accuracy of 80 percent and some of the pitfalls that contributed to

this reduced accuracy is because they did not take the relationship among words into

account. There are also different levels of sentiment analysis that one must consider

in order to properly classify a model. This project uses two levels of sentiment analysis

models.

2.2 Aspect-Level Sentiment Analysis

The project considers only the search queries that are related to an aspect or a topic.

For example, “Yoga is good for health”. In the above sentence the main entity is yoga

and user’s sentiment about yoga is its good for health, so it’s a positive sentiment. For

developing aspect-based sentiment analysis three main methods need to be

constructed [10]. Identifying the aspect, classifying the sentence and aggregating the

result. In [11], the authors clearly mention the steps required for identifying the aspect

and classifying the sentiment of the sentence. The most common method includes

creating a bag of words with all the aspects. Then the sentences or search queries can

9

be converted into vectors using word to vector models. This process is called as word

embeddings. Some popular word embedding models include GLoVe [13], InferSent

by Facebook [14], and CBOW [15]. One of the main problems in aspect level sentiment

analysis is the ambiguity involved in identifying the aspect to which the sentiment is

related to. To resolve this, a binary classification tournament model can be developed

[20]. This model takes two aspects at a time and compares them with sentiment words

to verify which aspect better matches to the sentiment. A disadvantage with this

method is no new additional aspects can be introduced to the model. Deep neural

networks like convolutional neural network and recurrent neural networks along with

pre-trained word embedding models produce the best accuracy for developing the

aspect level sentiment model [12]. The neural network models develop Long Short-

Term Memory (LSTM) network from the word vectors and feed them to the training

model consisting of multiple layers with different loss functions to create the classifier.

But the problem with this model is, it does not try to identify the sentiment towards

the aspect but just the general sentiment [11]. To rectify this a joint LSTM model which

considers both aspect detection and sentiment analysis have been proposed. One

method involves identifying the sentiment words first, since they are easily

identifiable and use grammatical relation between the aspect and sentiment words to

identify the actual aspect. In a search query, the assumption is that the user would be

talking about only one aspect. Hence, it would be easy to identify this single aspect

and the sentiment surrounding it.

10

2.3 Document-level sentiment analysis

This model is used for classifying the sentiment of the search results. Document

level sentiment analysis has its own challenges. Some challenges include finding the

relationship among sentences, eliminating the outliers i.e. sentences that are neutral,

and semantic connections among words [16]. To overcome these challenges, the

authors in [16] developed dependency trees that represent the relationship among

words and sentences. Then a machine learning algorithm which is a combination of

LSTM and GRNN is used to develop the model. The model proposed is a two-layer

LSTM model. The first LSTM layer is fed a vector of words, where each word is present

in the document. Then the second layer is fed a vector of sentences and finally a

softmax function is used for determining the sentiment of the document. Another

simple method proposed in [21] involves pre-processing the document to split the

document into individual sentences. Then the sentiment of the individual sentences

are calculated. Finally, the overall sentiment of the document is derived by calculating

the average of sentiments of all sentences. But there is a one important problem in

both the above method. The sentiments for the documents are not always same, they

tend to change in the same document. For example, a detailed movie review will

provide both the positives and negatives for the movie. For this reason, virtual

paragraphs are constructed [21]. These paragraphs represent the change in sentiment

and are determined by a threshold formula,

SD(n, m) =|SV(m)–SV(n)|

11

Here m is the previous sentence and n is the current sentence. If the sentiment polarity

change is above the threshold, a virtual barrier is constructed between them. The same

virtual barrier can be used to identify only the portion of the document that is same

as the user’s query sentiment and the document can be summarized with only that

sentiment.

Figure 1: Various Sentiment Analyzer Approaches [30]

There are several approaches to build a document level sentiment analyzer. One of

the most common method is to use bag of words. This method is popular because of

its simplicity. Even though they are simple, they have the ability to achieve high

accuracy. But there is a big downside to the approach implemented by bag-of-words.

This approach works by collecting and analyzing each word as an individual element.

This makes the approach simple, but they have a hard time analyzing sentences with

12

negation in them. For example, “The book is not great” is intercepted as a positive

sentiment because of the presence of word “great”. Since the words are analyzed

individually, the word “not” has much less sentiment intensity than the word “great”

and leads to misclassification. The approach implemented by Pang. Et al involves

using bag of words and naïve Bayes for classification. The dataset used for their

experiment is the IMDB movie review dataset. The dataset contained 700 positive

reviews and 700 negative reviews. It is very important to have a dataset with equal

classification, so that the model developed is not skewed to one particular class.

Figure 2: Representation of Bag of Words [34]

Naïve Bayes works on the assumption that each word present in the class are

independent of each other. But as we saw previously, ordering of words is important

in determining the sentiment. The first step in their experiment is to divide the reviews

into individual words and count them. Then the words are classified based on their

individual polarity and their probability is calculated, 𝑃(𝑤𝑘|𝑐) = 𝑛𝑘+1

𝑛+|𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦|. Finally, a Naïve Bayes formula is used to combine the probability of

13

each individual words to obtain the final classification. They achieved an accuracy

close to 78%.

2.4 Sentiment Style Transfer

For the user to get a complete understanding of the topic, they must be provided

with results from both sides of a topic. This means, if the user searches for a positive

sentiment then they must be also provided with the negative sentiment for the same

topic so that they can get a complete picture. A famous research area for generating

such text is called Adversarial text generation. In [8], the authors mention a technique

called GANs to generate text that can generate texts with positive or negative

meaning. They used a dataset with one billion words to generate semantically correct

sentences. Though this project does not require creation of new sentences, one can

change the sentiment of the sentences with the model developed in [8]. In [9], the

project specifically explains how to change the sentiment of a sentence. The authors

have restricted the sentence length to 30 words and have changes the sentiment of a

sentence with 80% Accuracy. They used a manifold deep learning model which uses

convolutional neural network to change the sentiment of the sentence with minimal

changes but retaining the same semantic meaning. Text style transfer is an important

NLP field with lot of research. There are various approaches that can be employed for

this purpose. Some popular methods include creating complex neural network

models using GANs. Generative Adversarial Network consists of an encoder decoder

model where the encoder tries to build a new sentence and the decoder tries to find

14

the mistakes in that sentence. In this approach, the output sentences are completely

built from scratch. Though this sounds like a promising approach, the problem with

this approach other than building the complex GAN model is low-quality of output

produced by such models. Another simple approach is to use the same sentences but

change only the part which affects the sentiment polarity. For this project, the model

developed by Juncen Li et. al is used. This model was chosen because of its simplicity

to reproduce and for its better accuracy than other available models.

2.5 Web Scraper

Another field of research that was needed for this project is to build an efficient

web scraper. As pointed out by the authors in [6], one must overcome several

challenges to build a successful web scraper. Some of the challenges that these authors

list out includes collecting the complete document. Sometimes a web document can

be spread over various pages. There is also a possibility that the content present in the

web pages are loaded dynamically which becomes difficult to mine. Also, some

websites try to stop web scraping by employing methods that detect robots, such as

CAPTCHAs and reverse Turing tests. The web scrapers must satisfy the legal and

ethical requirements. To overcome these challenges several methods are proposed.

Popular programming languages provide libraries that perform web scraping. One

example is using beautiful soup library in python. Also, there are desktop-based

environments that when fed with URLs provide the output in a text or CSV file format

[7].

15

Chapter 3:

Model Components and Evaluation

3.1 Web Scraper

Web scraping, also known as web crawling or web spidering is an algorithm

developed to programmatically go over a large collection of web pages, parse them

and extract the desired information. It is a process of automatic information and data

collection from the internet. This information is stored to the local system in a database

and has wide range of applications. Without web scraping one must manually analyze

all the web pages and collect and organize the information. This is a very time-

consuming process and can be easily automated by Web scraping.

The main application of web scraping is search engines like Google, Bing, Yahoo, and

etc... All these major web search engines run web scrapers in the background to

provide relevant information to the user based on their search queries. One

application of web scraping is news data scraping [22]. There are several news sources

that provide articles about the same events. A user can visit all popular news sites and

try to obtain those news articles. But if web scraper for such news sources is developed

the scraper automatically crawls these web sources and provides all the articles in a

single page. Another application is job searching. A user must often visit all the

companies that one has interest in and has to constantly check for job positions. This

can be an extremely time-consuming task. This can be automated by developing a web

scraper that acts as a search engine and scrapes the internet for job positions. Web

16

scraping can automatically collect information about the job vacancies from several

websites and provide it to the user [23].

3.1.1 Implementation

The web scraping steps performed for this project include,

1. Collect a list of queries and store them in a csv file.

2. Use these queries in a search engine and fetch the results from it.

3. With a help of a parser, parse the search engine results and extract the URLs

4. Store these URLs in a separate database.

5. Now use an algorithm to access the articles from these URLs

6. Clean the articles thus obtained and store them in a database.

The search engine that was chosen for this project is Google. The first step was to

develop the scraping script that can input the search query and retrieve search result

from the web. For this, the python library Requests was used. The Requests library

acts just like a web browser that can communicate with the web and retrieve the

information. Requests library provides several advantages such as passing parameters

along with the URL. This helps in creating unique search requests such as searching

in particular geographical locations or accessing only news articles, etc... In addition

to this, the results retrieved from web are automatically decoded by Requests library

by trying out combination of different decoding schemas.

17

Figure 3: Steps involved in Web Scraper

Once the data is retrieved from the website, pythons nltk library is used to identify

the paragraphs that have complete sentences and provide useful meaning. The below

diagrams provide the results of web scraping.

18

 3.1.2 Result

 The below figures provide the Queries used and the URL and document extracted.

Figure 4: List of Queries

Figure 5: List of URL obtained from Search Engine Result

19

Figure 6: Sample document scraped from search engine result

3.2 Text Summarization

Text Summarization is the process of extracting important content from the

original document or documents. There is a huge need for text summarization and the

necessity for it has increased many-fold in the recent years due to the explosion of

information. In this project text summarization is used for summarizing the

documents obtained from web scraper. Web scraper collects these documents from

the search engine results generated for the given search query. Text summarization is

important to remove unwanted data from the scraped text documents and also to

make the input to the sentiment analyzer as close to the input dataset. As the input

20

dataset to the sentiment analyzer has reviews with a average length of 400 characters,

the extracted documents are also summarized to this length.

Based on the input and output of the text summarizers they are classified into varies

types. Based on the input they are classified as Single document summarization where

the input consists of a single document and Multiple document summarization where

the input consists of a collection of documents. Also, a query can be passed along with

the input documents, this is called Query summarization.

Based on the output summary, they are classified as Indictive summary, where the

summary does not give the complete information present in the document but only a

partial one, Informative summary, where the summary provides the complete

information present in the document, Keyword summary, where only the important

keywords present in the document are summarized, and Headline summary, as the

name indicates it provides an one line summary.

 3.2.1 Implementation

 There are basically two important approaches that can be used for text

summarization, Extractive and Abstractive.

In extractive summary, important sentences are extracted from the original document

and are concatenated to form a single document. The pros of this approach are, it is

easy to implement and the output sentences this produced have proper grammatical

21

meaning because they are the same sentences present in the original document. There

are several methods that are employed to find the importance of the sentences present

in the original document. Features based method extracts the features in a sentence

and evaluates its importance. Some of the features include, position and length of the

sentence, presence of verb, term frequencies and many more. Text-Rank based method

uses a similarity matrix similar to web engines page rank algorithms for ranking the

sentences. Some other extractive summary approaches include, Topic based summary

and Grammar based summary.

In Abstractive summary, complex machine learning approaches are used to study the

documents and provide a summary just like the way a human does. Sometimes the

output produced will have sentences that are not present in the original document.

These new sentences are created to provide coherency to the output text. The pros of

this approach is they can create a more fluent and natural summary of the input text.

But it is also much harder to make the model generate coherent phrases and

connectors. Some of the most common Abstractive text summarization approach

include, Sequence to Sequence model, encoder decoder model and neural attention

model.

For this project to extractive summarization approach is used. The text-rank model in

combination with input query approach is used for summarizing the documents.

22

Text-Rank is an extractive and unsupervised text summarization technique which

does not need any training data. The flow of the Text-Rank model is given below.

1. The first step is to take the article from the web scraper and split them into

sentences.

2. Then they are divided into vectors and the similarities between these vectors

are obtained and stored in a similarity graph.

3. The similarity graph is analyzed to include only the vectors sentences with

the given aspect term. This would eliminate all the unwanted information

present in the input text.

4. The similarity matrix is mapped to a graph with sentences as the vertices and

similarity score as the edges.

5. As the last step, only the sentences with higher similarity score is taken and

combined to form a single sentence.

3.2.2 Results

One of the articles extracted by the web scraper is given below. The query used to

obtain this article is “Apple is bad for health”. As one can see, the article contains the

information related to the query. But also, there is some comparisons made to other

food beverages which is not relevant for this project. The final output from the

summarizer only includes sentences that are directly related to the search query.

23

Figure 7: Sample document provided as input to web scraper

Figure 8: Summarized output from the Text Summarizer

24

3.3 Sentiment Analysis

Sentiment Analysis is a field in machine learning that comes under the umbrella

term Natural Language Processing (NLP). The main objective of sentiment analysis is

to analyze the text to understand the sentiment or opinion or emotion behind the text.

The main objective of the sentiment analysis to provide automated methods to

identify if a text is positive, neutral or negative sentiment. In some cases, one could

identify the degree of positive or negative sentiment in a sentence. For example, “The

apple is good for health” is a positive sentiment and “The apple is bad for health is a

negative sentiment”. A neutral sentiment would be “Apple is a fruit”. It is just a

statement or a fact and does not provide any opinion in the sentence. There are

numerous techniques that help us to identify the sentiment of the text.

The applications for sentiment analysis include wide range of fields such as, analyzing

the opinions of people during elections, gathering useful information for users

reviews on products, using sentiment of financial markets for financial gain in stock

markets. The application this project focuses on is using sentiment analysis for

analysis of news articles and blogs as well as analysis of search engine queries.

 3.3.1 Sentiment

 The definition for what a sentiment is wide or varied. The main abstract is sentiment

is a opinion, attitude, emotion, subjectivity, or evaluation expressed in a text. The text

25

can be of many forms, they can be reviews, discussions, blogs, news, comments, and

feedbacks.

Sentiment can be represented in two values. They are called the sentiment

orientation(o) and sentiment intensity(i). Sentiment orientation can be either positive

or negative [19]. In some cases, they are neutral because they don’t exhibit any

polarity. Sentiment intensity is the amount of score that they have towards an

orientation, with high score meaning they are extremely opinionated. For example,

“The movie is ok” and “The movie is amazing and definitely worth the watch” both

express a positive sentiment orientation. But the sentiment intensity of the latter

sentence is very high when compared to the former sentence.

 3.3.2 Problems

Figure 9: Problems in Sentiment Analysis [31]

26

As sentiment analysis comes under natural language processing, there are

certain aspects that make the accurate prediction of the sentiment very difficult. In

some cases, the language is too complex even for a human to exactly predict the

sentiment. So, in reality, one can never achieve a 100% accuracy in this field.

Sometimes, a sentence said in a positive way can be construed as a negative sentiment

and vice versa.

Another aspect of natural language processing that affects sentiment analysis is

distinguishing between objective or subjective text. Only if the sentence is considered

subjective, further analysis would be needed to determine the polarity of its sentiment.

But if a sentiment is an objective sentence, then no further analysis would be needed.

This process of classifying the text based on its subjectivity is called subjectivity

classification. For example, “Apex Legends is a computer game” is objective, and

“Apex Legends is a good computer game” is subjective. All these aspects make

sentiment analysis a difficult and an interesting problem to solve.

For this project, sentiment analysis is a part of the whole solution. So, to keep it simple,

we have used only the main characteristics of sentiments. For example, the project

attempts to only find the polarity of a given sentence and not the intensity towards

that polarity.

27

 3.3.3 Levels of Sentiment Analysis

Figure 10: Levels of Sentiment Analysis

Sentiment Analysis can be performed on different levels of text. Here, the level

mainly indicates the size of the text content on which a sentiment analysis has to be

performed,

Document Level: This is the topmost level of sentiment analysis. Here, the entire

document is analyzed as a whole. For example, an entire review for a movie or product

comes under this category.

Sentence Level: The objective is to classify the sentiment of a single sentence. For

example, one-line comments come under this category.

Aspect Level: The objective is to identify the sentiment of the text relative to the aspect

term. This involves identifying the aspect term in a sentence and determining the

sentiment affecting it. For example, “Apple tastes good and Mango tastes bad”. This

sentence has two different sentiments and based on the aspect the sentiment varies.

28

Apple is an aspect term and has a positive sentiment whereas Mango has a negative

sentiment and has a negative sentiment.

This project uses both Document level sentiment analysis and Aspect level sentiment

analysis. For the sentiment classification of search engine queries an aspect level

sentiment analyzer is used and for the sentiment classification of search engine result

like the news articles and blogs, document level sentiment analyzer is used.

 3.3.4 Document-level Sentiment Analysis

 3.3.4.1 Dataset

Table 1: Statistics for IMDB review dataset

Set Total Positive Negative

Train 15000 7500 7500

Validate 5000 2500 2500

Test 5000 2500 2500

The dataset used for this project is the IMDB movie review dataset. This dataset

contains around 50,000 reviews where the amount of positive and negative sentiment

reviews is equal. As mentioned, this is very important to remove the bias. The reviews

are fully formatted to lower case and special characters like punctuations and

numerical values are removed.

29

Figure 11: Review length for Document-level Sentiment Analyzer Dataset

Since RNN requires the input data to be of same length, the length of all reviews was

analyzed to find the optimal length. The most common length for the reviews were

around 400 characters. Hence, the shorter reviews were padded, and the longer

reviews were reduced to 400 characters. Finally, the dataset was divided into 60% train

data, 20% validation data and 20% test data.

 3.3.4.2 Implementation

 Word embeddings is a way to represent words in a vector space and allows words

with similar meaning to have similar representation in that vector space. For this

project, two types of word embedding were used. The first one is a word embedding

developed from the words present in the IMDB movie review dataset. The second one

was the GloVe [13] word embedding which was developed by understanding the co-

30

occurrence if words over a large training sample. For this project, the GoogleNews

GloVe word embedding which was trained on 3 billion words is used. The dataset

contains 50-dimensional word vectors.

To understand the working of Recurrent neural networks, one must understand the

disadvantages of Feed-Forward Neural Networks. Feed-Forward Neural Networks

work only on the current input and does not take sequences or time series data into

consideration. As previously mentioned the sequence of words is important for an

accurate sentiment analysis. Also, the Feed-Forward Neural Networks do not model

memory. They do not carry any room in their model to store the information and pass

it along the model. Each state in the model in the model depends only on the current

input value.

Recurrent Neural Networks takes into consideration the sequence of data. This means

that the information obtained from the previous hidden states are used as inputs to

the next hidden states. RNN is deep learning neural network with multiple hidden

state each containing multiple neurons and an output state. The inputs are provided

at each input state to the neurons and the output gets carried over to other hidden

states until it reaches the final state where a loss function is used to determine the

output.

31

Figure 12: Working of Recurrent Neural Network

A gradient value is used to determine the learning rate of the model. RNN’s have the

capability to calculate the cost function or error at any given point. But the problem

with this approach is the vanishing gradient problem. For example, an error is found

in one hidden state. This means a new cost function is calculated and it needs to back

propagate to update previous neurons. But since RNN’s use previous time data to

32

calculate the current state, not only the current neuron but all the previous neuron’s

weights have to be updated. Here, we multiply the same weight multiple times and

when one multiplies the same values with a smaller value multiple times the original

value decreases very quickly and vanishes. Hence, the weights of most neurons

remain the same and are not updated.

The recursive formula used is,

St = Fw(St-1, Xt)

Where,

St – the current state at time t

Fw – a recursive function

St-1 – The old state at time t-1

Xt – the input value at time t

Long-Short Term Memory (LSTM) solves the vanishing gradient problem and

increases the accuracy. An LSTM model has three gates that updater and control the

cell states, they are input gate, forget gate and output gate. These gates use the tan

function and sigmoid activation functions. The forget gate has the control to make the

cell state forget irrelevant information. The input state has the control to make the cell

state encode the required information given a new input. The output gate controls

what information encoded in the cell state is sent to the network as input in the

33

following time step. The LSTM solves the Vanishing gradient problem by creating a

connection the forget gates and the gradients computation and this acts a pathway for

information flow without vanishing. In simple terms, this connection acts as a long-

term memory for the RNN.

There are several steps involved in the RNN-based LSTM model, they are

1. Tokenize: Covert all the words into the integer tokens

2. Embedding Layer: Map the integer tokens to a embedding of specific

dimension

3. LSTM layer: This is defined by the hidden state dimensions and number of

layers

4. Fully connected layer: This maps the output of LSTM layer to a desired output

size

5. Sigmoid Activation layer: This maps the output values to a binary output class

(0 or 1)

A learning rate of 0.001 was chosen to be the optimal value. A BCELoss function and

an Adam optimizer is used. The BCELoss function is,

 Hp(q) = -
1

𝑁
∑ 𝑦𝑖 . 𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖)

′𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))
𝑁
𝑖=1

34

Figure 13: Implementation of Document level sentiment analyzer

35

3.3.4.3 Result

 There were two variations of models tested, one where the embedding is from the

input dataset itself and the other where the embedding was provided by the GloVe

word2Vec embedding model. For the former, an accuracy of 86% was obtained and

for the GloVe embedding an accuracy of 91% was obtained.

Table 2: Comparison of different Document-level Sentiment Analyzer

Method Accuracy

Bag of Words SVM [32] 87.15

Add’l Unlabeled + Bag of

Words [32]

88.89

n-grams [32] 90.20

RNN + LSTM 91

36

Figure 14: Loss Graph and Accuracy graph for model with no GloVe word

embedding

37

Figure 15: Loss Graph and Accuracy graph for model with GloVe word embedding

38

3.3.5 Aspect Level Sentiment Analysis

Aspect Level Sentiment Analysis is used for identifying the sentiment of a

particular aspect present in a sentence. Usually a sentence can contain two different

sentiments related to two different aspects. For example, “A coffee was good, but the

ambience was bad”. The above sentence has both positive and negative sentiments

around them. If we consider coffee as the aspect term, then it is a positive sentence but

if we consider ambience, then it has a negative sentiment. This distinction is needed

when accurately predicting the sentiment of a query in search engines. There are

several applications for this kind of sentiment analysis namely, reviews that talk about

different entities at the same time, documents that cover wide range of topics and

much more.

There are relatively two problems that need to be solved in order to achieve Aspect

Level Sentiment Analysis. First, one has to identify the aspect of a given sentence.

Second, the actual sentiment classification based on the chosen aspect. For simplicity,

we only develop a model for the second problem. We assume that the aspect term for

a sentence is already known. There are relatively two types of aspect level sentiment

classification. One is to find the general aspects in the sentence and find the sentiment

polarity around them and the other is to find the sentiment polarity of the actual terms

present in the sentence.

39

Even though this project considers only the classification of sentences based on their

aspects, there are several different methods that can be employed to achieve this.

These methods include dictionary-based, supervised and unsupervised machine

learning models. Dictionary based method uses a dictionary to find the sentiment

values of each words, which is followed by an association step to assign the sentiment

of the surrounding words to the aspect itself. Supervised and unsupervised machine

learning models uses sophisticated methods such as sentiment lexicons and word

embeddings in combination with LSTMs and other models to provide an accurate

prediction.

 3.3.5.1 Dataset

 The dataset used for this experiment includes reviews for Laptops and Restaurants.

Each of these datasets have multiple sentiment polarities, they are ‘0’ is negative, ‘1’ is

neutral and ‘2’ is positive. They have adopted F-score as their final accuracy score. As

a preprocessing step, the words present in the input sentences are converted to word

embeddings. The word embedding used for this model is a 300-dimension pre-trained

word vectors from GloVe.

To make this model detect queries with more accuracy, query sentences were included

to the existing review dataset. This helped the model get a better accuracy for certain

type of queries. For example, queries like “A fruit name is good/bad for health” was

used in the training dataset to get better accuracy.

40

Table 3: Statistics for two datasets

Dataset Set Total Positive Negative Neutral

Restaurant Train 3017 1806 669 542

Validate 1120 728 196 196

Test 591 358 138 95

Laptop Train 1934 823 730 381

Validate 638 341 128 169

Test 394 171 140 63

 3.3.5.2 Implementation

The aspect level sentiment analysis for this project was primarily derived from the

paper by Zhu et. al [24]. This paper uses a novel approach based on the of aspect level

sentiment classification with the help of Auxiliary memory.

41

Figure 16: Implementation structure of Aspect-level Sentiment Analyzer [24]

There are two memory units involved in their process, the sentiment memory and the

aspect memory. The aspect memory holds all the aspect representations and the

sentiment memory for sentiment classifications.

The aspect memory takes as input the aspect term and produces an output

representation which is a combination of aspect term and aspect information. The

weight for each piece of memory is calculated by the following formula,

42

αi =
𝑒𝑥𝑝(𝑢𝑖)

∑ 𝑒𝑥𝑝(𝑢𝑗)
𝑘
𝑗=1

Here, αi is the weight of memory mi and ui is the sematic relatedness between the

term and each aspect.

The first step in this model is to convert all the words into a multidimensional vector

called word embeddings. So, for example given a sentence with multiple words, each

word ‘w’ goes through a lookup layer to get their corresponding embedding vectors.

Then an aspect memory is built with stacks of aspect information. Hence, when a term

is given as input to the memory, it can generate an output which is a combination of

aspect information and the term information. Similarly, a sentiment memory is built

where its main goal is to identify the sentiment of the given terms. Here, the output

from the aspect memory is fed into the sentiment memory and along with a feed

forward neural network, the sentiment polarity is calculated for the given term.

This represents one layer of aspect and sentiment memory. They have postulated that

multiple layers produce better accuracy than a single layer. Hence, the output from

the above layer is passed as input to another set of aspect and sentiment memory layer.

For example, the output of aspect memory is fed to the next aspect memory and the

output of the sentiment memory and the aspect memory is fed to the next sentiment

memory.

43

There are multiple loss functions present in [24], for different predictions such as term

sentiment, term prediction and aspect regularization. For this project, only the term

sentiment classification is used. For example, in “Kale is good for health”, the term is

kale (wt) and the input sentence (s) is the query

L=- ∑ ∑y𝑐(s, wt). logPc(s, wt)

𝑐∈𝐶(𝑠,𝑤𝑡)∈𝑇

Here, the (s, wt) denotes the sentence-term pair. And the Pc(s,wt) is the probability

function for predicting category c. The ground truth or the actual value is provided

by yc(s, wt) and T is the set of training data and C is the set of sentiment categories

(positive, negative and neutral).

3.3.5.3 Result

The experiment was conducted with different parameter variations. Parameters like

aspect ratios, number of layers where varied and the result is present in the graph

below. A maximum accuracy of 70 was obtained for Laptop review dataset and an

accuracy of 79 was obtained for the Restaurant review dataset. The F-score is

calculated by the following formula,

F-score =2 *
precision∗recall

precision+recall

44

The table 4 shows the comparison with other models. The restaurant dataset is used

for obtaining the accuracy and the F-score.

Figure 17: F-score for Restaurant and Laptop with increasing Epochs

45

Table 4: Comparison of different Aspect-level Sentiment Analyzer

Methods Accuracy F-Score

ContextAVG 75.09 63.96

 LSTM [27] 75.37 64.51

LSTM + ATT [28] 76.83 66.48

MemNN [29] 80.09 72.10

DAuM 82.32 77.45

The methods used include ContextAVG which averages the vectors for every context

word and then concatenated with aspect vectors. Tang et al. uses considers both the

information before and after the aspect term for better prediction. In addition to [27],

Wang et al. uses attention mechanism to capture important terms in the initial stages

of model development and pass them to the final stage for improvement. MemNN

uses an end-to-end deep memory network with an external memory to hold important

context words.

46

3.4 Sentiment Style Transfer

One of the main objectives of this project is to provide the user with complete

information. This means converting a positive sentiment query into negative and vice

versa. For example, if a user query is “MacBook is a great laptop”, this query has a

positive sentiment and the main aspect of this query is MacBook. This has to be

converted into a negative sentiment and the output should be “MacBook is a bad

laptop”. The concept of changing the style of a sentence without changing its original

sematic meaning is called Text Style transfer. This is not restricted only to sentiments

but also to other styles such as removing sarcasm, introducing comedy, and much

more.

 3.4.1 Dataset

The dataset plays an important role in style transfer. The dataset for such

transfers can either be parallel data or non-parallel data. Parallel data means the

dataset is made of sentences which have both sentiment polarities. For example, the

below table shows the sentences with positive sentiment and the same sentences with

negative sentiment.

47

Table 5: Statistics of two datasets

Dataset Set Positive Negative

Yelp Train 27000 18000

Validate 2000 2000

Test 500 500

IMDB Train 27700 27800

Validate 985 1015

Test 500 500

Non-parallel data means the dataset is made of sentences that have a particular

sentiment and does not have the same sentences with opposite sentiment. For

example, the below table shows the sentences with positive sentiment and different

sentence with negative sentiment.

It is difficult to find a dataset which has parallel data, so this project uses both the non-

parallel dataset and parallel dataset. The dataset used is Yelp restaurant review and

IMDB movie review dataset. During the delete and retrieve phase only the nonparallel

dataset is used. But while building the final encoder-decoder RNN model parallel data

is used.

48

 3.4.2 Implementation

Li. et al proposed a simple technique for sentiment style transfer. The main

motivation for their project is, to transfer the style of a text it is not necessary to

completely change the text but identify only the crucial keyword and change them.

This means to identify the sentiment from the sematic meaning and change only the

sentiment of the sentences without changing the semantic meaning.

So, for example, if the given sentence is “The movie is awesome”, here the keyword is

“awesome”. The first step is to identify and remove such words. Then to replace the

void with the most appropriate word of opposite sentiment.

Figure 18: Implementation steps for Sentiment Style Transfer [25]

49

The three main components involved in their project include,

1. Delete – identify and delete the keywords which provide sentiment to the

sentence.

2. Retrieve – Search through the corpus to find target sentence with same context

but opposite sentiment.

3. Generate – Build the final output sentence with the help of input content and

target sentence.

Delete:

 They have used a salience smoothing approach to delete the n-grams that have

the most sentiment polarity. They term these words as the attribute markers. When

the n-grams for a given sentence crosses a threshold γ, they are termed as the attribute

markers for that sentence and are marked to be removed from the sentence.

s(u, v) =
𝑐𝑜𝑢𝑛𝑡(𝑢,𝐷𝑣)+𝜆

(∑ 𝑐𝑜𝑢𝑛𝑡(𝑢,𝐷𝑣′))+𝜆𝑣′∈𝑉,𝑣′≠𝑣

Here, u is the n-gram with respect to v, v is the current sentence and Dv is the entire

dataset. Finally, all the attribute markers are denoted as a(x,vsrc) and the sentences that

remain after the deletion operation are denoted as c(x,vsrc).

50

Retrieve:

The main strategy employed to retrieve the words that need to be replaced for

the words that were deleted is to find sentence similar to the input sentence. For

example, if the input sentence was “The macbook is …”, the word that is going to fill

the gap would most likely be “great” than “delicious”. To find sentences with similar

meaning that of the input sentence, the Euclidean distance of all the sentences present

in the word embedding is compared.

xtgt = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥′∈𝐷𝑣𝑡𝑔𝑡

𝑑(𝑐(𝑥, 𝑣𝑠𝑟𝑐), 𝑐(𝑥′, 𝑣𝑡𝑔𝑡))

Generate:

In the generate phase, four different approaches are used to obtain the final

result, they are RetrieveOnly, TemplateBased, DeleteOnly, DeleteAndRetrieve. For

the scope of my project, DeleteAndRetrieve method provided the best results.

 The DeleteAndRetrieve method first deletes the attribute markers. Then, it

finds the target sentence with least Euclidean distance and retrieves the attribute

markers. Finally a encoder decoder model is used for inserting the attribute markers

a(xtgt,vtgt) into the input sentence c(x,vsrc) . The RNN encoder encodes the attribute

markers and sequence of attribute markers. The encoder uses a bidirectional LSTM

model which is similar to the model developed for document level sentiment analysis.

51

The RNN decoder decodes these two values to generate the output y. The decoder is

made of Stacked Attention LSTM model (SANs). SANs use multi-step reasoning to

predict the answer. This helps the model to eliminate noise and pinpoint the regions

that are highly relevant to the answer [26]. These encoders and decoders are trained

with a parallel dataset where the sentence has both positive and negative sentiment.

 3.4.3 Result

Figure 19: Classifier Accuracy vs BLEU score for DeleteOnly and DeleteAndRetrieve.

There are two main criteria on which this model is tested. First criteria is the

sentiment classifier model to identify if the sentiment is successfully changed and the

second criteria is through BLEU scores which checks the degree to which semantic

meaning of the sentence is changed. These values are given in the table below.

52

Table 6: Comparison of different Sentiment Style Transfer methods

Method Accuracy

(Sentiment Classifier)
BLEU

CrossAligned [29] 73.7 3.1

Style Embedding [33] 8.7 11.8

Multi Decoder [33] 47.6 7.1

DeleteOnly [25] 85.7 7.5

DeleteAndRetrieve [25] 88.7 8

The cross-aligned autoencoder [29] and the multi-decoder model loses the meaning of

the sentence. Also, the sentiment classifier accuracy is very poor for both Multi-

Decoder and Style-Embedding.

53

Chapter 4:

End-to-End Model Evaluation

4.1 Dataset

The dataset for this project was built by analyzing the web for most controversial

food items. The list of food items was then appended with statements having different

sentiment polarities. For example, one of the controversial food items is kale. The

statement appended to this food item is “Kale is good for health” and “Kale is bad for

health”. By doing this, a positive sentiment and a negative sentiment query is

obtained. In total 250 such items were obtained, and 500 queries were used.

4.2 Implementation

The overall process involved in the project is given in the above diagram. First, a

query is entered by the user. The query is analyzed to find its sentiment polarity. This

is done through aspect-level sentiment analysis. Then the sentiment of the query is

changed to its opposite polarity by Sentiment style transfer model. Consider the query

entered by user is “Orange is good for health”. First the aspect-level sentiment

analyzer will analyze the sentence and provide its sentiment. In this case it is positive.

Next, the sentiment style transfer model will change the sentiment of the given query.

The result is be “Orange is bad for health” which is a negative sentiment. Next, the

two queries, with positive sentiment and negative sentiment is used to query the

search engine and retrieve relevant documents by the web scraper.

54

Figure 20: Overall project structure

55

The obtained documents are summarized into a shorter version through text

summarization model. Next, the sentiment of these summarized documents is

predicted by the document-level sentiment analyzer. Finally, the user is provided with

the following information.

1. The sentiment of the query they entered.

2. The modified query with opposite sentiment.

3. The documents that are retrieved from the web.

4. The summarized documents with only the relevant information.

5. Sentiment of each summarized document.

4.3 Result

In total, 500 user queries with 250 positive and 250 negative queries were used.

Each Query (Q) will generate a minimum of 10 news articles (A). These articles are

analyzed by the sentiment analyzer for their sentiment polarity (S). The final average

is calculated by taking the count of the sentiment polarity for these articles. For the

positive queries an average of 67% of the documents are positive and for negative

queries an average of 70% of the documents are negative.

To remove the sentiment bias in the search engine, the search results for both

positive and negative query is collected, and each individual result is analyzed. All

the positive search results are placed in one side and the negative search results are

56

placed in the other side. For example, “Mango is good for health” is a positive search

query. The document analyzer will tag all the search results obtained for this query.

Figure 21: Search results and its sentiment for a positive search query

57

From figure 21, one could deduce that a positive query produces documents that

are mostly positive. Next, the sentiment style transfer model will transform this

positive query into a negative one. The output from the style transfer model is “Mango

is bad for health”.

Figure 22: Search results and its sentiment for a negative search query

58

The search results produced by this negative sentiment is mostly negative. Now,

the positive and negative search results are separated and provided side by side to the

user. This will remove the sentiment bias present in the search engine. Now, the user

is provided with both the positive and negative aspects for the fruit Mango.

Figure 23: Final search result produced by the end-to-end model.

59

Table 7: Summary of results for individual components

Method Use Dataset Result

Document-Level

Sentiment

Analyzer

Identify sentiment

polarity of summarized

documents

IMDB Movie

Review Dataset

Accuracy: 91

Aspect-Level

Sentiment

Analyzer

Identify sentiment

polarity of input query

Yelp Restaurant

and Amazon

Laptop Review

Dataset

Accuracy: 82.32

F-Score: 77

Sentiment Style

Transfer

Change the sentiment

polarity of input

sentence

Amazon Review

Dataset

Sentiment

classification:

88.7

BLEU: 8

60

Chapter 5:

Conclusion and Future Work

In this project, a novel end-to-end deep learning system has been developed to

eliminate the sentiment bias present in the search engine results. This system

comprises of three models. First is the document level sentiment analyzer that

classifies the search query results based on their sentiment polarity. This is done in

parallel with the aspect level sentiment analyzer that generates the sentiment polarity

of the search query itself. Using the polarity of the search query another query with

the same semantic meaning but an opposite sentiment polarity is generated by the

sentiment style transfer model. Therefore, by using queries of both positive and

negative sentiment the system produces two sets of search results one containing

documents only with an overall positive polarity and the other containing documents

with an overall negative polarity.

The document level sentiment analyzer is a deep learning model based on Long-short

term memory (LSTM), trained on the IMDB movie reviews dataset. This model has

been used to generate sentiment polarity for the documents taken from the search

query results. This polarity is used to demonstrate sentiment bias present in the search

engine results. The document level sentiment analyzer achieves an accuracy of 91%

in the IMDB test set.

61

The aspect-level sentiment analyser is a deep memory network made of auxiliary

memory and attention trained on the Yelp restaurant review dataset. This model has

been used to generate the sentiment polarity of the user search query. The polarity is

then used to inform the user about the sentiment of the search query. The search query

along with its polarity is fed into the sentiment style-transfer model which generates

a similar query, but with an opposite sentiment. This new query is used to obtain

documents of the opposite sentiment. The sentiment style-transfer is a bi-directional

LSTM model trained on IMDB movie review dataset.

In the future, the overall system can be improved by enhancing the individual

components because of its modular design. The document level sentiment analyzer

can be improved by incorporating attention mechanism to retain the relevant

information throughout the system. Moreover, the model can be trained on a dataset

made of search engine results instead of IMDB movie reviews for better results.

Currently, the sentiment style-transfer model is trained only on unparallel data, which

results in lower BLEU score, which can be alleviate by using a dataset made of parallel

data. Also, the dataset used for this project restricts it only to food items and this can

be extended to include wide range of queries related to famous personalities,

products, political agendas and much more.

62

References

[1] Caroline M. Eastman, Bernard J. Jansen, Coverage, relevance, and ranking: The

impact of query operators on Web search engine results, ACM Transactions on

Information Systems (TOIS), v.21 n.4, p.383-411, October 2003

[2] Sergiu Chelaru, Ismail Sengor Altingovde, Stefan Siersdorfer, Wolfgang Nejdl,

Analyzing, Detecting, and Exploiting Sentiment in Web Queries, ACM Transactions on

the Web (TWEB), v.8 n.1, p.1-28, December 2013

[3] Na, J., & Thet, T. Effectiveness of web search results for genre and sentiment

classification. Journal of Information Science., 35(6), 709-726. 2009

[4] Kaur, Mangat, & Nidhi. A Survey of Sentiment Analysis techniques. 2017

International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-

SMAC)). IEEE. 2017

[5] Terazawa, Y., Shiramatsu, S., Ozono, T., & Shintani, T. Sentiment Polarity Analysis

for Generating Search Result Snippets based on Paragraph Vector 2015 IIAI 4th

International Congress on Advanced Applied Informatics (IIAI-AAI). IEEE. 2015

[6] Upadhyay, Shreya, Pant, Vishal, Bhasin, Shivansh, Pattanshetti, Mahantesh K,

Articulating the Construction of a Web Scraper for Massive Data Extraction, 2017

Second International Conference on Electrical, Computer and Communication Technologies

(ICECCT). Piscataway, NJ. 2017

[7] Glez-Peña, Daniel, Anália Lourenço, Hugo López-Fernández, Miguel Reboiro-Jato,

and Florentino Fdez-Riverola. "Web scraping technologies in an API world." Briefings

in bioinformatics 15, no. 5 (2014): 788-797

[8] S. Subramanian, S. Rajeswar, F. Dutil, C. Pal, and A. Courville, “Adversarial

Generation of Natural Language,” Proceedings of the 2nd Workshop on Representation

Learning for NLP, 2017.

[9] Maria Larsson, Amanda Nilsson “Manifold traversal for reversing the sentiment

of text”, University of Gothenburg, Gothenburg, Sweden. 2017

[10] M. Tsytsarau, and T. Palpanas, “Survey on mining subjective data on the web,”

Data Mining Knowledge Discovery, vol. 24, no. 3, pp. 478–514, 2012.

63

[11] Schouten, K., & Frasincar, F. Survey on Aspect-Level Sentiment Analysis. IEEE

Transactions on Knowledge and Data Engineering., 28(3), 813-830, 2016.

[12] Madhoushi, Zohreh, Abdul Razak Hamdan, and Suhaila Zainudin. Sentiment

analysis techniques in recent works. 2015 Science and Information Conference (SAI). 2015

Science and Information Conference (SAI). IEEE, 2015.

[13] Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-

sentation. In: EMNLP. Volume 14. (2014) 1532–154

[14] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, Antoine Bordes

“Supervised Learning of Universal Sentence Representations from Natural Language

Inference Data”, Conference on Empirical Methods in Natural Language Processing. 2017.

[15] Bansal, B., & Srivastava, S. (2018). Sentiment classification of online consumer

reviews using word vector representations. Procedia Computer Science, 132, 1147-1153.

[16] Rao, G., Huang, W., Feng, Z., & Cong, Q. (2018). LSTM with sentence

representations for document-level sentiment classification. Neurocomputing, 308, 49-

57.

[17] Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment Classification

using Machine Learning Techniques. ArXiv.org, May 28, 2002.

[19] Hemmatian, F., & Mohammad, K. S. (2017). A survey on classification techniques

for opinion mining and sentiment analysis. The Artificial Intelligence Review, 1-51.

 [20] Chen, Gangbao, Zhang, Qinglin, Di Chen, Xiao, Jing, Mao, Zhi-Hong, Suzumura,

Toyotaro, & Zhang, Liang-Jie. (2018). A Pair-Wise Method for Aspect-Based Sentiment

Analysis. Lecture Notes in Computer Science., 10971, 2111-29.

[21] Dabholkar, Salil, Patadia, Yuvraj, Dsilva, Prajyoti, & Akila, V. Automatic

Document Summarization using Sentiment Analysis (2016). Proceedings of the

International Conference on Informatics and Analytics - ICIA-16 (Vol. 25, The International

Conference). New York NY: ACM Press.

[22] K. Sundaramoorthy, R. Durga, S. Nagadarshini, "NewsOne—An Aggregation

System for News Using Web Scraping Method", Technical Advancements in Computers

and Communications (ICTACC) 2017 International Conference on, pp. 136-140, 2017.

64

[23] Slamet, Andrian, Maylawati, Suhendar, Darmalaksana, & Ramdhani. (2018). Web

Scraping and Naïve Bayes Classification for Job Search Engine. IOP Conference Series.,

288, 2018.

 [24] Zhu, P., & Qian, T. Enhanced Aspect Level Sentiment Classification with

Auxiliary Memory. Conference on Computational Linguistics COLING (2018).

[25] J. Li, R. Jia, H. He, and P. Liang. 2018. Delete, Retrieve, Generate: A Simple

Approach to Sentiment and Style Transfer. ArXiv e-prints

[26] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, Alexander J. Smola. Stacked

Attention Networks for Image Question Answering. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (2016).

[27] Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu.2016a. Effective LSTMs for

target-dependent sentiment classification. Conference on Computational Linguistics

(COLING 2016).

[28] Yequan Wang, Minlie Huang, Li Zhao, and Xiaoyan Zhu. 2016. Attention-based

LSTM for aspect-level sentiment classification. Empirical Methods in Natural Language

Processing (EMNLP 2016).

[30] Zohreh Madhoushi, Abdul Razak Hamdan, Suhaila Zainudin. Sentiment analysis

techniques in recent works. 2015 Science and Information Conference (SAI), pp. 288-291,

2015.

[31] Dong, Li & Wei, Furu & Yin, Yichun & Zhou, Ming & Xu, Ke. Splusplus: A

Feature-Rich Two-stage Classifier for Sentiment Analysis of Tweets. Proceedings of the

9th International Workshop on Semantic Evaluation pp. 515-519, 2015.

[32] Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. Learning Word

Vectors for Sentiment Analysis. Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies pp. 142-150, 2011.

[33] Hu, Zhiting, Zichao Yang, Xiaodan Liang, Ruslan R. Salakhutdinov and Eric P.

Xing. Toward Controlled Generation of Text. International Conference on Machine

Learning, 2017.

[34] D. Jurafsky, J. H. Martin, Speech and Language Processing 3rd edition. Prentice

Hall publications, pp. 63-79, 2018.

65

Appendix

Web Scraper:

from textblob import TextBlob

import requests

import csv

from bs4 import BeautifulSoup

from urllib.request import urlopen

from newspaper import Article

import nltk

import re

from string import digits

nltk.download('punkt')

class Analysis:

 def __init__(self, term):

 self.term = term

 self.url =

'https://www.google.com/search?q={0}'.format(self.term)

 response = requests.get(self.url)

 return response

 def run(self):

 response = requests.get(self.url)

 soup = BeautifulSoup(response.text, 'html.parser')

 get_details = soup.find_all("div", attrs={"class":

"g"})

 final_data = []

 for details in get_details:

 link = details.find_all("h3")

 # links = ""

 for mdetails in link:

 links = mdetails.find_all("a")

 lmk = ""

 for lnk in links:

 lmk = lnk.get("href")[7:].split("&")

 final_data.append(lmk[0])

 with open('article_file.csv', mode='w') as

article_file:

 article_writer = csv.writer(article_file,

delimiter=',', quotechar = '"', quoting=csv.QUOTE_MINIMAL)

 article_writer.writerow(['Query', 'URL',

'Article'])

 for article_link in final_data:

 try:

 page_data = Article(article_link,

language="en")

66

 # To download the Article

 page_data.download()

 # To parse the article

 page_data.parse()

 # To perform natural language

processing ie..nlp

 page_data.nlp()

 clean_text = page_data.text

 # clean_text =

clean_text.translate(None, digits)

 clean_text = clean_text.replace('\n',

' ')

 print(clean_text)

 article_writer.writerow([self.term,

article_link, clean_text])

 except:

 continue

a = Analysis('apple is good for health')

a.run()

Text Summarization

from nltk.corpus import stopwords

from nltk.cluster.util import cosine_distance

import numpy as np

import networkx as nx

import nltk

import time

def read_article(file_name):

 file = open(file_name, encoding="utf8")

 filedata = file.readlines()

 article = filedata[0].split(". ")

 sentences = []

 for sentence in article:

 print(sentence)

 sentences.append(sentence.replace("[^a-zA-Z]", "

").split(" "))

 sentences.pop()

 return sentences

def sentence_similarity(sent1, sent2, stopwords=None):

 if stopwords is None:

 stopwords = []

67

 sent1 = [w.lower() for w in sent1]

 sent2 = [w.lower() for w in sent2]

 all_words = list(set(sent1 + sent2))

 vector1 = [0] * len(all_words)

 vector2 = [0] * len(all_words)

 # build the vector for the first sentence

 for w in sent1:

 if w in stopwords:

 continue

 vector1[all_words.index(w)] += 1

 # build the vector for the second sentence

 for w in sent2:

 if w in stopwords:

 continue

 vector2[all_words.index(w)] += 1

 return 1 - cosine_distance(vector1, vector2)

def build_similarity_matrix(sentences, stop_words):

 # Create an empty similarity matrix

 similarity_matrix = np.zeros((len(sentences),

len(sentences)))

 for idx1 in range(len(sentences)):

 for idx2 in range(len(sentences)):

 if idx1 == idx2: # ignore if both are same

sentences

 continue

 similarity_matrix[idx1][idx2] =

sentence_similarity(sentences[idx1], sentences[idx2],

stop_words)

 return similarity_matrix

def generate_summary(file_name, top_n=5, aspect_term =

'apple'):

 stop_words = stopwords.words('english')

 summarize_text = []

 # Step 1 - Read text and tokenize

 sentences = read_article(file_name)

 # Step 2 - Generate Similarity Matrix across sentences

 sentence_similarity_matrix =

build_similarity_matrix(sentences, stop_words)

 # Step 3 - Rank sentences in similarity matrix

68

 sentence_similarity_graph =

nx.from_numpy_array(sentence_similarity_matrix)

 scores = nx.pagerank(sentence_similarity_graph)

 # Step 4 - Sort the rank and pick top sentences

 ranked_sentence = sorted(((scores[i], s) for i, s in

enumerate(sentences)), reverse=True)

 print("Indexes of top ranked_sentence order are ",

ranked_sentence)

 for i in range(top_n):

 summarize_text.append(" ".join(ranked_sentence[i][1]))

 final_sentence = []

 for sen in ranked_sentence:

 if aspect_term in sen:

 final_sentence.append(sen)

 # Step 5 - Off course, output the summarize text

 print("Summarize Text: \n", ". ".join(summarize_text))

def main():

 nltk.download('stopwords')

 time.sleep(3)

 generate_summary("article.txt")

if __name__ == '__main__':

 main()

Document Level Sentiment Analyzer

import pandas as pd

import torch.nn as nn

import matplotlib.pyplot as plt

import numpy as np

from sentiment_model_define_class import SentimentLSTM

from sklearn.model_selection import train_test_split

from string import punctuation

from collections import Counter

import torch

from torch.utils.data import DataLoader, TensorDataset

import bcolz

import pickle

69

def pad_features(reviews_int, seq_length):

 ''' Return features of review_ints, where each review is

padded with 0's or truncated to the input seq_length.

 '''

 features = np.zeros((len(reviews_int), seq_length),

dtype=int)

 for i, review in enumerate(reviews_int):

 review_len = len(review)

 if review_len <= seq_length:

 zeroes = list(np.zeros(seq_length - review_len))

 new = zeroes + review

 elif review_len > seq_length:

 new = review[0:seq_length]

 features[i, :] = np.array(new)

 return features

def accuracy(output_values, size, correct_labels):

 num_correct_values = 0

 # convert output probabilities to predicted class (0 or 1)

 prediction = torch.round(output_values.squeeze()) #

rounds to the nearest integer

 # compare predictions to true label

 correct_values =

prediction.eq(correct_labels.float().view_as(prediction))

 # print(correct_tensor)

 correct_values = np.squeeze(correct_values.numpy()) if not

train_on_gpu else np.squeeze(

 correct_values.cpu().numpy())

 num_correct_values += np.sum(correct_values)

 # accuracy over all test data

 return num_correct_values / size

data = pd.read_csv('imdb_tr.csv',names=['text', 'polarity'],

encoding='latin-1')

objects = ('Positive', 'Negative')

train_on_gpu = True

data_int = data['polarity'].value_counts().tolist()

x = np.arange(2)

print(data_int)

Gender=['Train','Validation','Test']

print(data['text'].shape)

reviews = data['text'].tolist()

70

print(reviews[1])

for index, item in enumerate(reviews):

 reviews[index] = item.lower()

 reviews[index] = ''.join([c for c in reviews[index] if c

not in punctuation])

print(reviews[1])

print ('Number of reviews :', len(reviews))

all_text2 = ' '.join(reviews)

print(len(all_text2))

create a list of words

words = all_text2.split()

Count all the words using Counter Method

count_words = Counter(words)

total_words = len(words)

sorted_words = count_words.most_common(total_words)

print (sorted_words[1])

vectors = bcolz.open(f'6B.50.dat')[:]

words1 = pickle.load(open(f'6B.50_words.pkl', 'rb'))

word2idx = pickle.load(open(f'6B.50_idx.pkl', 'rb'))

glove = {w: vectors[word2idx[w]] for w in words1}

matrix_len = len(words)

weights_matrix = np.zeros((matrix_len, 50))

words_found = 0

for i, word in enumerate(words):

 try:

 weights_matrix[i] = glove[word]

 words_found += 1

 except KeyError:

 weights_matrix[i] = np.random.normal(scale=0.6,

size=(50,))

vocab_to_int = {w:i+1 for i, (w,c) in enumerate(sorted_words)}

reviews_int = []

for review in reviews:

 r = [vocab_to_int[w] for w in review.split()]

 reviews_int.append(r)

encoded_labels = np.asarray(data['polarity'])

print(type(encoded_labels))

reviews_len = [len(x)+300 for x in reviews_int]

reviews_int = [reviews_int[i] for i, l in

enumerate(reviews_len) if l>0]

encoded_labels = [encoded_labels[i] for i, l in

enumerate(reviews_len) if l> 0]

encoded_labels = np.asarray(encoded_labels)

print(type(encoded_labels))

len_feat = 25000

71

features = pad_features(reviews_int, 400)

split_frac = 0.6

train_x = features[0:int(split_frac*len_feat)]

train_y = encoded_labels[0:int(split_frac*len_feat)]

print(type(train_y[0]))

remaining_x = features[int(split_frac*len_feat):]

remaining_y = encoded_labels[int(split_frac*len_feat):]

valid_x = remaining_x[0:int(len(remaining_x)*0.5)]

valid_y = remaining_y[0:int(len(remaining_y)*0.5)]

test_x = remaining_x[int(len(remaining_x)*0.5):]

test_y = remaining_y[int(len(remaining_y)*0.5):]

create Tensor datasets

train_data = TensorDataset(torch.from_numpy(train_x),

torch.from_numpy(train_y))

valid_data = TensorDataset(torch.from_numpy(valid_x),

torch.from_numpy(valid_y))

test_data = TensorDataset(torch.from_numpy(test_x),

torch.from_numpy(test_y))

dataloaders

batch_size = 50

make sure to SHUFFLE your data

train_loader = DataLoader(train_data, shuffle=True,

batch_size=batch_size)

valid_loader = DataLoader(valid_data, shuffle=True,

batch_size=batch_size)

test_loader = DataLoader(test_data, shuffle=True,

batch_size=batch_size)

obtain one batch of training data

dataiter = iter(train_loader)

sample_x, sample_y = dataiter.next()

vocab_size = len(vocab_to_int)+1 # +1 for the 0 padding

output_size = 1

embedding_dim = 400

hidden_dim = 256

n_layers = 2

model = SentimentLSTM(vocab_size, output_size, embedding_dim,

hidden_dim, n_layers)

print(model)

loss and optimization functions

lr=0.001

criterion = nn.BCELoss()

optimizer = torch.optim.Adam(model.parameters(), lr=lr)

training params

epochs = 4 # 3-4 is approx where I noticed the validation loss

stop decreasing

72

counter = 0

print_every = 100

clip=5 # gradient clipping

move model to GPU, if available

if(train_on_gpu):

 model.cuda()

 criterion.cuda()

train_accuracy = []

train_losses = []

val_lossess = []

model.train()

train for some number of epochs

for e in range(epochs):

 # initialize hidden state

 h = model.init_hidden(batch_size)

 # batch loop

 for inputs, labels in train_loader:

 num_correct = 0

 counter += 1

 inputs = inputs.type(torch.LongTensor)

 if(train_on_gpu):

 inputs, labels = inputs.cuda(), labels.cuda()

 # Creating new variables for the hidden state,

otherwise

 # we'd backprop through the entire training history

 h = tuple([each.data for each in h])

 # zero accumulated gradients

 model.zero_grad()

 # get the output from the model

 output, h = model(inputs, h)

 # calculate the loss and perform backprop

 loss = criterion(output.squeeze(), labels.float())

 loss.backward()

 # `clip_grad_norm` helps prevent the exploding

gradient problem in RNNs / LSTMs.

 nn.utils.clip_grad_norm_(model.parameters(), clip)

 optimizer.step()

 # loss stats

 if counter % print_every == 0:

 train_acc = accuracy(output, batch_size, labels)

 train_accuracy.append(train_acc)

 print("Train accuracy: {:.3f}".format(train_acc))

 # Get validation loss

 val_h = model.init_hidden(batch_size)

 val_losses = []

 model.eval()

73

 for inputs, labels in valid_loader:

 # Creating new variables for the hidden state,

otherwise

 # we'd backprop through the entire training

history

 val_h = tuple([each.data for each in val_h])

 inputs = inputs.type(torch.LongTensor)

 if(train_on_gpu):

 inputs, labels = inputs.cuda(),

labels.cuda()

 output, val_h = model(inputs, val_h)

 val_loss = criterion(output, labels.float())

 val_losses.append(val_loss.item())

 model.train()

 #validation_acc = accuracy(output, batch_size,

labels)

 # print("Train accuracy:

{:.3f}".format(validation_acc))

 print("Epoch: {}/{}...".format(e+1, epochs),

 "Step: {}...".format(counter),

 "Loss: {:.6f}...".format(loss.item()),

 "Val Loss:

{:.6f}".format(np.mean(val_losses)))

 train_losses.append(loss.item())

 val_lossess.append(np.mean(val_losses))

 # bar_list = plt.plot(list(range(1,

len(train_losses)+1)), train_losses)

 # # plt.xticks(x, objects)

 # plt.title('Sentiment Polarity count')

 # plt.xlabel('Sentiment Polarity')

 # plt.ylabel('Review Count')

 # plt.show()

Get test data loss and accuracy

plt.plot(list(range(1, len(train_accuracy)+1)),

train_accuracy, label='train')

plt.plot(list(range(1, len(train_accuracy)+1)), y_values,

label='test')

#plt.xticks(x, objects)

plt.title('Accuracy Graph')

plt.xlabel('Epochs')

plt.ylabel('Loss (%)')

plt.legend()

plt.show()

test_losses = [] # track loss

num_correct = 0

init hidden state

74

h = model.init_hidden(batch_size)

torch.save(model.state_dict(), 'model.ckpt')

model.eval()

iterate over test data

for inputs, labels in test_loader:

 # Creating new variables for the hidden state, otherwise

 # we'd backprop through the entire training history

 h = tuple([each.data for each in h])

 inputs = inputs.type(torch.LongTensor)

 if (train_on_gpu):

 inputs, labels = inputs.cuda(), labels.cuda()

 # get predicted outputs

 output, h = model(inputs, h)

 # calculate loss

 test_loss = criterion(output.squeeze(), labels.float())

 test_losses.append(test_loss.item())

 # convert output probabilities to predicted class (0 or 1)

 pred = torch.round(output.squeeze()) # rounds to the

nearest integer

 # compare predictions to true label

 correct_tensor = pred.eq(labels.float().view_as(pred))

 correct = np.squeeze(correct_tensor.numpy()) if not

train_on_gpu else np.squeeze(correct_tensor.cpu().numpy())

 num_correct += np.sum(correct)

-- stats! -- ##

avg test loss

print("Test loss: {:.3f}".format(np.mean(test_losses)))

accuracy over all test data

test_acc = num_correct / len(test_loader.dataset)

print("Test accuracy: {:.3f}".format(test_acc))

	San Jose State University
	SJSU ScholarWorks
	Spring 5-20-2019

	SENTIMENT ANALYSIS FOR SEARCH ENGINE
	Saravana Gunaseelan
	Recommended Citation

	tmp.1558410109.pdf.6Lnhi

